
IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. XX, NO. XX, XXX 2022 1

Joint Optimization of Video-based AI Inference
Tasks in MEC-assisted Augmented Reality Systems

Guangjin Pan, Heng Zhang, Shugong Xu, Fellow, IEEE,
Shunqing Zhang, Senior Member, IEEE, and Xiaojing Chen

Abstract—The high computational complexity and energy
consumption of artificial intelligence (AI) algorithms hinder their
application in augmented reality (AR) systems. However, mobile
edge computing (MEC) makes it possible to solve this problem.
This paper considers the scene of completing video-based AI
inference tasks in the MEC system. We formulate a mixed-integer
nonlinear programming problem (MINLP) to reduce inference
delays, energy consumption and to improve recognition accuracy.
We give a simplified expression of the inference complexity model
and accuracy model through derivation and experimentation.
The problem is then solved iteratively by using alternating opti-
mization. Specifically, by assuming that the offloading decision is
given, the problem is decoupled into two sub-problems, i.e., the
resource allocation problem for the devices set that completes the
inference tasks locally, and that for the devices set that offloads
tasks. For the problem of offloading decision optimization, we
propose a Channel-Aware heuristic algorithm. To further reduce
the complexity, we propose an alternating direction method of
multipliers (ADMM) based distributed algorithm. The ADMM-
based algorithm has a low computational complexity that grows
linearly with the number of devices. Numerical experiments
show the effectiveness of proposed algorithms. The trade-off
relationship between delay, energy consumption, and accuracy
is also analyzed.

Index Terms—Mobile augmented reality, edge intelligence,
mobile edge computing, resource allocation.

I. INTRODUCTION

RECENTLY, the development of networks, cloud com-
puting, edge computing, artificial intelligence, and other

technologies has triggered people’s infinite imagination of
the Metaverse [1]. To enable users to interact between the
real world and the virtual world, augmented reality (AR)
technology plays a vital role. At the same time, artificial
intelligence (AI), due to its learning and inference capabilities,
has demonstrated a powerful ability in many fields such as
automatic speech recognition (ASR) [2], natural language

G. Pan, H. Zhang, S. Xu, S. Zhang and X. Chen are with Shanghai Institute
for Advanced Communication and Data Science, Shanghai University, Shang-
hai 200444, China. Emails: {guangjin_pan, hengzhang, shugong, Shunqing,
jodiechen}@shu.edu.cn.

Part of this work has been accepted by Globecom-2022. This work was
supported in part by the National Natural Science Foundation of China
(NSFC) under Grant 61871262, 62071284, and 61901251, the National Key
R&D Program of China grants 2017YFE0121400, 2019YFE0196600 and
2022YFB2902000, the Innovation Program of Shanghai Municipal Science
and Technology Commission grants 20JC1416400 and 21ZR1422400, Pudong
New Area Science & Technology Development Fund, Key-Area Research
and Development Program of Guangdong Province grant 2020B0101130012,
Foshan Science and Technology Innovation Team Project grant FS0AA-
KJ919-4402-0060, and research funds from Shanghai Institute for Advanced
Communication and Data Science (SICS). The corresponding author is
Shugong Xu.

processing (NLP) [3], computer vision (CV) [4], and so on.
With the assistance of AI technology, AR can carry out deeper
scene understanding and more immersive interactions.

However, the computational complexity of AI algorithms,
especially deep neural networks (DNN), is usually very high.
It is challenging to complete DNN inference timely and reli-
ably on mobile devices with limited computation and energy
capacity. In [5], experiments show that a typical single-frame
image processing AI inference task takes about 600 ms even
with speedup from the mobile GPU. In addition, continuously
executing the above inference tasks can only last up to 2.5
hours on commodity devices. The above issues result in only a
few AR applications currently using deep learning [6]. In order
to reduce the inference time of DNNs, one way is to perform
network pruning on the neural network [7], [8]. However,
it could be destructive to the model if pruning too many
channels, and it may not be possible to recover a satisfactory
accuracy by fine-tuning [7].

Edge AI [9]–[11] is another approach to solving these
problems. Integrating mobile edge computing (MEC) and AI
technology has recently become a promising paradigm for
supporting computationally intensive tasks. Edge AI transfers
the inference and training process of AI models to the edge of
the network close to the data source. Therefore, it can alleviate
network traffic load, delay, and privacy problems.

A. Related Works

Many existing studies use MEC’s powerful computing capa-
bilities to reduce delay [12], energy consumption [13], or both
delay and energy consumption [14]–[16] through offloading.
For example, [12] formulated an optimization problem aimed
at minimizing the processing delay of eMBB and mMTC
users by optimizing the users’ transmit power in UAV-Assisted
MEC systems. [13] develops a smart pricing mechanism to
coordinate the computation offloading of multi-layer devices
and reduces energy consumption. [14] uses the Stackelberg
game method to optimize the task allocation coefficient, calcu-
lation resource allocation coefficient, and transmission power
to minimize the energy consumption and delay of the NOMA-
based MEC system.

For edge AI inference, existing research has made some
progress. The authors in [17] propose a framework for jointly
optimizing inference task selection and downlink coordinated
beamforming to minimize communication power consumption
in wireless networks. Similarly, [18] proposes an IRS-assisted
edge inference system and designs a task selection strategy

ar
X

iv
:2

30
1.

01
01

0v
1

 [
cs

.N
I]

 3
 J

an
 2

02
3

IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. XX, NO. XX, XXX 2022 2

to minimize the energy consumption of uplink and downlink
transmission and calculation. The work in [19] analyzes and
models the transmission error probability, inference accu-
racy, and timeout probability of the AI-powered time-critical
services. The work in [20] uses a tandem queueing model
to analyze queueing and processing delays of DL tasks in
multiple DNN partitions. [21] joint optimizes the service
placement, computational and radio resource allocation to
minimize the users’ total delay and energy consumption. [8]
combines model pruning and DNN partitioning to achieve a
4.81x reduction on end-to-end delay. [22] designs the Edgent
framework that can jointly optimize DNN partitioning and
DNN right-sizing to maximize the inference accuracy while
promising application delay requirements. These studies mea-
sure the inference time by experiments [8], [22] or assume that
the inference task’s computational complexity is proportional
to the input data size but without derivation and proof [20],
[21]. However, these models of computational complexity are
not rigorous enough or can not be generalized to different
neural network models.

As for the accuracy model, the authors in [23] designs
an edge network orchestration algorithm named FACT, which
boosts the performance of an edge-based AR system by opti-
mizing the edge server assignment and video frame resolution
selection for AR users. However, [23] builds an accuracy
model by fitting an accuracy curve for specific tasks, which
is not general. The work in [24] compresses image resolution
locally and performs inference tasks on edge servers, aiming
to maximize learning accuracy under constraints of delay
and energy. [24] proposes using an abstract non-decreasing
function to describe the relationship between accuracy and
input image size, which cannot be used to analyze various AI
inference tasks discriminately. Joint optimization is required
when different tasks and models are jointly deployed. An
insufficiently generalized accuracy model or an overly abstract
model can adversely affect joint optimization. A general
accuracy model is needed to measure various AI tasks.

Among the above studies, most studies consider optimizing
one or two performance metrics among the delay, energy con-
sumption, and accuracy. The authors in [24] jointly considers
delay, energy consumption and accuracy in image recognition
scenarios. However, it aims at maximizing computational
capacity under constraints of delay, energy consumption and
accuracy, and the DNN model is only deployed in edge servers.
In [6], [23], [25], video analytics scenarios are considered, but
they do not jointly consider delay, energy and accuracy.

B. Contributions and Organizations

In this paper, we consider a multi-user MEC system and
assume that each device executes the video-based DNN in-
ference task. Each device can be AR glasses, mobile robots,
and so on. In order to deepen AR’s ability to understand the
scene, we need to use time dimension information to improve
perception. Therefore, we consider video-based application
scenarios.for video-based AI inference tasks, there are two
modes, e.g., frame-by-frame recognition mode (the input for
each recognition is one frame) and multi-frame recognition

 Uplink for real-time captured content

 Downlink for inference results

Fig. 1. Multi-user MEC System model. The inference task can be executed on
the local or the edge server. When the task is offloaded to the edge server, the
uplink transmits the content captured in real-time, and the downlink transmits
the inference result.

mode (the input for each recognition is multiple frames). The
frame-by-frame inference mode is used to deal with tasks with
weak temporal correlation, such as face recognition and target
tracking., and has been studied in [6], [23], [25]. In this paper,
we focus on multi-frame recognition tasks, such as gesture
recognition and action recognition tasks. Since sampling in
the spatial dimension brings extra computation [24], we only
sample in the temporal domain. At each inference, the device
selects the most recent several frames from the history frames
for transmission or inference.

As shown in Fig. 1, mobile devices can transmit captured
video to the edge server via wireless networks. The edge
servers execute inference tasks and send results back to mo-
bile devices. However, when communication and computing
resources of the edge server are insufficient, devices can
execute the inference task locally. We model the problem as a
multi-objective optimization problem to optimize delay, energy
consumption, and inference accuracy. The main contributions
of this paper are summarized as follows,

• Multi-dimensional target optimization. High accuracy,
low delay, and low energy consumption are indispensable
for AR applications and must be optimized jointly. To
explore the trade-off relationship between delay, energy,
and accuracy, we formulate the video-based offloading
problem as a mixed-integer nonlinear programming prob-
lem (MINLP), aiming to reduce service delays, energy
consumption and improve recognition accuracy.

