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Abstract—Optimal resource allocation in modern communica-
tion networks calls for the optimization of objective functions
that are only accessible via costly separate evaluations for each
candidate solution. The conventional approach carries out the
optimization of resource-allocation parameters for each system
configuration, characterized, e.g., by topology and traffic statis-
tics, using global search methods such as Bayesian optimization
(BO). These methods tend to require a large number of iterations,
and hence a large number of key performance indicator (KPI)
evaluations. In this paper, we propose the use of meta-learning
to transfer knowledge from data collected from related, but
distinct, configurations in order to speed up optimization on new
network configurations. Specifically, we combine meta-learning
with BO, as well as with multi-armed bandit (MAB) optimization,
with the latter having the potential advantage of operating
directly on a discrete search space. Furthermore, we introduce
novel contextual meta-BO and meta-MAB algorithms, in which
transfer of knowledge across configurations occurs at the level of
a mapping from graph-based contextual information to resource-
allocation parameters. Experiments for the problem of open loop
power control (OLPC) parameter optimization for the uplink
of multi-cell multi-antenna systems provide insights into the
potential benefits of meta-learning and contextual optimization.

Index Terms—Wireless resource allocation, meta-learning,
open loop power control, Bayesian optimization, bandit optimiza-
tion.

I. INTRODUCTION

A. Context and Scope

THE management and configuration of modern cellular
communication systems requires the optimization of a

large number of parameters that define the operation across all
segments of the network, including the radio access network
(RAN) [1]. Machine learning, or artificial intelligence (AI),
methods are often invoked as potential solutions, and most
efforts in this direction leverage neural network-based meth-
ods, which may incorporate contextual information such as on
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the network topology [2]–[4]. However, the implementation of
AI solutions for resource allocation is practically constrained
by the limited access of the designer to relevant data and to
efficiently computable objective functions. In fact, typically,
each candidate solution can only be evaluated via a point-wise
estimate of key performance indicators (KPIs) through expen-
sive simulations or measurements [5]. This paper investigates
methods that aim at reducing the number of KPI evaluations
needed for AI-based resource allocation via the introduction of
novel optimizers based on meta-learning [6], [7], multi-armed
bandit optimization [8], and contextual optimization [9].

To exemplify the application of the proposed resource-
allocation optimizers, we focus on the important problem of
open loop power control (OLPC) for the uplink of a multi-cell
system with multi-antenna base stations [10] (see Fig. 1). This
optimization requires a search over a large discrete space of
candidate options, and each candidate power control parameter
set needs to be evaluated via the use of a network simulator
or via measurements in the field. The conventional approach
carries out the optimization of resource-allocation parameters
for each system configuration, which is characterized, e.g.,
by topology and traffic statistics [11]. This per-configuration
approach is justified by the diversity of network deployments,
which generally prevents the direct reuse of solutions found
for one deployment to another deployment. However, as
mentioned, this class of solutions is practically impaired by
the need to evaluate many candidate solutions as intermediate
steps towards a satisfactory solution.

B. Related Work
Machine learning solutions based on deep neural networks

(DNNs) train a generic dense neural network in a supervised
or unsupervised fashion to approximate the output of model-
based power control algorithms such as the Weighted Mini-
mum Mean Squared Error (WMMSE) [12]–[17]. Alternatively,
reinforcement learning can be leveraged to autonomously
optimize channel selection and power allocation based on
feedback from the network designer [18]. Unlike methods
based on supervised or unsupervised learning, reinforcement
learning does not rely on a model-based optimizer and it does
not require access to gradients of the objective function, but it
typically necessitates many evaluations of the KPIs of interest
at intermediate solutions.

It was recently pointed out by some of the authors of
the present contribution in [10] that Bayesian optimization
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Fig. 1. A configuration τ is described in this example by the network topology illustrated on the left. The network encompasses NC = 3 cells, each with
one BS. There are four UEs, with NU,1 = 2, NU,2 = 1, and NU,3 = 1 UEs in cells 1, 2, and 3, respectively. Therefore, communication links exist between
UE 1 and the BS in cell 1, UE 2 and the BS in cell 1, UE 3 and the BS in cell 2, as well as UE 4 and the BS in cell 3. Meta-learning schemes based
on BO or MAB optimize power allocation for this network configuration based on KPI measurement from other network configurations, characterized, e.g.,
by different distances or number of UEs per cell. Furthermore, as explained in Sec. VI, for contextual optimization, the context vector cτ may contain all
distances, where di is the distance from UE-i to the serving BS and dij is the distance between UE-i and the BS serving UE-j. The context vector cτ can
be described in terms of the interference graph Gτ shown on the right. In the graph, each node corresponds to one of the four links, and is marked with the
relevant distance between UE and serving BS. A directed edge is included between links for which the distance between the transmitting UE for the first link
and the receiving BS for the second link is sufficiently small, indicating a meaningful level of interference between the first link and the second link.

(BO) with Gaussian Process (GP) can provide a more flexible
solution that does not require access to gradient information
for the objective function and can potentially reduce conver-
gence time for power control optimization as compared to
reinforcement learning. However, BO still requires a separate
optimization for each network configuration, and the number
of per-configuration KPI evaluations may still be prohibitively
high.

Meta-learning, or learning to learn, is a general paradigm
for the design of machine learning algorithms that can transfer
knowledge from data related to different tasks, to any new,
related, task. Knowledge is transferred in the form of an
optimized inductive bias that can be realized via a prior
over the weights of neural networks [19], an initialization of
gradient descent [20], or an embedding space shared across
auxiliary tasks [21], among other solutions. Meta-learning is
markedly distinct to other knowledge-transferring paradigms
such as transfer learning. In fact, transfer learning focuses on
the optimization of a model for a specific target task given data
from a given source task. In contrast, meta-learning optimizes
an adaptation procedure – representing an inductive bias – that
can be applied to any, a priori unknown, related task [22].

Applications of meta-learning to communication systems
are currently limited to DNN-based models, and encompass
demodulation [23], [24], channel prediction [25], beamforming
[26], feedback design [27], and power control via graph neural
networks [28]. We refer to [6] for an extensive review. As
shown recently in [29], [30], meta-learning can be combined
with BO to achieve convergence and safe exploration within a
smaller number of iterations. Applications of this methodology
to resource allocation have yet to be explored.

Contextual BO was studied in [9]. In this reference, the
BO optimizer is given a different context vector at each

optimization step. For this situation, the authors of [9] propose
to append the context vector to the input. This approach does
not work well for the problem of interest in which the context
vector is fixed at run time, and hence different solutions must
be compared for the same context vector. This calls for the
use of a distinct context-based optimization approach, which
we introduce in this work.

