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Abstract—Leveraging powerful deep learning techniques, the
end-to-end (E2E) learning of communication system is able to
outperform the classical communication system. Unfortunately,
this communication system cannot be trained by deep learning
without known channel. To deal with this problem, a generative
adversarial network (GAN) based training scheme has been
recently proposed to imitate the real channel. However, the
gradient vanishing and overfitting problems of GAN will result
in the serious performance degradation of E2E learning of com-
munication system. To mitigate these two problems, we propose
a residual aided GAN (RA-GAN) based training scheme in this
paper. Particularly, inspired by the idea of residual learning, we
propose a residual generator to mitigate the gradient vanishing
problem by realizing a more robust gradient backpropagation.
Moreover, to cope with the overfitting problem, we reconstruct
the loss function for training by adding a regularizer, which
limits the representation ability of RA-GAN. Simulation results
show that the trained residual generator has better generation
performance than the conventional generator, and the proposed
RA-GAN based training scheme can achieve the near-optimal
block error rate (BLER) performance with a negligible compu-
tational complexity increase in both the theoretical channel model
and the ray-tracing based channel dataset.

Index Terms—End-to-end learning, generative adversarial net-
work (GAN), residual neural network, regularization.

I. INTRODUCTION

THROUGHOUT the history of wireless communications
from 1G to 5G, the fundamental wireless system design

paradigm remains unchanged, i.e., the whole complicated
wireless system can be divided into multiple simpler individual
modules, such as source encoder, channel encoder, modulator,
demodulator, channel decoder, source decoder, etc. Based
on this modular design paradigm, the global optimization
of the whole communication system can be approximated
by the individual optimization of each module. However,
the optimization of each module doesn’t mean the global
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optimization of the whole system [2], e.g., the separate design
of modulation and coding is known to be sub-optimal [3].
Thus, such a classical design paradigm becomes the bottleneck
that limits the globally optimal performance of the wireless
communication system.

To break through this bottleneck, the groundbreaking
paradigm of end-to-end (E2E) learning of communication sys-
tem has been recently proposed to jointly optimize the whole
system by leveraging powerful deep learning techniques [2],
[4]. It is well known that deep learning is usually realized by
using the multi-layer deep neural network (DNN), in which
the adjacent layers are connected by trainable weights. For
the E2E learning of communication system, the transmitter
and receiver are constructed by fully-connected DNNs, both
of which are trained by the standard backpropagation (BP)
algorithm to update the trainable weights. In contrast to
the classical signal processing algorithms, which are usually
complex in wireless communication systems [5], deep learning
based E2E learning can realize the modulation and other
functions by simple addition and multiplication operations
between each layer of the DNN [6]. Thus, the E2E learning
of communication system could reach or even outperform the
conventional system with lower complexity [2], [7]–[11].

However, the E2E learning of communication system faces
a challenging problem, i.e., the transmitter cannot be directly
trained by the standard BP algorithm without known chan-
nel [4]. To be more specific, in the training process, for the
E2E learning of communication system, the transmitter en-
codes the message by the transmitter DNN. After transmitted
through the channel, the received signal is decoded by the
receiver DNN. To train the DNNs, the receiver should com-
pute the loss function value, which represents the difference
between the receiver output and the transmitted message. After
that, the weights of receiver and transmitter DNNs are updated
by the BP algorithm, which calculates the gradient of each
layer from the derivative of the loss function. The gradient
could be obtained directly at the receiver. However, at the
transmitter, the gradient is unavailable due to the unknown
channel, which blocks the computation of the derivative of
the loss function. Consequently, the transmitter could not be
trained, which prevents the practical realization of the E2E
learning of communication system [4].

A. Prior works
To deal with the unknown channel in E2E learning of com-

munication system, different machine learning techniques and
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architecture design approaches have been recently proposed in
the literature [4], [12]–[20]. In the pioneering work [4], a two-
phase training solution was proposed. In the first phase, the
E2E learning of communication system is trained by assuming
a stochastic channel model that is close to the behavior of the
practical channel. In the second phase, to compensate for the
mismatch of the assumed stochastic channel model and the
real channel, only the receiver part is finetuned by supervised
learning. Unfortunately, the transmitter is unchangeable in the
second phase, which may limit the performance of the system.
To improve the system performance, some improved two-
phase schemes have been proposed to alternatively train the
transmitter and the receiver. These schemes can be generally
divided into two categories, i.e., receiver aided schemes and
the channel imitation based schemes.

In the first category of receiver aided schemes [12]–[14], the
receiver will feedback some information to help the training
of the transmitter. Specifically, the simultaneous perturbation
stochastic optimization algorithm was used in [12] to update
the transmitter, and the deep learning technique was used
to generate gradient by utilizing the loss function fed back
from the receiver. Moreover, reinforcement learning (RL) was
utilized at the transmitter in [13], which regarded the loss
function value as a reward and the transmitter output as a
policy. Then, the transmitter DNN weights could be adjusted
according to the reward. However, the policy adaptability
was limited by the quantization level and feedback noise.
In addition, from the perspective of information theory, [14]
applied a neural estimator to estimate the mutual information
between the transmitted signal and the received signal, and
then optimized the transmitter by maximizing this mutual
information. However, this work only considered the simplest
case of additive white gaussian noise (AWGN) channel, while
the more complex yet practical channel models have not been
considered. Note that all schemes mentioned above require
a large amount of information transmitted from receiver to
transmitter, which increases the system burden.

