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Abstract—Given the revolutionary role of metaverses, health-
care metaverses are emerging as a transformative force, creating
intelligent healthcare systems that offer immersive and person-
alized services. The healthcare metaverses allow for effective
decision-making and data analytics for users. However, there
still exist critical challenges in building healthcare metaverses,
such as the risk of sensitive data leakage and issues with
sensing data security and freshness, as well as concerns around
incentivizing data sharing. In this paper, we first design a user-
centric privacy-preserving framework based on decentralized
Federated Learning (FL) for healthcare metaverses. To further
improve the privacy protection of healthcare metaverses, a cross-
chain empowered FL framework is utilized to enhance sensing
data security. This framework utilizes a hierarchical cross-
chain architecture with a main chain and multiple subchains
to perform decentralized, privacy-preserving, and secure data
training in both virtual and physical spaces. Moreover, we
utilize Age of Information (AoI) as an effective data-freshness
metric and propose an AoI-based contract theory model under
Prospect Theory (PT) to motivate sensing data sharing in a user-
centric manner. This model exploits PT to better capture the
subjective utility of the service provider. Finally, our numerical
results demonstrate the effectiveness of the proposed schemes for
healthcare metaverses.

Index Terms—Healthcare metaverse, blockchain-empowered
FL, contract theory, prospect theory, age of information.

I. INTRODUCTION

The recent COVID-19 pandemic has increased the demand

for remote healthcare services [1]. With the maturation and

applications of metaverse technologies [2], digital healthcare

has undergone a revolution, acting as a key force of healthcare

industry evolution [3]. Unlike traditional videoconferencing-

based telemedicine systems, healthcare metaverses are re-

garded as the future continuum between healthcare industries
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and metaverses, which blend physical and virtual spaces and

break spatial and temporal barriers, providing immersive and

interactive healthcare services that meet individual needs of

users (e.g., patients or medical staff) [4]. By collaboratively

utilizing cutting-edge technologies, such as blockchain [4], [5],

Federated Learning (FL) [6], and digital twins [4], healthcare

metaverses have the potential to cover various applications,

such as virtual comparative scanning and metaversed medical

intervention [6]. To build a healthcare metaverse, Internet of

Medical Things (IoMT) devices (e.g., wearable devices and

embedded medical devices carried by users) play an important

role in communication and networking. For example, IoMT

devices can collect a large amount of patients’ medical data

(e.g., temperature, blood pressure, and electrocardiogram) to

bridge the physical space and virtual spaces, providing patients

with optimal treatment strategies based on the analysis and

diagnosis of multiple patients’ attributes [4].

Although the healthcare metaverse holds great potential

for transforming the healthcare ecosystem, this technology

still faces many challenges. There are some challenging bot-

tlenecks for future popularization and development: 1) The

healthcare metaverse risks user privacy leaks. Due to privacy

concerns, users may be reluctant to share private sensitive data

in healthcare metaverses [6], which hinders significant data

analysis like pharmacodynamic analysis by using Artificial

Intelligence (AI) technologies for healthcare improvement. 2)

Sensing data suffers from being modified or tampered with

by attackers in healthcare metaverses. Since users could have

limited power in controlling their data sharing with whom

and under what conditions [7], the collected data are not safe

in healthcare metaverses, and the incorrect or manipulated

data being analyzed will cause serious consequences [8]. 3)

Due to the energy constraints of IoMT devices, users may

not join metaverses or provide fresh data without a proper

incentive mechanism. Since the timeliness of healthcare data

can affect diagnostic results, fresh sensing data are extremely

important to enhance the quality of healthcare metaverse

services [9]. Therefore, it is necessary to design a user-centric

incentive mechanism for incentivizing users with fresh data in

healthcare metaverses. Some efforts have been conducted for

incentivizing users with data sharing [10]–[12], but they ignore

data freshness and the problem of information asymmetry.

To address the above challenges, in this paper, we first

apply FL and cross-chain technologies to design a user-

centric privacy-preserving framework for sensing data sharing

http://arxiv.org/abs/2307.15975v1


2

in healthcare metaverses [9], in which FL technologies can

provide privacy protection for users [13], and blockchain

technologies can ensure data security for users and efficiently

solve the problem of the single point of failure [14]. Especially,

the blockchain-based healthcare metaverse enables users to

access any digital space without the involvement of any central

institution, which enhances the scalability of the healthcare

metaverse [4]. To improve the service quality of healthcare

metaverses, we utilize Age of Information (AoI) as a data-

freshness metric to quantify sensing data freshness for health-

care metaverse services. Then, with asymmetric information,

we design an AoI-based contract model to incentivize fresh

data sharing among users. Considering that a service provider

(i.e., an FL task publisher) may behave irrationally when fac-

ing uncertain and risky circumstances [15], we utilize Prospect

Theory (PT) to capture the subjective utility of the service

provider, which makes the AoI-based contract model more

reliable in practice, and ultimately formulate the subjective

utility as the goal function of the model [16], [17]. The main

contributions of this paper are summarized as follows:

• We design a new user-centric privacy-preserving frame-

work for healthcare metaverses, where users can keep

sensitive sensing data in the physical space for privacy

protection and upload non-sensitive sensing data to the

virtual space for learning-based metaverse tasks.

• To manage sensing data and improve privacy protection,

we develop a cross-chain empowered FL framework,

which can perform secure, decentralized, and privacy-

preserving data training in both virtual and physical

spaces through a hierarchical cross-chain architecture

consisting of a main chain and multiple subchains. The

cross-chain interaction is executed to complete secure

model aggregation and updates.

