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Application of Unsupervised Learning in
Implementation of Joint Power and Index

Modulation Access in V2X Systems
Sunyoung Lee, Konstantinos Koufos, Carsten Maple and Mehrdad Dianati

Abstract—The implementation of joint Power-and-Index Mod-
ulation Access (PIMA), which is an effective way of realizing non-
orthogonal multiple access (NOMA), requires a process of user
ordering over the available subcarriers, before multiplexing their
data streams for power and index modulation. The conventional
way of user ordering in NOMA with respect to the channel state
information can be impractical and expensive given the large
numbers of users and subcarriers, in Vehicle-to-Everything (V2X)
communications. Therefore, this paper proposes a novel approach
that leverages K-Means clustering to learn the pattern of multi-
user multi-carrier energy variations and use them to effectively
order the users. For this, we develop several learning algorithms
and an analytical model for the Symbol Error Probability (SEP)
of PIMA, which is used to quickly generate part of the training
dataset (transfer learning). The results of the comprehensive
evaluations that have been carried out in this study show that
the proposed approach outperforms the benchmark techniques in
terms of SEP. It is also shown that the proposed scheme provides
improved performance in terms of SEP as compared to distance-
based ordering in realistic V2X scenarios using synthetic mobility
traces for the locations of vehicles along multi-lane highways.

Index Terms—Index Modulation (IM), K-Means clustering,
mobility traces, non-orthogonal multiple access (NOMA), Vehicle-
to-Everything (V2X).

I. I NTRODUCTION

Vehicle-to-Everything (V2X) communications demand
high-reliability and low-latency wireless connectivity for the
purpose of safety-related functions, while for entertainment
and infotainment services, enhanced mobile broadband con-
nections become relevant. Therefore, it is important to de-
sign a spectrum-efficient multiple access scheme for a large
number of connected vehicles in V2X systems. In this con-
text, Non-Orthogonal Multiple Access (NOMA) technique
for V2X communication has recently become increasingly
attractive [1]–[4].

In NOMA [5]–[8], the spectral efficiency can be enhanced
by multiplexing the data streams of different users over the
same time-frequency resource blocks using different power
levels. Recently, Index Modulation (IM) [9]–[11] has been also
considered for improving the spectral efficiency and reliability

A preliminary part of this paper was presented at theIEEE VTC Spring,
2020. This work was supported by Jaguar Land Rover and the UK-EPSRC
grant EP/N01300X/1 as part of the jointly funded Towards Autonomy: Smart
and Connected Control (TASCC) Programme.

S. Lee, K. Koufos, C. Maple and M. Dianati are with
Warwick Manufacturing Group, University of Warwick, Coventry,
CV4 7AL, U.K. (email:{sunyoung.lee, Konstantinos.Koufos, CM,
m.dianati}@warwick.ac.uk).

of Orthogonal Frequency Division Multiplexing (OFDM) tech-
nique. The main idea behind IM is to activate a subset of sub-
carriers and use their indices to convey additional information.
There are various ways that IM can be implemented within the
NOMA framework [12]–[15]. A promising approach is to use
IM in conjunction with power-domain multiplexing dubbed
as the joint Power-and-Index Modulation Access (PIMA).
This technique has particularly attracted interest for downlink
communication in V2X applications [16].

In PIMA, the Base Station (BS) needs to order the users
before multiplexing their data streams for index and power
modulation. The selected ordering depends on the channel
quality. Specifically, the information of the user with the worst
channel conditions is modulated on the indices of the activated
subcarriers, while the rest of the users are multiplexed onto
the same subcarriers with different power levels [16]. The
users can decode their own data via Successive Interference
Cancellation (SIC) that is often used to cancel multi-user
interference. As a result, in PIMA/NOMA, the quality of user
ordering directly affects the performance of the entire system.
Therefore, an effective user ordering is an important and non-
trivial technical challenge in such systems.

There are two widely-used approaches in the literature to
identify the best user ordering for NOMA. In the first one,
the BS exploits the instantaneous Channel State Information
(CSI). This can be achieved by users estimating their downlink
CSIs and reporting them back to the BS. Alternatively, in Time
Division Duplexing (TDD) systems, the BS can estimate the
downlink CSI from the uplink CSI measurements assuming
the reciprocity of the uplink and downlink channels. This
means that the BS requires the CSIs from all users every
Transmit Time Interval (TTI) for the user ordering task, which
is expensive and impractical for V2X systems, where the
channel varies quite rapidly [4], [17], [18].

In the second approach, the BS orders the users accord-
ing to their distances [13]–[15], [19]–[21]. This approach
cannot accurately capture the real channel state in complex
environments with non-line-of-sight propagation conditions.
Moreover, the ordering of users may vary across sub-carriers in
multi-carrier systems experiencing frequency selective fading.
This makes the user ordering in PIMA/NOMA implementa-
tions even more challenging and resource-expensive.

Unfortunately, the ordering complexity in PIMA/NOMA
increases with the number of users, possibly imposing a heavy
measurement and computational load at the BS. For example,
with L users andN subcarriers, the computational complexity
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of the ordering is(L × N)!. This becomes a significant
challenge in V2X systems, where the low latency requirements
render computationally expensive ordering algorithms non-
effective. Therefore, there is a need for efficient methods for
user ordering in PIMA/NOMA for V2X systems [1]–[4], [16],
which strike an acceptable balance between the quality and the
complexity of the ordering algorithm.

Recent reviews of the ordering approaches for NOMA can
be found in [1] and [22]–[24], but they are tailored to single-
carrier communication systems. In [1], the authors consider
partial CSI for power-domain multiplexing in NOMA that
contains only the effects of path loss and shadowing. The
coverage probability of NOMA with user ordering based
on the instantaneous channel power gain is studied in [22],
while distance-based ordering is examined in [23]. Finally, a
comparative analysis of Signal-to-Interference and NoiseRatio
(SINR)-based coverage probability using the distance-based
and the instantaneous CSI-based user ordering for two static
NOMA users is studied in [24]. Unfortunately, the distance-
based approach for user ordering cannot accurately capture
the real channel state in complex environments, and the CSI-
based approach is expensive and impractical for V2X systems.
More importantly, both approaches are not straightforwardto
extend to multi-carrier systems. Judging by such shortcomings
and gaps, an effective user ordering scheme for multi-carrier
NOMA V2X systems is still in its infancy.

Motivated by the aforementioned challenges and needs, this
paper proposes to learn the patterns of multi-user multi-carrier
energy variations in the uplink and use them to effectively
order the users for PIMA. The reliance of the ordering task
on complicated channel estimation techniques at every TTI
is therefore alleviated. That significantly reduces the imple-
mentation complexity and allows the BS to effectively order
the users in real-time. It has been a common practice to
employ machine learning tools for obtaining in real-time the
solution to computationally-expensive problems. In this article,
we show how to order the users in PIMA using a bespoke K-
Means clustering algorithm. The suggested algorithm uses the
standard K-means to cluster together similar vectors of uplink
signal energies during training. Afterward, the optimal user
order for the centroid of each cluster is identified. Finally,
during real-time inference, the observed vector of signal
energies in the uplink is associated with the nearest centroid
and the optimal user order can be retrieved.

