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Application of Unsupervised Learning in
Implementation of Joint Power and Index
Modulation Access in V2X Systems

Sunyoung Lee, Konstantinos Koufos, Carsten Maple and MehRianati

Abstract—The implementation of joint Power-and-Index Mod-  of Orthogonal Frequency Division Multiplexing (OFDM) tech
ulation Access (PIMA), which is an effective way of realizig non-  nique. The main idea behind IM is to activate a subset of sub-
orthogonal multiple access (NOMA), requires a process of & ¢4 prjers and use their indices to convey additional infaioma

ordering over the available subcarriers, before multiplexng their Th . that IM be imol ted within th
data streams for power and index modulation. The conventioal ere are varous ways tha can be implemented within the

way of user ordering in NOMA with respect to the channel state  NOMA framework [12]-{15]. A promising approach is to use
information can be impractical and expensive given the larg IM in conjunction with power-domain multiplexing dubbed

numbers of users and subcarriers, in Vehicle-to-Everythig (V2X)  as the joint Power-and-Index Modulation Access (PIMA).

communications. Therefore, this paper proposes a novel appach  1jg technique has particularly attracted interest for nlavk
that leverages K-Means clustering to learn the pattern of miti- Lo L2
communication in V2X applications [16].

user multi-carrier energy variations and use them to effedwely -
order the users. For this, we develop several learning algghms In PIMA, the Base Station (BS) needs to order the users

and an analytical model for the Symbol Error Probability (SEP) before multiplexing their data streams for index and power
of PIMA, which is used to quickly generate part of the training modulation. The selected ordering depends on the channel
dataset (transfer learning). The results of the compreherige quality. Specifically, the information of the user with thenst

evaluations that have been carried out in this study show thia " . - .
the proposed approach outperforms the benchmark techniquein channel conditions is modulated on the indices of the detia

terms of SEP. It is also shown that the proposed scheme provid Subcarriers, while the rest of the users are multiplexe(d) ont
improved performance in terms of SEP as compared to distanee the same subcarriers with different power levels [16]. The

based ordering in realistic V2X scenarios using synthetic mbility  ysers can decode their own data via Successive Interference
traces for the locations of vehicles along multi-lane highways. Cancellation (SIC) that is often used to cancel multi-user

Index Terms—Index Modulation (IM), K-Means clustering, interference. As a result, in PIMA/NOMA, the quality of user
mobility traces, non-orthogonal multiple access (NOMA), hicle-  ordering directly affects the performance of the entireeys
to-Everything (V2X). Therefore, an effective user ordering is an important ana no
trivial technical challenge in such systems.

There are two widely-used approaches in the literature to
identify the best user ordering for NOMA. In the first one,

Vehicle-to-Everything (V2X) communications demandhe BS exploits the instantaneous Channel State Informatio
high-reliability and low-latency wireless connectivitgrfthe (CSI). This can be achieved by users estimating their dawnli
purpose of safety-related functions, while for entertanin CSis and reporting them back to the BS. Alternatively, in &im
and infotainment services, enhanced mobile broadband c@ivision Duplexing (TDD) systems, the BS can estimate the
nections become relevant. Therefore, it is important to dgownlink CSI from the uplink CSI measurements assuming
sign a spectrum-efficient multiple access scheme for a lange reciprocity of the uplink and downlink channels. This
number of connected vehicles in V2X systems. In this cofmeans that the BS requires the CSls from all users every
text, Non-Orthogonal Multiple Access (NOMA) techniqueTransmit Time Interval (TTI) for the user ordering task, alhi
for V2X communication has recently become increasinglg expensive and impractical for V2X systems, where the
attractive [1]-[4]. channel varies quite rapidly [4], [17], [18].

In NOMA [5]-[8], the spectral efficiency can be enhanced In the second approach, the BS orders the users accord-
by multiplexing the data streams of different users over theg to their distances [13]-[15], [19]-[21]. This approach
same time-frequency resource blocks using different powsannot accurately capture the real channel state in complex
levels. Recently, Index Modulation (IM) [9]-[11] has bedsa  environments with non-line-of-sight propagation corafis.
considered for improving the spectral efficiency and réliigh Moreover, the ordering of users may vary across sub-caiirier

multi-carrier systems experiencing frequency selectagdirfg.

A preliminary part of this paper was presented at BBEE VTC Spring This makes the user ordering in PIMA/NOMA implementa-
2020. This work was supported by Jaguar Land Rover and theEBERC

grant EP/N01300X/1 as part of the jointly funded Towardsohaimy: Smart tions even more Cha"engmg and resource-expensive.

and Connected Control (TASCC) Programme. Unfortunately, the ordering complexity in PIMA/NOMA
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Cv4 7AL, UK. (email{sunyoung.lee, Konstantinos.Koufos, CM,meElsurement and computational load at the - For example,

m.dianat} @warwick.ac.uk). with L users andV subcarriers, the computational complexity

I. INTRODUCTION



of the ordering is(L x N)!. This becomes a significant « A novel approach is proposed where the BS learns
challenge in V2X systems, where the low latency requiresient  to estimate an effective user order given the instanta-
render computationally expensive ordering algorithms-non  neous received energies across subcarriers and users in
effective. Therefore, there is a need for efficient methaus f the uplink. Complicated channel estimation techniques

user ordering in PIMA/NOMA for V2X systems [1]-[4], [16], involving, for instance, matrix inversions are therefore
which strike an acceptable balance between the qualitylendt  avoided. To achieve an ordering that yields a low Symbol
complexity of the ordering algorithm. Error Probability (SEP), we consider several ordering

Recent reviews of the ordering approaches for NOMA can selection rules, e.g., Min-Avg, Min-Max, and Min-Min.
be found in [1] and [22]-[24], but they are tailored to single « To reduce the training complexity, the idea of model-
carrier communication systems. In [1], the authors comside based machine learning [25], [26] is adopted. Specifically,
partial CSI for power-domain multiplexing in NOMA that a closed-form approximation is derived for the SEP
contains only the effects of path loss and shadowing. The performance of PIMA, which helps to quickly generate
coverage probability of NOMA with user ordering based part of the training dataset (transfer learning). Note that
on the instantaneous channel power gain is studied in [22], as compared to our previous work in [16], we have
while distance-based ordering is examined in [23]. Finaly generalized the system model with respect to the number
comparative analysis of Signal-to-Interference and NBRia&o of vehicles and subcarriers.