• General computational complexity and accuracy models.
To measure the computational complexity of neural net-
work models with different architectures and different
input sizes, we introduce the number of multiply-and-
accumulate operations (MACs). We illustrate the main
factors affecting DNN inference delay through experi-
ments and show that MAC can be used as a good measure
of the computational complexity of DNN inference tasks.
We also propose a general model to represent the relation-
ship between the inference accuracy and the number of
input frames. This model is suitable for different video-

IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. XX, NO. XX, XXX 2022 3

based recognition tasks and different DNN architectures.
We give simple expressions of the inference complexity
and accuracy to simplify the optimization problem.

• Channel-Aware scheduling scheme. To solve the opti-
mization problem, we decompose the original problem.
First, assuming that the offloading decision is given, we
solve the resource allocation problems for the device set
that completes the inference locally and the device set
that offloads the tasks to the edge server, respectively. For
edge DNN inference, we propose two algorithms based
on search and geometric programming (GP) to solve the
problem. Then, to obtain the optimal offloading policy,
we propose a Channel-Aware heuristic algorithm. The
original problem is solved iteratively through alternating
optimization.

• ADMM-based distributed resource allocation scheme. To
avoid the high complexity of the heuristic algorithm, we
propose an algorithm based on the Alternating direction
method of multipliers (ADMM). The ADMM-based algo-
rithm decomposes the original problem into parallel and
tractable subproblems. Therefore, the total computational
complexity of ADMM-based algorithms is more scalable
than the heuristic algorithm, especially when the number
of devices is large.

The rest of this paper is organized as follows. In Section
II, we introduce system models, including delay, energy,
and accuracy models. In Section III, we formulate the joint
optimization problem and convert the original problem to a
more tractable problem. Section IV proposes a Channel-Aware
heuristic algorithm to solve the proposed problem. In Section
V, we propose another ADMM-based distributed resource
allocation algorithm for the proposed problem, and analyze the
computational complexity of the solution algorithm. Numeri-
cal results and analysis are presented in Section VI. Finally,
the paper is concluded in Section VII.

II. SYSTEM MODEL

In this section, we introduce a single-cell MEC system and
establish delay, energy consumption, and accuracy models. As
shown in Fig. 1, we consider a multi-user MEC system with
one base station (BS) and N mobile devices, denoted by the
set N = {1, 2, . . . N}. Each device has a camera and needs
to accomplish DNN inference tasks. Due to the limitation of
device computational resources, DNN inference tasks can be
placed on local or edge servers. The limited computational
resource will lead to longer computing delay and greater power
consumption when the inference task is executed locally.
However, when the inference task is executed on the edge
server, it will bring additional wireless transmission delay. In
addition, accuracy is also a very important optimization target
in DNN inference tasks.

A. Offloading Framework

In this paper, we only consider the binary offloading
method. Binary offloading requires the DNN inference task to
be fully executed either at the device or the MEC server. The
overview of the DNN computing offloading system is depicted

Sampling

management module

Video

offloading

Result

feedback

Complete

inference task

Execute locally

Complete

inference task

Complete

inference task

Fig. 2. The overview of the video sampling and computing offloading
system. The video sampling management module can control the sampling
rate of the captured video and determine the number of video frames used
for AI inference. Devices can transmit the video to the edge server or
perform inference tasks locally based on the wireless channel information
and computing capabilities.

in Fig. 2. First, devices sample the video captured in real-
time in the temporal dimension to obtain a short video with
a certain number of frames. Second, the DNN inference tasks
are executed. These inference tasks can be executed locally
on devices or the edge server. Therefore, each device’s video
sampling management module needs to select an appropriate
video sampling rate (how many frames need to be input) and
choose whether to offload the task to the MEC server. Denote
Dn, En and φn to be the total delay, energy consumption and
recognition accuracy of the device n, respectively. The total
delay and energy consumption of the device n can be given
by,

Dn = (1− xn)Dmd
n + xn(Dt

n +De
n), (1)

En = (1− xn)Emdn + xnE
t
n, (2)

where xn indicates whether the inference task is executed on
local or edge servers. Dt

n is the transmission delay for uplink,
Dmd
n is the local inference delay, and De

n is the delay for
completing inference at the edge server. Etn and Emdn are the
transmission and computational energy consumption, respec-
tively. The delay and energy consumption for downloading
computation results can be reasonably neglected because of
the results’ small data sizes.

B. Delay and Energy Models for Inference

The inference delay depends on the DNN model’s architec-
ture, the device’s or server’s computing power, and the input
to the model. In this section, we first give a measure of the
computational complexity of the DNN model and then give an
expression for the inference delay and energy consumption.

Different AI recognition tasks may require different AI
model architectures, including classic AI models such as
Resnet-18, Resnet-34, Resnet-50, VGG-16, etc. [26], [27]. In
order to optimize AI inference tasks more reasonably, different
AI models need a common method to evaluate computational

IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. XX, NO. XX, XXX 2022 4

complexity. In this paper, we use the number of MACs [28] to
measure the computational complexity of AI inference tasks.
MACs calculation methods of layers (such as fully connected
(FC) layers, convolutional layers and so on) can be obtained
in [28]. Taking 3D Convolutional Neural Network (3DCNN)
as an example, the computational complexity (measured by
MACs) of the lth layer of the nth device can be expressed as,

cn,l = olol+1

∏2
j=0K

j
l ,
∏2
j=0M

j
n,l+1, (3)

where ol is the number of input channels, ol+1 is the number
of output channels,

∏2
j=0K

j
l is the size of the convolution

kernel, and
∏2
j=0M

j
n,l+1 is the size of the output feature

map. j = 0 represents the temporal dimension (the number of
frames), j = 1, 2 represent spatial dimensions (pixels of one
frame). Note that ol, ol+1, and

∏2
j=0K

j
l are all determined

by the neural network architecture and
∏2
j=0M

j
n,l+1 depends

on the input size. The relation between the output feature size
and the input size can be expressed as,

M j
n,l+1 =

M j
n,l −K

j
l + 2dl

rl
+ 1, (4)

where rl is the stride and dl is the padding size.
As mentioned above, the computational complexity of a

DNN model is determined by the number of layers, the DNN
model’s architecture, and the input and output size. In this
paper, we mainly focus on the impact of the number of input
video frames Mn on recognition accuracy and the allocation
of communication and computing resources. The inference
result will be more accurate with more frames Mn input, but
the communication and calculation overhead will be greater.
The computational complexity of the nth device’s task can be
expressed as C(Mn).

Then we give the expression for the inference delay and
energy consumption. Denote fmax and fmaxn (in CPU cycle/s)
to be the total computation resource of the edge server and
mobile device n, respectively. Let fen and fmdn (in CPU
cycle/s) denote the computation resource to device n allocated
by the edge server and the device, respectively. Therefore,
the computing resources satisfy

∑
n∈N f

e
n ≤ fmax and

fmdn ≤ fmaxn . The computation delay of the device n and
MEC can be respectively expressed as,

Dmd
n =

ρC(Mn)

fmdn

, (5)

De
n =

ρC(Mn)

fen
, (6)

where ρ (cycle/MAC) represents the number of CPU cycles
required to complete a multiplication and addition, which
depends on the CPU model.

As for energy consumption, denote κ to be a coefficient
determined by the corresponding device [24], and the com-
putational energy consumption of device n can be expressed
as,

Emdn = κρC(Mn)fmdn

2
. (7)

C. Delay and Energy Models for Transmission

We consider a time-division multiple access (TDMA)
method for channel access. Specifically, each radio frame is
divided into N time slots for transmission, and each device can
only transmit in its own time slot. We assume that the length
of each radio frame is ∆T , which is short enough (e.g., 10
ms in LTE or NR system [24]), and the length of a time slot
is ∆Ttn.

Denote hn and pn to be the channel gain and transmission
power of the device n, respectively. According to [21], the
achievable data rate of device n can be expressed as,

Rn = Bwlog2

(
1 +

pnhn
BwN0

)
, (8)

where Bw and N0 are the bandwidth and the variance of
additive white Gaussian noise (AWGN), respectively.

Let d denote the data size of one video frame. Since we only
want to analyze the impact of time dimension information (the
number of input frames Mn) on recognition accuracy, d is a
constant value. In each radio frame, the data size that can
be transmitted is ∆TRntn. Therefore, for each transmission,
d Mnd

∆TRntn
e radio frames are required, where d·e means the

ceil function. Considering that the length of the radio frame
is much shorter than the transmission delay, the transmission
delay for offloading to MEC can be written as,

Dt
n = d Mnd

∆TRntn
e∆T ≈ Mnd

Rntn
, (9)

where tn is the proportion of time that device n transmits. In
addition, according to [24], the energy consumption of each
device to transmit its video can be expressed as,

Etn =
Mnd

Rn
pn. (10)

D. Inference Tasks Accuracy Model

As mentioned above, we mainly focus on the impact of the
number of input video frames Mn on recognition accuracy.
We assume that the quality of the input video is the same
for different devices. For a certain task and DNN model, the
accuracy is only determined by the number of input frames.
Therefore, the accuracy of device n can be expressed as
φn = Φ(Mn). According to [29], more frames will lead to
better inference accuracy, and as the input frames continue to
increase, the performance gain will gradually decrease. Some
prior studies also show that the relationship between frame
rate and accuracy can be expressed as concave functions [23].
Therefore, we define Φ(Mn) as a monotone non-decreasing
function to describe the relationship between the accuracy and
the number of input frames.