• To optimize time-sensitive learning tasks in healthcare

metaverses, we apply the AoI as a data-freshness metric

of sensing data for healthcare metaverse services and

introduce the tradeoff of the AoI and the service latency

involving FL-based model training.

• We propose an AoI-based contract model under PT

to incentivize data sharing among users. To maximize

the subjective utility of the service provider subject to

necessary constraints, we formulate a PT-based solution

for optimal contract design. To the best of our knowledge,

this is the first work to study the data freshness-based

incentive mechanism under PT for healthcare metaverses.

The remainder of the paper is organized as follows: In

Section II, we review the related work in the literature. In

Section III, we propose the cross-chain empowered FL frame-

work for healthcare metaverses. In Section IV, we introduce

the AoI and propose the AoI-based contract model under

PT. In Section V, we formulate the optimal contract design

under PT and propose the corresponding algorithm. Section

VI presents the security analysis of the proposed framework

and numerical results of the proposed incentive mechanism

and the framework. Finally, Section VII concludes this paper.

II. RELATED WORK

With the help of high-quality immersive content and gami-

fication features, the healthcare metaverse can increase user

engagement. For example, it can help clinicians explain

complex concepts to patients, provide walk-throughs of the

procedures that their patients will receive, and ensure that

patients take their prescribed medications accurately [4]. Given

the revolutionary nature of the healthcare metaverse, this tech-

nology has been studied recently [4], [18], [19]. Chengoden

et al. [4] provided a comprehensive review of the healthcare

metaverse, emphasizing state-of-the-art applications, potential

projects, and enabling technologies for achieving healthcare

metaverses such as FL and blockchain technologies. Bansal

et al. [18] provided a comprehensive survey that examines

the latest metaverse development in the healthcare industry,

including seven domains such as clinical care, education, and

telemedicine. Ali et al. [19] presented the potential of meta-

verse fusing with AI technologies and blockchain technologies

in the healthcare domain and proposed a metaverse-based

healthcare system by integrating blockchains and explainable

AI for the diagnosis and treatment of diseases. Although the

healthcare metaverse will revolutionize the healthcare sector,

there are foreseeable challenges that require us to solve for the

development of the healthcare metaverse, especially privacy

and security problems [6].

Privacy and security are of critical importance for healthcare

metaverses [6]. To address the privacy concerns of sharing

data, FL technologies have been applied for multiple data own-

ers to collaboratively train a global model without sharing their

raw data [20]. Additionally, relying on encryption technologies

and consensus algorithms of distributed systems, blockchain

as a distributed ledger technology can effectively solve the

problem of security vulnerabilities caused by centralized nodes

[14]. Since FL technologies can provide privacy protection for

users [20] and blockchain technologies can ensure the data

security of users [21], some works have been conducted for

designing a blockchain-empowered FL framework for smart

healthcare [22]–[24]. Chang et al. [22] proposed a blockchain-

based FL framework for smart healthcare in which the edge

nodes maintain the blockchain to resist a single point of failure

and IoMT devices implement the FL to make full of distributed

clinical data. Jatain et al. [23] proposed a blockchain-based

FL framework for the secure aggregation of private healthcare

data, which can provide an efficient method to train machine

learning models. Wadhwa et al. [24] proposed a blockchain-

based FL approach for the detection of patients using IoMT

devices, which provides security for the detection of patients.

However, most works do not consider how to incentivize users

to contribute fresh sensing data for reliable healthcare services,

especially under information asymmetry.

To motivate users for sensing data sharing, some efforts have

been conducted [10]–[12]. However, most works only consider

a complete information scenario and ignore the problem of

information asymmetry. Contract theory is a powerful tool

for incentive mechanism design under information asymmetry

[25], which has been applied in wireless communication areas

[26], [27]. Some works have studied contract-based incentive
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Fig. 1: A cross-chain empowered FL framework for healthcare metaverses.

mechanism design for incentivizing data sharing [28]–[30],

but they ignore the data freshness. Therefore, we focus on

designing a contract-based incentive mechanism with optimal

data freshness. AoI has been commonly used as an effec-

tive metric to quantify data freshness at the destination. It

is defined as the elapsed time from the generation of the

latest received status update, and its minimization depends

on the status update frequency [31], [32]. A few works have

studied the AoI-based contract model [33], [34]. Zhou et al.

[33] proposed a contract model considering both the AoI

and the service latency to monetize contents in a realistic

asymmetric information scenario. Lim et al. [34] proposed

a task-aware incentive scheme based on contract theory that

can be calibrated to the model owner’s weighted preferences

for the AoI and the service latency. However, none of the

existing work takes the healthcare metaverse scenario into

account. Therefore, it is urgent to design an AoI-based contract

model for healthcare metaverses. Besides, PT considered to be

a descriptive model has been widely applied to elucidate how a

person’s subjective attitude affects decision-making under the

uncertainty and risks [16], [17]. Huang et al. [16] formulated

the subjective evaluation of offloading users on the utility in

computation offloading based on contract theory and PT. Rahi

et al. [17] used PT to account for each prosumer’s valuation

of its gains and losses. Motivated by the above works, we use

PT to capture the subjective utility of the service provider in

healthcare metaverses.