In the second category of channel imitation based schemes,
instead of feeding back a large amount of information from
the receiver to the transmitter, some extra modules were
added in the system to imitate practical channels. Specifically,
a generative adversarial network (GAN) was used in [15]
to imitate the real received signal. The GAN contains two
parts: the generator and the discriminator, which are both
implemented by multi-layer DNNs. In the training process, the
generator generated a fake received signal to approximate the
distribution of the real received signal, so that the transmitter
could be trained reliably through the generator and will not
be blocked by the unknown channel. At the same time, the
discriminator was used to train the generator to generate the
signal as similar to the distribution of the real received signal
as possible. In this way, the generator can imitate the real
received signal, which builds a bridge for the BP algorithm
to calculate the gradient for the transmitter. It was shown that
this method can imitate an arbitrary channel and reduce the
hardware complexity of transceiver [15], [17]–[20].

Unfortunately, there are two problems causing performance
degradation for this category of channel imitation based

schemes. Firstly, the gradient vanishing problem may happen
when training the transmitter through a multi-layer generator.
Secondly, the overfitting problem usually occurs when a mass
of parameters are iteratively trained for the transmitter, re-
ceiver, generator, and discriminator. These two problems will
result in a mismatch between the output of GAN and the
real received signal. Consequently, this mismatch will lead
to the serious performance degradation of E2E learning of
communication system.

B. Our contributions

To address the gradient vanishing and overfitting problems
of the GAN-based training scheme in E2E learning of commu-
nication system, we propose a residual aided GAN (RA-GAN)
based training scheme by using the residual neural network
(Resnet) to change the layer structure of the generator1. The
specific contributions of this paper can be summarized as
follows.
• Unlike the conventional generator in GAN to generate

the received signal itself, we propose the RA-GAN to
generate the difference between the transmitted and re-
ceived signal. Specifically, we build a skip connection
that links the input and output layers of the generator
to decrease the number of layers from input to output.
Since this connection can provide an extra gradient,
the proposed RA-GAN is able to mitigate the gradient
vanishing problem.

• We reconstruct the loss function for the proposed RA-
GAN to solve the overfitting problem of conventional
GAN. Specifically, we introduce the l2 regularizer in
the loss function to limit the representation ability of
the RA-GAN based training scheme for the first time,
which is verified to have a better performance than
other regularizers. Note that the increased computational
complexity after reconstructing the loss function is neg-
ligible compared with simple addition and multiplication
operations in DNNs.

• Simulation results show that the proposed residual gen-
erator could generate a much more similar signal to
the real received signal than the conventional generator,
which verifies the better generation performance of the
residual generator. As a result, the RA-GAN based train-
ing scheme enables significant block error rate (BLER)
performance improvement in both the theoretical channel
model and the ray-tracing based channel dataset.

C. Organization and notation

The remainder of this paper is organized as follows. Section
II introduces the preliminaries for E2E learning of communica-
tion system. Section III presents the proposed RA-GAN based
training scheme. Simulation results are shown in Section IV.
Finally, the conclusions are summarized in Section V.

Notation: We denote the column vector by boldface lower-
case letters. CN (0, 1) is the standard complex Gaussian

1Simulation codes are provided to reproduce the results in this paper:
http://oa.ee.tsinghua.edu.cn/dailinglong/publications/publications.html.

http://oa.ee.tsinghua.edu.cn/dailinglong/publications/publications.html
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(a) The architecture of the classical wireless communication system, which
includes source encoder, channel encoder, modulator, channel, demodulator,
channel decoder, and source decoder.

Transmitter T Receiver R
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Channel

(b) The architecture of E2E learning of communication system [2].

Fig. 1. Architecture comparison between the classical communication system
and end-to-end learning of communication system.

distribution with mean 0 and variance 1. RM
+ denotes M di-

mensional positive real number. E {·} denotes the expectation.
In denotes the identity matrix of size n. |·| and ‖·‖2 denote
the number of weight parameter and l2 regularization, re-
spectively. For functions fx ∈ Rn and fy ∈ Rk with variable
x,y ∈ Rm, ∂fy

∂fx
∈ Rk×n, ∂y

∂x ∈ Rm×m, and ∇xfx ∈ Rn×m

are their gradient matrices.

II. PRELIMINARIES FOR E2E LEARNING OF
COMMUNICATION SYSTEM

In this section, we will first introduce the principles of
E2E learning of communication system and the corresponding
problem caused by unknown channel. Then, we will show how
GAN could solve this problem, where the associated problems
of gradient vanishing and overfitting will be discussed.