C. Main Contributions

In this paper, we propose for the first time the use of
meta-learning to transfer knowledge from data collected from
related, but distinct, network configurations in order to speed
up optimization of resource allocation parameters on new
network configurations. The speed-up is measured in terms of
the number of evaluations of KPIs for candidate solutions that
are needed to attain an effective resource allocation strategy.
To this end, our contributions are of both methodological and
application-based nature. Specifically, we introduce new meta-
learning-based design methodologies, which we expect to be
of independent interest and broader applicability; and we in-
vestigate their application to uplink OLPC in cellular systems.
The proposed methods leverage the availability of offline data
from multiple network configurations, or deployments, to tailor
OLPC adaptation strategies for any new deployment.

The main contributions of the paper are as follows:
• At a methodological level, we introduce a novel scheme

that combines meta-learning with multi-armed bandit
(MAB) optimization [8]. MAB has the potential advantage
over BO of operating directly on a discrete search space.
This is a particularly useful feature in problems, such as
OLPC, in which the optimization variables are quantized.
Our approach, termed meta-MAB, is based on a specific
parameterization of the Exp3 bandit selection policy
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[31] that enables meta-optimization based on data from
multiple tasks.

• Also at a methodological level, we propose novel con-
textual meta-BO and meta-MAB algorithms that can
incorporate task-specific information in the form of a
graph. The proposed approach is based on a graph kernel
formulation [32], whereby problems characterized by
similar contextual graph information are assigned related
solutions. In the context of the OLPC problem, contextual
meta-BO and meta-MAP optimize a mapping from graph-
based contextual information about the network topology
to power allocation parameters (see Fig. 1).

• In terms of applications, we propose for the first time to
leverage meta-BO and meta-MAB for optimal resource
allocation with a focus on the problem of OLPC pa-
rameter optimization. As mentioned, while meta-BO is
directly applicable to continuous search spaces, and can
also be adapted to work for discrete optimization, meta-
MAB directly targets discrete search spaces. The benefit
of the proposed meta-BO and meta-MAB strategies is the
reduction in the number of KPI evaluations, or iterations,
needed to optimize resource allocation for each new
configuration.

• We validate the performance of all the proposed methods
in a multi-cell system following 3rd Generation Part-
nership Project (3GPP) specifications. Experiments for
the problem of OLPC parameter optimization provide
insights into the potential benefits of meta-learning and
contextual optimization strategies.

The rest of the paper is organized as follows. First, in
Sec. II we formulate the problem. Sec. III reviews BO and
Sec. IV introduces meta-BO; while Sec. V reviews MAB and
proposed meta-MAB. Contextual meta-BO and meta-MAB are
introduced in Sec. VI, and experimental results are provided
in Sec. VII. Sec. VIII concludes the paper.

II. PROBLEM FORMULATION

We consider the problem of uplink power allocation in a
wireless cellular communication system with NC cells, with
each cth cell containing one multi-antenna base station (BS)
and NU,c user equipments (UEs). As in [10], we specifi-
cally focus on the optimization of long-term uplink power
control parameters that are network-controlled and updated
infrequently by the network operator. Accordingly, the power-
control parameters are not adapted in real time, i.e., at time
scale of milliseconds, but rather at the scale of hours – e.g.,
peak vs. non-peak times – or days – e.g., weekday vs. week-
end.

In each cell c, the BS is equipped with NR,c receiving
antennas, and each UE u has NT,c,u transmit antennas. Note
that different UEs, such as smart watches, smart phones,
or sensors, generally have a distinct number of antennas,
which may not be known at the network side. Let PH denote
the probability distribution of the instantaneous channel state
information (CSI) H describing the propagation channels
between the BSs and all the UEs. The channel distribution
PH may account for the environment type, e.g., rural, urban,

or industrial; for the locations of the UEs and BSs; as well as
for slow and fast fading effects, including blockages. The user
activity can be also implicitly modelled by the distribution
PH, as inactive UEs can be modelled as having negligible
connectivity to all BSs.

We define the configuration τ of the system via the tuple
τ = (NR,NU ,NT ,PH) consisting of vectors NR and NT ,
which collect the numbers of antennas at BSs and UEs across
the cells, respectively; of vector NU , which counts the number
of UEs in each cell, and of the CSI distribution PH. We are
interested in developing efficient solutions for power allocation
of the UEs given any system configuration τ . We first focus
on developing efficient solutions for power allocation of the
UEs given any system configuration τ . Then, in Sec. VI, we
consider a more general setting in which the power control
policy can also depend on “context” information about the
CSI distribution PH, such as the topology of the network.

For a given configuration τ , the distribution PH is generally
unknown. For instance, the UE distribution and/or fading
models may not be available. Power control can be based
only on the vectors NR,NU ,NT , as well as on a dataset
Dτ = {Hτ,s}Sτs=1 of Sτ CSI realizations. The dataset Dτ
is practically obtained through channel estimation procedures.
Our goal is to design mechanisms that can optimize the power
allocation strategy for any new configuration τ even when only
few data points are available, i.e., when Sτ is small, and/or
when limited time and computational power can be expended
for optimization. To this end, we will combine an offline meta-
optimization step with an adaptation step based on dataset
Dτ . In practice, as we will discuss, one may not have access
to CSI, but only to point-wise measurements of a relevant
key performance indicator (KPI), and the aim is to minimize
the number of such measurements required to identify a well
performing power control solution.

According to the 3GPP’s fractional power control policy
[33], each UE u in cell c calculates its transmitting power PTX

c,u

(in dBm) on the physical uplink shared channel (PUSCH) as
a function of the open loop power control parameters (OLPC)
(P0,c, αc). These consist of the expected power P0,c received
at the BS of cell c under full power compensation, and the
fractional power control compensation parameter αc ∈ [0, 1]
for cell c. Specifically, focusing on a single resource block,
the power PTX

c,u is obtained as [33]

PTX
c,u = min{Pmax

c,u , P0,c + αcPLc,u + CLc,u} [dBm], (1)

where Pmax
c,u is the maximum UE transmit power; and PLc,u

is the pathloss in dB towards the serving cth BS, and CLc,u is
the closed-loop power control adjustment for UE u. Note that,
by (1), if αc = 1 the received power is P0,c+CLc,u, unless the
maximum power constraint Pmax

c,u forces the equality PTX
c,u =

Pmax
c,u in (1). The OLPC parameters (P0,c, αc) are generally

distinct across the cells, i.e., they depend on the cell index c.
Furthermore, they are constrained to lie in the set of NOLPC =
912 options described in Table I [10]. We define as P0 =
[P0,1, . . . , P0,NC ]T the NC × 1 vector of expected received
power parameters across all cells; and as α = [α1, ..., αNC ]T

as the vector of fractional power compensation parameters.
Note that the optimization space, i.e., the number of allowed
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values of the OLPC parameters P0 and α grows exponentially
with the number of cells NC .