The motivation for selecting K-Means clustering among var-
ious other learning algorithms, e.g., artificial neural networks,
is its simplicity and low-storage requirements. The BS can
simply store and use the cluster centroids to obtain the best
user ordering during real-time inference. Despite its simplicity,
K-Means yields significant performance gains in comparison
with the benchmarking schemes for user ordering, as it will be
illustrated later in this article. Furthermore, K-Means provides
an intuitive justification for the adoption of machine learning
in the subject problem, because it is natural to assume that
similar vectors of received signal energies in the uplink would
lie within the same cluster and be associated with the same
best ordering of vehicles. The main contributions of this work
are summarized next.

• A novel approach is proposed where the BS learns
to estimate an effective user order given the instanta-
neous received energies across subcarriers and users in
the uplink. Complicated channel estimation techniques
involving, for instance, matrix inversions are therefore
avoided. To achieve an ordering that yields a low Symbol
Error Probability (SEP), we consider several ordering
selection rules, e.g., Min-Avg, Min-Max, and Min-Min.

• To reduce the training complexity, the idea of model-
based machine learning [25], [26] is adopted. Specifically,
a closed-form approximation is derived for the SEP
performance of PIMA, which helps to quickly generate
part of the training dataset (transfer learning). Note that
as compared to our previous work in [16], we have
generalized the system model with respect to the number
of vehicles and subcarriers.

• To track the required number of clusters, the cross-
validated K-Means algorithm is investigated, and to fur-
ther reduce the training time, the performance of mini-
batch K-Means clustering [27]–[29] is analyzed.

• Finally, to corroborate the applicability of our scheme in
realistic V2X settings, we validate its performance using
mobility traces for the locations (and hence the path-loss)
of vehicles along multi-lane motorways [30]–[33].

The rest of this paper is organized as follows. The sys-
tem model and key assumptions are specified in Section II.
Section III describes the structure of the proposed learning-
driven PIMA and the learning algorithm, followed by Mini-
batch K-Means clustering and the cross-validation algorithm
for our model. Section IV describes the process of real-time
estimation to obtain an effective ordering. The simulation
results are presented and discussed in Section V, followed by
the conclusions in Section VI.

Notations: Uppercase and lowercase bold-faced letters indi-
cate matrices and vectors, respectively.(·)T andE[·] represent
transpose and expectation, respectively.CN (w,R) represents
the distribution of a complex Gaussian random variable with
meanw and covarianceR.

(

·
·

)

and⌊·⌋ represent the binomial
coefficient and the floor function, respectively.||.||F stands for
the Frobenius norm.

II. SYSTEM MODEL

We consider a downlink multiple access multi-carrier V2X
communication system, where the BS uses joint power and
index modulation to send data signals toL vehicles in TDD-
based mode. To multiplex their data across the active subcar-
riers and their indices, the BS must first learn to order the
vehicles based on their channel conditions. Therefore, theBS
comprises three functional components: (i) off-line training
with dynamic patterns of ordering vehicles (or users) to learn
an effective ordering strategy; (ii) real-time estimationof the
user order; and (iii) PIMA signal generation given the user
order, see Fig. 1. Every vehicle needs to know its order within
the PIMA scheme, which is communicated from the BS by
exploiting the insertion of pilot sequences in the beginning of
each transmission block. For the sake of simplicity, a single
antenna scenario is considered.
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Fig. 1: System structure with offline training and learning-driven multiple access.

TABLE I: Table of notations.
Notation Description

L Number of vehicles
Nt Number of total subcarriers
N Number of subcarriers within a block
G Number of blocks
k Number of active subcarriers within a block
Pt Average total transmit power of each subcarrier
ρ̄l Average SNR per subcarrier atVl

al Power allocation factor forVl

ml Information bit stream ofVl

m̃l Number of bits per symbol forVl

Hl Channel matrix atVl

hln Channel coefficient of subcarriern at Vl

wn Weight vector
Θl, θnf,l Doppler parameters atVl

ǫl Normalized Doppler spread atVl

S Constellation atVl, 1 ≤ l ≤ L− 1
sl Complex data symbol
xI IM symbol
R Number of training data points
Kc Number of clusters in K-Means clustering
er The r-th energy vector during training
qu The u-th cluster’s centroid

Concerning the communication link model, the BS non-
orthogonally multiplexes bit streams forL vehicles ontoNt
subcarriers. In the standards for OFDM-based V2X commu-
nication,Nt is usually a power of two, i.e.,Nt = 2W for an
integerW ≥ 2. Without loss of generality, we group every
N = 4 consecutive subcarriers together, i.e.,Nt = NG,
where G is the number of groups. Each group is treated
independently of others and thus, we hereafter focus on a
single group. The incoming information bit stream at the BS
is mapped to anN × 1 vector denoted byx. The vector
x = [x1, . . . , xN ]T represents the transmit signal vector in
the frequency domain, withxn for n = 1, . . . , N being the
modulated PIMA signal on then-th subcarrier. To generate
x, the BS activatesk = 2 out of the totalN = 4 subcarriers
such that‖x‖0 = k, while the rest(N − k) subcarriers are
zero padded. The active subcarriers contain superpositioned
signals for the vehicles employing NOMA. Denote byVl the
l-th vehicle for l = 1, . . . , L. The vehiclesV1 and VL are
referred to as the vehicles with the best and the worst channel
conditions, respectively, while the rest (Vl, l = 2, ..., L − 1)

are referred to as the vehicles under mild channel conditions.
The channel gains on then-th subcarrier can be sorted as
|hn1|2 ≥ |hn2|2 ≥ ... ≥ |hnL|2, where |hnl|2 denotes the
channel power gain on then-th subcarrier for the vehicleVl.
Note that the ordering of vehicles based on their channel power
gains may vary across the subcarriers due to frequency selec-
tivity. Making an efficient decision on the vehicle ordering
for multi-carrier systems is therefore challenging, and will be
discussed in detail in Section III.

A. Generation of PIMA signals withL vehicles

Next, we describe the process of creating the PIMA transmit
signal vectorx given the ordering of vehicles. This process
consists of two parts: Index Modulation (IM) and superposi-
tion modulation. In the IM part, the bit stream of the vehicle
with the worst channel conditions,VL, is denoted bymL, and
is modulated on the indices of active subcarriers, see Fig. 2.
In the superposition part, the bit streams of the other vehicles,
ml for l = 1, . . . , L− 1, are modulated jointly onto the power
and subcarriers of the active indices. The bit stream ofV1
is modulated on all active subcarriers using repetition coding
because, as we will shortly explain, the power allocated toV1
would be actually the smallest, and thus, frequency diversity
is used to enhance the symbol detection performance forV1.