III. PROBLEM FORMULATION

In this section, we formulate the optimization problem to
reduce the system’s delay and devices’ energy consumption
and improve accuracy. We analyze the difficulty of solving
the problem. To simplify the problem, we make a reasonable
conversion of the problem.

IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. XX, NO. XX, XXX 2022 5

A. Original Problem Formulation

Based on the above analysis, combining (1), (2), (5)-(7),
(9), and(10), the nth device’s delay and energy consumption
can be expressed as,

Dn = (1− xn)
ρC(Mn)

fmdn

+ xn(
ρC(Mn)

fen
+
Mnd

Rntn
), (11)

En = (1− xn)κρC(Mn)fmdn

2
+ xn(

Mnd

Rn
pn). (12)

Given the system model described previously, our goal
is to reduce end-to-end delay and energy consumption and
improve recognition accuracy. Each device follows the binary
offloading policy. The mathematical optimization problem of
the total cost (delay, energy consumption, and accuracy) can
be expressed as,

Problem P1 (Original Problem):

minimize
{Mn,tn,fmd

n ,fe
n,xn}

∑
n∈N

(
β1Dn + β2En − β3Φ(Mn)

)
, (13)

subject to Φ(Mn) ≥ αn, ∀n ∈ N , (13a)
Mn ≤Mmax

n , Mn ∈ Z, (13b)∑
n∈N

xntn ≤ 1, (13c)∑
n∈N

xnf
e
n ≤ fmax, (13d)

tn, f
e
n ≥ 0, ∀n ∈ N , (13e)

0 ≤ fmdn ≤ fmaxn ,∀n ∈ N , (13f)
xn ∈ {0, 1} ,∀n ∈ N , (13g)

where αn represents the recognition accuracy requirement, β1,
β2, β3 are the weight factors. (13a) represents the recognition
accuracy requirement of each device. (13b) indicates the frame
limit for the input video, Z is the set of integers, and Mmax

n is
the maximum number of frames of the input video. (13c) and
(13d) represent the communication and computation resource
limitation, respectively. (13f) limits the computation resource
of each device.

The optimization variables in original problem P1 are
the number of input video frames Mn, the proportion of
transmission time tn, the local computation resource fmdn , the
edge computation resource allocation fen, and the offloading
decision xn. In addition, the first item in (13) is to reduce the
total delay of computation and transmission, the second item
is to reduce the device’s energy consumption, and the last item
is to improve the number of input video frames as well as the
recognition accuracy because of the monotone non-decreasing
function Φ(Mn).

Problem P1 is a non-convex MINLP problem and is difficult
to be solved. First, the complexity function C(Mn) is discrete
and depends on the architecture of the DNN and the size
of the input video. As the number of input frames Mn

increases, the computational complexity also increases. This
kind of increase is irregular because it is affected by the
structure of DNN layers, such as the stride and padding size
of 3DCNN according to (4). Therefore, C(Mn) cannot be
used for optimization directly. Second, as mentioned above,
the accuracy function Φ(Mn) is non-decreasing. However, we

cannot give a deterministic expression for Φ(Mn), so we can
not optimize it. In addition, both Mn and xn are integers,
making the problem difficult to be solved.

B. Problem Conversion

To make the problem P1 more tractable, we convert the
problem. First, we give an approximate expression of the
computational complexity function C(Mn). According to (3)
and (4), the computational complexity of 3DCNN layers is
proportional to the size of the input data. We can also obtain
a similar conclusion in other types of layers, such as the FC
layer [28]. Based on the above conclusion and combined with
the experiments in Sec. VI-A, in order to simply express the
computational complexity model, C(Mn) can be written as,

C(Mn) = mc,0Mn +mc,1, (14)

where mc,0 ≥ 0 and mc,1 are constants and depend on the
network model.

Second, we propose a general model to express the re-
lationship between the accuracy and the number of input
video frames. Considering that the function Φ(Mn) is mono-
tonically non-decreasing and that as the number of input
frames increases, the accuracy gain decreases, combining our
experiments in Sec. VI-A, we model function Φ(Mn) as,

Φ(Mn) = − ma,0

Mn +ma,1
+ma,2, (15)

where ma,0 ≥ 0, ma,2 ≥ 0 and ma,1 > −1 are constants and
depend on the target of inference tasks and the architecture of
DNN models.

Finally, we relax the range of the variable Mn. Consid-
ering that Φ(Mn) is a monotone non-decreasing function
and depends on the recognition task and network archi-
tecture, in order not to lose generality, define Mmin

n =
arg minMn

Φ(Mn), Φ(Mn) ≥ αn, Mn ∈ Z. We can also
relax Mn into a closed connected subset of the real axis, and
(13a), (13b) can be written as Mn ∈

[
Mmin
n ,Mmax

n

]
. Then

[Mn] can be regarded as the number of input video frames,
where [·] indicates rounding. We define two sets of devices, i.e.
N0 = {n | xn = 0, n ∈ N} and N1 = {n | xn = 1, n ∈ N}.
F0,n and F1,n are the cost function of the device n in sets N0

and N1, respectively. The problem P1 can be rewritten as,
Problem P2 (Converted Problem):

minimize
{Mn,tn,fmd

n ,fe
n,xn}

∑
n∈N0

(1− xn)F0,n(Mn, f
md
n)

+
∑
n∈N1

xnF1,n(Mn, f
e
n, tn), (16)

subject to Mn ∈
[
Mmin
n ,Mmax

n

]
, (16a)

(13c)− (13g),

where

F0,n(Mn, f
md
n) = β1

ρC(Mn)

fmdn

+ β2κρC(Mn)fmd2
n

− β3Φ(Mn), (17)

F1,n(Mn, f
e
n, tn) = β1

ρC(Mn)

fen
+ β1

Mnd

Rntn

IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. XX, NO. XX, XXX 2022 6

+ β2
Mndpn
Rn

− β3Φ(Mn). (18)

IV. OPTIMIZATION PROBLEM SOLVING

In this section, we decompose the problem P2 and propose
a Channel-Aware heuristic algorithm to solve it. First, sup-
posing that the offloading decision (i.e., {xn}) is given, we
solve optimization problems for sets N0 and N1, respectively.
Second, we propose a Channel-Aware heuristic algorithm to
optimize the offloading decision {xn}.

A. Optimization Problem Solving for N0

For set N0, i.e., when the device executes inference tasks
locally, the optimization problem becomes,

Problem PN0
(Problem for N0):

minimize
{Mn,fmd

n }
FPN0

,
∑
n∈N0

F0,n(Mn, f
md
n), (19)

subject to (13f), (16a).

The optimization variables in PN0
are the number of input

video frames Mn and the local computation resource fmdn .
Let {M∗n, fmd∗n } denote the optimal solution to PN0 . We can
derive the optimal solution to PN0

in a closed-form expression.
Theorem 1: The optimal solution to PN0

is given by,

fmd∗n = min{3

√
(
β1

2β2κ
), fmaxn }, (20)

M∗n = min{max{
√

β3ma,0

β1ρmc,0

fmd
n

+ β2κρmc,0fmd2
n

−ma,1,M
min
n },Mmax

n }. (21)

Proof: Please refer to Appendix A.
From Theorem 1, we can see that the optimal local CPU-

cycle frequency fmdn is determined by the weight factors β1,
β2, the coefficient of CPU energy consumption κ, and is
limited by its corresponding upper bound fmaxn . More specifi-
cally, fmdn is proportional to β

1
3
1 and inversely proportional to

β
1
3
2 and κ

1
3 . As for the number of input video frames, when

3

√
(β1

2β2κ
) ≤ fmaxn , combining (20) and (21), we have,

M∗n = min{max{3− 1
2 2

1
3 ρ−

1
2κ−

1
6m
− 1

2
c,0 β

− 1
3

1 β
− 1

6
2 β

1
2
3 m

1
2
a,0

−ma,1,M
min
n },Mmax

n }. (22)

The optimization results corresponding to each device are
only related to the parameters of the device itself and are not
associated with the parameters of other devices.

B. Optimization Problem Solving for N1

Then we solve the optimization problem of N1. The prob-
lem P2 can be written as,

Problem PN1
(Problem for N1):

minimize
{Mn,fe

n,tn}

∑
n∈N1

F1,n(Mn, f
e
n, tn), (23)

subject to (13c), (13d), (13e), (16a).

Algorithm 1: Algorithm 1: Search-Based Algorithm
for solving PN1

Input: The offloading policy N1, the channel gain
{hn}, and other system parameters.

Output: {M?
n, f

e?
n , t?n}

Initialize the result of cost function F?
P̃N1

to a
sufficiently large value;

Calculate the achievable data rate {Rn} using (8);
foreach {Mn} ∈ M do

Compute FP̃N1
using (27);

if FP̃N1
< F?