TABLE I
ALLOWED VALUES FOR OLPC PARAMETERS

P0 (dBm) −202,−200, ...,+22,+24
α 0, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0

The OLPC parameters (P0,α) are to be selected so as to
optimize a given uplink KPI [10]. The KPI obtained for a
given CSI Hτ is a function of the OLPC parameters (P0,α)
through (1), and is denoted as KPI(P0,α,Hτ ). The KPI may
be obtained via fixed measurements or through the use of a
simulator. For any given configuration τ , we are interested in
maximizing the average network-wide KPI as per the discrete
optimization problem

max
P0,α

{
EPHτ

[
KPI(P0,α,Hτ )

]}
, (2)

where the objective function in (2) is expressed as the average
KPI over the CSI distribution PHτ

for configuration τ . Ex-
amples of KPI include the sum-achievable rate, as it will be
detailed in Sec. VII.

Intuitively, if αc and P0,c are large, the intended received
power at the BS of cell c is high, but the interference
generated to neighboring BSs is also significant. Conversely,
if αc and P0,c are small, both intended signal and interference
are low. Therefore, the solution of problem (2) hinges on
the identification of an optimized trade-off between intra-cell
received power and inter-cell interference.

The objective in (2) cannot be directly evaluated, since it
depends on the unknown distribution PHτ . However, it can
be estimated by using the CSI dataset Dτ via the empirical
average

fτ (P0,α) =
1

Sτ

Sτ∑
s=1

KPI(P0,α,Hτ,s), (3)

where we recall that Sτ is the number of available measure-
ments {Hτ,s} in dataset Dτ . Overall, the problem of interest
is the optimization

max
P0,α

fτ (P0,α). (4)

When one restricts the parameters (P0,α) as in Table I, the
problem is discrete.

One could solve the discrete optimization problem (4) using
exhaustive search, but this may not be computationally feasi-
ble. In fact, the optimization space includes NOLPC possible
OLPC choices. In the next sections, we will explore more
efficient, approximate solutions. As we will detail in Sec. IV,
the proposed meta-learning methods leverage the principle of
transferring knowledge from previously encountered configu-
rations τ in order to prepare to optimize power allocation for
new configurations.

III. BAYESIAN OPTIMIZATION

As a first approach to address the black-box optimization
problem (4), we review the solution proposed in [10], which

Algorithm 1: Bayesian Optimization (BO) for a given
configuration τ
Input: GP prior (µ(·), k(·, ·)), CSI dataset Dτ ,

maximum number of rounds Tmax
Output: Optimized x∗

1 Initialize round t = 0, empty matrix X0 = [ ], empty
vector f̃0 = [ ]

2 while not converged do
3 Obtain the next OLPC vector xt+1 using (8)
4 Obtain observation f̃t+1 ∼ N (f̃t+1|f(xt+1), σ2)
5 Update matrix Xt+1 = [Xt,xt+1] and vector

f̃t+1 = [f̃t, f̃t+1]T

6 Set t = t+ 1
7 end
8 Return x∗ = xt∗ with t∗ = arg maxt′∈{1,...,t−1} f̃t′

models the objective function fτ (P0,α) as a Gaussian Process
(GP) and applies Bayesian optimization (BO). As we will
detail, the approach is based on black-box evaluations of the
KPI fτ (P0,α) at a sequence of trial solutions (P0,α). As
anticipated, the approach does not require an explicit channel
estimation step in order to address the optimization (4). To
simplify the notation, we remove the dependence on the
configuration τ , which is assumed to be fixed throughout this
section.

A GP is defined by a mean function µ(·) and a kernel
function k(·, ·). The kernel function may be chosen, for
instance, as k(x,x′) = exp(−γ||x−x′||2). Intuitively, the role
of the kernel function is to quantify the similarity between
input parameters x and x′ in terms of the respective KPI
values. Specifically, writing x = [PT

0 ,α
T]T for the vector

of variables under optimization in problem (4), the GP prior
on the objective function f(P0,α) = f(x) stipulates that,
for any set of T inputs X = [x1, . . . ,xT ], the corresponding
values f(X) = [f(x1), . . . , f(xT )]T of the objective function
are jointly distributed as

p(f(X) = f) = N (f |µ(X),K(X)), (5)

where f = [f1, ..., fT ]T is a T × 1 real vector; µ(X) =
[µ(x1), ..., µ(xT )]T is the T × 1 mean vector; and K(X)
represents the T × T covariance matrix, whose (t, t′)th entry
is given as [K(X)]t,t′ = k(xt,xt′) with t, t′ ∈ {1, ..., T}. By
(5), the mean function µ(·) encodes prior knowledge about the
values of the objective function for any fixed input x, while
the kernel encodes prior knowledge about the variability of
the loss function across pairs of values of x.

One may further assume that the KPI values obtained from
the simulator or look-up table are noisy, yielding the vector
of noisy observed KPI values f̃ = [f̃1, ..., f̃T ]T. Specifically,
assuming the observation noise is Gaussian, we have the
conditional distribution p(f̃ |f) = N (f̃ |f , σ2IT ), where σ2 is
the variance of the observation noise and IT is the T × T
identity matrix.

Using (5), the posterior distribution of the objective value
f(x) at OLPC option x given the observation of previous input
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and KPI pairs (X, f̃) can be obtained as [34]

p(f(x) = f |X, f̃) = N (f |µ(x|X, f̃), σ2(x|X, f̃)), (6)

where

µ(x|X, f̃) = µ(x) + k̃(x)T(K̃(X))−1(f̃ − µ(X)), (7a)

σ2(x|X, f̃) = k(x,x)− k̃(x)T(K̃(X))−1k̃(x), (7b)

with K̃(X) = K(X) + σ2IT , and k̃(x) being the T × 1
covariance vector k̃(x) = [k(x,x1), . . . , k(x,xT )]T. The
distribution (6) can be used to obtain an estimated value of the
objective f(x) as the mean µ(x|X, f̃), as well as to quantify
the corresponding uncertainty of the estimate via the variance
σ2(x|X, f̃).

At each round t, Bayesian optimization leverages GP infer-
ence to optimize the selection of the next vector xt+1 of OLPC
parameters at which to evaluate the KPI. This is done by maxi-
mizing an acquisition function F (xt+1|Xt, f̃t), which depends
on the previous observations (X, f̃) = (x1, ...,xt, f̃1, ..., f̃t),
via the optimization

xt+1 = arg max
x

F (x|Xt, f̃t), (8)

where the OLPC vector x is constrained to take the values in
Table I.

A standard example of acquisition function is the expected
improvement function, which computes the average positive
increment in the function f(xt+1) evaluated at xt+1 based on
(6) [35]. Defining as f∗t = max{f̃1, ..., f̃t} the current best
observed objective value, the expected improvement function
is defined as [10]

F (x|X, f̃) =
[
µ(x|X, f̃)− f∗t − ξ

]
Φ(δ) + σ2(x|X, f̃)φ(δ),

(9)

where

δ =
µ(x|X, f̃)− f∗t − ξ

σ2(x|X, f̃)
; (10)

functions µ(x|X, f̃) and σ2(x|X, f̃) are given as in (7a) and
(7b); ξ ∈ [0, 1) is an exploration parameter; and Φ(·) and φ(·)
are the standard Gaussian cumulative and probability density
function, respectively. For a risk-sensitive system with a well-
specified GP prior, we may choose small ξ (e.g., ξ = 0.01
or even ξ = 0). In contrast, where the prior is not tailored to
the given problem, one can use larger values of ξ to enable
exploration [10].