A. The principle of end-to-end communication system

The architecture comparison between the classical commu-
nication system and E2E learning of communication system
is shown in Fig. 1. In the classical wireless communication
system, the whole complicated system is divided into multiple
individual function modules such as source encoder, channel
encoder, modulator, channel, demodulator, channel decoder,
source decoder, etc. In contrast, the E2E learning of commu-
nication system is only composed of three parts: transmitter,
channel, and receiver. Both transmitter T and receiver R
are implemented by multi-layer DNNs, with the trainable
weights denoted by θT and θR, respectively. Note that the
input information s to the transmitter is mapped to a one-
hot vector 1m, which is an M -dimensional vector taken from
set M, where only the m-th element is one, while the rest
M − 1 elements are zeros. Then, the transmitter acts as a
function fθT :M 7→ Cn, which maps the one-hot vector 1m

to the signal x ∈ Cn to be transmitted through n time slots.
Correspondingly, the receiver acts as a function fθR : Cn 7→
{p ∈ RM

+ |
∑M

i=1 pi = 1}, which maps the received signal

y ∈ Cn to a probability vector p ∈ RM
+. The final decision of

ŝ will correspond to the one-hot vector 1m̂, where m̂ is the
index of the maximal element in the probability vector p. The
block error rate is defined as Pe = 1

M

∑
s Pr(ŝ 6= s|s) [4],

which denotes the average error rate when transmitting the
different message s. In general, the the transmitter hardware
introduces the power constraint on the transmitted signal x,
i.e., ‖x‖2 = 1. The purpose of the transmitter-receiver is to
recover the message 1m as accurately as possible from the
received signal y = h•x + w, where h ∈ Cn is assumed as the
block fading channel. The channel coefficients in block fading
channel change independently from one time slot to another.
The w ∈ Cn is Gaussian noise. In detail, the received signal
y = [y1, y2, · · ·, yn]T at each time slot could be calculated by
yi = hixi + wi, i = 1, 2, · · ·, n. Without loss of generality,
we consider the slow fading channel, where the channel keep
unchanged in n time slots, i.e., h = hi, i = 1, 2, · · ·, n. Cor-
respondingly, we simplify the representation of the received
signal by y = hx+w. Moreover, the channel could be denoted
by conditional probability ph(y|x).

In order to get the optimal weights θ∗T and θ∗R for trans-
mitter and receiver, we should train the transmitter DNN
and receiver DNN. In the training process, the transmitted
information is known in receiver, which could be generated
by using the same random seed in transmitter and receiver.
Then, the difference between the transmitted one-hot vector
1m and the recovered probability vector p is measured by a
loss function [13] as follows:

L (θT , θR,H) , EH
{∫

l(fθR (y) ,1m)ph∈H
(
y|f θT (1m)

)
dy

}
≈ 1

B

B∑
i=1

l
(
fθR

(
y(i)

)
,1(i)

m

)
=

1

B

B∑
i=1

l
(
p(i),1(i)

m

)
, (1)

where H = {h(1), · · ·, h(B)} is the training set of the channel,

l (p,1m) = −
M∑
j=1

(1m)j lnpj+
(

1− (1m)j

)
ln (1− pj) (2)

is the cross-entropy (CE) loss function representing the dis-
tance between one-hot vector 1m and probability vector p,
B is the batch size (the number of training samples to
estimate the loss function). The p(i), y(i), and 1

(i)
m are the

i-th probability vector, received signal, and training sample,
respectively. Next, to update the weights θT and θR for
transmitter and receiver DNNs, the gradient of the loss func-
tion L (θT , θR,H) in (1) is required to be calculated by the
classical BP algorithm. However, from (1), only θR could be
updated by applying the gradient defined as follows:

∇θRL̃ (θR) =
1

B

B∑
i=1

∇θR l
(
fθR

(
y(i)

)
,1(i)

m

)
, (3)

where L̃ is an approximation of the loss function, which could
be computed from (1). To fully exploit the performance of
E2E learning, the transmitter DNN weights θT also need to
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Fig. 2. GAN based training schme [15].

be optimized [2]. However, the gradient ∇θT L̃ with respect
to θT is unavailable [4], since the unknown channel h blocks
the backpropagation procedure as follows:

∇θT L̃ (θT ) =
1

B

B∑
i=1

∇θT l
(
fθT

(
y(i)

)
,1(i)

m

)
=

1

B

B∑
i=1

∂l

∂fθR

∂fθR
∂y(i)

∂y(i)

∂x(i)
∇θT fθT

(
1(i)
m

)
=

1

B

B∑
i=1

h(i)
∂l

∂fθR

∂fθR
∂y(i)

In∇θTfθT
(
1(i)
m

)
.

(4)

To address this problem, a GAN based training scheme was
proposed in [15] to generate a surrogate gradient, which will
be discussed in the next subsection.

B. GAN based training scheme

In order to update the transmitter DNN weights θT , a
GAN was used to produce the surrogate gradient [15] as
shown in Fig. 2, which could generate the signal as similar
to the real received signal as possible. Generally, a GAN
contains a generator G and a discriminator D, both of
which are implemented by multi-layer DNNs, with trainable
weights denoted by θG and θD, respectively. The generator
fθG : C2n 7→ Cn produces fake received signal ỹ ∈ Cn

according to the transmitted signal x ∈ Cn and random noise
z ∈ Cn following the standard Gaussian distribution. In order
to imitate the randomness of the channel, the random input
z sampling from a Gaussian distribution is required, which
make the generator G produce different output after giving x.
Accordingly, the generator could produce a distribution that
approximates the real received signal distribution. At the same
time, the discriminator fθD : Cn 7→ (0, 1) is used to train the
generator to generate the signal as similar to the distribution
of the real received signal as possible.