1) Index Modulation: A combination of indices of the
active subcarriers is referred to as the IM symbol, which
is denoted byxI = {i1, . . . , ik}, where iν ∈ {1, . . . , N},
ν = 1, . . . , k. The total number ofxI symbols is

(

N
k

)

, and
thus, the number of bits per symbol is at most⌊log2

(

N
k

)

⌋.
Given the symbolxI , the BS may generate the matrixW =
[w1, . . . ,wk], wherewν is anN × 1 zero vector except the
iν-th element being equal to one. See also Table I for the list
of most important notations used in this paper. Apparently,
there exists a trade-off between the spectral efficiency and
transmit diversity in the IM part. The use of orthogonal
combinations of active indices (orthogonal IM symbols) can
produce higher diversity gain at the cost of reduced number of
transmitted bits per IM symbol. Taking into account this trade-
off, we consider orthogonal IM symbols for PIMA to prevent
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Fig. 2: Communication system structure of PIMA scheme withL vehicles.

interference between IM symbols.In PIMA implementation,
the number of orthogonal IM symbols isNI = ⌊Nk ⌋. Apart
from the gain due to diversity, the use of orthogonal IM
symbols also reduces the computational complexity of the
maximum-likelihood (ML) detection in PIMA receivers, as
compared to ML detection in the standard IM implementation,
see for instance [10, Eq. (10)].

The generation of PIMA signals forN = 4 subcarriers
with k = 2 activated subcarriers is summarized in Table II.
We consider two possible generated symbols,NI = 2, hence
the number of transmitted information bits per symbol in the
IM part is equal to one. We activate non-adjacent subcarriers
within an IM symbol, e.g., ’1’ and ’3’, or ’2’ and ’4’ for
better robustness to Inter Carrier Interference (ICI). Finally,
xI ∈ {I1, I2}, whereI1 = {1, 3}, I2 = {2, 4}.

2) Superposition Modulation:Once the IM symbolxI
is selected, the corresponding subcarriers are modulated to
convey the information bit streams for the rest of the vehicles.
For this, let sl ∈ S be the complex data symbol for the
vehicle Vl, l = 1, . . . , L − 1 with E{sl} = 0, E|sl|2 = 1,
and letS denote the constellation set, which is common for
all these vehicles. Denote bỹxl the modulated signal forVl.
Recall that forV1, repetition coding is used, and thus, for
k = 2, we havex̃1 =

√

PtN/k [s1, s1]
T , wherePt denotes

the average transmit power of each subcarrier. Additionally,
every vehicleVl, 2 ≤ l ≤ L − 1 is modulated on a single
activated subcarrier, i.e., fork = 2, x̃l =

√

PtN/k [sl, 0]
T ,

for an evenl < L, denoted byle, andx̃l =
√

PtN/k [0, sl]
T ,

for an odd {l : l ≤ L − 1, l\{1}}, denoted bylo. The
accumulated information bits conveyed byx̃l, 1 ≤ l ≤ L − 1
are

∑L−1
l=1 m̃l = (L − 1) log2 |S| bits, where |S| is the

cardinality ofS, but the total transmitted bits areL log2 |S|
because repetition coding is used for the symbol ofV1.

3) PIMA signals: With the transmitted signal vectors for
each vehicle at hand, the PIMA signal generator can finally
superpose the information bits of vehiclesVl, l = 1, . . . , L−1
onto thek active subcarriers using different power levels. In
particular, anN × 1 vector mapped for the bit streamml

of Vl is generated asxl = alWx̃l, wherea2l is the power

TABLE II: Example PIMA signal generation for a block of
N = 4 subcarriers withk = 2 activated subcarriers.

IM signal (xI ) Super-positioned signals PIMA signal (x)
(x = xi1 , x̄ = xi2 )

I1 = {1, 3} x =
√
PtNk−1 x = [x, 0, x̄, 0]T

(a1s1 +
∑

l∈l1
alsl)

I2 = {2, 4} x̄ =
√
PtNk−1 x = [0, x, 0, x̄]T

(a1s1 +
∑

l∈l2
alsl)

allocation for Vl, which satisfiesa21 +
∑

l∈le
a2l = 1 with

a21 < a22 < a24 < · · · < a2L−2, and a21 +
∑

l∈lo
a2l = 1

with a21 < a23 < a25 < · · · < a2L−1 for an even numberL
of vehicles. That is, for vehicleV1, we havex1 = a1Wx̃1,
where the non-zero elements of the vectorx1 are the indices
of activated subcarriers. For example, whenxI = I1 = {1, 3},
we can havex1 = a1Wx̃1 = a1

√
PtNk−1 [s1, 0, s1, 0]

T ,
where Nk−1 = 2 is used to normalize the power, and
W = [w1,w2] with w1 = [1, 0, 0, 0]T andw2 = [0, 0, 1, 0]T .

Similarly, the N × 1 vector xl for the vehiclesVl, 2 ≤
l ≤ L − 1, can be modulated onto one of the active
subcarriers. WhenxI = I1 = {1, 3}, for the vehicles
with an even indexl ∈ le, the modulated signal isxl =
alWx̃l = ai

√
PtNk−1 [sl, 0, 0, 0]

T , and similarly, for the
vehicles with an odd index,l ∈ lo, we havexl = alWx̃l =
al
√
PtNk−1 [0, 0, sl, 0]

T . Eventually, x and x̄ denote the
super-positioned signals of vehiclesVl, 1 ≤ l ≤ L − 1
modulated onto the active subcarriers, andPt(= 1) is the
normalized transmit power level. Finally, the transmit vector
of the overall PIMA signal can be represented as

x =

L−1
∑

l=1

xl =

L−1
∑

l=1

alWx̃l. (1)

It is noteworthy that‖x1‖0 = k > ‖xl‖0 = 1 for 2 ≤ l ≤
L− 1, E‖x1‖2 = a21 PtN andE‖xl‖2 = a2l PtN/k. Note that
the bitsml, 1 ≤ l ≤ L − 1 are modulated jointly onto the
power and subcarrier index domains.

B. Signal detection model at the vehicles

In the downlink, Doppler spread is also considered to
capture the effect of user mobility on V2X received signals,
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using the frequency-domain response developed in [34], [35].
The received signal vector at the vehicleVl (in the frequency
domain) can be expressed as

yl =
√
ρ̄lH̆l

L−1
∑

l=1

xl + nl, (2)

where ρ̄l is the average Signal-to-Noise Ratio (SNR) per
subcarrier,nl ∼ CN (0, IN ) is the additive white Gaussian
noise vector withIN being theN × N identity matrix, and
the derivation of the matrix̆Hl = ΘlHl is explained below.