III. CROSS-CHAIN EMPOWERED FEDERATED LEARNING

FRAMEWORK FOR HEALTHCARE METAVERSES

A. User-centric Privacy-preserving Training Framework

In the healthcare metaverse, a virtual IoMT node is con-

structed by mapping and synchronizing the data of a physical

IoMT node to the virtual space [9]. The virtual space is

established on collected data from physical IoMT nodes and

online generated data during node interaction and data analysis

[9]. However, due to privacy concerns, users may not be

willing to upload all privacy-sensitive data to the healthcare

metaverse directly. Thus, the datasets of virtual nodes are

incomplete. If learning tasks are trained by virtual nodes only,

the accuracy of learning models will be degraded and the

generalization ability will be poor [9]. To this end, a user-

centric privacy-preserving training framework is designed for

healthcare metaverses, where users can customize uploading

non-sensitive sensing data to virtual spaces for learning-based

metaverse tasks and applications, and keep sensitive sensing

data (e.g., heartbeats and chronic conditions) locally in the

physical space for strong privacy protection [9].

As shown in Fig. 1, a hierarchical cross-chain architecture

for decentralized FL consists of a main chain and multiple

subchains [9]. This architecture is divided into a physical

space and a virtual space. In the physical space, IoMT nodes

can be sensors that are integrated into medical systems. They

can measure different biological parameters and monitor real-

time and healthcare-related data of users [4], in which the

subchains P manage sensitive sensing data and local model

updates during training. Similarly, in the virtual space, the

main chain M acts as a parameter server that manages global

model updates, and the subchains V manage non-sensitive

sensing data and local model updates generated by virtual

IoMT nodes that act as FL workers [9].

B. Cross-chain Interaction for Decentralized FL

To further improve privacy protection of healthcare meta-

verses, a cross-chain empowered FL framework is further de-

signed to ensure secure, decentralized, and privacy-preserving

data training in both virtual and physical spaces via a hierarchi-

cal blockchain architecture with the main chain and multiple

subchains [35]. The cross-chain interaction is executed to

complete secure model aggregation and updates, which breaks

data islands between the main chain and the subchains [36].

As shown in Fig. 1, the workflow of the proposed cross-chain

empowered FL framework is presented as follows [9]:

Step 1: Publish a federated learning task: Each task

publisher (e.g., a hospital or a community health center) sets

up a learning task (e.g., infectious prediction of the COVID-19
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epidemic) and sends a federated learning request to the main

chain M (Step a).

Step 2: Allocate the task to workers through the relay

chain: The main chain M sends the learning task to the relay

chain R which is a cross-chain management platform [35].

This platform is responsible for verifying data (e.g., model

parameters), forwarding data, and bridging connections among

the main chain M and the subchains P and V [9]. The relay

chain R first verifies the task information and then forwards

the learning task to the workers’ subchains V of the virtual

space and the workers’ subchains P of the physical space,

respectively (Step b).
Step 3: Perform a learning task in both virtual and

physical spaces: In the physical space, legitimate IoMT

devices (e.g., smart phones, smart watches, and wearable

biomedical sensors) can join the training task and perform

local model training on their local datasets that involve the

sensitive sensing data of users [9]. Each physical node trains a

given global model locally from the task publisher and updates

local model parameters (Step c). Similarly, in the virtual space,

legitimate virtual nodes that act as FL workers also train the

given global model and update local model parameters at the

same time (Step c).
Step 4: Relay updated local models in the cross-chain

management platform: When IoMT nodes in the virtual and

physical spaces complete the training task, the updated local

models are verified and uploaded to their subchains imme-

diately for secure management (Step d). To transmit these

models to the main chain M , the subchains first submit cross-

chain requests. When the cross-chain requests are verified

successfully by the miners of the relay chain R, the relay chain

R will return ready information, and the subchains are allowed

to upload the updated local models. Finally, the updated local

models are checked (e.g., verify that the training times of

the models meet the requirement) by the relay chain R and

transmitted to the main chain M (Step e).

Step 5: Aggregate the local models and update a new

global model: After transmitting the updated local models to

the main chain M , the updated local models are aggregated on

the main chain M to generate a new global model (Step f ).

Then, the workers download the latest global model from their

subchains and train the new global model for the next iteration

until satisfying the given accuracy requirement [9]. Finally,

the final global model is sent back to the task publisher, and

the task publisher sends monetary rewards to the workers

according to their contributions [37].

Considering that users equipped with energy-limited IoMT

devices may be reluctant to contribute fresh sensing data for

time-sensitive FL tasks in healthcare metaverses, a reliable

incentive can be used to encourage users to share fresh sensing

data, which is discussed in Section IV.

IV. PROBLEM FORMULATION

In this section, to incentivize data sharing among users

for time-sensitive FL tasks, we first introduce the AoI as an

effective metric to evaluate sensing data freshness. Then, we

formulate the utility functions of both workers and the service

provider in healthcare metaverses.

Referring to [9], we consider a mixed reality based remote

monitoring as an example of healthcare metaverse scenarios

with a service provider and a setM = {1, . . . ,m, . . . ,M} of

M workers. The service provider acting as the task publisher

motivates M workers to participate in learning tasks. The

average time of a global model iteration in the cross-chain

empowered FL consists of three parts: 1) The average time

of completing a global model iteration of FL (denoted as tu);

2) The average time of completing a consensus process for

a global model iteration among blockchains (denoted as tc);

3) The average time of collecting and processing the data for

model training (denoted as cmt, cm ∈ N, and t = tu + tc).

Considering that the FL is synchronous, tu is the same for all

the workers [34], and tc is the same for each global model

iteration because of using the same relay chain [38]. For each

worker m, the time of collecting and processing data for model

training is a constant [34].