The overall Bayesian optimization procedure is summarized
in Algorithm 1. As a convergence criterion, we can fix the
number of iterations to some value Tmax, or else stop when
the expected improvement (9) is small enough.

IV. BAYESIAN META-OPTIMIZATION

Solving problem (4) separately for each configuration τ via
Bayesian optimization (Algorithm 1) may entail significant
complexity in terms of number Sτ of required CSI samples,
as well as number of evaluations of KPI values, i.e., the
number of iterations in Algorithm 1. In this section, we
introduce Bayesian meta-optimization [30], [36], which uses

Algorithm 2: Bayesian Meta-Optimization (Meta-BO)
Input: Parameterized GP prior (µθ(·), kθ(·, ·)),

meta-training data X1:N , f̃1:N , stepsize β
Output: Optimized hyperparameters vector θ∗

1 Initialize hyperparameters vector θ
2 while not done do
3 Evaluate gradient ∇θL(θ|X1:N , f̃1:N ) using (15)
4 Update hyper-parameters using gradient descent

θ ← θ − β∇θL(θ|X1:N , f̃1:N )
5 end
6 Return θ∗

7 Given a new network configuration τ , apply BO with
hyperparameter θ∗

offline data collected from multiple system configurations τ
as a means to reduce optimization complexity when applied
to any configuration τ at run time.

In Bayesian meta-optimization, we assume that, in an offline
phase, we can collect data from N configurations, denoted as
τ1, ..., τN . These configurations may correspond to previous
deployments or to concurrent deployments located elsewhere
the system or to previous runs of a simulator with different
settings, such as inter-site distances and number of UEs. For
each configuration τn, with n = 1, ..., N , we have access
to a dataset Dτn of Sτn CSI samples, which can be used
to obtain the objective function fτn(x) in (3). Furthermore,
for each task τn, we assume to have collected Tn inputs
Xn = [xn,1, ...,xn,Tn ], as well as the corresponding noisy
observations f̃n = [f̃n,1, ..., f̃n,Tn ] of the actual objective
values fn,t = fτn(xn,t). We refer to the above collected
data available from N configurations as meta-training data.
In practice, the designer may equivalently only have access
to Tn evaluations of the KPI function. In our experiments,
we explore values Tn in the range [1,30]. We aim at using
these data to improve efficiency on new tasks sampled from
the same environment.

To this end, Bayesian meta-optimization uses meta-training
data to optimize the GP prior via parametric mean function
µθ(·) and kernel function kθ(·), which are functions of a
vector of hyperparameters θ. Specifically, we consider the
parametric kernel function [37]

kθ(x,x′) = exp (−||ψθ(x)− ψθ(x′)||22), (11)

where ψθ(·) is a neural network with hyperparameter vector
θ ∈ RL constituting its synaptic weights and biases and we
also assume µθ(x) to be a neural network. By optimizing
the GP prior via (11), the goal is to ensure that Bayesian
optimization applied to a new configuration τ can produce an
effective solution with fewer samples Sτ and fewer evaluations
Tmax of the KPI.

Intuitively, the role of the kernel function is to quantify the
similarity between power control parameters x and x′ in terms
of the respective KPI values obtained for a given configuration.
The standard approach in BO is to select this kernel as a
predefined distance metric, e.g., the Euclidean distance in
[10], which may not reflect well the specific properties of the
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given optimization problem (4). In contrast, Bayesian meta-
optimization aims at optimizing the kernel function so as to
account for the structure of the power control optimization
problems (4) for the N configurations for which we have meta-
training data. The rationale is that one expects such structure
to be sufficiently related to that of any new configuration τ of
interest.

Bayesian meta-optimization, is formulated by introducing
meta-training loss incurred on the meta-training data X1:N =
[X1, ...,XN ] and f̃1:N = [f̃1, ..., f̃N ] when using hyperparam-
eter vector θ as

L(θ|X1:N , f̃1:N ) = − 1

N

N∑
n=1

1

Tn
ln pθ(f̃n|Xn), (12)

where

ln pθ(f̃n|Xn)

= −1

2

(
f̃n − µθ(Xn)

)T(
K̃θ(Xn)

)−1(
f̃n − µθ(Xn)

)
− 1

2
ln
∣∣∣K̃θ(Xn)

∣∣∣− Tn
2

ln (2π), (13)

with µθ(Xn) = [µθ(xn,1), ..., µθ(xn,Tn)]T; [Kθ(Xn)]t,t′ =
kθ(xn,t,xn,t′) for (t, t′) ∈ {1, ..., Tn}; and K̃θ(Xn) =
Kθ(Xn)+σ2ITn . The meta-training loss (12) is the empirical
average of the negative log-likelihood evaluated on the meta-
training data [37]. The optimal hyperparameter θ∗ is obtained
by addressing the problem

θ∗ = arg min
θ
L(θ|X1:N , f̃1:N ). (14)

To implement the optimization in (14), we adopt a gradient-
based optimizer. The partial derivative of the meta-training loss
with respect to the j-th component θj of the hyperparameters
vector θ is computed as

∂

∂θj
L(θ|X1:N , f̃1:N )

= − 1

N

N∑
n=1

(
1

2

(
f̃n − µθ(Xn)

)T(
K̃θ(Xn)

)−1
∂K̃θ(Xn)

∂θj

(
K̃θ(Xn)

)−1(
f̃n − µθ(Xn)

)
− 1

2
tr
(

K̃θ(Xn)−1
∂K̃θ(Xn)

∂θj

))
1

Tn

= − 1

N

N∑
n=1

1

2Tn
tr
((

ΛΛT − K̃θ(Xn)−1
)∂K̃θ(Xn)

∂θj

)
,

(15)

where Λ = K̃θ(Xn)−1(f̃n −µθ(Xn)). The partial derivative
term in (15) can be estimated by backprop with the parameters
in (11).

The hyper-parameter θ∗ optimized with the gradient-based
procedure outlined above is used to define the GP prior to be
used for Bayesian optimization in new configurations for the
purpose of improving the efficiency of Bayesian optimization.
Overall, Bayesian meta-optimization is summarized in Algo-
rithm 2.