The diagonal matrixHl = diag(hl1, . . . , hlN ) is the chan-
nel matrix (CSI) atVl across theN subcarriers, where the
elementhln follows the complex-valued Gaussian distribution
with zero mean and unit variance, i.e.,hln ∼ CN (0, 1)1. The
square matrixΘl is the correlation matrix with the element
θnf,l representing the ICI between then-th and thef -th
subcarriers. The parameterθnf,l at Vl depends on the channel
frequency offset and is given by [35, Eq. (2)]:θnf,l =

sin(π(n− f + ǫl))

N sin π
N (n− f + ǫl)

exp
[

jπ(1 − 1

N
)(n− f + ǫl)

]

, (3)

whereǫl is thel-th vehicle’s normalized Doppler spread, which
is defined as the ratio of the Doppler frequency spread to the
subcarrier frequency spacing. When the normalized Doppler
spread goes to zero, the off-diagonal elementsθnf,l become
zero too andΘl degenerates to an identity matrix.

In equation (2), the received signal vector can be separated
into the ideal channel term,Hl, and the ICI termΘl. Accord-
ingly, the received signalyln on then-th subcarrier can be
written as [35, Eq. (1)]

yln =
√
ρ̄lhlnxln +

√
ρ̄l

N
∑

f=1,f 6=n

θnf,lxlf + nln, (4)

wherehln andnln are the channel coefficient and the noise,
respectively. Thexln andxlf are the super-positioned signals
on then-th and thef -th subcarrier, respectively. The second
term in equation (4) is the ICI term caused by the Doppler
frequency spread.

Based on equations (2)-(4) and employing a maximum
likelihood (ML) detector, each vehicle can detect its symbols.
It shall be noted that the use of orthogonal IM symbols
reduces the computational complexity of ML detection in
PIMA receivers, in comparison with ML detection in stan-
dard IM [10, Eq. (10)]. For instance, forNt subcarriers
and k = Nt/2, the number of symbols in standard IM is
2⌊log2

C(Nt,Nt/2)⌋ ≥ 2⌊Nt/2⌋ In our case, whereN = 4 and
k = 2, we have only two IM symbols per group of subcarriers.
Then we have to repeat the same procedure forG = Nt/N
groups of subcarriers. Therefore the computational complexity
in the number of subcarriers turns from exponential to linear.

1It is straightforward to generalize this channel model to include different
median propagation path-loss for the vehicles. This has been omitted here
to simplify the notation but it will be taken into account in the numerical
illustrations in Section V.

III. O FF-LINE TRAINING MODEL

In this section, we consider a learning-based model for
getting the best orderings of vehicles in PIMA. To do that the
BS learns the relationship between the received signal energies
in the uplink and the SEPs for the vehicles. Next, we show how
to generate the training dataset and discuss several selection
rules on the feature design.

A. Training dataset generation model

Let us consider a training dataset ofR points, {ẽr}Rr=1,
whereẽr is ther-th point of the set. We definẽer = {er, C∗

r },
where er = [{{|ỹl,n,r|2}Nn=1}Ll=1] is a column vector with
L×N elements and the integerC∗

r is an indicator for the best
ordering of vehicles. The elementỹl,n,r denotes ther-th uplink
signal at the BS on then-th subcarrier due to transmissions
originated from the vehicleVl. The BS can obtain the received
signal energy,|ỹl,n,r|2, using the well-developed multi-carrier
sensing schemes [36]–[38]. Afterward, the BS can scale the
measured energies|ỹl,n,r|2 by the transmit power level per
user and subcarrier, which is a realistic assumption under
uplink closed-loop power control. During training, the BS also
needs to estimate the uplink CSI,̆Hr, and from that obtain
the downlink CSIH̆l assuming channel reciprocity, which is
required to evaluate the SEPs for the vehicles.

To compute the best ordering of vehicles,C∗
r , given the

vector of uplink signal energieser, we must consider all
possible orderings. Let us denote them byCj , j = 1, 2, . . . J ,
whereJ = L(L − 1). Recall that we consider three types of
vehicles in the system model, i.e., one vehicle with the best
channel condition, another with the worst channel condition
and all remaining vehicles are grouped together under mild
channel conditions yieldingJ possible orderings. In order to
compute the orderC∗

r , we need a selection rule which is
discussed next.

B. Selection rules

Given the user orderCj and the uplink signal energieser,
we denote by Pj,l,r the SEP ofVl, l = 1, . . . , L associated
with the r-th point of the training dataset. To find the best
orderC∗

r , the BS needs to evaluate the SEPs for all vehicles
and for all orders of vehicles. Once the SEPs are calculated,
{{Pj,l,r}Ll=1}Jj=1, the BS compares them, in order to select the
best orderC∗

r , as the one satisfying one of the following se-
lection rules: R1. Min-Max selection; R2. Min-Avg selection;
R3. Min-Min selection. Specifically,

R1 : C∗
r = argminj (maxl {Pj,l,r}) .

R2 : C∗
r = argminj (avgl {Pj,l,r}) .

R3 : C∗
r = argminj (minl {Pj,l,r}) .

(5)

It is noteworthy that the BS uses an exhaustive search to
find the best orderC∗

r , ∀r by solving the optimization problem
in Eq. (5) only during offline training. For real-time inference,
the BS does not consume any extra resources for numerical
optimization, as it can simply use the learned centroids.
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Fig. 3: Off-line training for learning-driven PIMA with K-Means clustering.

C. Bespoke K-means learning algorithm

In K-Means clustering only the locations of the centroids
need to be computed and stored. In our case, each centroid is a
point in the(L×N)-dimensional space. Initially, the locations
of the centroids are randomly chosen. Then, each member of
the training dataset{er}Rr=1 is assigned to the nearest centroid
in terms of Euclidean distance, and the index of the nearest
cluster is given by

ur = argmin
u

||qu,t − er||2, for u = 1, . . . ,Kc, (6)

whereKc is the number of centroids,qu,t denotes the location
of the u-th centroid at iterationt, andur ∈ {1, 2, . . . ,Kc} is
the index of the nearest centroid to the dataset pointer. Once
each dataset point is associated with a cetroid, the locations
of the centroids are iteratively updated as the average of their
members:

qu,t =

∑

r δur,uer
∑

r δur,u
, for iterationt ≥ 1, ∀u, (7)

whereδx,y is the Kronecker delta function.

Algorithm 1 Bespoke K-Means clustering algorithm for gen-
erating the training dataset in PIMA

1: Initialization: SelectKc, t = 0.
2: Input: {er, C∗

r }Rr=1 training dataset based on one of the
selection rules (R1, R2, or R3).

