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Federated Learning Over Wireless Channels:
Dynamic Resource Allocation and Task Scheduling

Shunfeng Chu, Jun Li, Jianxin Wang, Zhe Wang, Ming Ding, Yijin Zang, Yuwen Qian, and Wen Chen

Abstract—With the development of federated learning (FL),
mobile devices (MDs) are able to train their local models with
private data and sends them to a central server for aggregation,
thereby preventing sensitive raw data leakage. In this paper, we
aim to improve the training performance of FL systems in the
context of wireless channels and stochastic energy arrivals of
MDs. To this purpose, we dynamically optimize MDs’ transmis-
sion power and training task scheduling. We first model this
dynamic programming problem as a constrained Markov deci-
sion process (CMDP). Due to high dimensions rooted from our
CMDP problem, we propose online stochastic learning methods
to simplify the CMDP and design online algorithms to obtain an
efficient policy for all MDs. Since there are long-term constraints
in our CMDP, we utilize Lagrange multipliers approach to tackle
this issue. Furthermore, we prove the convergence of the proposed
online stochastic learning algorithm. Numerical results indicate
that the proposed algorithms can achieve better performance
than the benchmark algorithms.

Index Terms—Federated learning, Markov decision processes,
stochastic learning, resource allocation, dynamic programming

I. INTRODUCTION

IN the last decade, we have witnessed a series of amaz-
ing breakthroughs, such as AlphaGo, machine learning

and artificial intelligence (AI), which have become the most
cutting-edge technology in both academia and industry com-
munities [1]. Distributed machine learning based on mobile
edge computing (MEC) of the wireless networks is also one
of the current hot research directions [2]. The sample data
for machine learning can be obtained by collecting massive
amounts of data from mobile devices (MD) distributed in
the wireless network. By training these data, the training
performance of machine learning can be greatly improved.

Although offloading the local sample data of distributed
MDs for centralized learning significantly improves the per-
formance of machine learning, this mechanism suffers from
two flaws. First, transmission delays from distributed MDs to
the central cloudy via backbone network are extremely large.
Second, the local data often contains the private information
of MDs, and uploading the private information to the central
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cloudy will lead to the risk of personal privacy leakage.
To cope with these two issues, federated learning (FL) has
been introduced to act as an emerging distributed machine
learning paradigm, which is indeed a way to combine MEC
with traditional machine learning. In this manner, MDs train
their local data and send their local model updates to a task
publisher iteratively instead of uploading the raw data to a
central server [3], [4], which, in general, brings the following
two benefits. (I) The communication latency and the energy
consumption for computation can be significantly reduced
owing to the fact that MDs are not required to upload huge
amounts of local data for training to an edge server. (II) MDs
upload their local model instead of the raw data to the edge
server, which greatly reduces the risk of personal privacy
information leakage [5].

Despite the aforementioned advantages of FL, there are
still many challenges that have not been solved until now.
Some existing studies [6], [7] adopted an idealized assumption
that all MDs participating in FL are immune to the wireless
and computation resource constraints. [8] only focused on a
practical Federated-Averaging algorithm for distributed DNN
training and the training performance. Many studies [9]–[12]
have been committed to further reducing the communication
overhead by developing compression methods. However in
practice, MDs usually suffer from energy consumption con-
straints that may reduce the network lifetime and training
efficiency.

In addition, frequent wireless communications is usually
required for uploading and downloading the model parameters,
which would increase the bandwidth cost and the training
latency [13]. Therefore, it is necessary to design a feasi-
ble resource scheduling scheme to optimize the resource
scheduling problem in the FL process. Without taking into
account the energy constraints and battery dynamics of MDs,
[14] formulated a FL over a wireless networks as a static
optimization problem, and exploited the problem structure to
decompose it into three static convex sub-problems. The work
[15] proposed a static scheduling scheme to efficiently execute
distributed learning tasks in an asynchronous manner while
minimizing the gradient staleness on wireless edge nodes
with heterogeneous computing and communication capacities.
However, many properties of MEC networks are usually time-
varying in the FL process and thus the methods in [16] will
result in considerable performance loss. The work [16], [17]
model the channel and energy dynamically, and exploit the
dynamic scheduling algorithm to obtain the asymptotically
optimal resluts. Thus, it is of vital importance to develop
efficient dynamic resource scheduling schemes to improve the
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performance of FL.
In this paper, we utilize constrained Markov decision pro-

cesses (CMDP) as a mathematical tool to obtain an optimal
algorithm for dynamic resource scheduling for FL, where
each MD send local model updates trained on their local
raw data iteratively to a common edge server, and the edge
server aggregates the parameters from MDs participating in
local training and broadcasts the aggregated parameters to
all the MDs. In particular, each MD possesses computing
units with computing capability, which can be used for local
machine learning with local raw data. In order to improve the
training performance of FL1, we propose an efficient stochastic
optimization algorithm for scheduling resources of MDs in the
FL processes by obtaining an efficient setting of the size of
raw data for local training, and the transmission power of MDs
to upload the local model.

Our main contributions are listed as follows.
1) Due to the dynamic nature of wireless network and

battery status of MDs, we consider resource scheduling
of FL in dynamic scenarios. Thus, we model the resource
scheduling problem of the FL process as a CMDP prob-
lem, and improve the performance of FL by optimizing
the size of the local training data at the MD side.

2) Since the state-action space dimension in the constrained
MDP problem is large and there are a few constraints
in the dynamic problem, we simplify the stochastic
optimization problem by proving an equivalent Bellman
equation and using the Lagrange multiplier method.

3) We use approximate MDP and stochastic learning meth-
ods to analyze the constrained MDP problem, and design
centralized online algorithms to obtain resource schedul-
ing policy for all MDs.

4) We also provide effective analysis for the convergence of
the online stochastic learning algorithms.

Although the idea of applying CMDP to design dynamic
resource scheduling is not new, we are motivated to address
the resource scheduling issues of resource constraints and
dynamics of FL. To achieve high-quality learning perfor-
mance, a reasonable constrained dynamic scene is essential
to the resource scheduling issues [19], [20]. Previous work
has utilized CMDP as a mathematical model to design effec-
tive algorithms for resource scheduling in wireless networks
[13], [21], [22], which is considered as an effective tool for
solving dynamic problems and time-related state problems.
Inspired by this, we apply CMDP as the mathematical scene
to address the resource scheduling problem in the FL process.
Nevertheless, previous work still has some shortcomings in
solving CMDP problems. The literature [13] adopted a deep
learning algorithm that allows the edge server to learn and find
optimal decisions without any a priori knowledge of network
dynamics in the CMDP. However, reinforcement learning is
poorly scalable and requires a lot of computing power and
duration for training. The literature [21] obtained the optimal

1In general FL, existing work [18] used the accuracy of the test set
to measure the performance of machine learning after training. Since the
quantitative analysis of the accuracy in the test set is relatively difficult, we
use the size of local dataset accumulated from MDs over iterations to evaluate
the accuracy of the machine learning model [13].