A. AoI and Service Latency for Healthcare Metaverses

AoI has been a well-accepted metric to quantify data fresh-

ness and improve performances of time-critical applications

and services, especially for sensor networks [34]. In this paper,

we define AoI as the time elapsed from the beginning of

data aggregation by deployed IoMT devices to the completion

of FL-based training, and the service latency as the time

elapsed from the initiation of the FL training request to

the completion of FL-based training. We focus on the AoI

and the service latency of FL with a data caching buffer in

workers [34], where the low AoI determines the high quality

of FL-based training for reliable healthcare metaverse services.

Without loss of generality, we consider that a model training

request arrives at the beginning of each epoch [9]. Worker m
periodically updates its cached data, and the periodic interval

θm is independent of the period in which the request arrives,

which is denoted as

θm = cmt+ amt, am ∈ N, (1)

where (amt) is the duration from finishing data collection to

the beginning of the next phase of data collection. Note that

(amt) can be service time or idle time in terms of multiple

time periods [34].

Following the characteristic of the Poisson process, the

probability of a request’s arrival is identical across periods

[34]. If an FL training request is raised at the z-th pe-

riod during the data collection phase, the service latency is

cmt + t − (z − 1)t. Otherwise, if a request is raised at

any remaining time period in the update cycle, the service

latency is t. Thus, the average service latency Dm [34] of the

blockchain-based FL for worker m is given by

Dm =
cm

cm + am

[

cmt

2
(cm + 3)

]

+
amt

cm + am
. (2)

For content caching, if an FL request is raised during the

data collection phase or at the beginning of phase (cm + 1)t,
the AoI is t which is the minimum value. Otherwise, if a

request is raised at period (lt), the AoI is [l− (cm +1)+ 1]t,
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where l ≥ (cm + 2)t. Thus, the average AoI [34] for worker

m is given by

Am =
t

cm + am

[

cm + 1+
(am − 1)(am + 2)

2

]

. (3)

When t is fixed, the update cycle θm is affected by cm and

am. Therefore, we consider two general cases:

Case 1: Adjustable Idle Phase and Fixed Update Phase:

When cm = c, c ∈ N is fixed, we have am = θm
t
−c. Replacing

am with θm, Dm and Am can be simplified to [9]

Dm(θm) =
cm

cm + am

[

cmt

2
(cm + 3)

]

+
amt

cm + am

=
c2t2(c+ 3)

2θm
+

(θm − ct)t

θm

=
ct2(c2 + 3c− 2)

2θm
+ 1

(4)

and

Am(θm) =
t

cm + am

[

cm + 1 +
(am − 1)(am + 2)

2

]

=
t2

θm

[

c+ 1 +
(θm − ct− t)(θm − ct+ 2t)

2t2

]

=
θm
2

+
t− 2ct

2
+

c2t2 + ct2

2θm
.

(5)

Since
d2Am(θm)

dθ2
m

= c2t2+ct2

θ3
m

> 0, Am(θm) is a convex function

with respect to θm. Besides, when c ≥ 1, c ∈ N, we have

c2 + 3c − 2 > 0. Thus, Dm(θm) is a convex function with

respect to θm. With the update cycle θm decreasing, the service

latency increases while the AoI may decrease. In other words,

we can adjust the update cycle θm to tradeoff the AoI and the

service latency [34], [39].

Case 2: Adjustable Update Phase and Fixed Idle Phase:

When am = a, a ∈ N is fixed, we have cm = θm
t
− a.

Replacing cm with θm, Dm and Am can be simplified to [9]

Dm(θm) =
cm

cm + am

[

cmt

2
(cm + 3)

]

+
amt

cm + am

=
(θm − at)3

2tθm
+

3(θm − at)2

2θm
+

at2

θm

(6)

and

Am(θm) =
t

cm + am

[

cm + 1 +
(am − 1)(am + 2)

2

]

=
tθm

θm − at
+

t2

θm − at

(

a2 − a

2

)

.

(7)

Since θm = amt + cmt, θm > amt always holds. When

θm > at, we have
d2Dm(θm)

dθ2
m

=
θ3
m
−at3(a2−3a+2)

tθ3
m

> 0.

Thus, Dm(θm) is a convex function with respect to θm. When

θm > at and a > 1, we have
d2Am(θm)

dθ2
m

= at2(a−1)
(θm−at)3 > 0.

Thus, Am(θm) is also a convex function with respect to θm.

B. Worker Utility

The utility of worker m is the difference between the

received monetary reward Rm and its cost Cm of participating

in FL training tasks, which is presented as Um = Rm − Cm.

Referring to [33], we have Cm = δm/θm, where δm is

the update cost per time and is related to data collection,

computation, transmission, and consensus [33], [39]. Thus, the

utility of worker m is rewritten as

Um = Rm −
δm
θm

. (8)

Due to information asymmetry, the service provider is not

aware of the update cost of each worker precisely, but it can

sort the workers into discrete types by using the statistical

distributions of worker types from historical data to optimize

the expected utility of the service provider [26]. Specifically,

we divide the workers into different types and denote the n-

th type worker as δn. The workers can be classified into a

set N = {δn : 1 ≤ n ≤ N} of N types. In non-decreasing

order, the worker types are sorted as δ1 ≥ δ2 ≥ · · · ≥ δN [9].