3: Initialize randomly the cluster centroids.
4: repeat
5: {er}Rr=1 are assigned to the nearest centroid, referring

to equation (6).
6: Updatequ,t as the average of members in clusteru at

iteration t, referring to equation (7).
7: t = t+ 1.
8: until t = T (the centroids no longer change).
9: Output: [{qu,T }Kc

u=1, {ur}Rr=1]
10: Calc.:C∗

u = majority{C∗
r }r:ur∈u

, for u = 1, . . . ,Kc.

The iterations continue until the change in the centroids
becomes less than a predefined threshold. After that, the

algorithm returns (i) the centroids{qu,T }Kc

u=1, whereT counts
the required number of iterations, and (ii) the cluster indices
ur for each dataset point. Hereafter, we will omit the subscript
T for brevity hence,qu,T ≡ qu. Finally, one more decision-
making step is required to find each centroid’s best ordering,
which, for instance, can be obtained by finding the most
frequent ordering among the points of the training dataset
associated with that centroid (majority rule).

C∗
u = majority{C∗

r }r:ur∈u
, for u = 1, . . . ,Kc.

The summary of the suggested clustering algorithm is
provided in the form of pseudocode underAlgorithm 1. To
analyze its performance with respect to the number of the
centroidsKc, we define the distortion (or cost function)A(R)
as follows:2

A(R) =
1

R

R
∑

r=1

||er − qur
||1. (8)

In Fig. 4, the distortion functionA(R) is calculated using a
simulation-based dataset withR = 4 000 elements, and an
average SNR per subcarrier̄ρl = 10 dB for all vehicles.
Notice that as the value ofKc increases, the number of dataset
points per cluster decreases, which may improve not only the
accuracy of clustering, but also the convergence speed. On the
contrary, a small number of clusters can lead to ambiguity
due to the long distance separation between each centroid
and the cluster edge members. Therefore, the effectivenessof
clustering can be enhnaced by properly finding the elbow point
of Kc. In Fig. 4, the distortion curves for all selection rules
monotonically decrease as the value ofKc increases, and they
have elbow points aroundKc = 50 clusters. This means that
increasing the number of clusters beyondKc = 50 reduces
the intra-cluster distances only by little. In this light, we can
argue thatKc = 50 is a good choice for the given dataset, as

2Since the variations ofer under fading are random variables, the mean
squared deviation error function of the K-Means clusteringcan take high
values due to the long distances of the cluster edge members within each
cluster. Therefore, for this learning model, we consider the mean absolute
deviation error function also known as the 1-norm error.
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Fig. 4: Comparison of the distortion function with respect to
the number of clusters for various selection rules.

it strikes a good balance between accuracy and computational
complexity.

D. Mini-batch K-Means learning algorithm

As the size of the dataset increases, the computation time of
K-Means clustering increases too, and more importantly, the
algorithm convergence requires an increasing number of iter-
ations, which can quickly make the algorithm implementation
impractical. To efficiently handle a large dataset, we consider
the mini-batch K-Means method for off-line training [27]–
[29]. According to it, we break the dataset into smaller
randomly grouped batches of sizebs. Given the sizeR of the
dataset, the BS randomly divides the dataset intobn batches
such thatbn = ⌊ Rbs ⌋. Afterward, the BS applies the training
process described underAlgorithm 1 to the individual batches.
The updated centroids of the first batch are used as initial
values for the training in the next batch, and so forth. Finally,
the algorithm returns the centroids based on the computed
clustering in the last batch. The convergence of the mini-batch
K-Means can be faster than a single batch K-Means clustering
because it can reduce the required number of iterations by
jointly tuning the initial centroids across the batches. The
performance of the mini-batch K-Means will be illustrated in
Section V, taking into consideration the reliability-complexity
trade-off during off-line training.

E. Cross-Validation algorithm

In this section, we formulate a cross-validation model to
evaluate the effectiveness of the trained clusters. The cross-
validation indicates how well the trained model is generalized
on unseen data, and can help to select the number of clusters
that avoid underfitting or overfitting3 [39].

3In underfitting case, the model cannot predict the training data well. Thus,
a validation error in statistics occurs when the model is either the underlying
trend of the data members or does not generalize to new data. In overfitting
case, the model predicts the training data too well. Thus, a validation error in
statistics occurs when a model is too closely aligned to a limited set of data
members.
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Fig. 5: The impact of the size of the training subset (from30%
to 80%) on the training error for different numbers of clusters
(Kc). The simulation-based dataset with sizeR = 4000 is
used to evaluate the training error probability.
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Fig. 6: Validation and training error probabilities with respect
to the number of clusters (Kc) when the combined dataset with
sizeR = 14000 is used. The training and validation subsets
are70% and30% of the training dataset, respectively.

1) Training error probability: In this approach, the training
dataset{ẽr}Rr=1 is randomly shuffled and then divided into
two subsets: the training subsetet and the validation subset
ev, {ẽr}Rr=1 = et ∪ ev, at a ratio, e.g.,70 : 30 or 80 : 20.
The error probability for the training subset can be measured
by comparing the best ordering of each centroid (obtained
for instance by the majority rule) and the ordering of its
members. In Fig. 5, one may see the impact of the size of
the training subset onto the training error probability. Itis
illustrated that the training error probability decreasesas the
value ofKc increases and/or the size of the training subset
decreases. Therefore, in the given training set, we may control
the ratio between the training and validation subsets to improve
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the training error performance.
2) Validation and the number of clusters:The clusters and

the centroids are first learned on the training subsetet and then
their accuracy is assessed on the validation subsetev. We can
measure the number of erroneous orderings in the validation
subset and calculate the error probability. Fig. 6 depicts the
error probability during validation with respect to the number
of clusters for a combined dataset of sizeR = 14000 and
average SNR per subcarrierρ̄l = 10 dB for all vehicles. The
training error probability decreases with the number of clusters
and becomes less than0.4 at aroundKc = 1500 clusters. In
Fig. 6, we can also observe that as the value ofKc increases,
the validation error probability decreases, but it flattensout
afterKc = 1500, indicating that the selection of approximately
1500 clusters is a reasonable choice. While Fig. 6 illustrates
the underfitting for a number of clustersKc < 1500, the
case of overfitting is not demonstrated, but since the validation
error probability tends to have a convex shape [39], overfitting
will appear for a large value ofKc > 3000. To improve the
validation error probability and fine-tune the centroids, we
can repeat the training and validation processes several times
selecting different subsetset andev each time.

Based on the behavior of the validation and training error
probabilities, we can find the number of clustersKc

∗ within an
acceptable value (threshold) of the training error. If thisis not
possible, we need to reconstitute, e.g., augment the training
dataseter. Note that the number of clusters obtained here is
a generalized value for the training dataset including unseen
data, whereas the one obtained from the distortion functionin
Fig. 4 is limited to the given training dataset.