V. BANDIT OPTIMIZATION AND META-OPTIMIZATION

Given the discrete nature of problem (4) when considering
Table I, it can be directly modelled as a stochastic multi-armed
bandit (MAB) model rather than as GP, which assumes contin-
uous variables. In the MAB formulation, the total number of
arms equals the number, NOLPC , of OLPC parameters options
listed in Table I. The goal is to design a policy that selects the
best “arm” i.e., the OLPC pair (P0,α) that optimizes problem
(4) after a small number of attempts. In practice, as in the case
of Bayesian optimization, one accepts sub-optimal solutions
that performs well enough.

A. Bandit Policy

As in Bayesian optimization (see Algorithm 1), for a
configuration τ , at the tth optimization round, the learning
agent selects an OLPC configuration xt from Table I and
observes a noisy version f̃t of the corresponding KPI value
fτ (xt). In a manner similar to (8), a bandit optimization
policy maps the history (Xt, f̃t) of previous selections and
corresponding cost functions up to round t to the next selection
xt+1. Specifically, we consider a stochastic bandit policy
pω(x|Xt, f̃t), parameterized by a scalar ω ∈ [0, 1], that defines
the probability of selecting an OLPC configuration x at t-th
round given the past history (Xt, f̃t). Policy pω(x|Xt, f̃t) can
be defined via a recurrent neural network [38] or via simpler
functions such as the Exp3 policy in [31].

In this work, we consider the following modified Exp3
policy

pω(x|Xt, f̃t) = (1− ω)
exp(G(x, t− 1))∑

x′ G(x′, t− 1)
+

ω

NOLPC
, (16)

where ω ∈ [0, 1] is the policy parameter; the sum is over all
the possible OLPC configurations in Table I; and

G(x, t− 1) =

t−1∑
i=1

k(xi,x)[pω(x|Xt−1, f̃t−1)]−1f̃i, (17)

is a weighted average of the noisy objective function values
obtained for input x in the previous t− 1 rounds, with k(·, ·)
being a kernel function. While the conventional choice for the
kernel function is the identity function k(x,x′) = 1 if x = x′

and k(x,x′) = 0 otherwise, here we will allow for a more
general solution. This will be useful in the next subsection to
facilitate the application of meta-learning.

Standard bandit optimization considers a fixed parameter
parameter ω, and is summarized in Algorithm 3.

B. Bandit Meta-Optimization

Following the meta-learning setting introduced in Sec. IV,
in this section we propose a bandit meta-optimization strategy.
As in Sec. IV, we assume availability of data for N system
configurations. The goal of bandit meta-optimization is to use
such meta-training data, given by X1:N and f̃1:N as defined
in the previous sections, to optimize a hyperparameter vector
defining the bandit policy.

To this end, we propose to instantiate the kernel function
kϕ(·, ·) in the Exp3 policy (16) as in (11) with neural network
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Algorithm 3: Multi-Armed Bandit Optimization
(MAB) for a given configuration τ

Input: Policy parameter ω, CSI dataset Dτ , maximum
number of rounds Tmax

Output: Optimized x∗

1 Initialize round t = 0, empty matrix X0 = [ ], empty
vector f̃0 = [ ]

2 while not converged do
3 Sample from policy pω(x|Xt, f̃t) to obtain xt+1

4 Obtain observation f̃t+1 ∼ N (f̃t+1|f(xt+1), σ2)
5 Update matrix Xt+1 = [Xt,xt+1] and vector

f̃t+1 = [f̃t, f̃t+1]T

6 Set t = t+ 1
7 end
8 Return x∗ = arg maxt′∈{1,...,t−1} f̃t′

parameters ϕ. We aim at optimizing the parameter tuple θ =
(ϕ, ω) defining the resulting policy pθ(x|Xn, f̃n) to ensure
that bandit meta-optimization applied to a new configuration
τ can select an effective OLPC vector with a smaller number
of trials.

To this end, we define the following meta-training loss as

L(θ|X1:N , f̃1:N ) = − 1

N

N∑
n=1

Ex∼pθ(·|Xn,f̃n)
[f̃(x)], (18)

where the expectation is taken with respect to the bandit
policy pθ(x|Xn, f̃n) based on the available history (Xn, f̃n) of
observations for each n-th configuration τn. To implement the
optimization over (18), we adopt a gradient-based optimizer.
The gradient of the meta-training loss with respect to policy
vector ϕ and ω is evaluated as [38]

∇θL(θ|X1:N , f̃1:N )

= − 1

N

N∑
n=1

Ex∼pθ(·|Xn,f̃n)

[
f̃(x)∇θ log pθ(x|Xn, f̃n)

]
.

(19)

The meta-learned optimal policy vector θ∗ = (ϕ∗, ω∗) is
then used in the bandit policy used in Algorithm 3 to optimize
the OLPC variables for a new configuration. Bandit meta-
optimization is summarized in Algorithm 4.

VI. CONTEXTUAL BAYESIAN AND BANDIT
META-OPTIMIZATION

In the previous sections, we have assumed that no informa-
tion is available about the current configuration τ apart from
the CSI dataset Dτ . In practice, the system may have access
to context information about the deployment underlying the
configuration τ , such as the geometric layout, expected UE
positions, or the fading statistics. In this section, we introduce
a generalization of the meta-optimization strategies described
in Sec. IV and Sec. V that can leverage configuration-
specific context information to optimize OLPC parameters
x = (P0,α).

Algorithm 4: Bandit Meta-Optimization (Meta-MAB)

Input: Parameterized policy pθ(x|Xn, f̃n),
meta-training data X1:N , f̃1:N , stepsize η

Output: Optimized policy vector θ∗ = (ϕ∗, ω∗)
1 Initialize policy vector θ = (ϕ, ω)
2 while not done do
3 Evaluate gradient ∇θL(θ|X1:N , f̃1:N ) using (19)
4 Update policy vector using gradient descent

θ ← θ − η∇θL(θ|X1:N , f̃1:N );
5 end
6 Return θ∗

7 Given a new network configuration τ , apply MAB
(Algorithm 3) with hyperparameter θ∗ = (ϕ∗, ω∗)
with kernel function kϕ(·, ·)

A. Context-Based Meta-Optimization

Let cτ denote a context vector specific to configuration τ ,
which includes all the information available at the optimizer
about configuration τ . The key idea of the proposed methods
is to use meta-training data from multiple tasks in order to
optimize a procedure that can adapt the parameters θ for BO
or MAB optimization to the configuration-specific context cτ .

Formally, for each meta-training configuration τn, we have
access to data (Xn, f̃n, cn), where cn is the context vector
for the meta-training task τn. Therefore, as compared to the
meta-learning settings studied in the last two sections, here
we assume the additional availability of the context vector cn
for each task τn. Accordingly, at run time, the optimizer is
given context vector cτ for the current configuration τ . The
goal is to effectively adapt the optimizer’s parameters θ to the
context vector cτ by leveraging knowledge transferred from
the meta-learning tasks.

The proposed approach leverages meta-learning data to
optimize a parametric mapping qV(·) between context cτ and
parameters θ. The mapping depends on a parameter matrix
V that is to be optimized based on meta-training data. Once
vector V, and hence also the parametric mapping qV(·), are
fixed, an optimized per-task configuration hyperparameters θ∗τ
is obtained as θ∗τ = qV(cτ ) for the new task τ .