The objective of the discriminator D is to accurately
distinguish real and fake received signals. Particularly, if the
input data of the discriminator is the real received signal y,
the expected output of discriminator is 1. On the contrary,
if the input data is the fake received signal ỹ generated by
the generator, the expected output is 0. For the generator G,
in order to generate a signal as similar to the real received

signal as possible, its output ỹ must make the discriminator
output fθD (ỹ) as close to 1 as possible. Based on the working
procedure of GAN discussed above, the generator weights
θD and the discriminator weights θG are alternately updated
according to the following two loss functions:

L̃ (θD) =
1

B

B∑
i=1

{
l
(
fθD

(
y(i)

)
, 1
)

+ l
(
fθD

(
ỹ(i)

)
, 0
)}

,

(5)

L̃ (θG) =
1

B

B∑
i=1

l
(
fθD

(
fθG

(
x(i), z(i)

))
, 1
)
, (6)

where the function l(·) is defined similarly to (2). The dis-
criminator loss function (5) contains two items. Specifically,
the first item in braces of (5) denotes the loss function of
the real received input y, while the second item denotes
the loss function of the fake received input ỹ. Then, the
gradients could be computed by ∇θGL̃ (θG) and ∇θD L̃ (θD),
and Adam gradient descent algorithm [21] can be used to
minimize the loss functions (5) and (6). The training process
will stop when GAN reaches the Nash equilibrium, i.e., when
the discriminator output is nearly 0.5, which means the real
and fake received signals can not be distinguished anymore.
Since the generator can be trained to imitate the real received
signal, the surrogate gradient as close to the expected gradient
(4) as possible could be passed back through the link of
transmitter-generator-receiver as follows:

∇θT L̃ (θT ) =
1

B

B∑
i=1

∇θT l
(
fθR

(
fθG

(
fθT

(
1(i)
m

)
, z(i)

))
,1(i)

m

)
=

1

B

B∑
i=1

∂l

∂fθR

∂fθR
∂fθG

∂fθG
∂fθT

∇θT fθT
(
1(i)
m

)
(7)

=
1

B

B∑
i=1

∂l

∂p(i)

∂p(i)

∂ỹ(i)

∂ỹ(i)

∂x(i)
∇θT fθT

(
1(i)
m

)
,

where the fθR ,fθG , and fθT are used to denote the output
of the receiver, generator, and transmitter, respectively. Due to
the different objectives for transmitter, receiver, generator, and
discriminator, the modules are iteratively trained, i.e., when
we train one module, the weights of other modules remain
unchanged.

However, it is well known that the training instability
problem that limits the performance of GAN [22]. Specifically,
in the GAN based training scheme of the E2E learning of
communication system, the gradient vanishing problem hap-
pens in a multi-layer generator, which makes the transmitter
very difficult to be trained. Moreover, the overfitting problem
always occurs because a mass of weights are iteratively trained
for the transmitter, receiver, generator, and discriminator,
which makes the system weights easily overfit to the batch
training data. These two problems will result in a serious
mismatch between the output of GAN and the real received
signal. Consequently, this mismatch will result in the serious
performance degradation of E2E learning of communication
system. To address the gradient vanishing and overfitting
problems of GAN based training scheme in E2E learning
of communication system, we will propose a residual aided
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GAN (RA-GAN) based training scheme to train the transmitter
indirectly in the next section.

III. RA-GAN BASED TRAINING SCHEME

The training of the transmitter is a challenging task because
of the unknown channel. According to the GAN based training
scheme, a surrogate gradient is produced in (7) to update
the transmitter. However, the generator output distribution
ph̃(ỹ|x) is inconsistent with the real received signal distri-
bution ph(y|x) due to the gradient vanishing and overfitting
problems. Therefore, we propose an RA-GAN based training
scheme in this section to address these two problems.

A. Residual learning to mitigate gradient vanishing

In conventional GAN, the multi-layer generator always
feeds forward the variables layer-by-layer and feeds back the
gradients layer-by-layer. However, as the generator depth in-
creases, the gradient may become very small. This is caused by
the fact that the gradient is obtained by multiplying the partial
derivatives of loss functions layer-by-layer in the classical BP
algorithm. If the value of the partial derivative is close to
0, the final gradient to the transmitter will be very small.
This gradient vanishing problem makes it difficult to train
the transmitter through the multi-layer generator. Inspired by
the idea of residual learning [23], we intentionally construct
a skip connection between the input and output layers of the
generator, which is shown by the residual generator in Fig.
3. For the residual generator, the residual generating function
fθRG : Cn 7→ Cn could be denoted by

fθRG (x) = ỹ − x = fθG (x)− x, (8)

where x and ỹ are transmitted and generated signals, respec-
tively, and fθRG (x) is a residual generator aiming to learn the
difference between transmitted and received signals with the
conditional input x. The distribution of the difference between
transmitted and received signals is considered to be easier to
learn than the distribution of the received signal ph(y|x). For
AWGN channel, in which the real received signal is denoted
by y = x+n, the signal generated by residual generator fθRG
is expected to close to Gaussian noise, while the traditional
generator needs to approximate the whole received signal y.
The gradient in each iteration for the transmitter DNN can be
computed as:

∇θT L̃ (θT ) =
1

B

B∑
i=1

∂l

∂fθR

∂fθR
∂fθG

∂fθG
∂fθT

∇θT fθT
(
1(i)
m

)
=

1

B

B∑
i=1

∂l

∂fθR

∂fθR
∂fθG

∂fθRG
∂fθT

∇θT fθT
(
1(i)
m

)
+

1

B

B∑
i=1

∂l

∂fθR

∂fθR
∂fθG

∇θT fθT
(
1(i)
m

)
=

1

B

B∑
i=1

∂l

∂p(i)