To facilitate explanation, the worker with type n is called the

type-n worker. Thus, the utility of the type-n worker can be

rewritten as

Un = Rn −
δn
θn

. (9)

To simplify the description, we define the update frequency

as fn = 1
θn

. The worker type is redefined as γn = 1
δn

and

the worker types, i.e., δ1 ≥ δ2 ≥ · · · ≥ δN , are rewritten

as γ1 ≤ γ2 ≤ · · · ≤ γN [9]. Thus, the utility of the type-n
worker can be rewritten as

Un = Rn −
fn
γn

. (10)

C. Prospect Theory

According to the conventional decision theory, the service

provider is always rational and optimizes the decision-making

process to maximize its own utility based on Expected Utility

Theory (EUT), which uses objective probabilities to determine

the weight of each possible payoff [40]. However, in an

uncertain and risky environment, the service provider may

behave irrationally and prefer to adjust original decisions in a

predefined manner. Therefore, EUT is not applicable to capture

risk attitudes of the service provider during the uncertain

decision-making process. In the next subsection, we use both

EUT and PT to capture the utility of the service provider.

Firstly, we introduce the effect of two key notions from PT,

i.e., probability weighting and utility framing.

1) Probability weighting effect: Different from EUT, PT

uses a subjective probability to determine the weight of each

possible payoff. The subjective probability is a function in

terms of the objective probability, which illustrates that high

probability events are underestimated and low probability

events are overestimated [15], [41].

2) Utility framing effect: PT utilizes a reference point to

frame the payoff of each outcome into either gain or loss.

For instance, the service provider defines the goal of earning

a specific amount of profits as its reference point. If its

goal is not reached, it will perceive that it is a non-positive

loss. In summary, the utility of EUT is given by UEUT =
∑N

n=1 QnUn,EUT, where Qn is the objective probability and

Un,EUT is the outcome for the alternative n. Following the

probability weighting effect and the utility framing effect,
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the utility of PT is defined as UPT =
∑N

n=1 H(Qn)Un,PT,

where H(·) is an inverse S-shaped probability weighting

function in terms of the objective probability Q. Referring

to [15], the probability weighting function is denoted as

H = exp(−(− log(Q))ρ), where ρ is a rational coefficient that

reveals how a person’s subjective evaluation distorts objective

probabilities. The more rational players have a higher ρ, while

the more subjective players have a lower ρ. Thus, Un,PT is

defined as [16], [17], [41]

Un,PT =

{

(Un,EUT − Un,ref)
ζ+

, Un,EUT ≥ Un,ref,

−η(Un,ref − Un,EUT)
ζ−

, Un,EUT < Un,ref,
(11)

where ζ+, ζ− ∈ (0, 1] are two weighting factors that formulate

the gain and loss distortions, respectively. η ≥ 0 is a loss

aversion coefficient. Un,ref is a reference point framing the

utility of Un,EUT into either gain or loss.

D. Service Provider Utility

Since large AoI and large service latency lead to a bad

immersive experience for users and reduce the satisfaction

of the service provider in healthcare metaverses [42], the

satisfaction function of the service provider obtained from the

type-n worker is defined as [33]

Gn = βg(fn), (12)

where β > 0 is the unit profit for the performance and g(·)
is the performance obtained from the type-n worker, which is

defined as [33]

g(fn) = αn(K −An) + (1− αn)(H −Dn), (13)

where αn ∈ [0, 1] represents the preference of AoI over service

latency for the service provider to the type-n worker, i.e., the

larger αn means that the service provider prefers the AoI more,

and K and H are the maximum tolerant AoI and the maximum

tolerant service latency, respectively.

Because of information asymmetry, the service provider

only knows the number of workers and the type distribution

but cannot know the private type of each worker [27], namely

the exact number of workers belonging to each type, which

results in the uncertainty when the service provider makes

decisions. Therefore, the service provider overcomes the in-

formation asymmetry problem by adopting EUT to define its

own objective utility as [9]

Us,EUT =

N
∑

n=1

MQnUs,n,EUT, (14)

where Us,n,EUT = Us,n = (Gn − Rn) is the objective utility

gained from type-n workers and Qn is the probability that a

worker is type-n. Note that
∑N

n=1 Qn = 1.

However, when facing uncertain and risky circumstances,

the service provider may behave irrationally and have different

risk attitudes. Therefore, EUT is not applicable to capture risk

attitudes of the service provider during the uncertain decision-

making process. In this paper, we utilize PT to further capture

the utility of the service provider, which makes the contract

model more acceptable in practice. Given a reference point

Uref for all types of workers, we convert Us,n,EUT into the

subjective utility, which is given by [16], [41]

Us,n,PT =

{

(Us,n,EUT − Uref)
ζ+

, Us,n,EUT ≥ Uref,

−η(Uref − Us,n,EUT)
ζ−

, Us,n,EUT < Uref.
(15)

Based on (15), the subjective utility of the service provider is

presented as

Us,PT =

N
∑

n=1

MQnUs,n,PT. (16)

E. Contract Formulation

The types of workers are private information that is not

visible to the service provider, namely there exists information

asymmetry between the service provider and the workers.

Since contract theory is a powerful tool for designing incen-

tive mechanisms with asymmetric information [26], [27], the

service provider uses contract theory to effectively motivate

workers to contribute sensing data for time-sensitive FL tasks.

Here, the service provider is the leader in designing a contract

with a group of contract items, and each worker selects the

best contract item according to its type. The contract item

can be denoted as Φ = {(fn, Rn), n ∈ N}, where fn is

the update frequency of the type-n worker and Rn is the

reward paid to the type-n worker as an incentive for the

corresponding contribution [9], [33]. To ensure that each

worker automatically chooses the contract item designed for its

specific type, the feasible contract must satisfy the following

Individual Rationality (IR) and Incentive Compatibility (IC)

constraints [26].