Intuitively, an effective mapping qV(·) should map similar
context vectors, defining similar configurations, into similar
parameter vectors. Two context vectors are similar if the
respective KPIs depend in an analogous way on the parameters
(P0,α) under optimizations. Since, as we will detail in the
next subsection, the context vector typically encodes informa-
tion about the topology of the network, the mapping should
account for the extent to which topologies with similar char-
acteristics call for related optimized power control parameters
x.

In order to facilitate the optimization of mapping functions
with this intuitive property, we propose here to adopt the linear
function

qV(c) =

N∑
n=1

κ(c, cn)νn, (20)
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where we have introduced the context kernel function κ(c, c′)
to measure the similarity between two context vectors c and c′.
As detailed in the next subsection, the context kernel function
is set by the optimizer to capture the desired similarity proper-
ties between two context vectors. The mapping (20) depends
on parameter vectors ν1, ...,νN of the same dimension of the
parameter vector θ, which we collect in the parameter matrix
V = [ν1, ...,νN ] to be optimized. Finally, introducing the
vector κ(c) = [κ(c, c1), ..., κ(c, cN )]T, the mapping (20) can
be expressed as

qV(c) = Vκ(c). (21)

By (20), or (21), the parameter vector

θ∗τ = qV(cτ ) (22)

for the test configuration τ is modelled as a linear combina-
tion of vectors νn, with each vector νn being weighted by
the similarity κ(cτ , cn) between context vectors cτ and cn.
Implementing the intuition detailed at the beginning of this
subsection, we can view νn as the parameter vector assigned
to the meta-learning configuration τn, and the parameter vector
θ∗τ in (22) as being closer to vectors νn corresponding to more
similar configurations τn according to the kernel similarity
measure κ(cτ , cn).

The parameter matrix V has a number of entries equal to the
product of the size of model parameter θ, denoted as L, and the
number N of meta-learning tasks. This may be exceedingly
large, causing optimization during meta-learning to possibly
overfit the meta-training data yielding poor performance on
the test configuration. To address this problem, we propose to
factorize the L×N matrix V by using a low-rank decompo-
sition into two lower-dimensionality factors. Accordingly, we
write the mapping (22) as

θ∗τ = qV1,V2
(cτ ) = V1V

T
2κ(c), (23)

which depends on the parameter matrices V1 ∈ RL×r and
V2 ∈ RN×r for rank r < min{L,N} being a hyperparameter.

B. Context Graph Kernel

The choice of the context kernel κ(·, ·) depends on the
type of information included in the context vector for each
configuration. In this subsection, we introduce a solution that
applies to the common situation in which the context vector in-
cludes information about the topology of the network, namely
all distances between BSs and UEs. This setting is selected
to demonstrate the importance of leveraging the structure
inherent in the context vector, along with the corresponding
symmetry properties of the mapping from context vector to
model parameters. This is detailed next.

For the purpose of power allocation, information about the
topology of the network is important insofar as it determines
the interference pattern among the links. In particular, the
order in which the links are listed in the context vector cτ
is not relevant. This implies that the mapping (23) should be
invariant to permutations of the entries of the context vector.
To enforce this invariance property, we adopt the framework
of graph kernels [32].

To this end, we summarize information about topology of
the network for configuration τ by means of an annotated
interference graph Gτ that retains information about within-
cell UE-BS distances (see, e.g., [3]). As illustrated in Fig.
1, in the interference graph Gτ , each node represents a link
between a UE and the serving BS. Each node i is annotated
with distance di between the corresponding UE, also indexed
by i as UE-i, and the serving BS. A directed edge from node
i to node j is included in graph Gτ if the interference from the
link associated with node i to the link associated with node
j is sufficiently large. To gauge the level of interference from
link i to link j, we consider the distance dij between UE-i
and the BS serving UE-j. If the ratio dij/dj of this distance to
the distance between UE-j and the serving BS is below some
threshold, a directed edge is added between node i and j.

The context kernel κ(cτ , cτ ′) is designed to measure the
similarity between the graphs Gτ and Gτ ′ corresponding to
context vectors cτ and cτ ′ , respectively. There are a number
of graph kernels that one can choose from for this purpose,
ranging from graphlet kernels to deep graph kernels [32]. In
this work, we focus on graphlet kernels [39], which are defined
as

κ(cτ , cτ ′) =
Ψ(Gτ )TΨ(Gτ ′)

||Ψ(Gτ )||2||Ψ(Gτ ′)||2
, (24)

where Ψ(G) is a vector of features extracted from the graph G.
Each such feature of vector Ψ(G) counts the number of times a
certain sub-graph is contained in the graph G. We specifically
propose to consider the following feature vector

Ψ(G) = [Ψ1(G), ...,ΨNU−1(G)]T, (25)

where Ψi(G) = number of nodes with in-degree equal to i.
The rationale for this choice is that interference graphs with
similar connectivity, as quantified by vector (25), should also
have similar characteristics in terms of the impact of power
control decisions on interference levels. Accordingly, context
vectors with a large value of the kernel (24) are expected to
have similar optimized power control parameters. Note that
vector Ψ(G) contains a number of entries equal to the number
NU of UEs minus 1, which corresponds to the number of
nodes in the interference graph G. Furthermore, the in-degree
of a node is the number of incoming edges.

C. Context-Based Bayesian Meta-Optimization

To define context-based Bayesian meta-optimization, we
directly modify the meta-training loss introduced in Sec. IV
in (12) for Bayesian meta-optimization as

L(V1,V2|X1:N , f̃1:N , c1:N )

= − 1

N

N∑
n=1

1

Tn
ln pqV1V2

(cn)(f̃n|Xn). (26)

The key difference is that the meta-training loss is now a
function of the two matrix factors V1 and V2, rather than
being a function directly of the parameter vector θ. In fact,
the parameter θ is adapted to the context cn of each task τn via
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Fig. 2. Illustration of the objective function (29) for a given configuration
τ in the optimization space (P0, α) for the multi-cell system considered in
Sec. VII.

the mapping qV1V2
(cn). The meta-learned optimal parameter

matrices V∗1 and V∗2 are obtained as the minimizer

(V∗1,V
∗T
2 ) = arg min

V1,V2

L(V1,V2|X1:N , f̃1:N , c1:N ), (27)

where the optimization can be addressed via gradient-descent
and backprop in a manner similar to problem (14).

D. Context-Based Bandit Meta-Optimization

In a similar way, context-based bandit meta-learning ad-
dresses the minimization of the meta-training loss obtained
by replacing in (18) the model parameter vector θ with the
output of qV1V2

(cn) of the meta-trained mapping for each
task τn. This yields the objective

L(V1,V2|X1:N , f̃1:N , c1:N )

=
1

N

N∑
n=1

Ex∼pqV1V2
(cn)(·|Xn,f̃n)

[f̃(x)], (28)

which can be addressed via gradient descent.