TABLE I
SUMMARY OF MAIN NOTATIONS

Notation Description
N The number of all MDs
n The index of the MD
t The number of iterations of FL
bn(·) The number of bits of training data for the n-th MD
Pn(·) The transmission power of the n-th MD
Emax

n The battery capacity of the n-th MD
Esta

n (·) The n-th MD’s energy state
E

cop
n (·) The n-th MD’s computation energy for local model training

Ecom
n (·) The n-th communication energy for parameter transmission

Earr
n (·) The harvesting energy for the n-th MD

Cn The CPU cycles to train a unit sampled data on the n-th MD
fn The CPU frequency of the n-th MD
τ

cop
n (·) The processing time of local training on the n-th MD
εn(·) The upload decision of the n-th MD
hn(·) The channel gain between the n-th MD and the edge server
Rn(·) The uplink transmission rate for the n-th MD

solution for the formulated CMDP offloading problem by
linear programming and Q-learning method. Neither method
is suitable for large-scale networks, which will lead to the
curse of dimension. The work [22] developed a threshold-
based algorithm to obtain the optimal delay-power tradeoff
efficiently, in which the authors used the special structure of
the mathematical model to solve the CMDP problem, and
this method does not possess the universality of solving the
problem.

The rest of this paper is organized as follows. Section II
describes the system model and dynamic analysis. CMDP-
based dynamic resource scheduling problem is formulated in
Section III. Section IV proposes approximate Markov decision
process and stochastic learning methods to simplify the CMDP
problem, and designs online algorithms to obtain an efficient
policy. Section V presents the simulation results. Finally,
Section VI concludes this paper.

II. SYSTEM MODEL

Consider a wireless FL system consisting of an edge server
and N MDs as shown in Fig. 1. Each MD is equipped with
computing and energy harvesting modules. Having access to a
vast range of local data, each MD is able to train the machine
learning model locally using the harvested energy from the
environment. To improve the model training efficiency and
protect data privacy, the FL technique is adopted as an iterative
model updating process between the edge server and MDs.

We first briefly introduce the main procedures as follows. In
each learning iteration t, the n-th MD first selects bn(t) bits of
training data from the local data set, where the size of selected
data is determined by the edge server according to the energy
status of the MD, i.e., the battery energy at the beginning of
this iteration. Here, we assume that the edge server knows
the energy status of all MDs in advance at the beginning of
the learning iteration. Then, each MD performs local training
and obtains the local model parameters. Afterwards, the edge
server decides whether or not to upload the local parameters
for MDs for aggregation according to MDs’ remaining energy
and channel state. If the n-th MD participates, it transmits
the parameters to the edge server in the uplink using the
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Fig. 1. The federated learning aided MEC network

power of Pn(t). Finally, the edge server aggregates the local
training parameters from all the participating MDs and then
it broadcasts the updated global training parameters (e.g.,
weighted average over the local parameters) back to all the
MDs. At the end of this iteration, each MD opportunistically
harvests energy from the environment and stores the energy in
the rechargeable battery. The above process is repeated until
the learning model reaches the desired accuracy level.

In the following subsections, we will explain the above
process in more details. We mainly discuss each learning
iteration in three stages: dynamic energy harvesting, local
model training, model parameter transmission and aggregation.

A. Dynamic Energy Harvesting

We assume that the n-th MD is equipped with a recharge-
able battery with a limited capacity of Emax

n .2 At the beginning
of each iteration t, we denote the n-th MD’s energy state
as Esta

n (t) which is the remaining energy carried from the
previous iteration. According its energy state, the edge server
decides whether or not to proceed to local model training and
uplink parameter transmission for each MD. We let Ecop

n (t)
denote the n-th MD’s computation energy for local model
training and Ecom

n (t) denote the communication energy for
uplink parameter transmission, respectively, which will be
discussed in more details in the next two subsections. Note
that each MD’s energy consumption cannot exceed the energy
state in this iteration. At the end of the iteration t, we
consider that each MD is able to harvest energy from the
environment and store the energy in the rechargeable battery.
We denote the energy harvesting process for the n-th MD by
{Earr

n (·) : n ∈ N}, which follows an independent stationary
Poisson distribution with average arrival rate E[Earr

n ] = λn
[24].

Similar to [25], the energy state of the n-th MD at the
beginning of iteration t + 1 can be updated by the following

2For the ease of analysis, we quantize the battery capacity in to Emax
n + 1

uniform levels {0, 1, · · · , Emax
n } [23].

recursion,

Esta
n (t+ 1) = min

{
[Esta
n (t)− dEcom

n (t) + Ecop
n (t)e]+

+ Earr
n (t), Emax

n

}
, t ≥ 1,

(1)

where d·e denotes the ceiling operator, and x+ , max{x, 0}.

B. Local Model Training

At the beginning of each learning iteration t, each MD first
selects bn(t) bits of data samples from the local dataset to
perform a machine learning algorithm, and then it obtains the
local model parameters. Intuitively, the choice of bn depends
on the available energy in the battery. The MD can train a
larger size of the training data if it has more sufficient battery
energy in this iteration. Otherwise, it trains less data or takes
no training for this iteration. We assume it consumes Cn CPU
cycles to train a unit sampled data on the n-th MD. The CPU
frequency, denoted by fn (in CPU cycle/s), is considered as
a measurement of computation capacity of the n-th MD. In
iteration t, the processing time of local training on the n-th
MD is given by

τ cop
n (t) =

bn(t)Cn
fn

, (2)

According to [14], the computation energy Ecop
n (t) consumed

by local training of the n-th MD in the iteration t is given by

Ecop
n (t) = αbn(t)Cnf

2
n, (3)

where α is the effective capacitance of the computing chipset
for each MD.

C. Model Parameter Transmission and Aggregation

After performing the local training, the MDs then upload
their updated local model parameters back to the edge server.
Let εn(t) denote the upload decision of the n-th MD at the
iteration t, where εn(t) = 1 means the n-th MD is assigned
to a subchannel and is willing to upload parameters to the
edge server through the assigned channel, and εn(t) = 0
indicates that it is not assigned to a subchannel or keeps
silent. Intuitively, an MD is more likely to upload if it has
sufficient remaining energy while in a good channel state.
For the uplink transmission, we adopt OFDMA technique,
where the channels are orthogonal cross the different links.
We assume that there are L orthogonal subchannels in the FL
system and each MD can only occupy at most one subchannel.
Let hn(t) denote the uplink channel gain between the n-th MD
and the edge server in the iteration t, where the channel gains
of all sub-channels between the server and a single MD are
same.