F. Theoretical SEP

To reduce the training time, we adopt the principle of
transfer learning, see for instance [25], [26], where the cluster
centroids can be initialized using closed-form approximations
for the SEP, and subsequently fine-tuned with a limited dataset
based on simulations. To this end, the derived theoretical ex-
pressions for the SEPs will help quickly generate the training
dataset. We summarize the SEPs for all the vehicles below
and at the top of the next page as equations (9)-(11), while
the derivation details can be found in the Appendix. For the
vehicle with the worst channel conditions,VL, recall that IM
is used and the SEP can be approximated as PL ≈

1

12
exp

(

− ρ̄L ||H̆L||2F
4

)

+
1

4
exp

(

− ρ̄L ||H̆L||2F
3

)

. (9)

IV. T ESTING FOR LEARNING-DRIVEN PIMA

In real-time operation, the BS can use the learning outcomes
for ordering the vehicles given the measuredN × L uplink
energy observations fromL vehicles overN subcarriers. The
BS does not anymore need to estimate the downlink CSIs and
numerically solve the optimization problem in Eq. (5). Instead,
it finds the nearest cluster to the measured vector of uplink
energies and estimates an effective ordering of vehicles from

the selected cluster’s centroid. The user ordering in real-time
operation is therefore selected as follows:

C∗ = C∗
u : argmin

u
||qu − ê||, for u = 1, . . . ,Kc, (12)

whereê is the measured energy vector during testing.
Therefore the time complexity of user ordering during test-

ing is O(Kc). Given the selected ordering of vehicles, the BS
can quickly generate PIMA signals in the downlink as shown
in Fig. 7 without estimating the full CSIs, i.e., amplitude
and phase, across the vehicles and subcarriers. Similarly,the
trained cluster set can be used to estimate effective vehicle
orderings for all blocksG spanning over theNt subcarriers.

V. EVALUATION RESULTS

In this section, we use simulations to evaluate the symbol
error probability (SEP) performance of the proposed learning-
driven PIMA scheme, and compare it with benchmarking
algorithms. A key takeaway point from this section is that
the K-Means clustering algorithm for ordering the vehicles
in PIMA generalizes well to unseen SNRs during training,
which mitigates the requirement for generating large training
datasets. Furthermore, we show that the closed-form math-
ematical approximations for the SEP of PIMA derived in
Section III-F can be effectively used for transfer learning.

A. Parameter settings

To generate a realistic simulation setup, we adopt the
parameter settings of Long-Term Evolution (LTE) for the
speed of vehicles and the subcarrier spacing, i.e., the speed per
vehicle is randomly generated in the interval50− 200 km/h
and the subcarrier spacing is set at15 kHz. It is straightforward
to adapt the parameter values to the Fifth Generation New
Radio (5G NR) or Cellular Vehicle-to-Everything (C-V2X)
communication scenarios.

We considerL = 4 vehicles4, M = 4, i.e., Quadrature
Phase Shift Keying (QPSK) constellation for superposition
modulation unless otherwise stated,N = 4 subcarriers and
k = 2 active subcarriers for index modulation (IM). For
the superposed signals, we set the power allocation ratio
a2l /a

2
1 = 10 dB for l ∈ {2, 3}. Recall that repetition coding

over the active subcarriers is employed for the vehicleV1 and
IM is used forV4 (= VL). Note thatV1 and V4 are always
the vehicles with the best and the worst propagation channel
conditions, respectively, in every TTI. For clarity, we do not
consider power control in the uplink.

For L = 4 vehicles andN = 4 subcarriers, the energy
vector er in the training dataset has dimensions16 × 1. To
identify an effective ordering of vehiclesC∗

r for a given
selection rule and create the training datasetẽr = {er, C∗

r },

4Notice that in NOMA, as the number of multiplexed users increases, the
capacity gain of NOMA increases too. However, NOMA is more efficient
for a small number of users due to interference constraints and error propaga-
tion [40]. In fact, multi-user superposed transmission (MUST) was introduced
in 3rd Generation Partnership Project (3GPP) Release 13 to enable NOMA
for a small number of users. In particular, MUST was proposedto realize
downlink multi-user superposition transmission in LTE-Advanced systems,
focusing on the multiplexing of two users only. Therefore, in this simulation,
we useL = 4 vehicles, where the multiplexing of two vehicles per active
subcarrier is considered.
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P1 ≈
[

M − 1

M
−
[

1

6
exp (−2τ1) +

1

2
exp

(

−8

3
τ1

)]

][

1

12
exp

(

− ρ̄1 ||H̆1||2F
4

)

+
1

4
exp

(

− ρ̄1 ||H̆1||2F
3

)]

+

[

1

6
exp (−2τ1) +

1

2
exp

(

−8

3
τ1

)]

,whereτ1 = βM ρ̄1a
2
1

2
∑

ν=1

z1iν . (10)

Pl ≈
[

M − 1

M
−
[

1

6
exp (−τ2) +

1

2
exp

(

−4

3
τ2

)]

][

1

12
exp

(

− ρ̄l ||H̆l||2F
4

)

+
1

4
exp

(

− ρ̄l ||H̆l||2F
3

)]

+

[

1

6
exp (−τ2) +

1

2
exp

(

−4

3
τ2

)]

,whereτ2 =
βM2 ρ̄la

2
l zliν

2ρ̄la2t zliν + 1
. (11)

Fig. 7: Learning-driven PIMA in real-time.
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we also use the mathematical approximations for the SEP de-
rived in Section III-D (transfer learning). The simulation-based

training dataset is denoted by{ẽr}R1

r=1, whereR1 = 4000 and
the theory-based training dataset is denoted by{ẽr}R1+R2

r=R1+1,
where R2 = 10000, yielding a combined dataset of size
R = R1 + R2 = 14000 elements. The training datasets are
generated by performing100000 simulations at an average
SNR per subcarrier̄ρl = 10 dB for all vehicles. For K-means
clustering, we utilizeKc

∗ = 1500 clusters, which is obtained
in Section III-E, unless otherwise stated.

B. Discussion of the results

Fig. 8 depicts the SEP of the proposed learning-driven
PIMA when the channel ratio is̄ρl/ρ̄4 = 5 dB for the vehicles
Vl, l ∈ {1, 2, 3}. The vehicle under the worst instantaneous
channel condition (V4) outperforms all other vehicles as it
uses IM. In particular, it obtains SEP =10−3 at SNR12 dB
while the other vehicles obtain the same SEP at SNR around
25 dB. Interestingly, the SEP curves for the vehicles with the
best (V1) and mild channel conditions (V2, V3) follow similar
trends. The SEP ofV1 is constantly higher than that ofV2
andV3, but their gap eventually gets smaller at high SNRs, as
V1 benefits from repetition coding.As expected, the SEP of
Vl, l ∈ {1, 2, 3} increases for increasing modulation order.