P̃N1

then
{M?

n} = {Mn}; F?P̃N1

= FP̃N1
;

Calculate {fe?n } and {t?n} using (25) and (26);

return {M?
n}, {fe?n }, and {t?n}.

The optimization variables in the the problem PN1 are the
number of input video frames Mn, the edge computation
resource fen, and the proportion of transmission time tn.
Let {M∗n, fe∗n , t∗n} denote the optimal solution to PN1

. We
can obtain the optimal solution to PN1

using the method of
Lagrange multiplier. The partial Lagrangian function can be
written as,

LPN1
=
∑
n∈N1

(
β1ρC(Mn)

fen
+
β1Mnd

Rntn
+
β2Mndpn

Rn
− β3Φ(Mn)

)
+ µ0(

∑
n∈N1

tn − 1) + µ1(
∑
n∈N1

fen − fmax), (24)

First of all, according to (24), supposing that M∗n is given,
we can solve the problem PN1

based on the Karush-Kuhn-
Tucker (KKT) condition. We can obtain the function expres-
sions of fe∗n and t∗n relative to Mn, as shown in the following
theorem.

Theorem 2: The function expressions of fe∗n and t∗n relative
to M∗n are given by,

fe∗n =
fmax

√
C(M∗n)∑

i∈N1

√
C(M∗i)

, (25)

t∗n =

√
M∗n
Rn∑

i∈N1

√
M∗i
Ri

. (26)

Proof: Please refer to Appendix B.
Combining (23), (25) and (26), the problem PN1 can be

written as an optimized function containing only the variable
Mn as follows,

Problem P̃N1
(Mn Optimization Problem for N1):

minimize
{Mn}

FP̃N1
,

β1ρ

fmax
(
∑
n∈N1

√
C(Mn))2

+ β1d(
∑
n∈N1

√
Mn

Rn
)2 + β2dpn(

∑
n∈N1

Mn

Rn
)

−
∑
n∈N1

β3Φ(Mn), (27)

IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. XX, NO. XX, XXX 2022 7

Algorithm 2: Algorithm 2: GP-Based Algorithm for
solving PN1

Input: The offloading policy N1, the channel gain
{hn}, and other system parameters.

Output: {M?
n, f

e?
n , t?n}

Calculate the achievable data rate {Rn} using (8);
Use the CVX tool to solve (29) and get {M̂?

n};
{M?

n} = {[eM̂?
n]};

Calculate {fe?n } and {t?n} using (25) and (26);

return {M?
n}, {fe?n }, and {t?n}.

subject to (16a).

Denote Mopt
n = {Mn | Mmin

n ≤ Mn ≤ Mmax
n ,Mn ∈

Z} to be the optional video frame number of device n. The
optimal solution can be obtained by searching for {Mn} ∈ M,
where M = {{Mi} | Mi ∈Mopt

i , i ∈ N1}. The detail of the
search based algorithm is shown in Algorithm 1.

Considering that the problem PN1
is convex when Mn is

given, Algorithm 1 is global optimal. However, When the
number of devices grows large, the computational complexity
of the Search-based algorithm will become very high or even
unacceptable. In this paper, we also propose a GP-based sub-
optimal algorithm to solve the problem PN1 . First, we relax
the objective function of the problem PN1. We introduce the
function, Φ̂(Mn) = −ma,0

Mn
+ma,2, and PN1

can be rewritten
as,

Problem PGPN1
(GP-based Problem for N1):

minimize
{Mn,fe

n,tn}

∑
n∈N1

(
β1
ρC(Mn)

fen
+ β1

Mnd

Rntn

+ β2
Mndpn
Rn

− β3Φ̂(Mn)

)
, (28)

subject to (13c), (13d), (13e), (16a).

It is a non-convex GP problem. Inspired by [30], the GP
problem can be transformed into a convex problem by
changing variables and transforming the objective and con-
straints. Therefore, introducing variables, M̂n = lnMn, f̂en =
ln fen, t̂n = ln tn, and the problem can be written as,

Problem P̃GPN1
(Converted GP-based Problem for N1):

minimize
{M̂n,t̂n,f̂e

n}

∑
n∈N1

(
β1ρmc,0e

M̂n−f̂e
n + β1ρmc,1e

−f̂e
n

+
β1de

M̂n−t̂n

Rn
+
β2dpne

M̂n

Rn
+β3ma,0e

−M̂n

)
, (29)

subject to M̂n ∈
[
lnMmin

n , lnMmax
n

]
,∀n ∈ N1, (29a)∑

n∈N1

xne
t̂n ≤ 1, (29b)∑

n∈N1

xne
f̂e
n ≤ fmax, (29c)

which is strictly convex problem that can be solved using the
CVX tool [31]. Considering that Mn is an integer, the result
of CVX optimization needs to be post-processed. Details of
the GP-based algorithm are shown in Algorithm 2.

Algorithm 3: Algorithm 3: Channel-Aware heuristic
algorithm for Optimizing Offloading Policy {xn}
Input: Parameters corresponding to the problem P1.
Output: Offloading policy N0 and N1.

Calculate the cost function {F0,n} for the set N using
(20) and (21) ;

Set N0 = ∅, N1 = N ;
Calculate the cost function {F1,n} corresponding to

the set N1 using Algorithm 1 or Algorithm 2;
Set Flag = 1;
while Flag == 1 do

k = argminnhn, n ∈ N1;
N ∗0 = N0 ∪ {k}, N ∗1 = N1 − {k};
Calculate the cost function {F∗1,n} corresponding

to the set N ∗1 using Algorithm 1 or Algorithm 2;
if
∑
n∈N0

F0,n +
∑
n∈N1

F1,n >∑
n∈N∗0

F0,n +
∑
n∈N∗1

F∗1,n then
F1,n = F∗1,n,∀n ∈ N ∗1 ;
N0 = N ∗0 ; N1 = N ∗1 ;

else
Flag = 0;

return N0 and N1.

C. Optimization of Offloading Policy {xn}

Considering the complexity of Search-based offloading pol-
icy algorithm becomes high when the number of devices N
grows large. In this section, we propose a Channel-Aware
heuristic algorithm to optimize the offloading decision {xn}.
Inspired by the Theorem 1 and Theorem 2, when executing
inference locally, the cost function F0,n and optimization vari-
ables fmdn , Mn only depend on the device’s own parameters.
However, for edge set N1, the cost function is related to
the number and parameters of devices in the set N1. The
Channel-Aware heuristic algorithm is shown in Algorithm
3. First, calculate the cost function {F0,n} of set N0 when
each device’s task is executed locally. Second, assuming that
all devices are offloaded to the edge server for inference
and |N1| = N . In each iteration, the cost function {F1,n}
corresponding to each device of N1 is obtained. We select the
device k with smallest channel gain in set N1. Try to put the
device k from the set N1 into the set N0 and compute the cost
of new sets. If the total cost of new sets is reduced, continue
the next iteration. Otherwise, put the device k back to the set
N1.

V. JOINT OPTIMIZATION USING ADMM-BASED
METHOD

The complexity of the Channel-Aware heuristic algorithm
becomes high when the number of UE grows. In this section,
We propose an ADMM-based algorithm. The ADMM-based
algorithm can decompose P2 into N parallel sub-problems.
Each user only needs to solve one sub-problem, and the
average complexity of each device will be reduced.

IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. XX, NO. XX, XXX 2022 8

A. ADMM-based Problem Conversion

To make the original problem tractable, we jointly consider
the problem P2 and problem P̃GPN1

, and we converted the
problem into a GP-based problem,

Problem P3 (Converted GP-based Problem):

minimize{
M̂n,t̂n, ˆfmd

n ,f̂e
n,xn

} ∑
n∈N

[
(1− xn) ˆF0,n(M̂n, ˆfmdn)

+ xn ˆF1,n(M̂n, f̂en, t̂n)

]
, (30)

subject to ˆfmdn ≤ ln fmaxn ,∀n ∈ N , (30a)
(13g), (29a)− (29c),

where M̂n = lnMn, ˆfmdn = ln fmdn , f̂en = ln fen, and t̂n =

ln tn. ˆF0,n(M̂n, ˆfmdn) and ˆF1,n(M̂n, f̂en, t̂n) are given by,

ˆF0,n(M̂n, ˆfmdn) = β1ρmc,0e
M̂n− ˆfmd

n + β1ρmc,1e
− ˆfmd

n

+ β2κmc,0e
M̂n+2 ˆfmd

n

+ β2κmc,1e
2 ˆfmd

n + β3ma,0e
−M̂n , (31)

ˆF1,n(M̂n, f̂en, t̂n) = β1ρmc,0e
M̂n−f̂e

n + β1ρmc,1e
−f̂e

n

+
β1de

M̂n−t̂n

Rn
+
β2dpne

M̂n

Rn

+ β3ma,0e
−M̂n , (32)

The optimization variables {t̂n, f̂en} are coupled among the
devices in the constraints (29b) and (29c). To decompose the
problem P3, we introduce local variables {yn} and {zn}.
Then, the ADMM-based problem can be written as,

Problem P4 (ADMM-based Problem):

minimize{
M̂n,t̂n, ˆfmd

n ,f̂e
n,xn,yn,zn

} ∑
n∈N
F̂n(xn, M̂n, ˆfmdn , yn, zn)