We model the channel gain hn(t) as a discrete-state block
fading, where the channel gain between the n-th MD and
edge server stay is discrete random variable with a general
distribution Pr[h̄n] [26]–[30]. We further assume that hn(t)
stays invariant within each iteration and are independently
and identically distributed (i.i.d.) across different iterations and
MDs.
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If the n-th MD is allowed to upload (εn(t) = 1), it will
transmit the local model parameter to the edge server with
power Pn(t) (Pn(t) > 0) in the uplink. Otherwise, the n-th
MD keeps silent (Pn(t) = 0). We assume that the size of the
local training parameters of all MDs is the same, which is
denoted by M .3 The uplink transmission rate for the n-th MD
is given by

Rn(t) = εn(t)W log2

(
1 +

Pn(t)hn(t)

σ2

)
, (4)

where W is the bandwidth of subchannel between each MD
and the server, and σ2 is the power of the additive white Gaus-
sian noise. Moreover, the corresponding uplink transmission
time is expressed as

τ com
n (t) =

εn(t)M

Rn(t)
. (5)

The energy consumption of parameter uploading for the n-th
MD can be expressed as

Ecom
n (t) = Pn(t)τ com

n (t) =
εn(t)Pn(t)M

Rn(t)
. (6)

Upon receiving the updated local parameters from the MDs,
the edge server aggregates them into a global parameter and
then broadcasts it to all MDs through a downlink broadcast
channel. Assume that the bandwidth of the broadcast channel
is sufficiently wide and the transmit power of the edge server
is much higher than that of the MDs. Therefore, we ignore the
downlink transmission time without much loss of generality.

III. CONSTRAINED MARKOV DECISION PROCESS

In this section, we design and analyze the joint scheduling
problem of computing and communication resources in the
FL network. In the FL system, sequential decisions on local
training and parameter transmission needs to be made for each
iteration. From (1), we know that the remaining energy at
the MD sides are correlated among adjacent iterations. We
therefore formulate the joint computing and communication
resource scheduling problem as a CMDP to maximize the long
term system reward under energy and delay constraints.

A. The composition of CMDP

At the beginning of each iteration, each MD uploads its
current local channel state and battery energy state to the
edge server. Therefore, the edge server obtains global status
information to take appropriate actions for all MDs. Once
the decisions are made, the edge server will download the
policy to each MD. Due to the extremely small size of data
for state information and action decisions, we can ignore the
transmission delay and transmission energy for upload of local
states and transmission of the policy in the FL network. The
CMDP formulation consists of the following components:
• State: We define the global state S(t) of the all MDs

in the t-th iteration as S(t) = [h(t),Esta(t)], which is

3We assume all MDs have the same structures of the local network model
and bit precision (typically floating point precision) of the local network
parameters, respectively.

composed of the current global channel state h(t) =
[h1(t), ..., hN (t)] and the current global remaining battery
energy state Esta(t) = [Esta

1 (t), ..., Esta
N (t)].

• Action: Let us denote the global action A(t) of all
MDs in the t-th iteration by A(t) = [b(t), ε(t),P (t)],
which consists of the number of bits of training data
b(t) = [b1(t), ..., bN (t)], the upload decision ε(t) =
[ε1(t), ..., εN (t)] and the transmission power P (t) =
[P1(t), ..., PN (t)].

• Transition probability: According to the dynamic en-
ergy queue given in (1), the global remaining energy
Esta(t) under action A(t) is a controlled Markov chain
with the transition probability of

Pr[Esta(t+ 1)|Esta(t),A(t)]

=
∏
n

Pr
[
Earr
n (t) = Esta

n (t+ 1)

−
[
Esta
n (t)− dEcom

n (t) + Ecop
n (t)e

]+]
.

(7)

Since the energy queue dynamic is affected by both
the data training energy and communication energy, it
is controlled by the actions A(t) = (b(t), ε(t),P (t)).
Moreover, the global state transition probability is also
Markovian, which is given by

Pr[S(t+ 1)|S(t),A(t))]

= Pr [h(t+ 1)|S(t),A(t))]

× Pr
[
Esta(t+ 1)|S(t),A(t))

]
= Pr [h(t+ 1)] Pr

[
Esta(t+ 1)|S(t),A(t))

]
,

(8)

where the second equation is due to the i.i.d. property of
wireless channel.

• Reward: The model accuracy of the FL is difficult to
quantify, and does not promise a closed-form. In most
circumstances, one observes that the accuracy of FL
training increases with the total size of local training data
at each MD [13], [31]. Hence, we define the reward of
the n-th MD by the product of its local training data size
and its upload decision, i.e.,

∑N
n=1 bn(t)εn(t). If the MD

is unable to upload the training parameters (εn(t) = 0),
then its reward in the current iteration is 0.

We assume that each training iteration is synchronized
across the MDs with the duration of τ . Thus, the total time for
data training and transmission should not exceed the duration
of one iteration, i.e.,

τ com
n (t) + τ cop

n (t) ≤ τ. (9)

Moreover, the energy used for local training and uploading
should not exceed the remaining energy Esta

n (t) at the begin-
ning of the t-th iteration, which is described by the energy
causality constraint of

dEcom
n (t) + Ecop

n (t)e ≤ Esta
n (t). (10)

From (9) and (10), we see that there is a tradeoff between the
computing and communication phases due to limited time and
battery energy in each training iteration. According to (3), if
the number of training data bits bn increases, the computing
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energy consumption will increase, which leaves less energy for
the communication phase. In the meanwhile, according to (2),
by increasing the training bits number bn, the local training
time will increase, which leaves less time for communication.
Due to the above tradeoff, each MD needs to allocate time
and energy wisely between the computing and communication
phases. For example, the probability that the total remaining
energy Esta

n (t) at the n-th MD equals zero can not exceed the
energy outage probability constraint Prout

n , i.e.,

Pr[Esta
n (t) = 0] ≤ Prout

n , (11)

Here, Esta
n (t) = 0 does not mean that the MD is completely

powered off. We adopt a dedicated battery to support the
energy harvesting circuit and the information signaling in each
training iteration. The dedicated battery stores the energy that
arrives at random in each iteration, and provides energy for
information feedback, local training and parameter updates
during the FL process. We thus assume that the MDs can
exhaust its battery before the next recharge cycle [32]. Fur-
thermore, we assume the subchannels occupied by all MDs in
the current iteration cannot exceed the number of channels L
in the system, i.e.,

N∑
n=1

εn(t) ≤ L. (12)

Due to the randomness of states in each iteration and the
correlation of states across the iterations, the edge server needs
to make sequential decisions on bn, εn and Pn along the time
horizon. Without much loss of generality, we formulate the
problem as an infinite horizon CMDP, resulting in the station-
ary policies which do not change with time. The definition of
stationary control policy is given as follows.

Definition 1: (Stationary Control Policy) A stationary control
policy is a mapping S → A from the state space to the action
space S, which is given by Ω(S) = A ∈ A, ∀S ∈ S.

Hence, we denote the control policy of the all MD by Ω(S) =
(b, ε,P ). Let Ω be the stationary feasible control policy which
should satisfy constraints (9), (10), (11) and (12).

B. Constrained Markov Decision Process Problem

The formulation of CMDP is given in Problem 1. The aim
is to find the efficient control policy that optimized the total
long-term average utility of all MDs under the energy out-
age constraints, transmit power constraints, delay constraints,
energy causality constraints and channel constraints.