∂p(i)

∂ỹ(i)

∂fθRG
(i)

∂x(i)
∇θT fθT

(
1(i)
m

)
+

1

B

B∑
i=1

∂l

∂p(i)

∂p(i)

∂ỹ(i)
∇θT fθT

(
1(i)
m

)
, (9)

(x))

transmitted

signal

generated

signal
residual generator

random signal

Fig. 3. The residual generator in proposed RA-GAN.

where the fθR ,fθG ,fθRG , and fθT are used to denote the
output of the receiver, generator, residual generator, and trans-
mitter, respectively. The training method of proposed RA-
GAN is consistent with the traditional GAN [15]. Specifically,
we use the generated fake received signal ỹ and the real
received signal y to train the discriminator of RA-GAN, and
only used the generated fake received signal ỹ to train the
generator of RA-GAN. Next, the receiver was only trained
according to the real received signal y, while the transmitter
was only trained according to the fake received signal ỹ.
Among them, the loss function for training the transmitter and
receiver are l(fθR(ỹ),1m) and l(fθR(y),1m), respectively.
Note that (9) is the gradient for updating the transmitter DNN
weights of the proposed RA-GAN based training scheme.
There are two items on the right side of (9). The first item is
the same as that (7), while the second item denotes the gradient
through the skip connection between the input and output
layers of the generator. Compared with the conventional GAN,
the RA-GAN could generate a extra gradient to efficiently train
the transmitter DNN due to the extra second item in (9), thus
the gradient vanishing problem could be mitigated. 2

It should be pointed out that for the RA-GAN based
training scheme, only a small number of extra operations are
needed both in feedforward calculation and backpropagation
procedure due to the skip connection. Therefore, the extra
computational complexity for the residual generator is negligi-
ble compared with the addition and multiplication operations
for the conventional generator.

Different from the existing residual-based generator used in
image deblurring and image super-resolution [24]–[28], which
mainly focus on making full use of the low-level information
by connecting with low layers to mitigate the gradient van-
ishing problem when training generator, the proposed residual
generator is utilized to solve the gradient vanishing problem
when training the transmitter. Moreover, compared to the
complex design of the residual structure in [24]–[28], the
proposed RA-GAN is more straightforward by building a link
back to the transmitter.

B. Regularization method to mitigate overfitting

In this subsection, we reconstruct the loss function for
the E2E learning of communication system to mitigate the

2To obtain the optimal gradient, the derivative
∂f
θR
G

∂fθT
is expected to close

the value of h(i) − 1, instead of ignoring this item. Thus, there is still a
difference here when compared with the optimal case after adding the residual
item. Specially, for the AWGN channel, i.e., h(i) = 1, since the derivative
∂f
θR
G

∂fθT
is expected to zero, the residual generator could be omitted.
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Algorithm 1: RA-GAN based E2E training scheme.
Input:
1) Maximum number of iterations Epoch;
2) Real channel dataset H;
Output:

Trained transmitter and receiver DNNs weights
θT and θR;

1 Initialization:
M = 16, n = 7, B = 320, Ntrain = 10000,
δ2 = ( 2Eb log2 M

N0n
)−1, λ = 0.01,

Index = bNtrain/Bc;
2 Generate Ntrain training data samples at random;
3 Initialize weights θD,θG,θR, and θT according to

the Xavier initialization method [29];
4 for epoch = 1, 2, · · ·,Epoch do
5 for index = 1, 2, · · ·, Index do
6 Take B one-hot vectors as training samples;
7 Caculate transmitted signals: x(1), · · ·,x(B);
8 Take B channel samples: h(1), · · ·,h(B);
9 Get real received signals: y(1), · · ·,y(B);

10 Generate fake received signals:
ỹ(1), · · ·, ỹ(B);

11 for i ∈ {D,G,R,T } do
12 Caculate the loss function L̂ (θi)

according to (10);
13 Use ∇θiL̂ (θi) to update θi according to

the Adam method [21];
14 end
15 end
16 end
17 Return θR and θT .

overfitting problem. As the generator and the discriminator in
GAN are added to train the E2E learning of communication
system, the representation ability will substantially increase
due to a mass of extra trainable DNN weights, which results
in the overfitting problem [30]. To be specific, when a mass of
parameters is iteratively trained for the transmitter T , receiver
R, generator G, and discriminator D, the residual generator is
easy to overfit to partial training channel data. This overfitting
problem results in residual generator performance degradation
on other channel data. To limit the representation ability of
RA-GAN based training scheme, the regularizer is added
in the loss function. Compared to the existing GAN based
training scheme, the regularizer enables the RA-GAN based
training scheme to generate a signal as similar to the real
received signal as possible by using the regularization method.
Specifically, by adding a weight penalty item Ω (θ) in the
original loss function in (6) to restrict the representation ability
of RA-GAN, we have

L̂ (θi) = L̃ (θi) + λΩ (θi) , i ∈ {R,T,G,D} , (10)

where L̂ (θi) and L̃ (θi) are the reconstructed and original loss
functions, respectively, λ is the hyper-parameter to balance the
penalty item and original loss function L̃ (θi).R, T ,G, andD
represent the receiver, transmitter, generator, and discriminator

in the RA-GAN based training scheme, respectively. In this
paper, we use l2 regularization 1

2 ||θ||
2 as the penalty item.