VII. NUMERICAL RESULTS

In this section, we present a number of experimental results
with the goal of validating the potential benefits of the pro-
posed meta-learning and contextual meta-learning methods for
uplink power allocation via Bayesian and bandit optimization.

A. Setting

We consider a multi-cell MIMO system with a wrap-around
radio distance model, in which NU UEs in each cell are
equipped with NT transmit antennas each, while the BSs
serving the UEs in each cell are equipped with NR receiving
antennas. Focusing on a single resource block, the CSI Hτ

consists of the NR×NT channel matrices Hτ,c,u,c′ describing
the propagation channel between the NT antennas of the uth
UE in cell c and the NR antennas of the BS in cell c′. The
KPI function in (4) is instantiated as the sum of the spectral
efficiencies for all users in the system, where the intra-cell and

Fig. 3. Fraction of the optimal KPI (29) (compared to exhaustive search)
obtained by BO and MAB optimizers for a multi-cell system as a function of
the number of iterations of the optimization algorithms.

inter-cell signals are treated as interference. This yields (see,
e.g., [40])

KPI(P0,α,Hτ ) =

NC∑
c=1

NU∑
u=1

log2 det

(
INR

+ 10
PTX
c,u
10 Γ−1c,uHτ,c,u,cH

H
τ,c,u,c

)
[bit/s/Hz], (29)

where INR is the NR × NR identity matrix, and Γc,u is the
noise-plus-interference covariance matrix for the transmission
of UE u towards the serving BS in cell c, i.e.,

Γc,u = 10
σ2z
10 INR +

NU∑
j=1,j 6=u

10
PTX
c,j
10 Hτ,c,j,cH

H
τ,c,j,c

+

NC∑
c′=1,c′ 6=c

NU∑
u=1

10
PTX
c′,u
10 Hτ,c,u,c′H

H
τ,c,u,c′ , (30)

with σ2
z as the channel noise power in logarithmic scale. Note

that the transmitted powers PTX
c,j from each jth UE in any cell

c are also measured in logarithmic scale.
The joint distribution PHτ

of the channel matrices Hτ =
{Hτ,c,u,c′}NC ,NU ,NCc=1,u=1,c′=1 depends on the wrap-around distance
{dc,u,c′} between the uth UE in cell c and the BS in cell c′ for
u = 1, ..., NU and c, c′ = 1, ..., NC ; on the receiver antennas
height hBS relative to the UEs’ height; on the power of shadow
fading σ2

SF ; and on the carrier frequency fc. Specifically, we
model the NR ×NT channel between UE u in cell c and the
BS in cell c′ as

Hτ,c,u,c′ = 10
−PL

τ,c,u,c′
20 βτ,c,u,c′Gτ,c,u,c′ , (31)

where the distribution of the NR×NT random matrix Gτ,c,u,c′

and of the coefficient βτ,c,u,c′ depend on whether UE u in cell
c is in non-line-of-sight (NLOS), or line-of-sight (LOS). With
respect to BS c′, the LOS probability for each UE u in cell
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c is computed according to Table 7.4.2-1 in 3GPP TR 38.901
as

PrLOS,τ,c,u,c′ =


1

dτ,c,u,c′ ≤ dmin,
18

dτ,c,u,c′
+ exp

(
− dτ,c,u,c′

36

)(
1− 18

dτ,c,u,c′

)
dτ,c,u,c′ > dmin,

(32)

where dmin is set to 18 m. The slow fading vari-
able βτ,c,u,c′ is log-normal distributed with standard de-
viations σLOS,τ or σNLOS,τ with respective probabilities
PrLOS,τ,c,u,c′ and 1−PrLOS,τ,c,u,c′ ; and the matrix Gτ,c,u,c′

is either Ricean or Rayleigh distributed with respective proba-
bilities PrLOS,τ,c,u,c′ and 1−PrLOS,τ,c,u,c′ . Furthermore, the
pathloss PLc,u,c′ for LOS and NLOS, which are used in (1),
are obtained from the urban microcellular (UMi) street canyon
pathloss model in Table 7.4.1-1 of 3GPP TR 38.901 as

PLLOS,c,u,c′ = 32.4 + 21 log10(d′c,u,c′) + 20 log10(fc),

PLNLOS,c,u,c′ = max
(

PLLOS,c,u,c′ , 35.3 log10(d′c,u,c′)

+ 22.4 + 21.3 log10(fc)− 0.3(hUE − 1.5)
)
, (33)

respectively, where d′τ,c,k is the distance between UEs and
receiver antennas in the wrap-around model. The parameter
CLu,c in (1) is fixed to 0 dB in accordance to Table 7.2.1-1
in 3GPP TS 38.213.

We focus on the optimization of a single pair (P0, α) of
OLPC parameters shared across three cells. This relatively
simple setting allows us to maximize function (29) exactly
through exhaustive search, providing a useful benchmark for
the considered approximate optimization strategies.

We fix the number of antennas to NR = 16 and NT =
4, the number of UEs to NU = 10 in each cell, the carrier
frequency to fc = 3.5 GHz, the size of the CSI dataset for
each configuration τ is set to Sτ = 100 samples, and the
maximum transmit power is PMAX,u = 23 dBm for all UEs.

For each configuration, the location of the UEs is fixed, and
obtained by drawing distances dc,u,c to a serving BS uniformly
in the interval [18, 200] meters. As specified in UMi street
canyon, the receiver height is hBS = 15 meters, the shadow
fading standard deviations are set to 4 dB and 7.82 dB. In
accordance with Table 7.7.2-4 in 3GPP TR 38.901, Rayleigh
fading variance is -13.5 dB for NLOS links, while Rice fading
with mean -0.2 dB and variance -13.5 dB affects LOS UEs.
The noise power is set to σ2

z = −121.38 dB.

B. Conventional Bayesian and Bandit Optimization

First, we evaluate the average KPI function (3) using (29) in
the full (P0, α) solution space, where the KPI is averaged over
20 realizations of the dataset Dτ with the same configuration
τ . Fig. 2 shows that the optimization target is multimodal, and
hence generally computational challenging for traditional local
search algorithms.

We now compare the performance of BO and bandit op-
timization on a single configuration τ , with the performance
averaged over 10 realizations and over 100 CSI datasets for

Fig. 4. Fraction of the optimal KPI (29) (compared to exhaustive search)
obtained by meta-BO (top) and meta-MAB (bottom) optimizers for a multi-
cell system as a function of the number of iterations of the optimization
algorithms.

each realization. We plot the KPI value normalized by the
optimal value obtained via exhaustive search. The kernels
for BO and bandit optimization are selected as Radial Basis
Function kernels (RBF) with bandwidth tuned to be 0.76
prior to the optimization, and we set parameter ω = 0.3
throughout the experiments for MAB via grid search. BO is
seen to outperform bandit optimization for the first several
iterations. At later iterations, the performance is limited by
the inherent bias of BO due to the continuous model used
to approximate optimization in a discrete space. This causes
bandit optimization, which operates directly on a discrete
space, to outperform BO when the number of iterations is
sufficiently large, attaining the performance of exhaustive
search.