Problem 1: (CMDP Problem)

max
Ω

U(Ω) = lim
T→∞

1

T

T∑
t=1

EΩ

[
N∑
n=1

bn(t) · εn(t)

]
(13)

s.t. Pr[Esta
n (t) = 0] ≤ Prout

n , (13a)
0 ≤ Pn(t) ≤ Pmax

n , (13b)
εn(t) ∈ {0, 1},
(9), (10) and (12), ∀n,

where the expectation EΩ[·] is taken with respect to the steady-
state distribution induced by the control policy Ω, and Pmax

n

is the maximum allowable transmit power of the n-th MD.
Besides, the constraint (13a) can be redescribed as a long-
term description of the energy outage probability constraint,
i.e.,

lim
T→∞

1

T

T∑
t=1

EΩ
[
1[Esta

n (t) = 0]
]
≤ Prout

n . (14)

1[·] is an indicator function that takes on a value of 1 when
the battery energy is exhausted at the n-th MD. The objective
function (13) in Problem 1 is the long-term average total
utility of all MDs under the control policy Ω. In the following
analysis, we decompose Problem 1 into two stages. In stage
one, we first omit the short term constraints in Problem 1 and
simplify the problem as follows,

Problem 2: (Simplified CMDP Problem)

max
Ω

U(Ω) (15)

s.t. lim
T→∞

1

T

T∑
t=1

EΩ [1[Esta
n (t) = 0]] ≤ Prout

n ,∀n, (15a)

Ω ∈ D(t),∀t, (15b)

where D(t) means the feasible region of the short term
constraints in the learning iteration t. The Lagrange function
of Problem 2 is given by

L(Ω,γ) = lim
T→∞

1

T

T∑
t=1

EΩ [g(S(t),Ω,γ)] , (16)

where

g(S(t),Ω,γ)

=

N∑
n=1

(
bn(t)εn(t)− γn1[Esta

n (t) = 0]
)

+ γnProut
n .

(17)

And, the corresponding Lagrange dual function G(γ) is given
by

G(γ) = max
Ω

lim
T→∞

1

T

T∑
t=1

EΩ [g(S(t),Ω,γ)] , (18)

There exists Lagrange multipliers γ � 0 such that Ω∗

maximizes the Lagrange function L(Ω,γ). And we can get
the following problem as,

Problem 3: (Lagrange Dual Problem)

L∗ = min
γ

max
Ω

L(Ω,γ) (19)

s.t. γ � 0,

Ω ∈ D(t),∀t.

According to [33], there exists an optimal control policy Ω∗

and a series of non-negative Lagrangian multipliers γ∗ such
that Ω∗ maximizes the Lagrange function L(Ω∗,γ∗), and the
inequality condition holds:

L(Ω,γ∗) ≤ L(Ω∗,γ∗) ≤ L(Ω∗,γ),

∀Ω, ∀γ � 0.
(20)
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Ω∗ and γ∗ are the original optimal solution and the dual
optimal solution, respectively. Problem 2 can be regarded
as an infinite-dimensional linear programming problem with
the feasible region D(t), which is a special type of convex
problem. Thus, the duality gap between the original optimal
and the dual optimal are 0. The original optimal solution is
obtained by solving the dual problem.

Generally, Bellman equation is a necessary condition for a
dynamic programming to be optimized. Given Lagrange mul-
tipliers γ, the classical infinite-horizon average-utility CMDP
problem Problem 2 can be solved by the Bellman equation
[28]. Thus, we can obtain the following equation,

G(γ) + V (S(t)) = max
Ω

{
g (S(t),Ω,γ) +

∑
S(t+1)

Pr (S(t+ 1)|S(t),Ω)V (S(t+ 1))

}
∀S(t), t > 0,

(21)

where V (S(t)) is the value function representing the average
utility obtained by the control policy Ω from each global state
[h(t),Esta(t)]. According to (8), we know that the channel
states possess independent statistical characteristics, which is
not affected by the control policy. We can further simplify
the Bellman equation by taking the expectation of (21) on the
global channel state h(t).

Lemma 1: (Equivalent Bellman Equation) Given a series of
Lagrange multipliers γ, the objective function (16) can be
solved by the equivalent Bellman equation as follows:

G(γ) + V (Esta(t)) = max
Ω(Esta)

{
g (Esta(t),Ω(Esta)) +

∑
Esta(t+1)

Pr (Esta(t+ 1)|Esta(t),Ω(Esta))V (Esta(t+ 1))

}
∀Esta(t), t > 0,

(22)

where the expectation of the value function V (h(t),Esta(t))
is

V (Esta(t)) = Eh(t)[V (h(t),Esta(t))]. (23)

Similarly, by taking the expectation over the channel state, we
have

g (Esta(t),Ω(Esta))

= Eh(t) [g(h(t),Esta(t),Ω,γ)] ,
(24)

and,

Pr(Esta(t+ 1)|Esta(t),Ω(Esta)) (25)
= Eh(t) [Pr(Esta(t+ 1)|h(t),Esta(t),Ω(Esta)] .

Moreover, Ω(Esta) = {Ω(h(t),Esta(t))|∀h(t)} is a policy
set under a given global energy state Esta(t) for all possible
channel states.

From the equivalent Bellman equation (22), we notice that
the equation is composed by a series of linear equations, where

the dimensions of these equations depend on the number of
value functions V (Esta(t)). Hence, for any global energy state
Esta(t) and the global channel state h(t), the optimal control
policy Ω∗ in (16) can be obtained by maximizing the right-
hand side of the equation (22).

IV. APPROXIMATE MARKOV DECISION PROCESS AND
STOCHASTIC LEARNING

In this section, we use approximate MDP and stochas-
tic learning methods to analyze and simplify the resource
scheduling problem, and design online algorithms to obtain
the resource scheduling policy for the FL system.

A. Approximate Markov Decision Process

According to (22), the global energy state value function
V (Esta(t)) is unknown, which holds a great difficulty for
solving the control policy in the FL system. Due to the exis-
tence of the huge state-action space, we are unable to get the
value function with the conventional value iteration method.
However, we can obtain the value function and develop a
solution of the Problem 1 by the value approximation and
online stochastic learning. Assumed that we have obtained the
value function V (Esta(t)) through value approximation and
online stochastic learning. Thus, the MDP problem can be
solved as follow.

Problem 4: (Optimal Partitioned Actions) For a given value
function V (Esta(t)), find the optimal partitioned actions
Ω∗(Esta(t)), which is satisfied to the Equivalent Bellman’s
equation in (22). The optimal control policy can be rewritten
as

Ω∗(Esta(t)) = arg max
Ω(Esta(t))

Eh(t) {g(S(t),Ω(Esta(t)),γ)

+
∑

Esta(t+1)

Pr (Esta(t+ 1)|h(t),Esta(t),

Ω(Esta(t)))V (Esta(t+ 1))} ,
s.t. 0 ≤ Pn(t) ≤ Pmax

n ,

εn(t) ∈ {0, 1},
(9), (10) and (12), ∀n.