+ g(f̂en, t̂n), (33)

subject to yn = f̂en, zn = t̂n, (33a)
(13g), (29a), (30a),

where,

F̂n(xn, M̂n, ˆfmdn , yn, zn) = (1− xn) ˆF0,n(M̂n, ˆfmdn)

+ xn ˆF1,n(M̂n, xn, yn), (34)

g(f̂en, t̂n) =

{
0, if(f̂en, t̂n) ∈ G,
+∞ , otherwise,

(35)

and,

G =

{
(f̂en, t̂n)|

∑
n∈N1

xne
t̂n ≤ 1,

∑
n∈N1

xne
f̂e
n ≤ fmax

}
. (36)

B. ADMM-based Problem Solving

The problem P4 can be effectively solved using the ADMM
algorithm. We can write a partial augmented Lagrangian of the
problem P4 as,

L4(u,v,θ) =
∑
n∈N
F̂n(xn, M̂n, ˆfmdn , yn, zn) + g(f̂en, t̂n)

+
∑
n∈N

θfn(yn − f̂en) +
∑
n∈N

θtn(zn − t̂n)

+
∑
n∈N

s

2
(yn − f̂en)2 +

∑
n∈N

s

2
(zn − t̂n)2, (37)

where u = {xn, M̂n, ˆfmdn , yn, zn}, v = {f̂en, t̂n}, θ =
{θfn, θtn}, and s is a fixed step size. Therefore, the dual function
is,

p(θ) = minimize
u,v

L4(u,v,θ) (38)

subject to (13g), (29a), (30a),

and the dual problem can be given by,

maximize
θ

p(θ), (39)

The problem (38) can be solved by iteratively updating
u, v, and θ [32]. Let {ui,vi,θi} denote the values in the
ith iteration. In the ith iteration, the update strategies of the
variables are as follows,

1) Step 1: Local variables update. In this step, we first
update the local variables u. Given variable vi and θi, we
minimize L4(u,v,θ) by,

ui+1 = argminimize
u

L4(u,vi,θi). (40)

The problem (39) can be decomposed into N parallel sub-
problems. For each subproblem, we consider two cases where
xn = 0 and xn = 1, and express the problem as,

minimize
{M̂n, ˆfmd

n ,yn,zn}
ˆF0,n(M̂n, ˆfmdn) =θfnyn +

∑
n∈N

s

2
(yn − f̂en)2

+θtnzn +
∑
n∈N

s

2
(zn − t̂n)2, ifxn = 0,

minimize
{M̂n,yn,zn}

ˆF1,n(M̂n, yn, zn)=θfnyn +
∑
n∈N

s

2
(yn − f̂en)2

+θtnzn +
∑
n∈N

s

2
(zn − t̂n)2, ifxn = 1.

(41)

These problems are both strictly convex problems that can
be solved using the CVX tool [31]. Therefore, we can cal-
culate the objective value for xn = 0 and xn = 1 and
choose the smaller one as the final result. After solving N
parallel subproblems, the optimal solution to (40) is given by
ui+1 = {(xn)i+1, (M̂n)i+1, (ˆfmdn)i+1, (yn)i+1, (zn)i+1}.

2) Step 2: Global variables update. In the second step, we
update the global variables v. By the definition of g(v) in
(35), vi+1 ∈ G must hold at the optimum. Therefore, the
subproblem can be equivalently written as,

vi+1 = argminimize
{f̂e

n,t̂n}

∑
n∈N

(θfn)i(−f̂en) +
∑
n∈N

(θtn)i(−t̂n)

+
∑
n∈N

s

2
(yi+1
n − f̂en)2 +

∑
n∈N

s

2
(zi+1
n − t̂n)2, (42)

subject to, (29b), (29c).

The problem can also be solved by the CVX tool [31]. We
propose a low-complexity scheme to solve this subproblem.

IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. XX, NO. XX, XXX 2022 9

Algorithm 4: Algorithm 4: ADMM-Based Algorithm
Input: Parameters corresponding to the problem P1.
Output: {xn,Mn, f

md
n , fen, tn}

Initialize i = 0, {ui,vi,θi} = 0, s = 0.5,
µ?f = µ?t = 106, δ = 10−4;

repeat
foreach n ∈ N do

Update ui+1 by solving (41) and choose
smaller results;

foreach n ∈ N do
Update global variables vi+1 using (43) and

(44);
foreach n ∈ N do

Update multipliers θi+1 using (45) and (46);
i = i+ 1;

until |F i −F i+1| < δ;
Mn = eM̂n , fmdn = e

ˆfmd
n , fen = ef̂

e
n , tn = et̂n ;

return {xn,Mn, f
md
n , fen, tn}.

Considering the constraints (29b) and (29c), let µf and µt
denote the Lagrangian multipliers. The closed-form optimal
solution of this subproblem can be expressed as,

(f̂en)i+1 =yn
i+1 +

(θfn)i − µf
s

, (43)

(t̂n)i+1 =zn
i+1 +

(θtn)i − µt
s

, (44)

where µf can be obtained by the bisection search method
over (0, µ?f), until

∑
n∈N1

xne
f̂e
n ≤ fmax satisfies. µ?f is a

sufficiently large value. It is because when µf ≥ 0, (f̂en)i+1 is
non-increasing. Similarly, µt can be obtained by the bisection
search method over (0, µ?t), where µ?t is a sufficiently large
value, until

∑
n∈N1

xne
t̂n ≤ 1 satisfies.

3) Step 3: Multipliers update. In this step, we update the
multipliers θ using the obtained global variables v and local
variables u. The updated method is,

(θfn)i+1 =(θfn)i + s(yi+1
n − (f̂en)i+1), (45)

(θtn)i+1 =zn
i+1 + s(zi+1

n − (t̂n)i+1), (46)

Repeat the above three steps until the cost function no
longer decreases. The cost function is F i =

∑
n∈N [(1 −

xin) ˆF0,n((M̂n)i, (ˆfmdn)i) + xin ˆF1,n((M̂n)i, (f̂en)i, (t̂n)i)]. We
summarize solving steps of the ADMM algorithm as Algo-
rithm 4.

As a distributed iterative algorithm, the ADMM-based
scheme performs iterations between devices and BS rather than
locally, enabling online optimization during the recognition
process. In each iteration, ui is calculated locally and sent
to the MEC. After receiving ui from all devices, the MEC
updates vi and θi, and sends them to the device to complete
an iteration. Therefore, the iteration of the ADMM algorithm is
an online convergence process that can adapt to slight changes
in the channel.

0 4 8 12 16
The number of input video frames

0

100

200

300

400

500

600

L
a
te

n
c
y
 /

 m
s

Theory, Resnet-18, 2.8G

Experiment, Resnet-18, 2.8G

Fitting, Resnet-18, 2.8G

Theory, Resnet-34, 2.8G

Experiment, Resnet-34, 2.8G

Fitting, Resnet-34, 2.8G

Theory, Resnet-18, 2.2G

Experiment, Resnet-18, 2.2G

Fitting, Resnet-18, 2.2G

m

m
c,0=16.6

c,1=40.0

c,0=20.0

c,1=48.1

m

m

m

m
c,0=26.1

c,1=79.7

Fig. 3. The theoretical delay curve, the experimental delay curve and the
fitted curve corresponding to the experimentalal delay. Resnet-18 and Resnet-
34 are two classic neural network architectures. The frequency of the CPU is
2.8G and 2.2G.

C. Algorithm Computational Complexity Analysis
In this part, we analyze the computational complexity of

proposed algorithms. First, the complexity of solving problem
PN0 is O(|N0|). Second, as mentioned above, the complexity
of Algorithm 1 is O(

∏
n∈N1

|Mopt
n |), and the complexity of

Algorithm 2 is O((3|N1|)3.5) by the interior-point method
according to [33]. When we use Algorithm 1 for solving
PN1 and use Search-based algorithm for optimizing offloading
policy, the computational complexity is O(2N

∏
n∈N |Mopt

n |).
When we use Algorithm 1 for solving PN1

and use Algorithm
3 for optimizing offloading policy, the computational com-
plexity is O(N

∏
n∈N |Mopt

n |). In addition, the computational
complexity of Algorithm 2 for solving PN1 and Algorithm 3
for optimizing offloading policy is O(N4.5). For the ADMM-
based algorithm, as the complexity of each steps is O(N), the
overall complexity of one iteration is O(N).

VI. NUMERICAL RESULTS
In this section, we evaluate the performance of the proposed

algorithms via simulations. For all the simulation results,
unless specified otherwise, we set the downlink bandwidth
as Bw = 5 MHz and the power spectral as N0 = −174
dBm/Hz [24]. According to [17], the path loss is modelled
as PL = 128.1 + 37.6 log10(D) dB, where D is the dis-
tance between the device and the BS in kilometres. Devices
randomly distributed in the area within [500m 500m]. The
computational resource of the MEC server and devices are
set to be 1.8 GHz and 22 GHz, respectively. The recognition
accuracy requirement and the maximum number of input video
frames are set to αn = 0.86 and Mmax

n = 16, respectively.
The coefficient κ is determined by the corresponding device
and is set to be 10−28 in this paper according to [24]. The size
of the input video is 112∗112∗Mn. In addition, the coefficient
of computational complexity ρ is set to be 0.12 cycle/MAC,
which is obtained through several experiments in Sec.VI-A.
Weights β1, β2, β3 are set to be 0.2, 0.2, 0.6, respectively.