Note that the l2 regularizer could achieve better performance
than the gradient penalty in WGAN loss and the l1 for weight
sparsity, by avoiding large weights in the E2E system. The
key procedures of the RA-GAN based training scheme are
described in Algorithm 1. Then, we aim to minimize the
reconstructed loss function (10), which makes each weight of
θi close to 0. Specifically, for a neural network (NN), if the
weights are large, a small noise of the input data will have
a great impact on the output results. But if the weights are
small enough, it doesn’t matter if the input data is shifted a
little bit by noise. It is generally considered that the model with
small weights values is relatively simple, and avoids overfitting
problem [30]. Finally, we will obtain a well-trained residual
generator without an overfitting problem, which could have a
good performance in most channel data.

As we all know, the mode collapse always happens in the
GAN-based model in image processing and natural language
processing. However, we have not observed the problems
resulting from model collapse. The main reason is that the
distribution of image and text is more complicated than the
received signal distribution in the communication system.
Thus, the mode of the received signal is easier to generate
than image and text. Moreover, for the gradient vanishing
problem when training generator. Specifically, if the discrimi-
nator could completely distinguish between real and fake data,
i.e., fθD (ỹ) = 0 and ∇ỹfθD (ỹ) = 0, the gradients of the
loss function to train the generator are close to zeros, where
∇ỹfθD (ỹ) = 0 denote the derivative of fθD (ỹ) is 0 in the
neighborhood of ỹ. On the one hand, we use the regularization
method to make the discriminator D simple. On the other
hand, we use the less learning rate to train the discriminator
D, and make it convergence slowly. In the end, the matching
convergence rate between the discriminator D and generator
G could be obtained to avoid the gradient vanishing problem
when training the generator.

Note that the penalty item Ω (θi) in (10) only in-
troduces limited operations when we compute the new
loss function and gradient in each iteration. The computa-
tional complexity after reconstructing the loss function is
O (|θD|+ |θG|+ |θR|+ |θT |), where |θ| denote the number
of weights in θ. This increased complexity is still negligible
compared with addition and multiplication operations in multi-
layer DNN.

IV. SIMULATION RESULTS

In this section, we investigate the performance of the
proposed RA-GAN based training scheme in terms of block
error rate (BLER) for data transmission in the AWGN channel,
Rayleigh channel, and DeepMIMO channel dataset based on
ray-tracing [31], respectively3. We compare the performance
of the indirect RA-GAN based training scheme with indirect
RL [13], indirect GAN based training scheme [15], indirect
WGAN based training scheme [20], and the direct optimal

3It’s worth noting that the proposed RA-GAN based training scheme is still
suitable for non-linear channels, such as optical fiber channel [32].
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training method with known channel. In the direct optimal
training method, we assume the real channel are known at the
transmitter, which makes the gradient ∇θT L̃ available to train
the transmitter DNN. In addition, we analyze the ability of
RA-GAN to generate a fake received signal and compare it
with GAN. The layouts of the transmitter, receiver, generator,
and discriminator are described in Table I. Moreover, the
parameter Eb/N0 denotes the ratio of energy per bit (Eb) to
the noise power spectral density (N0), and the noise power
δ2 equals to ( 2Eb log2 M

N0n
)−1 [2]. Expect the neural network

dimension is shown in Table I, the training hyper-parameters
are set as: weight decay λ = 0.01, the maximum number
of iteration Epoch = 200, and the learning rate to train the
transmitter and receiver is 0.001. Specifically, for AWGN
and Rayleigh fading channel model, the learning rate to
train the generator and discriminator are 0.0005 and 0.0001,
respectively, and the batch size B = 320. For the DeepMIMO
channel model, due to the complex distribution of DeepMIMO,
the learning rate to train the generator and discriminator are
set as 0.00005 and 0.00001, respectively, and the batch size
B = 640, to reduce the speed of the training model and make
the model converge better.

TABLE I
SYSTEM PARAMETERS IN RA-GAN BASED TRAINING SCHEME.

Input Output Activation function

Transmitter
M 2M ReLU
2M 2n Linear
2n 2n Normalization

Receiver
2n / 4n 4M ReLU

4M M Softmax

Generator
4n 8M ELU
8M 8M Tanh
8M 2n Linear

Discriminator
2n / 4n 2M ELU

2M 2M ELU
2M 1 Sigmoid

A. Generation capability comparison between RA-GAN and
GAN

At first, we compare the generation performance of the
conventional GAN and the proposed RA-GAN for training
the E2E communication system. Specifically, we consider the
reconstructed loss function L̂ (θR), L̂ (θT ) in (10) for RA-
GAN based training scheme and the original loss function
L̃ (θR), L̃ (θT ) in GAN based training scheme. As mentioned
in Subsection II-B, the motivation of introducing RA-GAN
and GAN is to generate a signal as similar to the real
received signal as possible, i.e., the loss functions to train the
transmitter DNN should be very close and consistent with the
loss function to train the receiver DNN.