(SINR)-based coverage probability using the distancedas « To track the required number of clusters, the cross-
and the instantaneous CSl-based user ordering for twa stati  validated K-Means algorithm is investigated, and to fur-
NOMA users is studied in [24]. Unfortunately, the distance- ther reduce the training time, the performance of mini-
based approach for user ordering cannot accurately capture batch K-Means clustering [27]-[29] is analyzed.

the real channel state in complex environments, and the CSl+ Finally, to corroborate the applicability of our scheme in
based approach is expensive and impractical for V2X systems realistic V2X settings, we validate its performance using

More importantly, both approaches are not straightforward mobility traces for the locations (and hence the path-loss)
extend to multi-carrier systems. Judging by such shortogmi of vehicles along multi-lane motorways [30]-[33].

and gaps, an effective user ordering scheme for multi@arri The rest of this paper is organized as follows. The sys-
NOMA V2X systems is still in its infancy. tem model and key assumptions are specified in Section II.

Motivated by the aforementioned challenges and needs, thisction 11l describes the structure of the proposed legenin
paper proposes to learn the patterns of multi-user muitie@a griven PIMA and the learning algorithm, followed by Mini-
energy variations in the uplink and use them to effectivelyatch K-Means clustering and the cross-validation alforit
order the users for PIMA. The reliance of the ordering taskr our model. Section IV describes the process of real-time
on complicated channel estimation techniques at every Tddtimation to obtain an effective ordering. The simulation
is therefore alleviated. That significantly reduces thelénp results are presented and discussed in Section V, followed b
mentation complexity and allows the BS to effectively ordefe conclusions in Section VI.
the users in real-time. It has been a common practice toNgtations Uppercase and lowercase bold-faced letters indi-
employ machine learning tools for obtaining in real-time theate matrices and vectors, respectivély’ andE|] represent
solution to computationally-expensive problems. In thigcke, transpose and expectation, respectivély/(w, R) represents
we show how to order the users in PIMA using a bespoke e distribution of a complex Gaussian random variable with
Means clustering algorithm. The suggested algorithm Uses ineanw and covarianc®. () and |-| represent the binomial

standard K-means to cluster together similar vectors ahlapl coefficient and the floor function, respectivellyl|» stands for
signal energies during training. Afterward, the optimakuus ihe Frobenius norm.

order for the centroid of each cluster is identified. Finally
during real-time inference, the observed vector of signal
energies in the uplink is associated with the nearest centro
and the optimal user order can be retrieved. We consider a downlink multiple access multi-carrier V2X
The motivation for selecting K-Means clustering among vacommunication system, where the BS uses joint power and
ious other learning algorithms, e.g., artificial neurawaks, index modulation to send data signalsitovehicles in TDD-
is its simplicity and low-storage requirements. The BS cadmsed mode. To multiplex their data across the active subcar
simply store and use the cluster centroids to obtain the beistrs and their indices, the BS must first learn to order the
user ordering during real-time inference. Despite its $icitp, vehicles based on their channel conditions. ThereforeBthe
K-Means yields significant performance gains in comparismomprises three functional components: (i) off-line tiadn
with the benchmarking schemes for user ordering, as it will with dynamic patterns of ordering vehicles (or users) torlea
illustrated later in this article. Furthermore, K-Meansyides an effective ordering strategy; (ii) real-time estimatiointhe
an intuitive justification for the adoption of machine leimg user order; and (iii) PIMA signal generation given the user
in the subject problem, because it is natural to assume tloatler, see Fig. 1. Every vehicle needs to know its order withi
similar vectors of received signal energies in the uplinkuldo the PIMA scheme, which is communicated from the BS by
lie within the same cluster and be associated with the sameploiting the insertion of pilot sequences in the begigrif
best ordering of vehicles. The main contributions of thigkvo each transmission block. For the sake of simplicity, a &ingl
are summarized next. antenna scenario is considered.

Il. SYSTEM MODEL
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Fig. 1: System structure with offline training and learniirj*en multiple access.

TABLE I: Table of notations. are referred to as the vehicles under mild channel condition
Notation Description The channel gains on the-th subcarrier can be sorted as
L Number of vehicles |hni|? > |hnal® > ... > |hno|?, wherelh,;|? denotes the
]X; Num'g‘gpot;egu%fcgﬁ?érssu\?vimeésblock channel power gain on the-th subcarrier for the vehicl&;.
G Number of blocks Note that the ordering of vehicles based on their channeépow
; ANumbe; f:f IatCtive S_L:bcafrierwaithiQ a *;lock gains may vary across the subcarriers due to frequency-selec
t verage total transmit power of each subcarrier P H TP e H :
5 Average SNR per subcarrier tivity. M_aklng_ an efﬂmen? decision on the ve_hlcle orde_rlng
a Power allocation factor fol/; for multi-carrier systems is therefore challenging, and be
my Information bit stream ol discussed in detail in Section Ill.
my Number of bits per symbol foV
H; Channel matrix at/; ) . ) .
hin Channel coefficient of subcarrier at V; A. Generation of PIMA signals witlh vehicles
Weight vector . . .
@l“éfb i Doppler garameters a; Next, we describe the process of creating the PIMA transmit
a Normalized Doppler spread &f signal vectorx given the ordering of vehicles. This process
S Constellation af;,1 <1< L —1 consists of two parts: Index Modulation (IM) and superposi-
s Complex data symbol . . . .
. IM symbol tion modulation. In the IM part, the bit stream of the vehicle
R Number of training data points with the worst channel condition¥, is denoted bynr, and
Ke Number of clusters in K-Means clustering is modulated on the indices of active subcarriers, see Fig. 2
er The r-th energy vector during training L. . .
A The u-th cluster's centroid In the superposition part, the bit streams of the other Vesjc
my forl=1,...,L— 1, are modulated jointly onto the power