(26)

Given the global state value function V (Esta(t)) and the
realization of the global channel state h, the Problem 4 then
becomes a static optimization problem.

B. Stochastic Learning

By the feature-based method, the energy state value func-
tion V (Esta) can be approximated by a linear form of the
state value function of the n-th MD Vn(Esta

n ). The global
energy state value function V (Esta) and a series of Lagrange
multipliers γ will be updated according to the current energy
state and channel state information. Then the proposed linear
approximation architecture for the global energy state value
function V (Esta

n ) is obtained by
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V (Esta) = V (Esta
1 , ...Esta

n , ...E
sta
N )

≈
N∑
n=1

∑
l∈Qn

Vn(l)I[Esta
n = l] = W TF (Esta),

(27)

where Qn means energy state set of the n-th MD, that is
Qn = {0, 1, 2, ..., Emax

n }. The parameter vector W and the
feature F (Esta) can be elaborated as,

W = [V1(0), ...V1(Emax
1 ), ...VN (0), ...VN (Emax

N )]
T
, (28)

and

F (Esta) =
[
I[Esta

1 = 0], ...I[Esta
1 = Emax

1 ],

...I[Esta
N = 0], ...I[Esta

N = Emax
N ]

]T
.

(29)

Thus, we can calculate the global energy state value function
by the linear form of all MDs. According to the local energy
state Esta

n , the value function of global energy state Esta =
{Esta

1 , ..., Esta
N } can be expressed as

V (Esta) ≈
N∑
n=1

Vn(Esta
n ) Esta

n ∈ Qn. (30)

The global energy state value function V (Esta) is the same as
the cardinality of the global energy state E = [E1, ..., EN ],
and its number is

∏N
n=1(Emax

n +1). However, the number of the
linear approximation energy state value function of all MDs is∑N
n=1(Emax

n + 1). Through linear approximation architecture,
we exploit the state value function of each MD Vn(Esta

n ) with
a small state space to represent the global energy state value
function V (Esta) with huge state space.

According to Lemma 1 and the linear approximation archi-
tecture, we can obtain the following equations,

Eh
{ ∑
Esta(t+1)

Pr
(
Esta(t+ 1)|h(t),Esta(t) ,

Ω(h(t),Esta(t))
)
V (Esta(t+ 1))

}
,

=Eh
{ ∑
Esta(t+1)

( N∏
n=1

Pr(Esta
n |h(t),Esta(t),

Ω(h(t),Esta(t)))

N∑
n=1

Vn(Esta
n (t+ 1))

)}
,

=Eh
{ N∑
n=1

∑
Esta
n (t+1)∈Qn

Pr(Esta
n (t+ 1)|h(t),Esta(t),

Ω(h(t),Esta(t)))Vn(Esta
n (t+ 1))

}
,

=Eh
{ N∑
n=1

∑
An(t)

Pr(An(t))Vn(Esta
n (An(t),Ωn(S(t))))

}
,

(31)

where the post-action energy state of the n-th MD
Esta
n (An(t),Ωn(S(t))) can be defined as

Esta
n (An(t),Ωn(S(t))) =

min
{[
Esta
n (t)− dEcom

n (t) + Ecop
n (t)e

]+
+An(t), Emax

n

}
.

(32)

The equation (31) holds due to the state transition probability
in (7) and the state update in (32). Thus, we can get the
following optimal policy by (31),

Ω∗(E(t)) = arg max
Ω(E(t))

Eh
{
g(S(t),Ω(S(t)),γ)

+

N∑
n=1

∑
An(t)

Pr(An(t))Vn(Esta
n (An(t),Ωn(S(t))))

}
.

(33)

According to the linear value approximation structure (30)
and (33), the control policy problem can be re-written as the
following problem.

Problem 5: (Equivalent control policy problem)

max
Ω∗

Eh
{
g(S(t),Ω(S(t)),γ)

+

N∑
n=1

∑
An(t)

Pr(An(t))Vn(Esta
n (An(t),Ωn(S(t))))

}
,

s.t. 0 ≤ Pn(t) ≤ Pmax
n ,

εn(t) ∈ {0, 1},
(9), (10) and (12),∀n.

(34)

Since Esta
n (An(t),Ωn(S(t))) represents the update of the

local energy state, we need to calculate the objective function
of (34) for each local energy state, and derive the objective
function over all local energy states. To solve (34), we expand
V (Esta

n (An(t),Ωn(S(t)))) in (34) using Taylor expansion as
follows [34], [35]:

V (Esta
n (An(t),Ωn(S(t)))) = V (Esta

n (t))

+ (An(t)− dEcom
n (t) + Ecop

n (t)e)V ′(Esta
n (t)),

where

V ′(Esta
n (t)) =

[
V (Esta

n (t) + 1)− V (Esta
n (t)− 1)

]
/2.

(35)

The optimization objective in (34) can be expressed as follow,

max
Ω

Eh
{
g(S(t),Ω(S(t),γ)

+

N∑
n=1

∑
An(t)

Pr(An(t))(V (Esta
n (t)) + (An(t)−

dEcom
n (t) + Ecop

n (t)e)V ′(Esta
n (t)))

}
.

(36)
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In this way, we can obtain the equivalent optimization
problem at the current iteration shown as follow, which is
equivalent to (34),

max
b,ε,P

g(S(t),Ω(S(t)),γ) +

N∑
n=1

∑
An(t)

Pr(An(t))

× (An(t)− dEcom
n (t) + Ecop

n (t)e)V ′(Esta
n (t)),

s.t. (9), (10) and (12),

εn(t) ∈ {0, 1},
0 ≤ Pn(t) ≤ Pmax

n , ∀n, t,

(37)

where (37) is a static mixed variable optimization problem, in
which b and P are continuous variables, while ε are discrete
variables. Besides, the ceiling operator d·e is difficult to han-
dle, which brings great difficulties to the optimization problem.
In order to solve the problem caused by the ceiling operator
d·e, we introduce a series of auxiliary variables ∆En(t),∀n to
simplify the optimization problem. The optimization problem
can be further described as follow:

max
b,ε,P

g(S(t),Ω(t),γ) +

N∑
n=1

∑
An(t)

Pr(An(t))

× (An(t)−∆En(t))V ′(En(t))

s.t. (9) and (12),

Ecom
n (t) + Ecop

n (t)−∆En(t) ≤ 0,

∆En(t) ∈ {0, 1, 2, ..., En(t)},
εn(t) ∈ {0, 1},
0 ≤ Pn(t) ≤ Pmax

n , ∀n,

(38)

where the auxiliary variable is

∆En(t) = dEcom
n (t) + Ecop

n (t)e

=

⌈
αbn(t)Cnf

2
n +

εn(t)Pn(t)d

Rn,s(t)

⌉
.