In Fig. 4, we show the values of the corresponding loss
functions against the training epoch in the AWGN channel, in
which the received signal y can be expressed as y = x + w,
where x and w are the transmitted signal and Gaussian noise,
respectively. The system is trained at Eb/N0 = 6 dB. We
can observe that the original loss function L̃ (θT ) in the GAN
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Fig. 4. Generation performance comparison between the conventional GAN
and the proposed RA-GAN.

based training scheme can not converge, and it is not close to
the L̃ (θR). This result is caused by the gradient vanishing and
overfitting problems. On the contrary, the reconstructed loss
functions L̂ (θT ) and L̂ (θR) in the proposed RA-GAN based
training scheme are very stable, and they converge faster than
the original loss functions L̃ (θT ) and L̃ (θR). Note that in
the training process, there are still some bad points due to the
randomness of training, but the bad points could recover in
the next epoch. The gap between L̂ (θR) and L̂ (θT ) is equal
to the gap between the penalty item λΩ (θR) and λΩ (θT ).
Thus, compared with the existing GAN based training scheme,
the proposed RA-GAN based training scheme could generate
a much more similar signal to the real received signal, which
shows that the trained residual generator has better generation
performance than the conventional generator.

B. BLER performance in the AWGN channel

Next, we compare the performance of the RA-GAN based
training scheme, GAN based training scheme [15], the RL
based training scheme [13], and the optimal training method
in the AWGN channel4. The training parameters are the same
as those in Subsection IV-A. As mentioned in Section III-A,
the residual generator just needs to generate Gaussian output.
This is simple to realize by scaling the standard Gaussian input
z.

To compare the performance of different training schemes
in larger Eb/N0 scope as done in [2], we test the BLER
performance with a validation dataset including 100,000 ran-
dom one-hot vectors from -7 dB to 13 dB. As shown in
Fig. 5, we can observe that the BLER performance gap
between the existing GAN based training scheme [15] and
the optimal training scheme with known channel is large. This
large performance gap is caused by the gradient vanishing and
overfitting problems when training GAN. On the contrary, the

4There is no channel estimation module [33] to estimate the channel
coefficient in E2E communication system. So, we verify the performance of
the proposed RA-GAN based training scheme and other training schemes in
the AWGN channel model and other channel models without known channel.
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Fig. 5. BLER performance comparison in the AWGN channel.
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Fig. 6. BLER performance comparison in the Rayleigh fading channel.

proposed RA-GAN based training scheme almost approaches
the optimal training method.

C. BLER performance in the Rayleigh fading channel

In this subsection, we consider the Rayleigh fading channel
h ∼ CN (0, 1). The receiver signal y could be denoted by
y = hx + w. Unlike the AWGN channel, some known pilot
signals xp are transmitted to help to train the E2E learning
of communication system in the Rayleigh fading channel and
DeepMIMO channel. The received pilot signal yp concatenate
with received data signal y as the input of receiver and
discriminator of RA-GAN, GAN, and WGAN.

In Fig. 6, we show the BLER performance of RA-GAN
based training scheme compared with GAN based training
schemes [15] and RL based training schemes [13] in Rayleigh
fading channel. We train the system at Eb/N0 = 16 dB,
and double the input dimension of the receiver and RA-
GAN due to the use of the pilot. We observe that the RA-
GAN based training scheme outperforms the RL, WGAN, and
GAN based training schemes, e.g., the proposed RA-GAN
based training scheme outperforms the GAN based training

TABLE II
THE DEEPMIMO DATASET SIMULATION PARAMETERS.

Parameter Value
Name of scenario O1
Active BS 3
Active users Row 1-2751
Number of users 497,931
Number of BS antenna in (x,y,z) (1,1,1)
System bandwidth 0.5 GHz
System spectrum 60 GHz
Number of OFDM sub-carriers 64
OFDM limit 1
Number of channel paths 5

scheme by 3 dB when the BLER is 0.1. Since the WGAN is
designed to solve the mode collapse problem which doesn’t
appear in E2E training, compared to the GAN method, WGAN
based training scheme only achieves smaller performance
improvement. When Eb/N0 is lower than 15 dB, the BLER
performance of RA-GAN based training scheme could almost
overlap with the optimal training method. When Eb/N0 is
greater than 16 dB, the BLER performance of the proposed
RA-GAN based training scheme cannot approach the optimal
training method. This is caused by the fact that the regularizer
will limit the representation ability of the E2E learning of
communication system. If we decrease the hyper-parameter λ
in (10), the optimal BLER performance will be achieved, but
the BLER performance will degrade in low Eb/N0 regions.

D. BLER performance in the ray-tracing based DeepMIMO
dataset

To verify the performance of the proposed RA-GAN based
training scheme in the real channel, we use the DeepMIMO
channel dataset based on ray-tracing [31] to generate channel
samples which is more realistic than the simulated channel
model, e.g., the AWGN channel and the Rayleigh fading
channel. By using Wireless InSite ray-tracing simulator [34],
the DeepMIMO channel dataset can capture the dependence on
the real channel environmental factors such as user location
and environment geometry and so on. One main advantage
of the DeepMIMO channel dataset is that the dataset could
be completely defined by the parameters set and the 3D ray-
tracing scenario. In our simulations, the DeepMIMO channel
data are generated according to the parameters shown in Table
II. This DeepMIMO channel dataset contains the channels
between the BS 3 deployed with single-antenna antenna and
single-antenna users from Row 1 to Row 2751, which is
divided into a training set and a validation set. The training
set with 80% of the data is used to train the E2E learning of
communication system, while the validation set with the rest
20% data is used to test the system performance.