Concerning the communication link model, the BS norand subcarriers of the active indices. The bit streani/pf
orthogonally multiplexes bit streams fdr vehicles ontoN; is modulated on all active subcarriers using repetitioniregpd
subcarriers. In the standards for OFDM-based V2X commbecause, as we will shortly explain, the power allocatet;to
nication, N, is usually a power of two, i.elN, = 2" for an would be actually the smallest, and thus, frequency ditsersi
integerW > 2. Without loss of generality, we group everyis used to enhance the symbol detection performanc&ifor
N = 4 consecutive subcarriers together, i.8; = NG, 1) Index Modulation: A combination of indices of the
where G is the number of groups. Each group is treategctive subcarriers is referred to as the IM symbol, which
independently of others and thus, we hereafter focus onisadenoted byzz = {i1,...,ix}, wherei, € {1,...,N},
single group. The incoming information bit stream at the B8 = 1,...,k. The total number ofcz symbols is (Z,Z) and
is mapped to anV x 1 vector denoted byk. The vector thus, the number of bits per symbol is at mggig, (ZIX)J
x = [z1,...,zn]T represents the transmit signal vector ifGiven the symbolrz, the BS may generate the mati¥ =
the frequency domain, with,, for n = 1,..., N being the [wi,...,wy], wherew, is an N x 1 zero vector except the
modulated PIMA signal on the-th subcarrier. To generatei,-th element being equal to one. See also Table | for the list
x, the BS activateg = 2 out of the totalNV = 4 subcarriers of most important notations used in this paper. Apparently,
such that||x||o = k, while the rest(V — k) subcarriers are there exists a trade-off between the spectral efficiency and
zero padded. The active subcarriers contain superpostiortransmit diversity in the IM part. The use of orthogonal
signals for the vehicles employing NOMA. Denote bythe combinations of active indices (orthogonal IM symbols) can
l-th vehicle forl = 1,..., L. The vehiclesV; and Vi are produce higher diversity gain at the cost of reduced number o
referred to as the vehicles with the best and the worst chantransmitted bits per IM symbol. Taking into account thigliea
conditions, respectively, while the rest;(i = 2,...,L — 1) off, we consider orthogonal IM symbols for PIMA to prevent
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Fig. 2: Communication system structure of PIMA scheme witkehicles.

interference between IM symbolsy PIMA Implementation, TABLE II: Example PIMA signal generation for a block of
the number of orthogonal IM symbols 7 = [ 7-|. Apart N — 4 subcarriers with = 2 activated subcarriers.

from the gain due to diversity, the use of orthogonal IM [TMsignal @z) | Super-positioned signals PIMA signal )

symbols also reduces the computational complexity of the (T =i), T = 345)

maximume-likelihood (ML) detection in PIMA receivers, as I, ={1,3} x=+VPNk~! x = [x,0,2,0]"

compared to ML detection in the standard IM implementation, (@151 + 2oier, wst) _

see for instance [10, Eq. (10)] L={24) 7= VLNE! x=[0,2,0,2]"
P : (a1s1 + > e, wst)

The generation of PIMA signals foN = 4 subcarriers : . L o 5 .
with k = 2 activated subcarriers is summarized in Table IF}IQIocatlc;n forIQ/, which Sat'ff'esal + %:lele o =1 with
We consider two possible generated symbdls,= 2, hence a1 2(12 < 2a4 <2 s ‘IL722’ and ay + Zlelo aj =1
the number of transmitted information bits per symbol in th!th 61 < a3 < a5 < -~ < aj_, for an even number,

IM part is equal to one. We activate non-adjacent subcarridlf vehicles. That is, for vehiclé:, we havex; = a1 Wx,,

within an IM symbol, e.g., 1’ and '3, or "2’ and '4’ for where the non-zero elements of the vectgrare the indices

better robustness to Inter Carrier Interference (ICl).aHyn of activated subcarriers. F~or example, whon= 17, = {1’3T}’
vz € {T1, o}, whereT, = {1,3}, T = {2.4}. we can havex; = a;Wxi = a1V BN [s1,0, 51, 0],
e ! ’ where Nk~! = 2 is used to normalize the power, and

2) Superposition Modulation:Once the IM symbolxzz — [w1, wa] with wy — [1,0,0,0]” andws = [0,0,1,0]T

IS seleci[tr(]ad,_ tfhe cc;_rreskp))_?n?mg sufbcatrglers :;Iref S:Odgzteld tSimiIarIy, the N x 1 vector x; for the vehiclesV;,2 <
Eonvtehy Ieltn ormaélog Iths reamslor detres 0 b |e]\c/ t% < L — 1, can be modulated onto one of the active
Orr]. IIS{/ el Sj 16 Le le c_(t);n%‘ex iaosém ‘; —Orl Ssubcarriers. Whenvy = 7; = {1,3}, for the vehicles
Z\?\dlﬁeets ’den;te’tlﬁévco;stel\l,:tion i;}v&licr'] is|S(l:|om_mor’1 fovl\‘/ith an even index ¢ I, the modulated signal is; =
. 5 ’ : Wx; = a;ivVP.Nk—1[s;,0,0,0]”, and similarly, for the
all these vehicles. Denote k¥ the modulated signal fov;]. a1 X iVt 5 ) y

Recall that forV;, repetition coding is used, and thus foP/ehiCIeS with an odd index, € lo, we havex; = a/Wx; =
L : ’ VP, Nk-1 7. Eventuall d z denote th
k = 2, we havex; = \/P,N/k[s1,51]", where P, denotes v 0,0, 51, 0] ventualy, z and & denote e

th ¢ i ¢ h subcarrier. Additional uper-positioned signals of vehicldg,1 < | < L —1
€ average transmit power of each subcarrier. MINAT, odulated onto the active subcarriers, aRd= 1) is the
every vehicleV;, 2 < [ < L — 1 is modulated on a single

i S = normalized transmit power level. Finally, the transmit teec
— ¥ — ./ T ’
activated subcarrier, i.e., for = 2, % = /B N/k[s,0] , of the overall PIMA signal can be represented as

for an evenl < L, denoted by, andx; = \/P,N/k [0, 5] 7,

for an odd{l : | < L — 1,I\{1}}, denoted byl,. The = = N

accumulated information bits conveyed Ry, 1 <! < L —1 X = Z X1 = Z aWX;. 1)
are Sy = (L — 1)log, |S| bits, where|S| is the _ =1 =1

cardinality of S, but the total transmitted bits atlog, || It is noteworthy thatx;[lo = k > [[xflo = 1 for 2 <1 <
because repetition coding is used for the symboVaf L—1,E[x:1]* = o BN andE|x[|* = af P;N/k. Note that

3) PIMA signals: With the transmitted signal vectors forth€ Pitsmu, 1 < I < L —1 are modulated jointly onto the
each vehicle at hand, the PIMA signal generator can finaljPWer and subcarrier index domains.

superpose the information bits of vehiclés! =1,..., L —1 . ) )
onto thek active subcarriers using different power levels. 18- Signal detection model at the vehicles
particular, anN x 1 vector mapped for the bit stream; In the downlink, Doppler spread is also considered to

of V, is generated ax;, = o;Wx;, wherea? is the power capture the effect of user mobility on V2X received signals,



using the frequency-domain response developed in [34], [35 [1l. OFF-LINE TRAINING MODEL
The received signal vector at the vehidfe(in the frequency

domain) can be expressed as In this section, we consider a learning-based model for

getting the best orderings of vehicles in PIMA. To do that the

= BS learns the relationship between the received signaterser
yi=VoiH Y x +ny, (2) inthe uplink and the SEPs for the vehicles. Next, we show how
1=1 to generate the training dataset and discuss severaliselect