C. Bayesian and Bandit Meta-Optimization

Having observed the relative inefficiency of BO and MAB
in terms of number of iterations in Fig. 3, we now evaluate
the performance of Bayesian meta-optimization (Algorithm 2)
and bandit meta-optimization (Algorithm 4). We refer to these
schemes for short as meta-BO and meta-MAB, respectively.
Both the parametric mean function µθ(·) and function ψθ(·)
for kernels (11) are instantiated as fully-connected neural
networks with 3 layers with each 32 neurons. Setting the
number of meta-training configurations to N = 50, and the
number of collected data pairs to Tn = 10, Fig. 4 shows
the fraction of the optimal KPI for both meta-optimization
strategies.
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Fig. 5. Fraction of the optimal KPI (29) (compared to exhaustive search)
obtained by contextual meta-BO and vanilla meta-BO (top), as wel as by
contextual meta-MAB and vanilla meta-MAB (bottom) for a multi-cell system
as a function of the number of iterations of the optimization algorithms.

It is observed that meta-learning accelerates the convergence
for both BO and MAB. For example, meta-MAB with 50 tasks
can achieve a 90% fraction of the optimal performance after
around 175 iterations, while conventional MAB would require
around 510 iterations. However, as the number of iterations
increases, the gain of meta-MAB over MAB vanishes, since
MAB is already able to achieve the performance of exhaustive
search given its direct optimization in the discrete space.

In this regard, BO stands to gain more from the implementa-
tion of meta-learning, since, as seen in Fig. 3, the performance
of BO is limited by the bias caused by the optimization over
a continuous space as the number of iterations increase. For
instance, with data from 50 tasks, meta-BO can achieve a 90%
fraction of the optimal performance already at 50 iterations,
while conventional BO would not be able to obtain this
performance level. More generally, meta-BO with 50 tasks can
achieve any desired performance level in less than around 150
iterations. This indicates that optimizing the kernel via meta-
learning can fully compensate for the bias caused by the fact
that BO addresses the optimization problem in a continuous
design space.

Overall, while, without meta-learning, MAB is preferable
over BO if the goal is achieving high-quality solutions, as long
as data from a sufficiently large number of tasks is available,
meta-BO becomes significantly advantageous. For the example
at hand, as mentioned, a 90% performance level is obtained
with meta-MAB with around 175 iterations. while meta-BO
requires only 50 iterations.

Fig. 6. Fraction of the optimal KPI (29) (compared to exhaustive search)
obtained by contextual meta-BO and vanilla meta-BO (top), as wel as by
contextual meta-MAB and vanilla meta-MAB (bottom) for a multi-cell system
as a function of the number of available meta-training configurations.

D. Contextual Bayesian and Bandit Meta-Optimization

We now investigate the performance of contextual Bayesian
meta-optimization (Sec. VI-C) and contextual Bandit meta-
optimization (Sec. VI-D), which we refer for short as con-
textual meta-BO and contextual meta-MAB, respectively. We
are interested in addressing the potential benefits as compared
to vanilla meta-BO and meta-MAB. In order to obtain the
interference graph, the threshold ratio dji/di is set to 1.8; and
the rank of the parameter matrices V1,V2 is set to r = 14
for both algorithms. Both values are obtained via a coarse grid
search. The number of meta-training tasks is set to N = 50.

Fig. 5 demonstrates the fraction of optimal KPI for both
context-based strategies as compared to the vanilla counterpart
solutions. The results validate the capacity of the proposed
contextual meta-learning methods to extract useful information
from the network topology for the given configuration, achiev-
ing faster convergence for both Meta-BO and Meta-MAB.

We elaborate on the impact of the number N of meta-
training tasks in Fig. 6, which shows the fraction of optimal
KPI obtained at the 50th iteration. It is observed that a
number of meta-training tasks equal to N = 10 for meta-
BO and N = 12 for meta-MAB is sufficient to ensure that
vanilla meta-BO and meta-MAB optimizers can transfer useful
information from the meta-training configurations to the new
configurations to speed up optimization as compared to BO
and MAB, respectively. Furthermore, contextual meta-BO and
contextual meta-MAB can further decrease the number of
required meta-training configurations.
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Fig. 7. Fraction of the optimal KPI (29) (compared to exhaustive search)
obtained by contextual meta-BO and vanilla meta-BO (top), as wel as by
contextual meta-MAB and vanilla meta-MAB (bottom) for a multi-cell system
as a function of the number of available KPI evaluations Tn per-meta-training
task.

Finally, we address the impact of the number Tn of per-
task KPI evaluations available in the meta-training data. We
evaluate the fraction of the optimal KPI obtained at the 20th
iteration, and set N = 50 tasks. In Fig. 7, we observe that
meta-BO and meta-MAB, as well as their contextual versions,
can significantly enhance the performance of vanilla BO and
MAB with as few as Tn = 20 KPI evaluations per task.
Concretely, while vanilla BO obtains a fraction around 40%
of the optimal performance, with Tn = 20, contextual BO
achieves more than 90% of this fraction, providing a 10% gain
over meta-BO. Similarly, while vanilla MAB obtains 30% of
the optimal performance, with Tn = 20, meta-MAB obtains a
70% fraction, and contextual MAB an 80% fraction.

VIII. CONCLUSIONS

Modern cellular networks require complex resource alloca-
tion procedures that can only leverage limited access to KPI
evaluations for different candidate resource-allocation parame-
ters. While data collection for the current network deployment
of interest is challenging, a network operator has typically
access to data from related, but distinct, deployments. This
paper has proposed to transfer knowledge from such historical
or simulated deployments via an offline meta-learning phased
with the aim of learning how to optimize on new deploy-
ments. As such, the proposed meta-learning approach can
be integrated with digital twin platform providing simulated
data [41]. We have specifically focused on BO and MAB

optimizers, with the former natively operating on a continuous
optimization domain and the latter on a discrete domain.
Furthermore, we have proposed novel BO and MAB-based
optimizers that can integrate contextual information in the
form of interference graphs into the resource-allocation op-
timization. Experimental results have validated the efficiency
gains of meta-learning and contextual meta-learning.

Future work may address online meta-learning techniques
that successively improve the efficiency of resource allocation
as data from more deployments is (see [23] for a related
application to demodulation and [42] to drone trajectory opti-
mization). Furthermore, it would be interesting to investigate
the application to larger-scale problems involving real-world
data; the extension to multi-objective problems [43]; and the
interplay with digital twin platforms for the management of
wireless systems [41].
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