A. Model Verification
First, we obtain the complexity coefficient through experi-

mental measurement. The calculation method of the compu-
tational complexity coefficient is as follows. First, calculate

IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. XX, NO. XX, XXX 2022 10

0 4 8 12 16
The number of input video frames

0.4

0.55

0.7

0.85

1

A
c
c
u

r
a

c
y

Fitted curve, gesture, resnet-101

Fitted curve, gesture, resnet-18

Fitted curve, action, resnet-101

Experiment, gesture, resnet-101

Experiment, gesture, resnet-18

Experiment, action, resnet-101

 a,0=0.910

a,1=1.400

a,2=0.993

 a,0=0.910

a,1=1.400

a,2=0.993

m

m

m

 a,0=0.707

a,1=0.939

a,2=0.990

m

m

m m

m

m

Fig. 4. The experimental and fitted curves of gesture recognition task and
action recognition task.

the MACs of the DNN model when the number of input
video frames is different, recorded as {C}. We use the Flops
Counter tool [34] for MACs calculation. Second, execute 100
times of inference tasks with a different number of input
video frames, and record the average inference delay as {t}.
Finally, calculate the coefficients between the inference delay
and MACs by ρ = sum({C})

sum({t}) . We use Intel(R) Xeon(R) E5-
2630 CPU for testing. We use the Resnet-18 and the Resnet-34
for testing and limit the maximum frequency of the CPU to
2.8G and 2.2G. Fig. 3 shows the theoretical (MAC-based) and
experimental delay curves and the fitted curve corresponding
to the experimental delay. We can observe from Fig. 3 that the
theoretical delay is similar to the experimental delay, proving
that MACs can be modelled as computational complexity.
We also find that the linear fitted curve can approximately
represent the computational complexity with 9 ms root mean
square error (RMSE) for Resnet-18 and 2.8G, 17 ms RMSE
for Resnet-34 and 2.8G, and 11 ms RMSE for Resnet-18
and 2.2G. The inference delay is associated with the number
of input frames, DNN model’s architecture and the device’s
capabilities. In addition, the computational complexity co-
efficients under the three conditions are 0.128, 0.122, and
0.123, respectively. Therefore, in following experiments, we
set ρ = 0.12 cycle/MAC.

We select the gesture and action recognition tasks to verify
the accuracy model. We use the Jester datasets [35], the
largest publicly available hand gesture dataset, to test the
gesture recognition task. For the action recognition task, we
use Kinetics-400 datasets [36]. We choose Resnet-18 and
Resnet-101 for testing. As shown in Fig. 4, Under different
tasks and different network models, the accuracy curve all
conforms to the characteristics of a non-decreasing function.
What’s more, as the number of input frames increases, the
performance gain of accuracy will gradually decrease. This
is because the information gain introduced in the temporal
domain decreases when the number of input frames increases.
The fitted curve can approximately represent the relationship
between the accuracy and the number of input frames. In
the gesture recognition task with the Resnet-101 model, the
gesture recognition task with the Resnet-18 model, and the
action recognition task with the Resnet-101 model, the RMSE
are 0.0054, 0.0048 and 0.0095, respectively. We take the

4 12 20 28 36

The number of devices

-0.5

-0.4

-0.3

-0.2

-0.1

A
v
e
r
a
g
e
 c

o
st

Local

Edge

Random

CCCP

ADMM

GP+Heuristic

Performance bounds

Performance loss

CCCP: 2.1%

ADMM: 0.24%

GP+Heuristic: 0.03%

Fig. 5. The average cost of proposed schemes and baseline schemes under a
different number of devices.

Resnet-18 and the gesture recognition task as examples for
the following experiments.

B. Simulation Results of Average Cost

In this section, we compare proposed schemes and some
baseline schemes. We run 100 tests and can calculate the
average cost of each device and the average running time of
each test. We compare the following schemes.

1) Search+Search: We use the Search-based algorithm
to solve PN1

and use the heuristic algorithm to optimize
offloading policy.

2) Search+Heuristic: We use the Search-based algorithm
to solve PN1

and use the Search-based algorithm to optimize
offloading policy.

3) GP+Heuristic: We use the GP-based algorithm to solve
PN1

and use the Channel-Aware heuristic algorithm to opti-
mize offloading policy.

4) ADMM: We use the ADMM-based algorithm to solve
the original problem.

5) CCCP [37]: We use the concave-convex procedure
(CCCP) algorithm to decide whether to offload inference tasks
to edge servers. Then we use Theorem 1 and the GP-based
algorithm for resource allocation.

6) Random: All inference tasks are randomly executed on
local or the edge server. We use Theorem 1 and the GP-based
algorithm for resource allocation.

7) Local: All inference tasks are executed locally. We use
Theorem 1 for local resource allocation.

8) Edge: All inference tasks are executed on the edge
server. We use the GP-based algorithm for resource allocation

In Fig. 5, we plot the average cost of different schemes
under different devices. The Search+Heuristic scheme and
Search+Search scheme have the same performance, represent-
ing the performance bounds. When the number of devices
exceeds 16, the performance bounds are not shown due to
their unacceptable computational complexity. It can be seen
from Fig. 5 that the proposed schemes are better than the
baseline schemes. Compared with the performance bounds, the
performance of the GP+Heuristic scheme has a slight decrease
due to the relaxation of the accuracy function Φ(Mn). The
performance of the ADMM scheme is worse than that of the
GP+Heuristic scheme, and is better than that of the CCCP

IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. XX, NO. XX, XXX 2022 11

2 6 10 14 18 22

The number of devices

0

50

100

150

200

250

R
u

n
n

in
g
 t

im
e
 /

 s

ADMM

GP+Heuristic

CCCP

Search+Heuristic

Search+Search

Fig. 6. The average running time of proposed algorithms under a different
number of devices.

scheme. For example, when the number of devices is 16, the
CCCP, ADMM, and GP+Heuristic schemes have performance
losses of 2.1%, 0.24%, and 0.03%, respectively, compared
with performance bounds. Moreover, when the number of
devices is less than 8, the cost of the scheme that executes
tasks only at the edge is almost equal to the cost of the
proposed GP+Heuristic scheme. It is because all devices can
benefit from performing inference on the edge server when
the number of devices is small. If the inference task is only
executed locally, the average cost of the device will not change
because the local resources among the equipment do not affect
each other.

In Fig. 6, we plot the average running time of different
schemes under different devices. When the number of de-
vices exceeds 6, the running time of the Search+Heuristic
and Search+Search scenarios becomes unacceptable. The
GP+Heuristic scheme improves the solution efficiency. The
running time of GP+Heuristic is shorter than that of CCCP
scheme. However, the complexity of the solution remains
unsatisfactory as the number of devices increases. As for the
ADMM-based scheme, since the ADMM-based algorithm is
a distributed algorithm and the complexity of updating global
variables is much smaller than that of updating local variables,
we only consider the average running time for each device.
The average running time of the ADMM-based scheme does
not improve as the number of devices increases. It is worth
noting that in the ADMM-based scheme, the iteration stops
when |F i − F i+1| < δ, where δ = 10−5. Threshold-based
stopping conditions result in a different number of iterations
in different cases. When the number of devices is different,
the average number of iterations is also different, resulting in
different running times. Therefore, the average running time
of 18 devices is shorter than that of 14 and 22 devices.

Assuming that the ADMM-based scheme iterates once every
time an inference task is performed, we plot the curve corre-
sponding to the cost function and the number of iterations.
As shown in Fig.7, the ADMM-based scheme can converge
to acceptable performance after completing 3-5 iterations. As
the number of iterations increases, the performance will be
closer to the optimal performance. It shows that the ADMM
algorithm can converge through online iterations. We also test
the running time per iteration on each device, and it takes an
average of about 278ms.

0 5 10 15 20

The number of iterations

-0.5

0

0.5

1

1.5

2

C
o
s
t

ADMM

Performance bounds

Fig. 7. The curve corresponding to the cost function and the number of
iterations.

TABLE I
DELAY, ENERGY CONSUMPTION, AND ACCURACY OF LOCAL DEVICES

AND EDGE DEVICES

Local devices Edge devices

Number of devices 12.3 12.7

Average delay 0.24 s 0.52 s

Average energy 1.00 J 0.025 J

Average accuracy 0.886 0.866

C. Simulation Results of Delay, Energy, and Accuracy

This section compares the average delay, energy consump-
tion, accuracy, and the offloading rate (the proportion of de-
vices that perform inference on the edge server). We consider
the different number of devices, bandwidths, edge computing
resources, and weights β1, β2, β3. We use the GP+Heuristic
scheme for testing. Table. I shows a comparison of devices
that finish inference locally and devices that finish inference
at the edge under default experimental settings. On average,
12.7 devices choose to offload to the edge server to perform
inference. Compared with edge devices, local devices have a
lower delay and higher accuracy but have greater inference
energy consumption.