: . . . rules on the feature design.
where p; is the average Signal-to-Noise Ratio (SNR) per g

subcarriern; ~ CN(0,1y) is the additive white Gaussian

noise vgctpr withl being }heN x N _identity _matrix, and a Training dataset generation model

the derivation of the matriH; = ©;H; is explained below. _ o _ Cn
The diagonal matri, = diag(hu, ..., hiy) is the chan- L€t us consider a training dataset &f points, {é.},;,

nel matrix (CSI) atV; across theN subcarriers, where the Wheree. is ther-th point of the set. We defing. = {e., C7'},

. . . . — ~ 21N L H H
elementhy, follows the complex-valued Gaussian distributiofhere er = [{{|gin.-|*},=1}i2,] is & column vector with

with zero mean and unit variance, i.&;, ~ CA'(0,1)%. The L x N elements and the integéf* is an indicator for the best
square matrix®; is the correlation matrix with the elementordering of vehicles. The elemeft,, . denotes the-th uplink
0,7, representing the ICI between theth and the f-th signal at the BS on the-th subcarrier due to transmissions
subcarriers. The paramety;, atV; depends on the channelCriginated from the vehicl&;. The BS can obtain the received

frequency offset and is given by [35, Eq. (20};/., = signal energy|i,. . »|*, using the well-developed multi-carrier
' sensing schemes [36]—[38]. Afterward, the BS can scale the

sin(m(n — f +€)) ) measured energigg; » -|* by the transmit power level per
NsnZ(n—f +e) eXp [377(1 - N)(” -+ ez)}, (3) user and subcarrier, which is a realistic assumption under
uplink closed-loop power control. During training, the BiSca
where, is thel-th vehicle’s normalized Doppler spread, whictneeds to estimate the uplink CSif,,, and from that obtain
is defined as the ratio of the Doppler frequency spread to tthe downlink CSIH,; assuming channel reciprocity, which is
subcarrier frequency spacing. When the normalized Dopplequired to evaluate the SEPs for the vehicles.
spread goes to zero, the off-diagonal eleméhts; become  To compute the best ordering of vehiclgs;, given the
zero too and®; degenerates to an identity matrix. vector of uplink signal energies,, we must consider all
In equation (2), the received signal vector can be separatgbsible orderings. Let us denote them®y, j = 1,2,...J,
into the ideal channel ternH;, and the ICI tern®;. Accord- whereJ = L(L — 1). Recall that we consider three types of
ingly, the received signaj;, on then-th subcarrier can be vehicles in the system model, i.e., one vehicle with the best
written as [35, Eq. (1)] channel condition, another with the worst channel conditio
and all remaining vehicles are grouped together under mild
N channel conditions yielding possible orderings. In order to
Yin = VoihinTin +V/p1 Z Ong iy +nin,  (4) compute the ordeC;, we need a selection rule which is
f=1.f#n discussed next.

whereh;,, andn;, are the channel coefficient and the noise,
respectively. Ther;, andz;; are the super-positioned signal
on then-th and thef-th subcarrier, respectively. The secon
term in equation (4) is the ICI term caused by the Doppler Given the user ordef’; and the uplink signal energies.,
frequency spread. we denote by P, the SEP ofV;,l = 1,..., L associated
Based on equations (2)-(4) and employing a maximuWith the r-th point of the training dataset. To find the best
likelihood (ML) detector, each vehicle can detect its syfabo order C7, the BS needs to evaluate the SEPs for all vehicles
It shall be noted that the use of orthogonal IM symboi@nd for all orders of vehicles. Once the SEPs are calculated,
reduces the computational complexity of ML detection if{Pj..-}/=,}7=1, the BS compares them, in order to select the
PIMA receivers, in comparison with ML detection in stanbest orderC;, as the one satisfying one of the following se-
dard IM [10, Eq. (10)]. For instance, folN, subcarriers lection rules: R1. Min-Max selection; R2. Min-Avg selectio
and & = N,/2, the number of symbols in standard IM isR3. Min-Min selection. Specifically,
gllogz C(Ne,:Ne/2)] > 9lN:/2] |n our case, wheréV = 4 and
k = 2, we have only two IM symbols per group of subcarriers.
Then we have to repeat the same procedureGfoe N;/N
groups of subcarriers. Therefore the computational coxitgle

in the number of subcarriers turns from exponential to linea It is noteworthy that the BS uses an exhaustive search to
find the best ordet’, Vr by solving the optimization problem
1It' is straightfor_ward to generalize this c_hannel n”!odel m:lu'de_ different  jn Eq. (5) 0n|y during offline training. For real-time inferee,
median propagation path-loss for the vehicles. This has lmeeitted here he BS d f ical
to simplify the notation but it will be taken into account ihet numerical the 0es not consume any extra resources for numerica

illustrations in Section V. optimization, as it can simply use the learned centroids.

. Selection rules

R1: C!= argmin; (max;{P;;,})-
R2: C!= argmin; (avg{P;;,}). (5)
R3: C!= argmin; (min; {P;;,}).
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Fig. 3: Off-line training for learning-driven PIMA with K-Mans clustering.

C. Bespoke K-means learning algorithm algorithm returns (i) the centroic{slu,T}ffgl, whereT' counts

In K-Means clustering only the locations of the centroid$ required number of iterations, and (ii) the cluster cedi
need to be computed and stored. In our case, each centroid §s 4 €ach dataset point. Hereafter, we will omit the subscrip
pointin the(L x N)-dimensional space. Initially, the locations!" for brevity henceq.,r = q.. Finally, one more decision-
of the centroids are randomly chosen. Then, each member#king step is required to find each centroid's best ordering
the training datasefte, } £_, is assigned to the nearest centroit/hich, for instance, can be obtained by finding the most

in terms of Euclidean distance, and the index of the nearé&quent ordering among the points of the training dataset
cluster is given by associated with that centroid (majority rule).

u, = argmin ||qu.; — e,||2, foru=1,...,K., (6) ¢y, = majority{C;'},., o, foru=1,... K.

whereK, is the number of centroidsy, ; denotes the location ~The summary of the suggested clustering algorithm is
of the u-th centroid at iteratiort, andu, € {1,2,..., K.} is Provided in the form of pseudocode und&igorithm 1. To

the index of the nearest centroid to the dataset pginOnce analyze its performance with respect to the number of the
each dataset point is associated with a cetroid, the Imti&e”tro'dSK? we define the distortion (or cost functiod) 2)
of the centroids are iteratively updated as the averageedf thas follows:

members: 1 i | ||
5u uCr ) . A(R) =7 €r — Qu,.||1- (8)
Qu.it = Eriﬁe, for iterationt > 1, Vu, @) R =
’ Zr 5“7‘)“
whered,. , is the Kronecker delta function. In Fig. 4, the distortion functiom(R) is calculated using a

simulation-based dataset witR = 4000 elements, and an
Algorithm 1 Bespoke K-Means clustering algorithm for genaverage SNR per subcarrigf = 10 dB for all vehicles.
erating the training dataset in PIMA Notice that as the value df . increases, the number of dataset
points per cluster decreases, which may improve not only the
2. Input: {e,, C*}_, training dataset based on one of th@ccuracy of clustering, but also the convergence speedn@n_t
selection rules (R1, R2, or R3). contrary, a small qumber of cIust(_ers can lead to amblgwty
due to the long distance separation between each centroid

1: Initialization: Selectk,, t = 0.