In Fig. 7, we show the BLER performance of RA-GAN
based training scheme compared with GAN based training
schemes [15] and RL based training schemes [13] in the
DeepMIMO channel dataset. The training Eb/N0 is 16 dB,
the batch size is 640, and the hyper-parameter λ is 0.005. We
can observe that the proposed RA-GAN based training scheme
outperforms the GAN and RL based training schemes, e.g.,
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Fig. 7. BLER performance comparison in DeepMIMO channel dataset.

the proposed RA-GAN based training scheme outperforms the
GAN based training scheme by 2 dB when the BLER is 0.1.
Moreover, the proposed RA-GAN based training scheme can
mitigate the gradient vanishing and overfitting problems of
GAN, and thus achieve the near-optimal BLER performance.

E. Training time and complexity analysis

We compare the training time of the methods for end-to-end
training in different channel models, as shown in Table III.
From this table, we can observe that the proposed RA-GAN
based training scheme requires only a little more time than the
GAN based training scheme. Although the RL based training
scheme has a shorter training time, it requires the transmitter to
transmit a large amount of extra signals for training. Moreover,
we also calculate the complexity of the GAN, RA-GAN, and
WGAN methods by comparing the number of weights in
generator and discriminator, as shown in Table IV. Since the
residual connection does not increase the number of weights,
we can observe that the proposed RA-GAN based training
scheme and GAN based training scheme have the same amount
of weights, both of which realize lower complexity compared
with WGAN based training scheme.

TABLE III
TRAINING TIME COMPARISON (SEC).

AWGN Rayleigh fading DeepMIMO
optimal 35.12 27.15 16.28

GAN [15] 222.01 113.23 71.13
WGAN [20] 1055.58 309.46 244.58

RA-GAN 226.91 118.70 73.71
RL [13] 61.08 60.82 37.14

F. BLER performance in the non-linear channel model

Furthermore, we verify the performance of the proposed
RA-GAN based training scheme in a non-linear channel
model, i.e., optical fiber channel model. In an optical fiber
communication system, the Mach-Zehnder modulator (MZM)
is used to modulate electrical signals into optical signals in

TABLE IV
THE NUMBER OF WEIGHTS IN GENERATOR AND DISCRIMINATOR,

RESPECTIVELY.

AWGN Rayleigh fading DeepMIMO
GAN [15] 22030 / 513 23822 / 2017 23822 / 2017

WGAN [20] 26208 / 13176 28096 / 15512 28096 / 15512
RA-GAN 22030 / 513 23822 / 2017 23822 / 2017
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Fig. 8. BLER performance comparison in optical fiber channel.

the transmitter, while simple photodiodes (PDs) are used to
detect the intensity of the received optical field and perform
the opto-electrical conversion in the receiver [32]. Specifically,
the modulation process in the MZM modulator is modeled by
m(t) = 1+ejx(t), where x(t) is the t-th transmitted signal and
m(t) is the t-th modulated signal. Then, the modulated signal
is transmitted through optical fiber, where fiber dispersion
affects the signal quality. The fiber dispersion can be solved
analytically in the frequency domain by taking the Fourier
transform. Thus, the FFT and IFFT are necessary for conver-
sion between the time and frequency domain, which can be
realized by the Torch library. Finally, the received intensity of
the optical field can be denoted by r(t) = |h{m(t)}|2 + n(t),
where h{·} is an operator describing the effects of the fiber
dispersion and n(t) is the additive white Gaussian noise.
As a consequence of the joint effects of dispersion and
intensity of the received optical field detection, the optical
fiber communication channel is nonlinear.

According to the optical fiber channel model introduced
above, we compare the performance of the RA-GAN based
training scheme, GAN-based training scheme, WGAN based
training scheme, the RL-based training scheme, and the op-
timal training method in the optical fiber channel. We test
the BLER performance with a validation dataset including
100,000 random one-hot vectors. As shown in Fig. 8, we can
observe that the proposed RA-GAN based training scheme
outperforms the GAN and WGAN based training scheme,
which illustrates the proposed RA-GAN has a better ability to
characterize nonlinear channels. At the same time, RA-GAN
based method achieves the best BLER performance in the low
Eb/N0 area, while RA-GAN based method is still competitive
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in the high Eb/N0 area.

V. CONCLUSIONS

In this paper, we proposed the RA-GAN based training
scheme for the E2E learning of communication system to
train transmitter without a known channel. Specifically, we
improved the surrogate gradient method by using residual
learning to transform the conventional GAN into RA-GAN
with a negligible increase in computational complexity. Based
on the proposed RA-GAN based training scheme, more pow-
erful and robust gradients can be achieved to solve the gradient
vanishing problem. Furthermore, a regularizer was utilized in
the RA-GAN to limit the representation ability, which can
solve the overfitting problem. Simulation results verified the
near-optimal BLER performance of the proposed RA-GAN
based training scheme, which outperforms other deep learning
methods in the AWGN channel, Rayleigh fading channel,
and DeepMIMO channel dataset. For future research of E2E
learning of communication system, we will focus on how to
train the transmitter without a known channel in multiple-input
multiple-output (MIMO) and multi-user scenarios.
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