Fig. 8 shows the average delay, energy, accuracy, and
offloading rate under different numbers of devices, different
bandwidths, and different edge computing resources. In Fig.
8(a), we plot results with different numbers of devices. As
shown in Fig. 8(a), when the number of devices is small (less
than 10), all devices offload the task to the edge server (the
offloading rate is equal to 1). For edge devices, all delay comes
from transmission delay and the edge inference delay, and all
energy consumption comes from transmission energy. With
the number of devices increasing, communication resources
and the edge server’s computation resources are shared by
more devices, decreasing the number of input frames Mn. A
decrease in the number of input frames results in a decrease
in accuracy. Then as Mn decreases, the transmission data size
decreases, and the transmission energy decreases. Meanwhile,
Competition from more devices leads to increased delays.
Therefore, when the number of devices is small (less than
10), with the number of devices increasing, the average delay
increases, the average accuracy and the average energy con-

IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. XX, NO. XX, XXX 2022 12

5 15 25 35 45
The number of devices

0

0.2

0.4

0.6

0.8

1

D
e
la

y
 /

s,

E

n
e
r
g
y
 /

 J
,
 O

ff
lo

a
d

in
g
 r

a
te

0.8

0.85

0.9

0.95

1

A
c
c
u

r
a

c
y

Delay

Energy

Offloading rate

Accuracy

(a) Different number of devices

2 6 10 14 18
Bandwidth / MHz

0

0.2

0.4

0.6

0.8

1

D
e
la

y
 /

s,

E

n
e
r
g
y
 /

 J
,
 O

ff
lo

a
d

in
g
 r

a
te

0.8

0.85

0.9

0.95

1

A
c
c
u

r
a
c
y

Delay

Energy

Offloading rate

Accuracy

(b) Different bandwidth

6 14 22 30 38
Edge computing resource / GHz

0

0.2

0.4

0.6

0.8

1

D
e
la

y
 /

s,

E

n
e
r
g
y
 /

 J
,
 O

ff
lo

a
d

in
g
 r

a
te

0.8

0.85

0.9

0.95

1

A
c
c
u

r
a
c
y

Delay

Energy

Offloading rate

Accuracy

(c) Different edge computing resource

Fig. 8. The average delay, energy, offloading rate, and accuracy under different
numbers of devices, different bandwidths, and different edge computing
resources.

sumption decrease. When the number of devices exceeds 10,
the average energy consumption and accuracy increase, and the
average delay and offload rate gradually decrease. Considering
different bandwidths and different edge computing resources,
we plot Fig. 8(b) and Fig. 8(c). In Fig. 8(b) and Fig. 8(c), as
the bandwidth and edge computing resource increase, devices
will be more inclined to offload computing to the edge, which
increases the offloading rate. According to Table. I, when
β1, β2 and β3 are fixed, edge devices have lower energy
consumption, lower accuracy and higher delay. More edge
devices mean a greater delay and lower power consumption.
Meanwhile, when the bandwidth increases, since the edge
computing resources are fixed, the number of video frames
will decrease to reduce edge computing overhead, resulting
in a decrease in accuracy. The same conclusion can also be
obtained when edge computing resources increase. Therefore,

Fig. 9. The relationship between the delay, energy consumption, and accuracy.

with the increase of bandwidth and edge computing resources,
more edge devices lead to increased delay and decreased
energy and accuracy.

We set the minimum number of input frames Mmin
n = 1.

We use different weights, β1, β2, β3 to study the trade-off
relationship between the average delay, energy consumption,
and accuracy. The constraint is β1 +β2 +β3 = 1. The perfor-
mance of the trade-off surface is obtained by the GP+Heuristic
scheme. Fig. 9 shows the delay, energy consumption, and
accuracy are mutually limited. Higher energy consumption
leads to higher accuracy when the delay is constant. From
another perspective, in order to improve the accuracy, it is
necessary to sacrifice the performance of delay and energy
consumption. In addition, with the same accuracy, according
to Table. I, higher energy consumption will make the device
more inclined to execute inference tasks locally, and the delay
decreases.

VII. CONCLUSION

This paper considers optimizing video-based AI inference
tasks in a multi-user MEC system. An MINLP is formulated
to minimize the total delay and energy consumption, and
improve the total accuracy, with the constraint of computation
and communication resources. A MAC-based computational
complexity model is introduced to model the calculation delay,
and a simple approximate expression is proposed to simplify
the problem. We also propose a general accuracy model to
characterize the relation between the recognition accuracy and
the number of input frames. After that, we first assume that the
offloading decision is given and decouple the original problem
into two sub-problems. The first sub-problem is to optimize the
resources of the devices that complete the DNN inference tasks
locally. We derive the closed-form solution to this problem.
The second sub-problem is optimizing the devices’ resources
that offload the DNN inference tasks to the edge server. We
propose the Search-based and GP-based algorithm to solve
the second sub-problem. For the problem of offloading de-
cision optimization, we propose the Channel-Aware heuristic
algorithm. We also propose a distributed algorithm based on
ADMM. The ADMM-based algorithm reduce computational
complexity at the cost of an acceptable performance loss.
Numerical simulation and experimental results demonstrate

IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. XX, NO. XX, XXX 2022 13

the effectiveness of the proposed algorithm. We also provide
a detailed analysis of the delay, energy consumption, and
accuracy for different device numbers, bandwidths and edge
computing resources.

APPENDIX A
PROOF OF THEOREM 1

The partial derivative of FPN0
with respect to fmdn is,

∂FPN0

∂fmdn

= −β1
ρC(Mn)

fmd2
n

+ 2β2κρC(Mn)fmdn , (47)

By setting
∂FPN0

∂fmd
n

= 0, we have,

fmdn = 3

√
(
β1

2β2κ
), (48)

Therefore, fmdn decreases monotonically in the interval
(−∞, 3

√
(β1

2β2κ
)) and increases monotonically in the interval

(3

√
(β1

2β2κ
),+∞). Considering the value range of fmdn , the

optimal solution can be given by,

fmd∗n = min{3

√
(
β1

2β2κ
), fmaxn } (49)

Then we analyze Mn. The partial derivative of FPN0
with

respect to Mn is,

∂FPN0

∂Mn
=
β1ρmc,0

fmdn

+ β2κρmc,0f
md2
n − β3ma,0

(Mn +ma,1)2
,

(50)

By setting
∂FPN0

∂Mn
= 0, we have,

Mn =

√
β3ma,0

β1ρmc,0

fmd
n

+ β2κρmc,0fmd2
n

−ma,1, (51)

Considering the value range of Mn, the optimal solution can
be given by,

M∗n = min{max{
√

β3ma,0

β1ρmc,0

fmd
n

+ β2κρmc,0fmd2
n

−ma,1,M
min
n },Mmax

n } (52)

which completes the proof.

APPENDIX B
PROOF OF THEOREM 2

According to the KKT conditions, we can obtain the fol-
lowing necessary and sufficient conditions,

∂LPN1

∂fe∗n
= −β1ρC(M∗n)

fe∗2n

+ u∗1 = 0, fe∗n > 0, (53)

∂LPN1

∂t∗n
= −β1M

∗
nd

Rnt∗2n
+ u∗0 = 0, t∗n > 0, (54)

µ∗0(
∑
n∈N∗

t∗n − 1) = 0, (55)

µ∗1(
∑
n∈N∗

fe∗n − fmax) = 0, (56)

µ∗0, µ
∗
1 ≥ 0. (57)

Because β1ρC(M∗n)
fe∗2
n

and β1M
∗
nd

Rnt∗2n
are positive, µ∗0 and µ∗1 are

also positive. We can obtain,∑
n∈N

fe∗n − fmax = 0, (58)∑
n∈N

t∗n − 1 = 0, (59)

fe∗n =

√
β1ρC(M∗n)

Rnµ∗1
, (60)

t∗n =

√
β1M∗nd

Rnµ∗0
. (61)

Combining (58) and (60), we can get the expression of fe∗n
corresponding to M∗n,

fe∗n =
fmax

√
C(M∗n)∑

i∈N1

√
C(M∗i)

. (62)

Similarly, combining (59) and (61), we can get the expression
of t∗n corresponding to M∗n,

t∗n =

√
M∗n
Rn∑

i∈N1

√
M∗i
Ri

, (63)

which completes the proof.

REFERENCES

[1] H. Ning, H. Wang, Y. Lin, W. Wang, S. Dhelim, F. Farha, J. Ding, and
M. Daneshmand, “A survey on metaverse: the state-of-the-art, technolo-
gies, applications, and challenges,” arXiv preprint arXiv:2111.09673,
2021.

[2] J. Li, L. Deng, Y. Gong, and R. Haeb-Umbach, “An overview of noise-
robust automatic speech recognition,” IEEE/ACM Trans. Audio, Speech,
Lang. Process., vol. 22, no. 4, pp. 745–777, 2014.

[3] D. W. Otter, J. R. Medina, and J. K. Kalita, “A survey of the usages
of deep learning for natural language processing,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 32, no. 2, pp. 604–624, 2021.

[4] A. W. M. Smeulders, D. M. Chu, R. Cucchiara, S. Calderara, A. De-
hghan, and M. Shah, “Visual tracking: An experimental survey,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 36, no. 7, pp. 1442–1468, 2014.