3: Initialize randomly the cluster centroids. |
4 repeat and the cluster edge members. Therefore, the effectiverfess
5. {e,}I, are assigned to the nearest centroid, referri stering can be enhnaced by properly finding the elbowtpoin

ot K.. In Fig. 4, the distortion curves for all selection rules
monotonically decrease as the valueif increases, and they

have elbow points arounff. = 50 clusters. This means that

increasing the number of clusters beyoRd = 50 reduces

to equation (6).
6: Updateq, ; as the average of members in clusieat
iterationt, referring to equation (7).

7. t=t+1. . . . L

g until ¢ =T (the centroids no longer change). the intra-cluster distances only by little. In this lightewean

9: Output: [{qu T}fzcli {u )R] argue thatk’. = 50 is a good choice for the given dataset, as
10: Calc.: CZ = majOI’iW{O:f }r:u7~€u foru=1,..., K. 2Since the variations o, under fading are random variables, the mean

squared deviation error function of the K-Means clustergan take high
The i . . il th h in th .(Xalues due to the long distances of the cluster edge memkrs weach
e Iterations continue until the change In the centrol Rister. Therefore, for this learning model, we considex thean absolute

becomes less than a predefined threshold. After that, theeiation error function also known as the 1-norm error.
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Fig. 4. Comparison of the distortion function with respezt tFig. 5: The impact of the size of the training subset (frafi
the number of clusters for various selection rules. to 80%) on the training error for different numbers of clusters
(K.). The simulation-based dataset with sige= 4000 is

o ~ used to evaluate the training error probability.
it strikes a good balance between accuracy and computationa

complexity. 09
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D. Mini-batch K-Means learning algorithm

As the size of the dataset increases, the computation time
K-Means clustering increases too, and more importantly, t | h
algorithm convergence requires an increasing number of ité’ &
ations, which can quickly make the algorithm implementaatic‘és 06 Y i
impractical. To efficiently handle a large dataset, we abersi T L
the mini-batch K-Means method for off-line training [27]- sk . |
[29]. According to it, we break the dataset into smalle 0.
randomly grouped batches of sizg Given the sizeR of the 04 M
dataset, the BS randomly divides the dataset intdatches ’ -0
such thatb, = [£]. Afterward, the BS applies the training e
process described undelgorithm 1 to the individual batches. 03y .6‘*6-—0.
The updated centroids of the first batch are used as init
values for the training in the next batch, and so forth. Fjpal 500 1000 1500 2000 2500 2000
the algorithm returns the centroids based on the compu Number of clusters (K )

clustering in the last batch. The convergence of the mifttba iy 6. validation and training error probabilities withsgect
K-Means can be faster than a single batch K-Means clusteriggne number of clustersi(,) when the combined dataset with
because it can reduce the required number of iterations {ye p _ 14000 is used. The training and validation subsets

jointly tuning the initial centroids across the batches.eTharem% and30% of the training dataset, respectively.
performance of the mini-batch K-Means will be illustrated i

Section V, taking into consideration the reliability-colexity
trade-off during off-line training.

P
&

Errol

o

0.2

1) Training error probability: In this approach, the training
dataset{e, }2_, is randomly shuffled and then divided into

E. Cross-Validation algorithm - S
] i g o two subsets: the training subset and the validation subset
In this section, we formulate a cross-validation model 9, {6}, = e, Ue,, at a ratio, €.9.70 : 30 or 80 : 20
. . L] r= L] y Y.y . . .

evaluate the effectiveness of the trained clusters. Theserorhe error probability for the training subset can be meabure
validation indicates how well the trained model is genesddi by comparing the best ordering of each centroid (obtained
on unseen data, and can help to select the number of clusigfSinstance by the majority rule) and the ordering of its
that avoid underfitting or overfitting [39]. members. In Fig. 5, one may see the impact of the size of

3In underfitting case, the model cannot predict the trainiatavell. Thus, _the training subset Ont_o the training e'_’r_or prObab”'ty-'S‘t
a validation error in statistics occurs when the model isegithe underlying illustrated that the training error probability decreasssthe
trend of the data members or does not generalize to new dataerfitting  \glue of K. increases and/or the size of the training subset
case, the model predicts the training data too well. Thuglidation error in decreasescTherefore in the given training set we mayco:lont

statistics occurs when a model is too closely aligned to #diinset of data ! o ‘ ) Y
members. the ratio between the training and validation subsets tadng



the training error performance. the selected cluster’s centroid. The user ordering in tiesd-
2) Validation and the number of cluster$he clusters and operation is therefore selected as follows:

the centroids are first learned on the training subsend then

their accuracy is assessed on the validation sufisétVe can

measure the number of erroneous orderings in the validatigfiares is the measured energy vector during testing.
subset and c_:glculat.e the error propablhty. Fig. 6 depiots t rperefore the time complexity of user ordering during test-
error probability durmg.valldauon with respect to the nioen ing is O(K.). Given the selected ordering of vehicles, the BS
of clusters for a combme_d_ dataset of sife= 14000 and can quickly generate PIMA signals in the downlink as shown
average SNR per subcarrigr = 10 dB for all vehicles. The j, rig 7 Wyithout estimating the full CSls, i.e., amplitude
training error probability decreases with the number o$tdts and phase, across the vehicles and subcarriers. Similaly,
and becomes less thand at aroundK. = 1500 clusters. In aineq cluster set can be used to estimate effective \eehicl

Fig. 6, we can also observe that as the valugbofincreases, orderings for all blockss spanning over théV, subcarriers.
the validation error probability decreases, but it flatteos

after K. = 1500, indicating that the selection of approximately
1500 clusters is a reasonable choice. While Fig. 6 illustrates
the underfitting for a number of clustels. < 1500, the

C*=C; :argmin||q, —é||, foru=1,..., K., (12)

V. EVALUATION RESULTS
In this section, we use simulations to evaluate the symbol

case of overfitting is not demonstrated, but since the viédida error probability (SEP) performance of the proposed legi
' driven PIMA scheme, and compare it with benchmarking

error probability tends to have a convex shape [39], overgit algorithms. A key takeaway point from this section is that

will appear for a large value of. > 3000. To improve the X ) . :
validation error probability and fine-tune the centroids w.the K-Means clustering algorithm for ordering the vehicles

can repeat the training and validation processes severabti n I_DIMA”generaIlzes we!l 10 unseen SNRS. during ”a"?'”g'
selecting different subsets ande, each time which mitigates the requirement for generating large tngin
v .