Fig. 9 illustrates the system’s SEP calculated as being equal
to the average SEP of the vehicles and compares the learning-
driven PIMA with benchmarking algorithms for user ordering
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the system SEP is also depicted for fixed-based ordering as
well as ordering based on the average received energies across
the subcarriers.

when the channel ratio is̄ρl/ρ̄4 = 5 dB for the vehicles
Vl, l ∈ {1, 2, 3}. The PIMA schemes using average energy-
based ordering (the average of all energies overN = 4
subcarriers of each vehicle), and fixed ordering are selected
for benchmarking. The SEPs based on Min-Avg and Min-
Min selection rules attain the best performance and clearly
outperform the benchmarks, while obtaining approximately
5 dB power gain at SEP≤ 10−3 over the energy-based

or fixed-based order counterparts. It becomes also evident
from Fig. 9 that the learning-driven PIMA generalizes well
to different average SNRs than that used for training (10 dB).
The accuracy of the training algorithm is also demonstrated
in Fig. 9. One can see over there that using exhaustive
search during real-time inference too, only gives a marginal
improvement in the SEP for the Min-Avg and the Min-Min
selection rules.

Fig. 10 depicts the system’s SEP using different train-
ing datasets, i.e., simulation-based{ẽr}R1

r=1, theory-based
{ẽr}Rr=R1+1, and combined{ẽr}Rr=1. We can see over there
that the simulation-based dataset performs close to the theory-
based dataset. This observation validates the accuracy of the
approximations for the SEPs developed in Section III-F. At
the same time, generating the theory-based dataset consumes
much less computational resource than that needed to generate
the simulation-based dataset. The combined dataset benefits
from both simulation-based and theory-based datasets leading
to a marginal improvement in the performance.

Next, we study the performance-complexity trade-off during
training by simulating the mini-batch K-means algorithm.
Fig. 11 shows the SEP of the learning-driven PIMA using
the mini-batch K-Means clustering with different number of
mini-batches,bn ∈ {1, 2, 3, 4}, and their associated distortion
curves at an average SNR per subcarrierρ̄l = 10 dB for
all vehicles. As expected, the system SEP using four mini-
batches obtains the worst SEP performance, at the fastest
training convergence [39]. Note that during simulations, e.g.,
using Matlab, the K-Means clustering with a large dataset may
face convergence problems even after several iterations (e.g.,
100 iterations). Interestingly, the simulations have showed that
the centroids using more than one mini-batch can successfully
converge in less than100 iterations whenR = 14000. To sum
up, using four mini-batches strikes a good balance between
performance and complexity as the SEP for two and four mini-
batches is practically the same, but considering only one batch,
vehicles can achieve the highest reliability, which is important
for safety-related functions.

C. Simulation with synthetic mobility traces of vehicles

Next, we simulate the performance of the learning-driven
PIMA with synthetic traces for the locations of vehicles along
multi-lane highways [30], [31], as shown in Fig. 12. For
this, the mean received signal power level per subcarrier and
vehicle in the uplink is computed asω−ψ

l , whereωl is the
distance between the vehicleVl and the BS, and the path-
loss exponent isψ = 3 [41]. We consider a cell with radius
1 km, where the coordinates(x, y) of each vehicle change in
0 ≤ x ≤ 2000 m, andy ∈ {3, 6, 9} m as it travels within
the cell. The BS is located at the roadside in the middle
of the cell, i.e.,(xBS , yBS) ≡ (1000, 0). For generating the
training dataset, we randomly select four vehicles within the
cell and generate their channel matrices for small scale fading
Hl = diag(hl1, . . . , hlN ), where the elementhln follows
the complex-valued Gaussian distribution with zero mean and
unit variance, i.e.,hln ∼ CN (0, 1). The complex Gaussian
distributions are independently sampled every10 ms till one
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Fig. 11: Comparisons of the system SEP calculated as the
average SEP over the four vehicles (a) and the distortion
function whenρ̄l = 10 dB for all vehicles (b) for the Mini-
batch K-Means clustering with different numbers of batches.

of the vehicles crosses the cell boundary. For simplicity, no
Doppler spread is considered in that case. Then, we repeat
the same procedure for four other vehicles till the training
dataset is constructed. For K-Means clustering, we consider
a combined training datasetR = 30, 000 (R1 = 4000 using
simulations, andR2 = 26, 000 using the approximations for
the SEP obtained in Section III-D) andKc = 3000 clusters
because the size of the dataset is now larger.

During testing, we have simulated105 PIMA signal trans-
missions and counted that the ordering of vehicles has changed
with probability about70 % between consecutive transmis-
sions, i.e., every10 ms. This observation validates the ef-
fectiveness of the learning-driven PIMA in a dynamically
changing V2X scenario.

Fig. 13 illustrates the comparison between the SEP of the
learning-driven PIMA and the two benchmarks, i.e., distance-
based and fixed ordering. The learning-driven PIMA out-
performs the benchmarking schemes in terms of maximum,

Fig. 12: System model illustration of a V2X system with
synthetic data traces for the locations of vehicles along multi-
lane highways. The vehicles within the same group experience
different average SNRs and their ordering may change with
time due to mobility.
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Fig. 13: Comparisons of system’s SEP of the proposed
learning-driven PIMA with distance-based and fixed ordering
using the synthetic data traces for the locations of vehicles.

minimum and average SEP. This observation validates that
the learning-driven PIMA is beneficial with realistic motorway
traffic too. Note that the performance difference between
learning-driven and distance-based ordering is due to the
impact of fast fading onto the user ordering, which can be
captured only by the learning-driven scheme.

VI. CONCLUSIONS

The study in this paper revealed that the use of a bespoke
unsupervised K-Means clustering model for identifying an
effective user ordering in PIMA outperformed the existing
baseline schemes (based on average energy-based and fixed
orderings). We obtained a promising5 dB power gain at SEP =
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10−3 without increasing much the implementation complexity
of the ordering algorithm. The proposed scheme does not
require the estimation of CSIs, as it uses the received energies
across the users and subcarriers in the uplink to effectively
order the users. It is also shown that the Min-Avg and Min-
Min selection rules outperformed the Min-Max rule, yielding
2.5 dB power gains at SEP =10−3. Following the princi-
ple of transfer learning, we derived generalized theoretical
approximations for the SEPs, which were used to generate
part of the training dataset and subsequently reduce the com-
putational complexity during offline training. Furthermore, in
realistic motorway mobility traces, the PIMA scheme using
learning-driven ordering showed better SEP (50% reduction)
than distance-based ordering. We hope that the promising
results of this paper can motivate further research in model-
aided machine learning approaches for multiple access in next
generation vehicular networks and similar applications.