[5] L. N. Huynh, R. K. Balan, and Y. Lee, “Deepsense: A gpu-based deep
convolutional neural network framework on commodity mobile devices,”
in Proc. ACM WearSys’16, 2016, p. 25–30.

[6] X. Ran, H. Chen, X. Zhu, Z. Liu, and J. Chen, “Deepdecision: A
mobile deep learning framework for edge video analytics,” in Proc. IEEE
INFOCOM’18, 2018, pp. 1421–1429.

[7] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang, “Learning
efficient convolutional networks through network slimming,” in Proc.
IEEE ICCV’17, Oct 2017, pp. 2736–2744.

[8] W. Shi, Y. Hou, S. Zhou, Z. Niu, Y. Zhang, and L. Geng, “Improving
device-edge cooperative inference of deep learning via 2-step pruning,”
in Proc. IEEE INFOCOM WKSHPS’19, 2019, pp. 1–6.

[9] Y. Shi, K. Yang, T. Jiang, J. Zhang, and K. B. Letaief, “Communication-
efficient edge AI: Algorithms and systems,” IEEE Commun. Surveys
Tuts., vol. 22, no. 4, pp. 2167–2191, 2020.

[10] X. Wang, Y. Han, C. Wang, Q. Zhao, X. Chen, and M. Chen, “In-edge
AI: Intelligentizing mobile edge computing, caching and communication
by federated learning,” IEEE Netw., vol. 33, no. 5, pp. 156–165, 2019.

[11] K. B. Letaief, Y. Shi, J. Lu, and J. Lu, “Edge artificial intelligence for
6G: Vision, enabling technologies, and applications,” IEEE J. Sel. Areas
Commun, vol. 40, no. 1, pp. 5–36, 2022.

IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. XX, NO. XX, XXX 2022 14

[12] S. R. Sabuj, D. K. P. Asiedu, K.-J. Lee, and H.-S. Jo, “Delay opti-
mization in mobile edge computing: Cognitive uav-assisted embb and
mmtc services,” IEEE Trans. Cogn. Commun. Netw., vol. 8, no. 2, pp.
1019–1033, 2022.

[13] P. Wang, B. Di, L. Song, and N. R. Jennings, “Multi-layer compu-
tation offloading in distributed heterogeneous mobile edge computing
networks,” IEEE Trans. Cogn. Commun. Netw., vol. 8, no. 2, pp. 1301–
1315, 2022.

[14] K. Wang, Z. Ding, D. K. C. So, and G. K. Karagiannidis, “Stackelberg
game of energy consumption and latency in mec systems with noma,”
IEEE Trans. Commun., vol. 69, no. 4, pp. 2191–2206, 2021.

[15] M. Qin, N. Cheng, Z. Jing, T. Yang, W. Xu, Q. Yang, and R. R. Rao,
“Service-oriented energy-latency tradeoff for iot task partial offloading
in mec-enhanced multi-rat networks,” IEEE Internet Things J., vol. 8,
no. 3, pp. 1896–1907, 2021.

[16] L. Ale, N. Zhang, X. Fang, X. Chen, S. Wu, and L. Li, “Delay-aware
and energy-efficient computation offloading in mobile-edge computing
using deep reinforcement learning,” IEEE Trans. Cogn. Commun. Netw.,
vol. 7, no. 3, pp. 881–892, 2021.

[17] K. Yang, Y. Shi, W. Yu, and Z. Ding, “Energy-efficient processing
and robust wireless cooperative transmission for edge inference,” IEEE
Internet Things J., vol. 7, no. 10, pp. 9456–9470, 2020.

[18] S. Hua, Y. Zhou, K. Yang, Y. Shi, and K. Wang, “Reconfigurable
intelligent surface for green edge inference,” IEEE Transactions on
Green Communications and Networking, vol. 5, no. 2, pp. 964–979,
2021.

[19] J. Liu and Q. Zhang, “To improve service reliability for AI-powered
time-critical services using imperfect transmission in MEC: An experi-
mental study,” IEEE Internet Things J., vol. 7, no. 10, pp. 9357–9371,
2020.

[20] W. He, S. Guo, S. Guo, X. Qiu, and F. Qi, “Joint DNN partition
deployment and resource allocation for delay-sensitive deep learning
inference in IoT,” IEEE Internet Things J., vol. 7, no. 10, pp. 9241–
9254, 2020.

[21] Z. Lin, S. Bi, and Y.-J. A. Zhang, “Optimizing AI service placement and
resource allocation in mobile edge intelligence systems,” IEEE Trans.
Wireless Commun., vol. 20, no. 11, pp. 7257–7271, 2021.

[22] E. Li, L. Zeng, Z. Zhou, and X. Chen, “Edge AI: On-demand acceler-
ating deep neural network inference via edge computing,” IEEE Trans.
Wireless Commun., vol. 19, no. 1, pp. 447–457, 2020.

[23] Q. Liu, S. Huang, J. Opadere, and T. Han, “An edge network orchestrator
for mobile augmented reality,” in Proc. IEEE INFOCOM’18, 2018, pp.
756–764.

[24] Y. He, J. Ren, G. Yu, and Y. Cai, “Optimizing the learning performance
in mobile augmented reality systems with CNN,” IEEE Trans. Wireless
Commun., vol. 19, no. 8, pp. 5333–5344, 2020.

[25] Y. Zhao, Z. Yang, X. He, X. Cai, X. Miao, and Q. Ma, “Trine:
Cloud-edge-device cooperated real-time video analysis for household
applications,” IEEE Trans. Mobile Comput., pp. 1–1, 2022.

[26] K. Hara, H. Kataoka, and Y. Satoh, “Can spatiotemporal 3D CNNs re-
trace the history of 2D CNNs and ImageNet?” in Proc. IEEE CVPR’18,
2018, pp. 6546–6555.

[27] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Proc. ICLR’15, May 2015, pp. 1–14.

[28] M. Hollemans, “How fast is my model?” https://machinethink.net/blog/
how-fast-is-my-model/, accessed Dec. 30, 2021.

[29] C. Wang, S. Zhang, Y. Chen, Z. Qian, J. Wu, and M. Xiao, “Joint
configuration adaptation and bandwidth allocation for edge-based real-
time video analytics,” in Proc. IEEE INFOCOM’20, 2020, pp. 257–266.

[30] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex optimization.
Cambridge university press, 2004.

[31] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex
programming, version 2.1,” http://cvxr.com/cvx, Mar. 2014.

[32] S. Bi and Y. J. Zhang, “Computation rate maximization for wireless
powered mobile-edge computing with binary computation offloading,”
IEEE Trans. Wireless Commun., vol. 17, no. 6, pp. 4177–4190, 2018.

[33] J. Li, X. Li, Y. Bi, and J. Ma, “Energy-efficient joint resource allocation
with reconfigurable intelligent surfaces in symbiotic radio networks,”
IEEE Trans. Cogn. Commun. Netw., pp. 1–1, 2022.

[34] V. Sovrasov, “Flops counter for convolutional networks in pytorch
framework,” https://github.com/sovrasov/flops-counter.pytorch, accessed
Dec. 30, 2021.

[35] J. Materzynska, G. Berger, I. Bax, and R. Memisevic, “The jester dataset:
A large-scale video dataset of human gestures,” in Proc. IEEE ICCV
Workshop’19, 2019, pp. 2874–2882.

[36] W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier, S. Vijaya-
narasimhan, F. Viola, T. Green, T. Back, P. Natsev, M. Suleyman, and
A. Zisserman, “The kinetics human action video dataset,” arXiv preprint
arXiv:1705.06950, 2017.

[37] X. Chen, Y. Cai, L. Li, M. Zhao, B. Champagne, and L. Hanzo,
“Energy-efficient resource allocation for latency-sensitive mobile edge
computing,” IEEE Trans. Veh. Technol., vol. 69, no. 2, pp. 2246–2262,
2020.

https://machinethink.net/blog/how-fast-is-my-model/
https://machinethink.net/blog/how-fast-is-my-model/
http://cvxr.com/cvx
https://github.com/sovrasov/flops-counter.pytorch

	I Introduction
	I-A Related Works
	I-B Contributions and Organizations

	II System Model
	II-A Offloading Framework
	II-B Delay and Energy Models for Inference
	II-C Delay and Energy Models for Transmission
	II-D Inference Tasks Accuracy Model

	III Problem Formulation
	III-A Original Problem Formulation
	III-B Problem Conversion

	IV Optimization Problem Solving
	IV-A Optimization Problem Solving for N0
	IV-B Optimization Problem Solving for N1
	IV-C Optimization of Offloading Policy {xn}

	V JOINT OPTIMIZATION USING ADMM-BASED Method
	V-A ADMM-based Problem Conversion
	V-B ADMM-based Problem Solving
	a Step 1
	b Step 2
	c Step 3

	V-C Algorithm Computational Complexity Analysis

	VI NUMERICAL RESULTS
	VI-A Model Verification
	VI-B Simulation Results of Average Cost
	a Search+Search
	b Search+Heuristic
	c GP+Heuristic
	d ADMM
	e CCCP CCCP
	f Random
	g Local
	h Edge

	VI-C Simulation Results of Delay, Energy, and Accuracy

	VII Conclusion
	Appendix A: Proof of Theorem 1
	Appendix B: Proof of Theorem 2
	References