Based on the behavior of the validation and training errgratasets. Furthermore, we show that the closed-form math-

) . ematical approximations for the SEP of PIMA derived in
probabilities, we can find the number of clustéfs™ within an Section IlI-F can be effectively used for transfer learnin
acceptable value (threshold) of the training error. If ibisot y ng
possible, we need to reconstitute, e.g., augment the tiainiA. Parameter settings
datasete,. Note that the number of clusters obtained here is To generate a realistic simulation setup,

. - ) . we adopt the
a generalized value for the_trammg datasgt mc_ludmg ‘_mseparameter settings of Long-Term Evolution (LTE) for the
data, whereas the one obtained from the distortion fundtion

i R : " speed of vehicles and the subcarrier spacing, i.e., thelgpe
Fig. 4 is limited to the given training dataset. vehicle is randomly generated in the interdal— 200 km/h

and the subcarrier spacing is set atkHz. It is straightforward
E. Theoretical SEP to adapt the parameter values to the Fifth Generation New

T d the training i dopt th inciol Radio (5G NR) or Cellular Vehicle-to-Everything (C-V2X)
o reduce the training time, we adopt the principle of i o < onarios.

transfer learning, see for instance [25], [26], where thestelr We considerl — 4 vehicled, M = 4, i.e., Quadrature

centroids can be initialized using closed-form approxioret ; ; ; o
; . o Phase Shift Keying (QPSK) constellation for superposition
for the SEP, and subsequently fine-tuned with a limited mm?nodulation unless otherwise statell, = 4 subcarriers and

based on simulations. To this end, the derived theoretical g 2 active subcarriers for index modulation (IM). For

pressions for the SEPs will help quickly generate the tmg'nithe superposed signals, we set the power allocation ratio

dataset. We summarize the SEPs for all the vehicles below, 5 ! i .

and at the top of the next page as equations (9)-(11) Whﬂé a1 = 10 .dB for [ € .{2’3-}' Recall that repetition coding
o . . N ver the active subcarriers is employed for the vehigleand

the derivation details can be found in the Appendix. For tnﬁ/l

vehicle with the worst channel conditiong;,, recall that IM

is used and the SEP can be approximated as:P

is used forV, (= V¢). Note thatV; and V, are always

the vehicles with the best and the worst propagation channel

conditions, respectively, in every TTI. For clarity, we dotn

= o2 - P2 consider power control in the uplink.

1—126><p (—%) + iexP (—%) ) For L = 4 vehicles andN = 4 subcarriers, the energy
vector e, in the training dataset has dimensiolt x 1. To
identify an effective ordering of vehicle€* for a given
selection rule and create the training dataset {e,,C*},

IV. TESTING FOR LEARNINGDRIVEN PIMA
. . ) 4Notice that in NOMA, as the number of multiplexed users inses, the
In real-time operation, the BS can use the learning outcom®gacity gain of NOMA increases too. However, NOMA is moréicint

for ordering the vehicles given the measurdx upIink for a small number of users due to interference constramdsearor propaga-
b . froth vehicl N b . Th tion [40]. In fact, multi-user superposed transmission ) was introduced
energy observations irorh vehicles overN subcarriers. € in 3rd Generation Partnership Project (3GPP) Release 13able NOMA

BS does not anymore need to estimate the downlink CSls atda small number of users. In particular, MUST was propogedealize
numerically solve the optimization problem in Eq. (5) ke, downlink multi-user superposition transmission in LTExadced systems,
s .facusing on the multiplexing of two users only. Thereforethis simulation,

it finds the nearest cluster to the measured vector of up“lﬂé useL = 4 vehicles, where the multiplexing of two vehicles per active
energies and estimates an effective ordering of vehicta® fr subcarrier is considered.
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Fig. 7: Learning-driven PIMA in real-time.
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‘ training dataset is denoted l{@T}Rl whereR; = 4000 and

4V, QPSK ne r=1
_______________ ety sv,oesk | the theory-based training dataset is denoted{éy} ™ £,
"""""" 4 av, oosx where R, = 10000, yielding a combined dataset of size

oV, QPSK

SV, BPSK R = R; + Ry = 14000 elements. The training datasets are

. ;.;;::;::::::” &V, 8PSK generated by performing00000 simulations at an average

AV, 8-PSK SNR per subcarriep; = 10 dB for all vehicles. For K-means
©V, 8PSk

clustering, we utilizeK.* = 1500 clusters, which is obtained
1 in Section llI-E, unless otherwise stated.

B. Discussion of the results

8 Fig. 8 depicts the SEP of the proposed learning-driven

PIMA when the channel ratio ig;/p4 = 5 dB for the vehicles

Vi, 1 € {1,2,3}. The vehicle under the worst instantaneous
channel condition I(;) outperforms all other vehicles as it

0

5

1

0 15 20 25 5 Uuses IM. In particular, it obtains SEP #~3 at SNR12 dB
Average SNR of V,(dB) while the other vehicles obtain the same SEP at SNR around

Fig. 8: The SEP of the proposed learning-driven PIMA fof? dB. Interestingly, the SEP curves for the vehicles with the

each vehicle using the Min-Avg selection ruleor the ve-

best §1) and mild channel conditiond/4, V) follow similar

hicles V;,1 € {1,2,3} two different modulation schemes ard"€Nds. The SEP o¥; is constantly higher than that df;

considered, i.e. M =4 (QPSK) andM = 8 (8-PSK)

and V3, but their gap eventually gets smaller at high SNRs, as
V1 benefits from repetition codinghs expected, the SEP of
Vi, 1 € {1,2,3} increases for increasing modulation order.

Fig. 9 illustrates the system’s SEP calculated as beinglequa

we also use the mathematical approximations for the SEP dethe average SEP of the vehicles and compares the learning-
rived in Section II-D (transfer learning). The simulatibased driven PIMA with benchmarking algorithms for user ordering
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T PIMA, Fixed ordering. or fixed-based order counterparts. It becomes also evident
A PIMA, Avg Erg ordering from Fig. 9 that the learning-driven PIMA generalizes well
23322223 E:m: i hax to different average SNRs than that used for trainitgdB).