Definition 1. (Individual Rationality) The contract item that

a worker should ensure a non-negative utility, i.e.,

Rn −
fn
γn
≥ 0, ∀n ∈ N . (17)

Definition 2. (Incentive Compatibility) A worker of any type

n prefers to select the contract item (fn, Rn) designed for its

type rather than any other contract item (fi, Ri), i ∈ N , and

i 6= n, i.e.,

Rn −
fn
γn
≥ Ri −

fi
γn

, ∀n, i ∈ N , n 6= i. (18)

With the IR and IC constraints, the problem of maximizing

the expected utility of the service provider is formulated as

Problem 1: max
f ,R

Us,PT

s.t. Constraints in (17) and (18),

fn ≥ 0, Rn ≥ 0, γn > 0, ∀n ∈ N ,

(19)

where f = [fn]1×N and R = [Rn]1×N .

V. OPTIMAL CONTRACT DESIGN UNDER PROSPECT

THEORY

Since there are N IR constraints and N(N − 1) IC con-

straints in Problem 1, it is difficult to directly solve Problem

1 with complicated constraints. Thus, we first reduce the

number of attached constraints to reformulate Problem 1.

Then, we further derive the EUT-based solution and the PT-

based solution theoretically.
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A. Contract Reformulation with Reduced Constraints

Lemma 1. With asymmetric information, a feasible contract

must satisfy the following conditions:

R1 −
f1
γ1
≥ 0, (20a)

0 ≤ f1 ≤ f2 ≤ · · · ≤ fN , 0 ≤ R1 ≤ R2 ≤ · · · ≤ RN , (20b)

Rn −
fn
γn
≥ Rn−1 −

fn−1

γn
, ∀n ∈ {2, . . . , N} , (20c)

Rn −
fn
γn
≥ Rn+1 −

fn+1

γn
, ∀n ∈ {1, . . . , N − 1} . (20d)

Proof. Please refer to [26].

Constraint (20a) related to the IR constraints ensures that

the utility of each worker receiving the contract item of its

type is non-negative. Constraints (20b), (20c), and (20d) are

related to the IC constraints. Specifically, constraint (20b)

indicates that a worker type with a lower cost can provide the

service provider with a higher update frequency. Constraints

(20c) and (20d) show that the IC constraints can be reduced

as local downward incentive compatibility and local upward

incentive compatibility with monotonicity, respectively [26].

From Lemma 1, we can know that when the lowest-type

workers satisfy the IR constraints, the other types of workers

will automatically hold the IR constraints. When type-n and

type-(n − 1) workers satisfy the IC constraints, the type-n
and the other types of workers will automatically hold the IC

constraints. Therefore, the original (N +N(N −1) = N2) IR

and IC constraints are transformed into (N + 1) constraints,

and Problem 1 can be reformulated as

Problem 2: max
{(fn,Rn)}

Us,PT

s.t. R1 −
f1
γ1

= 0,

Rn −
fn
γn

= Rn−1 −
fn−1

γn
, ∀n ∈ {2, . . . , N} ,

fn ≥ fmin, Rn ≥ 0, ∀n ∈ {1, . . . , N} ,
(21)

where fmin is the minimum update frequency.

Based on the first two constraints of (21), the optimal reward

R∗
n can be calculated by the iterative method in a subsequent

way, which is given by R∗
n = f1

γ1
+
∑n

i=1 ∆i, n ∈ N , where

∆1 = 0 and ∆i = fi
γi
− fi−1

γi
, i = 2, . . . , N . Therefore, we

can obtain R∗
n as

R∗
n =



















fn
γn

+

n−1
∑

i=1

(

fi
γi
−

fi
γi+1

)

, 2 ≤ n ≤ N,

f1
γ1

, n = 1.

(22)

B. EUT-based Solution

According to [43], we consider a special case that all the

worker types are uniformly distributed across all types N in

the EUT and PT solutions. Thus, the ratio of each worker

type is identical, i.e., Qn = Q = 1/N . Since the service

provider is unable to know various ratios of different worker

types in the initial phase, it may prefer to temporarily consider

the worker types following the uniform distribution and design

the contract-based incentive mechanism under this assumption

[9], [27]. By substituting (22) into (14), the objective utility

of the service provider in terms of fn is reformulated as

Us,EUT(fn) = MQ

N
∑

n=1

(

Gn(fn)− bnfn

)

, (23)

where

bn =















1

γn
+

(

1

γn
−

1

γn+1

)

(N − n), n < N,

1

γn
, n = N.

(24)

To maximize Us,EUT, we use the first-order optimality con-

dition ∂Us,EUT/∂fn = 0 and obtain f̂∗
n,EUT. We simultaneously

consider the lower bound of the update frequency fmin to

derive the EUT-based solution of fn as follows:

f∗
n,EUT = max

(

f̂∗
n,EUT, fmin

)

. (25)

Lemma 2. If γ1 < · · · < γn < · · · < γN , then U1 < · · · <
Un < · · · < UN .

Proof. Please refer to Appendix A of [16].

Lemma 3. If γ1 < · · · < γn < · · · < γN and 1
γn−1

+ 1
γn+1

−
2
γn

≥ 0, 1 < n < N , then b1 > · · · > bn > · · · > bN .

Proof. Please refer to Appendix B of [16].

Lemma 4. If Qn = Q, ∀n and b1 > · · · > bn > · · · > bN ,

then Us,1,EUT ≤ · · · ≤ Us,n,EUT ≤ · · · ≤ Us,N,EUT.