(39)

Note that the constraints (12) describes the sub-channel con-
straints of all MDs, we ignore the constraints for the time
being to simplify the optimization problem. Given a typical
MD n, we can obtain the following optimization problem by
further analysis and simplification of (37),

max
bn,εn,Pn

∆En(t)− Ecom
n (t)

αCnf2
n

εn(t)−∆En(t)V ′(En(t)),

s.t. T com
n (t) + T cop

n (t) ≤ τ,
∆En(t) ∈ {0, 1, 2, ..., En(t)},
εn(t) ∈ {0, 1},
0 ≤ Pn(t) ≤ Pmax

n , ∀n.
(40)

From (40), we can draw the following conclusion obviously:
if ∆En(t) ≤ Eth

n (t), then Pn(t) = 0 and εn(t) = 0, in which
Eth
n (t) means the threshold energy of the n-th MD at the

current iteration, and it can be expressed as,

Eth
n (t) =

τσ2

hn(t)

(
2

d
Wτ − 1

)
. (41)

When ∆En(t) ≤ Eth
n , the energy consumed by the n-th MD at

the current iteration is insufficient to support uploading model
parameters to the edge server within the iteration duration τ .

Due to the first constraint of (40), we obtain the upper bound
of energy consumption by the n-th MD at the iteration t, that
is,

∆En(t) ≤ (τ − T com
n (t))αf3

n + T com
n (t)Pn(t). (42)

When 1
αCnf2

n
− V ′(En(t)) ≤ 0, the energy consumption

∆En(t) is 0 obviously. Correspondingly, the transmission
power Pn(t) of the n-th MD, the transmission decision εn(t)
of the n-th MD and the batch size of local training data bn(t)
are all 0. When 1

αCnf2
n
−V ′(En(t)) > 0 and ∆En(t) > Eth

n (t),
since the value of Pn(t) is related to the value of ∆En(t)
and ∆En(t) ≤ (τ − T com

n (t))αf3
n + T com

n (t)Pn(t), the energy
consumption ∆En(t) of the n-th MD take the maximum value,
i.e.,

∆En(t) =

(
τ − d

Rn,s(t)

)
αf3

n +
d

Rn,s(t)
Pn(t). (43)

Since Pn(t) ∈ (0, Pmax
n ] and ∆En(t) increases monotonically

as Pn(t) increases, there is a maximum value of ∆Emax
n (t) as

a function of Pn(t), which can be expressed as,

∆Emax
n (t) =

(
τ − d

Rmax
n,s (t)

)
αf3

n +
d

Rmax
n,s (t)

Pmax
n . (44)

Thus, when ∆En(t) > ∆Emax
n (t), the transmit power Pn(t)

is Pmax
n , εn(t) = 1 and the batch size bn(t) for local training

can be expresses as following,

bn(t) =
∆Emax

n (t)− Ecom
n,max(t)

αCnf2
n

, (45)

where,

Ecom
n,max(t) =

dPmax
n

W log2

(
1 +

Pmax
n hn(t)
σ2

) . (46)

Then for Eth
n (t) < ∆En(t) ≤ ∆Emax

n (t), according to the
relationship between ∆En(t) and Pn(t), we can express Pn(t)
by ∆En(t), which has shown as follow,

Pn(t) =
lambertW

(
Bn(t)
Zn(t) e

Cn(t)
Zn(t)

)
Bn(t)
Zn(t)hn(t)

− σ2

hn(t)
,

where,

Bn(t) = − d

hn(t)
,

Cn(t) =
W (∆En(t)− αf3

nτ)

ln 2
lnσ2 − dσ2

hn(t)
− αf3

nd,

Zn(t) =
W (∆En(t)− αf3

nτ)

ln 2
.

(47)

And εn(t) = 1, lambertW means Lambert W Function, which
is the inverse function of f(w) = w · exp(w). And it is a
special function that cannot be represented by an expression.
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From this, we get the objective function of the variable of
∆En by substituting Pn(t) into the objective function in (40),

Fn(t) = max
∆En(t)

1

αCnf2
n

(
min {∆En(t),∆Emax

n (t)}

− dPn(∆En(t))

Rn,s(∆En(t))

)
εn(t)−∆En(V ′n(En(t))

s.t. ∆En(t) ∈
{

0, 1, ...,min
{
Esta
n (t), d∆Emax

n (t)e
}}

.
(48)

Algorithm 1: The pseudocode of the proposed static
mixed variable optimization problem of all MDs

Input: input Esta(t),h(t), fn, P
max
n , V ′n(t),∀n;

Output: output result P ∗(t), b∗(t), ε∗(t);
1 for The n-th MD, n ∈ 1, ..., N do
2 Calculate threshold energy Eth

n (t) and the
maximum energy consumption ∆Emax

n (t) for
calculation and communication in the t-th
iterartion from input parameters;

3 for ∆En(t) ∈ {0, 1, ...,min {En(t), d∆Emax
n (t)e}}

do
4 if ∆En(t) ≤ Eth

n (t) then
5 Pn(t) = 0, bn(t) = 0, εn(t) = 0;
6 else if 1

αCnf2
n
− V ′n(En(t)) ≤ 0 then

7 Pn(t) = 0, bn(t) = 0, εn(t) = 0;
8 else if Eth

n (t) < ∆En(t) ≤ ∆Emax
n (t) then

9 The solution of Pn(t) and bn(t) can refer
to the formula (47) and εn(t) = 1;

10 else
11 Pn(t) = Pmax

n and the solution of bn(t) can
refer to the formula (45) and εn(t) = 1;

12 end if
13 Substituting the values of Pn(t) and εn(t) that

have been obtained into the objective function
of (40) ;

14 By searching in the
{0, 1, ...,min {En(t), d∆Emax

n (t)e}}, the optimal
energy consumption value ∆Ên(t) of the n-th
MD for the maximum value of the objective
function in (48) can be found, and
P̂n(t), b̂n(t), ε̂n(t) can be calculated.

15 if ‖ ε̂ ‖1≤ L then
16 The global optimal solution is equal to the solution

obtained by the respective MD, i.e.,
P ∗(t) = P̂ (t), b∗(t) = b̂(t).

17 else
18 The edge server will select L MDs with the largest

Fn(t) for FL training. If the n-th MD is selected
by the server, then P ∗n(t) = P̂n(t), ε∗n(t) = ε̂n(t)
and b∗n(t) = b̂n(t), otherwise
P ∗n(t) = 0, ε∗n(t) = 0 and b∗n(t) = 0.

19 end if

By searching in the {0, 1, ...,min {En(t), dEmax
n (t)e}}, we

can find the optimal energy consumption value ∆Ên(t) of the
n-th MD for the maximum value of the objective function

in (48). For convenience, we assume 0/0 = 0 for the
term of dPn(∆En(t))

Rn,s(∆En(t)) in this paper. Recalling the sub-channel
constraint (12) that we ignored earlier, we will analyze it.
According to (48), we get the optimal objective function
Fn(t) of each MD in the current iteration. If ‖ ε̂ ‖1≤ L,
the global optimal solution is equal to the solution obtained
by the respective MD, i.e., P ∗n(t) = P̂n(t), b∗n(t) = b̂n(t).
Then, when ‖ ε̂ ‖1> L, the edge server will select L
MDs with the largest Fn(t) for FL training. If the n-th MD
is selected by the edge server to upload parameters, then
P ∗n(t) = P̂n(t), ε∗n(t) = ε̂n(t) and b∗n(t) = b̂n(t), otherwise
P ∗n(t) = 0, ε∗n(t) = 0 and b∗n(t) = 0. Algorithm 1 reports the
pseudocode of the proposed static mixed variable optimization
problem.