10 ‘©Proposed PIMA, Min-Avg || The accuracy of the training algorithm is also demonstrated
2 #PIMA, Optimal ordering, Min-Avg in Fig. 9. One can see over there that using exhaustive
! PIMA, Optimal ordering, Min-Max . . . . .

] search during real-time inference too, only gives a malgina

2 improvement in the SEP for the Min-Avg and the Min-Min

5107 F selection rules.

o Fig. 10 depicts the system’s SEP using different train-

é ing datasets, i.e., simulation-basg@,},, theory-based

Bl {e,}Xr 41, and combinede,}L,. We can see over there
that the simulation-based dataset performs close to thogythe
based dataset. This observation validates the accuradyeof t
approximations for the SEPs developed in Section IlI-F. At

10‘46 : - = > the same time, generating the theory-based dataset cossume

much less computational resource than that needed to genera
the simulation-based dataset. The combined dataset Isenefit
Fig. 9: Comparison of the system's SEP for the proposggm both simulation-based and theory-based datasetmtpad
learning-driven PIMA with three selection rules, and PIMAqg z marginal improvement in the performance.
with average energy-based ordering, and fixed ordefihg.  Next, we study the performance-complexity trade-off dgrin
system’s SEP with optimal ordering obtained using exhaestitraining by simulating the mini-batch K-means algorithm.
search during real-time inference is also depicted for)eve,fig_ 11 shows the SEP of the learning-driven PIMA using
selection rule. the mini-batch K-Means clustering with different number of
mini-batchesp,, € {1,2, 3,4}, and their associated distortion
curves at an average SNR per subcargier= 10 dB for
all vehicles. As expected, the system SEP using four mini-
4 Combined dataset (R = 14000) ba'Fches obtains the worst SEP perforr_’nanc_e, at _the fastest
il +PIMA, Fixed ordering tra_mlng convergence [39]. Note th_at du_rmg simulationsg,.e

; PIMA, Avg Erg ordering using Matlab, the K-Means clustering with a large dataset ma
face convergence problems even after several iteratiogs (e
100 iterations). Interestingly, the simulations have showed t
the centroids using more than one mini-batch can succéssful
converge in less thah00 iterations whenR = 14000. To sum
up, using four mini-batches strikes a good balance between
performance and complexity as the SEP for two and four mini-
batches is practically the same, but considering only otehba
vehicles can achieve the highest reliability, which is imant
for safety-related functions.
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Fig. 10: The system SEP, calculated as the average SEMext, we simulate the performance of the learning-driven
over the four vehicles, of the learning-driven PIMA withPIMA with synthetic traces for the locations of vehiclesrajo
different training datasets, i.e., simulation-basedothdased multi-lane highways [30], [31], as shown in Fig. 12. For
and combined dataset is depictédr benchmarking purposes this, the mean received signal power level per subcarridr an
the system SEP is also depicted for fixed-based orderingwahicle in the uplink is computed asl’¢, wherew; is the
well as ordering based on the average received energiessactdistance between the vehiclg and the BS, and the path-
the subcarriers. loss exponent is) = 3 [41]. We consider a cell with radius

1 km, where the coordinatds;, y) of each vehicle change in

0 <z <2000m, andy € {3,6,9} m as it travels within
when the channel ratio ig;/ps = 5 dB for the vehicles the cell. The BS is located at the roadside in the middle
Vi,1 € {1,2,3}. The PIMA schemes using average energyf the cell, i.e.,(zps,yss) = (1000,0). For generating the
based ordering (the average of all energies oder= 4 training dataset, we randomly select four vehicles withia t
subcarriers of each vehicle), and fixed ordering are salectell and generate their channel matrices for small scaliedad
for benchmarking. The SEPs based on Min-Avg and MirH; = diag(h,..., ), where the elemenk;, follows
Min selection rules attain the best performance and cleatlye complex-valued Gaussian distribution with zero meah an
outperform the benchmarks, while obtaining approximatelynit variance, i.e.i;,, ~ CN(0,1). The complex Gaussian
5 dB power gain at SEP< 1072 over the energy-baseddistributions are independently sampled evédyms till one
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Fig. 11: Comparisons of the system SEP calculated as tt@ g 1
average SEP over the four vehicles (a) and the distortio
function whenp; = 10 dB for all vehicles (b) for the Mini- 1
batch K-Means clustering with different numbers of batches
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of the vehicles crosses the cell boundary. For simplicity, rrig. 13: Comparisons of system’s SEP of the proposed

Doppler spread is considered in that case. Then, we repgairning-driven PIMA with distance-based and fixed ordgrin

the same procedure for four other vehicles till the trainingsing the synthetic data traces for the locations of vesicle

dataset is constructed. For K-Means clustering, we conside

a combined training datasét = 30,000 (R; = 4000 using

simulations, andR, = 26,000 using the approximations for minimum and average SEP. This observation validates that

the SEP obtained in Section III-D) anld. = 3000 clusters the learning-driven PIMA is beneficial with realistic moaay

because the size of the dataset is now larger. traffic too. Note that the performance difference between
During testing, we have simulated® PIMA signal trans- learning-driven and distance-based ordering is due to the

missions and counted that the ordering of vehicles has @tangmpact of fast fading onto the user ordering, which can be

with probability about70 % between consecutive transmiscaptured only by the learning-driven scheme.

sions, i.e., everyl0 ms. This observation validates the ef-

fectiveness of the learning-driven PIMA in a dynamically VI. CONCLUSIONS

changing V2X scenario. The study in this paper revealed that the use of a bespoke
Fig. 13 illustrates the comparison between the SEP of thasupervised K-Means clustering model for identifying an

learning-driven PIMA and the two benchmarks, i.e., distanceffective user ordering in PIMA outperformed the existing

based and fixed ordering. The learning-driven PIMA oubaseline schemes (based on average energy-based and fixed

performs the benchmarking schemes in terms of maximuorderings). We obtained a promisifgiB power gain at SEP =
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103 without increasing much the implementation complexitye., Q(z) ~ 1/12exp(—x2/2) + 1/4exp(—222%/3), and
of the ordering algorithm. The proposed scheme does remuation (A.3), the approximate SEP Bf can be obtained
require the estimation of CSls, as it uses the received &gergs equation (9) in Section IlI-F.

across the users and subcarriers in the uplink to effegtivel

order the users. It is also shown that the Min-Avg and MirB. Symbol error probability oi;