APPENDIX

DERIVATION OF SYMBOL ERROR PROBABILITIES(SEPS)

We formulate a theoretical model for the SEP of PIMA
for each vehicleVl, l = 1, . . . , L to help quickly generate
the training dataset in Section III-F. In order to obtain the
SEP from equation (2), each vehicle uses maximum likelihood
(ML) detection [10], [11], which can be read as

x̂l = argmin
x

‖yl −
√
ρ̄lH̆lx‖2, 1 ≤ l ≤ L. (A.1)

A. Symbol error probability ofVL

Oncex̂L in equation (A.1) is obtained, the IM symbolx̂I is
estimated using a Table similar to Table II. In order to generate
a mathematical expression for the SEP ofVL, PL, we start
with the index error probability (IEP), denoted byP (α → α̃),
which describes the probability that the transmitted IM symbol
Iα is incorrectly estimated asIα̃, whereα, α̃ ∈ {1, . . . , NI},
α 6= α̃ andNI is the number of IM symbols. Thus, using
a union bound for givenα, N and k, and referring to the
well-known Pairwise Error Probability (PEP) in [42], the
conditional IEP of the symbolxI at VL can be provided by

PIL(α) ≤
NI−1
∑

α̃=1,α̃6=α

P (α → α̃) =

NI−1
∑

α̃=1,α̃6=α

Q

(
√

d2L
4

)

,

(A.2)
where d2L = ρ̄L‖H̆L x− H̆L x̃‖2 is the squared Euclidean
distance between PIMA signals associated toIα andIα̃, and
Q(x) := π−1

∫ π/2

0
e−x

2/2 sin2 θdθ is the error function.
Using the law of total probability and equation (A.2), the

SEP atVL can be upper bounded as

PL =
k

N

NI
∑

α=1

PIL(α) ≤
k

N

NI
∑

α=1

NI−1
∑

α̃=1,α̃6=α

Q

(
√

d2L
4

)

. (A.3)

Based on the structure of PIMA signals, notice that we
can reduced2L ≈ ρ̄L ||H̆L||2FPtN/k = 2ρ̄L ||H̆L||2F . Also,
PIL can be simplified to a singleQ-function term due to
the orthogonality of index combinations. After simple ma-
nipulations using the tight approximation of the Q-function,

i.e., Q(x) ≈ 1/12 exp(−x2/2) + 1/4 exp(−2x2/3), and
equation (A.3), the approximate SEP ofVL can be obtained
as equation (9) in Section III-F.

B. Symbol error probability ofV1
The vehicleV1 first detectsx̂I and then employs SIC in

order to detects1. To do that,V1 detects and removes all sig-
nalssl, l = 2, . . . , L−1 from each of thek active subcarriers.
In this work, we consider perfect SIC for presentation clarity.
After SIC, equation (2) reduces to:

y1 =
√
ρ̄1H̆1x1 + n1. (A.4)

Employing the ML detection independently on thek active
subcarriers allows to detects1. The resulting instantaneous
SNR of the active subcarriersiν , ν = 1, . . . , k is

ρ1iν = ρ̄1
a21PtN

k
|θiνfh1iν |2 = ρ̄12a

2
1|θiνf,1h1iν |2. (A.5)

Due to the repetition coding of symbols1 ontok = 2 active
subcarriers, applying the maximal ratio combining can produce
the effective instantaneous SNR ofV1 as

ρ1 = 2ρ̄1 a
2
1

2
∑

ν=1

|θiνf,1h1iν |2. (A.6)

Notice thatV1 intends to detects1 from k active subcarriers,
whose indices need to be first obtained from the detection of
the IM symbol ofVL. Thus, the symbol error event (e1) at
V1 may occur under the following two conditions: Correct
detection ofxI (x̂I = xI ); and incorrect detection ofxI
(x̂I 6= xI ). Accordingly, the SEP atV1 consists of two terms:

P1 = P (e1, xI 6= x̂I) + P (e1, xI = x̂I)

=
M − 1

M
PI1 + PC1(ρ1)(1 − PI1),

(A.7)

whereM = |S| is the constellation size for the vehiclesVl, l =
1, . . . , L − 1, PI1 denotes the overall IEP ofxI at V1, the
ratio (M − 1)/M represents the conditional error probability
for s1 for x̂I 6= xI , and PC1(·) is the error probability ofM -
ary complex symbols, i.e., PC1(ρ1) ≈ 2Q(

√
2ρ1 sin(π/M))

for M -ary Phase Shift Keying (MPSK) forM > 2 [43,
Eq. 5.2.61].

Notice that PI1 in equation (A.7) can be obtained by similar
steps used to obtain PL, and equation (A.7) can be finally
rewritten as

P1 =

(

M − 1

M
− PC1(ρ1)

)

PI1 + PC1(ρ1), (A.8)

where PI1 is

PI1 ≤ k

N

∑

α=1

∑

α̃6=α

Q





√

ρ̄1 ||H̆1||2F
2



 . (A.9)

After substituting the approximation for the Q-function in
the expression ofPC1(ρ1) we get

PC1(ρ1) ≈
1

6
exp

(

−2βM ρ̄1a
2
1

k
∑

ν=1

z1iν

)

+
1

2
exp

(

−8

3
βM ρ̄1a

2
1

k
∑

ν=1

z1iν

)

,

(A.10)
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whereβM = sin2(π/M) is theM -ary constellation dependent
constant, andz1iν = |θiνf,1h1iν |2.

Finally, after substituting equations (A.9) and (A.10) into
equation (A.8), the SEP ofV1 can be derived as equation (10)
shown in Section III-F.

C. Symbol error probability ofVl, l = 2, . . . , L− 1

After estimatingx̂l and subsequently the IM symbolx̂I =
{i1, i2}, the vehicleVl can detectsl. Firstly, Vl needs to
employ SIC to subtract allsj for l < j < L. Then,Vl detects
sl, treatings1 andsj for 1 < j < l as noises. Therefore, the
corresponding SINR atVl is given by

ρl =
2ρ̄la

2
l Pt|θiνf,lhliν |2

2ρ̄la2tPt|θiνf,lhliν |2 + 1
, (A.11)

wherea2t = a21+
∑l−1
j∈le

a2j for l ∈ le anda2t = a21+
∑l−1
j∈lo

a2j
for l ∈ lo.

Accordingly, the SEP can be determined by the conditional
estimation ofsl under the IM symbol detection atVl, which
is similar to the steps used inV1. Thus, the SEP ofVl can be
expressed in two parts and is approximated in the following

Pl = P (el, x̂I 6= xI) + P (el, x̂I = xI), (A.12)

whereel is the error event at vehicleVl.
Referring toρl in equation (A.11), the error probability of

M -ary complex symbols atVl can be obtained in closed-form,
with respect to the SINR: PCl ≈
1

6
exp

(

− 2βM ρ̄la
2
l zliν

2ρ̄la2t zliν + 1

)

+
1

2
exp

(

−4

3

2βM ρ̄la
2
l zliν

2ρ̄la2t zliν + 1

)

,

(A.13)

wherezliν = |θiνf,lhliν |2.
Using equation (A.13) and a closed-form approximation of

error probability ofVl’s IM symbol, the approximate SEP of
Vl can be derived as equation (11) shown in Section III-F.
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