In the previous section, we assumed that the state value
function V (Esta) has been given. However, we need to know
the state value function of each MD accurately so that we
can make efficient control decisions in the FL process. We
utilize stochastic learning and propose a distributed online
algorithm to estimate the value function V (Esta) and the
Lagrange multipliers γ based on the current state. The updates
of the value function V at the end of the iteration t can be
given by (49).

Algorithm 2: The specific flow of the stochastic
learning

1 Initialize the respective energy state value function
vectors V 0 and the Lagrange multiplier vectors γ0 of
all MDs ;

2 Based on the observed local states, a series of
parameters and the local energy value functions V t

of each MD, the control action can be calculated by
Algorithm 1 at the beginning of the iteration t;

3 Based on the observed local states, the control actions
and the instantaneous rewards of the system, the
energy state value function V t+1 and Lagrange
multiplier vectors γt+1 can be updated by (49), (50)
and (51);

4 If ‖ V t+1 − V t ‖< δv and ‖ γt+1 − γt ‖< δγ , stop;
otherwise, set t = t+ 1 and go back to step 2.

V t+1
n (l) =

{
(1− εtv)V tn(l) + εtv∆V

t+1
n (l) if Et+1

n = l

V tn(l) if Et+1
n 6= l

(49)

where ∆V tn(l) is expressed in (50),

∆V t+1
n (l) = bn(t)εn(t)− γtn1[l = 0]

+
∑
An

{
Pr(An)(V tn(l(∆Et+1

n , An))− V tn(l(An)))
}

(50)

Moreover, the Lagrange multipliers updates at per MD are
given by

γt+1
n = [γtn + εtγ(1[Et+1

n = 0]− Prth
n)]+ (51)
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In the above equations,
(
{εtv}, {εtγ}

)
are the sequences of

iteration size, which satisfy,
∞∑
t=0

εtv =∞, εtv > 0, lim
t→∞

εtv = 0,

∞∑
t=0

εtγ =∞, εγv > 0, lim
t→∞

εγv = 0,

∞∑
t=0

[
(εtv)

2 + (εtγ)2
]
<∞, and lim

t→∞

εtγ
εtv

= 0.

(52)

The specific process of stochastic learning can refer to Algo-
rithm 2.

C. Convergence Analysis

We need to provide effective analysis for the convergence
of the online stochastic learning algorithm, which is shown in
Algorithm 2. From the previous section, we notice that there
are two different step size sequences {εtv} and {εtγ} in the
stochastic learning process, which are used for the update
of state value functions of MDs and Lagrange Multipliers
respectively. Since the update of the Lagrangian multiplier γ
and the update of the value function V occur simultaneously
and εtγ = o(εtv), we can obtain γt+1− γt = o(εtv). Therefore,
we consider that the Lagrangian multipliers does not change
when the state value function is updated. Therefore, we assume
that the Lagrangian multipliers γt keep static when the value
functions of the mobile devices are updated in (49).

The relationship between the the global value function
vector V and the parameter vector W can be expressed as,

V = MW and W = M †V , (53)

in which M ∈ R|IS |×
∑N
n=1(Emax

n +1) with the kth row (k =
1, 2, ..., |IS |) equal to F (Ek), where Ek is the kth global
energy state and |IS | is the cardinality of the system state.
In addition, M † ∈ R

∑N
n=1(Emax

n +1)×|IS | means the mapping
matrix from V to W , which is the inverse mapping of the
first equation of (53). We then have the following convergence
lemma on the local state value function for each MD in the
stochastic learning.

Lemma 2: (Convergence of State Value Function of each
MD): The convergence performance of the state value function
can be expressed mathematically as follows.

1) The update of the state value function vector converge
almost surely for any given initial parameter vector W 0

and Lagrange multiplier γ, which can be expressed as

lim
t→∞

W t(γ) = W∞(γ). (54)

2) The local steady-state value function vector W∞ satis-
fies the vector form of the following steady equivalent
Bellman equation,

θI +W∞(γ) = M †T (γ,MW∞(γ)) , (55)

where I is a
∑N
n=1 (Emax

n + 1)×1 vector whose elements
are all equal to 1, T represents a function mapping, which
can be defined as,

T (γ,V ) = max
Ω
{g (γ,Ω) + P (Ω)V } (56)

where g (γ,Ω) is a
∑N
n=1 (Emax

n + 1) × 1 vector of
function g (E,Ω(E)), which is defined in (22). P (Ω) is
the matrix form of transition probability Pr(Et+1|Et,Ω)
defined in (22).

Proof: Following [35], we briefly explain the Lemma. Since
we consider the stochastic channels, where the channel gain
varies within the interval, it is easy to see that each state will
be updated comparably often in the asynchronous learning
algorithm. Quoting the conclusion in [35], the convergence
property of the asynchronous update and synchronous update
is the same. Therefore, we just consider the convergence
of related synchronous version for simplicity in this proof.
According to the definition of parameter vector W and the
bounded per-MD value function Vn, it is clearly that the up-
date on the per-MD value function vector is equivalent to the
update on the parameter vector and to prove the convergence
of the Lemma is equivalent to prove the convergence of update
on the parameter vector W . The proof of details can refer to
[35].

Due to εtγ = o(εtv), the ratio of step sizes between state
value function and Lagrange Multiplier can be expressed as
εtγ
εtv
→ 0 during the Lagrange Multiplier update in (51), and

the updates of the local state value function are much faster
than the Lagrange Multiplier. Thus, the Lagrange Multiplier
can be consider as quasi-invariant during the update of the
local state value functions of each MD, and the update of
the Lagrange Multiplier will trigger another update process of
the local state value function of each MD. According to [36],
we can obtain that limt→∞ ||V tn − V∞n (γt)|| = 0, in which
V∞n (γt) means the converged local state value function of nth
MD with Lagrange Multiplier γt. Therefore, the update of the
local state value function can be considered as almost constant
during the Lagrange Multipliers update. Then, we need to the
convergence lemma of the Lagrange Multipliers.

Lemma 3: (Convergence of the Lagrange Multipliers): The
iteration on the Lagrange Multipliers γ converges almost
surely to the set of minimum of G(γ) in (18). Supposing that
the Lagrange Multipliers converge to γ∗, then γ∗ satisfies the
average energy outage constraint in (11).