Proof. Please refer to Appendix C of [16].

Lemma 2 states that as the type of workers increases, the

utilities of workers corresponding to each type also increase.

Lemma 3 and Lemma 4 indicate that as the type of workers

increases, the objective utility of the service provider gained

from each type of workers also increases, where Lemma 4 is

derived based on Lemma 3.

C. PT-based Solution

Since the EUT-based solution is unable to capture the

psychological behavior of the service provider, the EUT-

based solution may be suboptimal from the perspective of the

service provider. Therefore, we derive the PT-based solution

to maximize the subjective utility of the service provider. We

consider a special condition ξ+ = ξ− = 1 to obtain a closed-

form PT-based solution, which has been introduced in [17].

Based on Lemma 4, the PT-based solution of fn is discussed

in the following three cases.

Case 1: When Us,n,PT ≥ Uref, the subjective utility in (16)

can be simplified to

Us,PT = MQ

N
∑

n=1

(Us,n,PT − Uref). (26)
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Algorithm 1: Optimal Contract Design under PT

Input: Initialize parameters {α, β,K,H, t, Uref} and

worker types {γn, 1 ≤ n ≤ N}.
Output: {f∗

n,PT, R
∗
n, 1 ≤ n ≤ N}.

1 Derive the EUT-based solution f∗
n,EUT by (25).

2 Calculate Us,1,EUT and Us,N,EUT.

3 if Us,1,EUT ≥ Uref or Us,N,EUT ≤ Uref then

4 Let f∗
n,PT = f∗

n,EUT, ∀n.

5 else

6 if η == 1 then

7 f∗
n,PT = f∗

n,EUT, ∀n.

8 else

9 if η < 1 then

10 Find an index m that satisfies

Us,m+1,EUT ≥ Uref ≥ Us,m,EUT.

11 Calculate f∗
n,PT, 1 ≤ n ≤ m based on (31),

and let f∗
n,PT = f∗

n,EUT, m+ 1 ≤ n ≤ N .

12 else

13 Find the above m and acquire the feasible

solution f∗
n,PT by using a polling method

and the scheme in [44].

14 end

15 end

16 end

17 For each worker type n, substitute f∗
n,PT into (22) to

calculate R∗
n.

18 return {f∗
n,PT, R

∗
n, 1 ≤ n ≤ N}.

By substituting (22) into (26), Us,PT is converted into

Us,PT(fn) = MQ

(

N
∑

n=1

Gn(fn)−
N
∑

n=1

bnfn −
N
∑

n=1

Uref

)

.

(27)

According to the analysis of Case 1 and Case 2 in Section

IV, ∂2Us,PT/∂f
2
n < 0 holds when c ≥ 1. Therefore, we use

the first-order optimality condition ∂Us,PT/∂fn = 0 to obtain

the PT-based solution of fn, which is given by

f∗
n,PT = f∗

n,EUT. (28)

According to Lemma 4, when Us,1,PT = Us,1,EUT ≥ Uref,

Case 1 is satisfied.

Case 2: When Us,n,PT < Uref, ∀n, the subjective utility in

(16) can be simplified to

Us,PT = ηMQ

N
∑

n=1

(Us,n,PT − Uref). (29)

In Case 2, the PT-based solution of fn is the same as the EUT-

based solution of fn. Based on Lemma 4, when Us,N,PT =
Us,N,EUT ≤ Uref, Case 2 is satisfied. Due to the worker types

following the uniform distribution, the PT-based solutions of

fn in these two cases are identical. Besides, they are also

equal to the EUT-based solution of fn because of the special

condition ξ+ = ξ− = 1.

Algorithm 2: Training Process for Vertical FL

Input: Training dataset X train and an initial global

model {wA,wB}.
Output: Final global model {w*

A,w
*
B}.

1 for each epoch t = 1, 2, . . . , T do

2 for each batch of training data xbatch ∈ X train do

3 Split the data into two parts:{xbatch
A ,xbatch

B }.
4 Server sends public keys to clients A and B.

5 Client A sends intermediate information

encrypted by using the homomorphic

encryption algorithm Paillier [45] to client B:

B← φA(x
batch
A ,wA).

6 Client B sends encrypted intermediate

information [45] to client A:

A← φB(x
batch
B ,wB).

7 Clients A and B compute the encrypted local

gradient, respectively.

8 Each client adds a random number and sends

the encrypted gradient to the server:

Server← ( ∂l
∂wA

+DA), Server← ( ∂l
∂wB

+DB).

9 Server decrypts the gradients and sends them

back to clients A and B.

10 Update local models {wA,wB}.

TABLE I: Key Parameters in the Simulation.

Parameters Setting

Time taken for completing a global
iteration and the consensus process t

2 s

Unit of time taken for data collection
and process c

[1, 13]

Duration from finishing data collection
to the beginning of the next data
collection phase a

[1, 13]

Unit profit for the performance β {1, 5}
Maximum tolerant AoI K 200 s
Maximum tolerant service latency H 50 s

Case 3: This case is much more complex and integrated

with the above two cases. Considering Us,N,PT ≥ · · · ≥
Us,b,PT ≥ · · · ≥ Us,m+1,PT ≥ Uref ≥ Us,m,PT ≥ · · · ≥
Us,a,PT ≥ · · · ≥ Us,1,PT, the subjective utility in (16) can

be rewritten as

Us,PT = MQ

(

η

m
∑

a=1

Us,a,PT +

N
∑

b=m+1

Us,b,PT − ηmUref

− (N −m)Uref

)

= MQ

( m
∑

a=1

ηGa(fa)−
m
∑

a=1

dafa +

N
∑

b=m+1

Gb(fb)

−
N
∑

b=m+1

dbfb − ηmUref − (N −m)Uref

)

,

(30)

where da = m−a+1
γa

− m−a
γa+1

+ N−m
γa
− N−m

γa+1
, db =

N−b+1
γb

−
N−b
γb+1

with m+ 1 ≤ b < N , and db =
1
γb

with b = N .