Min selection rules outperformed the Min-Max rule, yieldin - The vehicleV; first detectsiz and then employs SIC in
2.5 dB power gains at SEP *0~°. Following the princi- order to detect;. To do that,V; detects and removes all sig-
ple of transfer learning, we derived generalized theosétinalss;,! = 2,..., L —1 from each of the: active subcarriers.
approximations for the SEPs, which were used to generatethis work, we consider perfect SIC for presentation tJari
part of the training dataset and subsequently reduce the comter SIC, equation (2) reduces to:

putational complexity during offline training. Furthernegin _ .

realistic motorway mobility traces, the PIMA scheme using y1=vpiHixi +ny. (A4)
learning-driven ordering showed better SE®% reduction) Employing the ML detection independently on theactive
than distance-based ordering. We hope that the promissigbcarriers allows to deteet. The resulting instantaneous
results of this paper can motivate further research in mod&NR of the active subcarrieis,v = 1,...,k is

aided machine learning approaches for multiple accessxn ne a?P,N

generation vehicular networks and similar applications. P, =P |0, phai, |> = p12a310;, g.1hai, > (AB)

Due to the repetition coding of symbe] ontok = 2 active
APPENDIX subcarriers, applying the maximal ratio combining can proed
DERIVATION OF SYMBOL ERROR PROBABILITIES(SERS)  the effective instantaneous SNR Bf as

We formulate a theoretical model for the SEP of PIMA o, 2 )
for each vehicleV;,i = 1,...,L to help quickly generate pr=2p1ai» |0i,51hai, | (A.6)
the training dataset in Section IlI-F. In order to obtain the v=1

SEP from equation (2), each vehicle uses maximum likelihoodNotice thatl; intends to detect; from & active subcarriers,
(ML) detection [10], [11], which can be read as whose indices need to be first obtained from the detection of

. ) . ) the IM symbol of V. Thus, the symbol error event, at
X, = argmin [ly; — /pHix|", 1 <1 < L. (A1) v; may occur under the following two conditions: Correct
detection ofxz (Zz = x7); and incorrect detection of7
A. Symbol error probability o7, (zz # x71). Accordingly, the SEP ab; consists of two terms:

Oncex,, in equation (A.1) is obtained, the IM symhd} is P1 = P(er, 2z # &1) + P(e1, 2z = ¥1)
estimated using a Table similar to Table II. In order to gatesr M1 (A7)
. . = Pr1 +Pcoi(p1)(1 = Pr1),

a mathematical expression for the SEPGf, Pr, we start M

with the index error probability (IEP), denoted B(a — &), whereM = |S| is the constellation size for the vehicleg ! =
which describes the probability that the transmitted IMbgin 1, ... L — 1, P;; denotes the overall IEP of; at Vi, the
7, is incorrectly estimated &6, wherea, & € {1,..., Nz}, ratio (M — 1)/M represents the conditional error probability
a # & and Nz is the number of IM symbols. Thus, usindfor s, for 27 # z7, and R (-) is the error probability of\/-

a union bound for giveny, N and k, and referring to the ary complex symbols, i.e.,R(p1) ~ 2Q(v/2p1 sin(7/M))
well-known Pairwise Error Probability (PEP) in [42], thefor M-ary Phase Shift Keying (MPSK) fon/ > 2 [43,
conditional IEP of the symbatz at V;, can be provided by Eq. 5.2.61].

Ny—1 Ny—1 5 Notice that B, in equation (A.7) can be obtained by similar
Pip(a) < Z Pla — @) = Z Q dy ’ steps used to obtain;P and equation (A.7) can be finally
T —lia ey 4 rewritten as
- o o2 (A.2) p— (M1 p Pr1+ P, A8
whered? = p.||Hox — Hp x| is the squared Euclidean 1= =37 ~ Porlpr) ) Pr+ Pea(py), (A-8)
distance bfltW?T?p Iill\z/l,g\ f5|zgglals. aSSOC|ate(I(;oanq1d, and where By is
Qx) :==n"" [/ Te /250”949 is the error function.
Using the law of total probability and equation (A.2), the k p1 ||ﬁ1||2F
SEP atV;, can be upper bounded as Pr < N Z Z Q 2 : (A.9)

a=1 a#a

N N- Nz—1
P, — k. i PiL(a) < k. i i 0 [di (A3) After substituting the approximation for the Q-function in
N &~ TN H e 4 ] 77 the expression 0P (p1) we get

. . k
Based on the structure of PIMA signals, notice that we Por(p1) ~ lex 9Bup aQZz .
can reduced? ~ pr ||HL||%P.N/k = 2p ||HL||%. Also, c1(pP1 6 p MP1a] 14,

v=1

(A.10)

P;;, can be simplified to a singl€)-function term due to &
the orthogonality of index combinations. After simple ma- + lexp —§5Mﬁ1a%221i ’
nipulations using the tight approximation of the Q-funatio 2 3 —



whereg,, = sin?(7/M) is the M-ary constellation dependent [9]
constant, and;, = |0;, r.1h14, |

Finally, after substituting equations (A.9) and (A.10)ant
equation (A.8), the SEP df; can be derived as equation (10)
shown in Section IlI-F.

C. Symbol error probability o¥;,l =2,..., L — 1

After estimatingx; and subsequently the IM symbgf =
{i1,i2}, the vehicleV; can detects;. Firstly, V; needs to
employ SIC to subtract a; for I < j < L. Then,V; detects [13]
si, treatings; ands; for 1 < j < 1 as noises. Therefore, the
corresponding SINR ak] is given by

20103 P10, ¢.1hui, |2

- ; (A.11)
2p1a3 P, gihui, | + 1
wherea? = a3+ 3 ) a2 forl €, anda? = a3 + ', a?

forl el,.

Accordingly, the SEP can be determined by the conditional
estimation ofs; under the IM symbol detection af, which
is similar to the steps used ¥4 . Thus, the SEP o} can be
expressed in two parts and is approximated in the following

P, =P(el,:%z 75$I)+P(el,@z sz), (A.12)

wheree; is the error event at vehiclg].
Referring top; in equation (A.11), the error probability of [19]
M-ary complex symbols at; can be obtained in closed-form,

1
6

with respect to the SINR: B ~
L 2Bmp1ad 2, n }eX 4 2Bmp1ad 2,
P\T2madzn, +1) T 2P\ T3 a2, +1)°
(

A.13)

Wherezliu = |6‘iuf,lhlil,|2-
Using equation (A.13) and a closed-form approximation of
error probability ofV;’s IM symbol, the approximate SEP of[23]
V, can be derived as equation (11) shown in Section IlI-F.
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