Proof: Quoting to [37, Lemma 4.2], −G(γ) is a concave
and continuously differentiable except at finitely many points
where both right and left derivatives exist. Thus, G(γ) is a
convex function of γ. Since the energy consumption policy of
each MD is discrete, we can obtain that Ω∗(γ) = Ω∗(γ+∆γ),
i.e., ∇γ = (Ω∗(γ+∆γ)−Ω∗(γ))/∆γ = 0. Thus, ∂G(γt)/∂γt

can be expressed as ∂G(γt)/∂γt = EΩ∗(γt){PrEn −1[En(t) =
0]}, where Ω∗(γt) = arg maxΩG(γt). By the standard
stochastic approximation theorem [38], the dynamics of the
Lagrange Multiplier update can be represented by ordinary
differential equation (ODE). According to [39], we know that
that the ODE equals to ∂G(γt)/∂γt. Thus, the aforementioned
ODE will converge to ∂G(γt)/∂γt = 0, i.e., the the average
energy outage constraints are satisfied. �

According to Lemma 2 and 3, the iteration on local state
value function and the Lagrange Multipliers in Algorithm 2
will converge.
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Fig. 2. The long-term average utility U (MB) v.s. the mean arrive rate λ(J)of
the random new arrived energy with Emax = 6J.

V. SIMULATION AND DISCUSSION

In this section, we evaluate the performance of the proposed
algorithm using numerical results. In the simulations, all
MDs are randomly distributed in a fixed region. We set the
bandwidth of channel between each MD and the edge server
as 0.1MHz. The number of CPU cycles C for each MD to
perform local model training of unit data sampling takes range
from 1010cycle/unit to 1.9 ∗ 1010cycle/unit. The simulation
parameters are detailed in Table II.

TABLE II
PARAMETERS IN SIMULATIONS

Nations Values
The number of MDs N 10
The number of channels in FL system L 5
Channel bandwidth W 0.1MHz
The number of CPU cycles C per unit data
sampling

[1010, 1.9 × 1010]
cycles/unit

Each iteration duration τ 10s
Computation capacity fn of the MD [2 × 109, 4 × 109]

cycles/s
The size of local parameter for each MD 106bit
The effective capacitance parameter α 10−28

The coefficient determined by machine
learning model ζ

1

The upper limit value of the average energy
outage Prth

n

4%

We compare our proposed approximate MDP solution with
online stochastic learning with three other reference control
algorithms. One is the CSI-based MDP algorithm, where
the edge server takes corresponding decisions based on the
channel state only at the current iteration so as to optimize
average utility of all MDs. The second reference control
algorithm is myopic method, which is a method that only
considers the current utility. In myopic method, the edge server
never considers long-term utilities. The last reference control
algorithm is a random resource scheduling method, where
the edge server takes random actions in the feasible regions.
The performance of the proposed algorithm is evaluated by
averaging over 5000 experiments.

2 3 4 5 6
Maximum battery capacity

0

0.5

1

1.5

2

2.5

3

3.5

4

T
he

 lo
ng

-t
er

m
 a

ve
ra

ge
 u

til
ity

Online stochastic learning
CSI-based MDP
Myopic method
Random algorithm

Fig. 3. The long-term average utility U (MB) v.s. the maximum battery
capacity Emax(J) of MD.

Fig. 2 illustrates the long-term average utility U v.s. the
mean arrival rate λ of the random new arrived energy with
Emax = 6J. It can be observed that the performance of the
online stochastic learning algorithm is better than the other
reference algorithms for all the investigated average arrival
rate λ. When the value of the mean arrival rate λ is relatively
small, the performance of online learning is close to that
of other reference algorithms, especially the CSI-based MDP
algorithm. The cause of this phenomenon is twofold. First,
the small mean arrival rate λ of energy will result in a limited
energy level in the battery of the MD. Due to insufficient
battery energy, MDs are constrained with a small space of
actions compared with those with sufficient battery power.
The second reason is that a large amount of battery energy is
used for uploading local parameters. When the battery energy
of MD is insufficient, the energy for local training of FL is
smaller, which leads to smaller long-term average utility. In
contrast, when the battery level is high, MD’s actions will
become more diverse, and more energy will be used for local
training in FL process.

Fig. 3 illustrates the long-term average utility U v.s. the
maximum battery capacity Emax of MD. We observe that the
long-term average utility increases as the maximum battery
capacity Emax of MD increases in all algorithms,although the
mean arrival rate λ of the arrival energy has never changed.
It indicates that the long-term average utility U increases
approximately linearly with the maximum battery capacity
Emax in our proposed algorithm.

Fig. 4 shows the impact of the number of CPU cycles for
MD to perform local model training of unit data sampling C
on the long-term average utility U . It is obvious that the long-
term average utility decreases as the number of CPU cycles
for unit training data sampling C. In addition, as the number
of CPU cycles for unit training data sampling C continues to
increase, performance differences among different algorithms
also decrease. Fig. 5 depicts the long-term average utility U
v.s. the computation capacity f of MD. Intuitively, the MDs
with more computing capacity will lead to a higher long-term
average utility U . However, the opposite is true, it is caused
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Fig. 4. The long-term average utility U (MB) v.s. the number of CPU cycles
for MD to perform local model training of unit data sampling C(cyc/MB).
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Fig. 5. The long-term average utility(MB) U v.s. the computation capacity
f (Hz) of MD.

by (3) and the limited energy of MD in each iteration. In
other words, a more powerful computing capacity requires
more computing energy. Due to the limited amounts of energy
available to MDs in each iteration, MDs can only reduce the
size of sampling data used for local training.

Fig. 6 describes the relationship among the wireless channel
state, the energy state of MD and the transmission power
policy. In our simulation settings, H1 represents the worst
channel state, while H5 represents the best channel state in
our system. From the figure, we can see that the MD avoids
data transmission to save battery energy when the MD is in
a very poor channel state (H1). In addition, we find that for
a given channel state the transmission power monotonously
increases with the energy state of the MD.

Fig. 7 illustrates the convergence property of the proposed
distributed online learning algorithm. It can be seen that the
online stochastic algorithm converges quite fast and after 1500
iterations, the values are close to the final converged results.
Moreover, it is clear that the value functions calculated online
quickly approach the the final converged results when the
number of iterations grows.

Fig. 6. The transmission power(W) v.s. the wireless channel state and the
energy state of MD.
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Fig. 7. Convergence property of the proposed online stochastic learning
algorithm.

VI. CONCLUSION

In this paper, we study a constrained MDP problem of
FL with a MEC sever, where each MDs send local model
updates trained on their local sensitive data iteratively to the
edge server, and the edge server aggregates the parameters
from MDs and broadcasts the aggregated parameters to MDs.
We first model the resource scheduling problem in the syn-
chronous FL process as a constrained MDP problem, and we
use the size of the training samples as the performance of FL
for analysis. Due to the coupling between iterations and the
complexity of the state-action space, we cannot directly solve
the constrained MDP problem. Thus, we analyze the problem
by equivalent Bellman equations and use approximate MDP
and stochastic learning methods to simplify the constrained
MDP problem so as to approximate the state value function.
Then we design static algorithm to obtain the static policy for
each MD based the approximate state value function. Finally,
we provide theoretical analysis for the convergence of the
online stochastic learning algorithm. The simulation results
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show that the performance of the stochastic leaning is better
than various benchmark schemes.
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