For 1 ≤ a ≤ m, if ∂2Us,PT/∂f
2
a < 0, we will use the
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first-order optimality condition ∂Us,PT/∂fa = 0 and obtain

the optimal PT-based solution, i.e., f̂∗
a,PT. We simultaneously

consider the lower bound of the update frequency fmin to

derive the PT-based solution of fa, which is given by

f∗
a,PT = max

(

f̂∗
a,PT, fmin

)

. (31)

Similarly, taking the first-order and second-order derivatives

of Us,PT concerning fb,PT, m + 1 ≤ b ≤ N , the PT-based

solution of fb is given by

f∗
b,PT = f∗

b,EUT. (32)

For Case 3, we summarize that

• If η = 1, then f∗
n,PT = f∗

n,EUT, ∀n.

• If η < 1, then f∗
n,PT ≤ f∗

n,EUT with 1 ≤ n ≤ m, and

f∗
n,PT = f∗

n,EUT with m + 1 ≤ n ≤ N . Therefore, by

seeking Us,m+1,EUT ≥ Uref ≥ Us,m,EUT, the value of m
can be confirmed.

• If η > 1, then f∗
n,PT ≥ f∗

n,EUT with 1 ≤ n ≤ m,

and f∗
n,PT = f∗

n,EUT with m + 1 ≤ n ≤ N . When

f∗
n,PT ≥ f∗

m+1,EUT, the sub-sequences {f∗
n,PT} may not

follow the essential monotonicity constraint of fn, and

they are adjusted by using the scheme in [44] to meet

the demand of Lemma 1. Besides, the value of m is

determined by using a simple polling method, which

consists of the following steps:

Step 1: Initialize m = 1.

Step 2: Calculate f∗
n,PT, 1 ≤ n ≤ m based on (31), and

let f∗
n,PT = f∗

n,EUT, m+1 ≤ n ≤ N . The scheme in [44]

is used to adjust {f∗
n,PT} when necessary.

Step 3: Evaluate whether Us,m+1,PT ≥ Uref ≥ Us,m,PT. If

yes, m is confirmed. Otherwise, m = m+ 1.

Step 4: Evaluate whether m < N . If yes, go to Step 2.

Otherwise, the method is terminated.

Motivated by the above analysis, the detailed optimal con-

tract design is shown in Algorithm 1. Firstly, the EUT-based

solution f∗
n,EUT can be obtained by (25). Then, based on the

above three cases, we compare the sizes of Us,n,EUT and Uref

sequentially to obtain the optimal PT-based solution f∗
n,PT.

Finally, by substituting f∗
n,PT into (22), the optimal rewards R∗

n

can be calculated. In particular, the computational complexity

of Algorithm 1 in the worst case is O(N(N − 1)), which

emphasizes that we can use Algorithm 1 to find the optimal

contract under PT for all cases that are analyzed above.

VI. SECURITY ANALYSIS AND NUMERICAL RESULTS

In this section, we analyze the security of the cross-chain

empowered FL framework and evaluate the performance of

the proposed incentive mechanism and the framework. For

the simulation setting of the proposed incentive mechanism,

we consider M = 10 workers and the worker types following

the uniform distribution that is distributed in the range of

[0.001, 0.01]. Similar to [9], [16], [33], [34], [41], the main

parameters are listed in Table I.

For evaluating the performance of the proposed incentive

mechanism, since Case 2 and Case 1 have similar conclusions,

we focus our analysis on Case 2, i.e., an adjustable update

phase and a fixed idle phase. We use MATLAB to conduct
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Fig. 2: Utilities of the service provider and workers under different
idle duration parameters a in Case 2.
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Fig. 3: Utilities of the service provider and workers under different
update duration parameters c in Case 1.

experiments and compare the proposed Contract-based in-

centive mechanism with Asymmetric information (CA) with

other incentive mechanisms: i) Contract-based incentive mech-

anism with Complete information (CC) [26] that the private

information of workers (i.e., worker types) is known by

the service provider; ii) Contract-based incentive mechanism

with Social maximization (CS) [46] that the service provider

maximizes social welfare with information asymmetry; iii)

Stackelberg Game-based incentive mechanism (SG) with in-

formation asymmetry [41] that the service provider acting as

the leader is not aware of the exact update cost of workers

acting as the followers.

For evaluating the performance of the cross-chain empow-

ered FL framework, we implement this framework by using

PySyft based on public datasets1 of UCI and the Fisco Bcos

blockchain with a cross-chain platform named WeCross, which

uses the Two-Phase Commit (2PC) protocol as the cross-chain

consensus algorithm [35], and the cross-chain system is run on

VMware Workstation Pro and the operating system is Ubuntu

22.04 LTS. For FL training, we use Python 3.7.0 running on

CPU intel i7-12700 and DDR4 16G RAM to execute tasks on

clients A and B. The detailed training process of FL is shown

in Algorithm 2.

A. Security Analysis

The cross-chain empowered FL framework has the defense

ability against many conventional security attacks through

blockchain technologies and FL technologies, which satisfies

the following security requirements:

1The public datasets of wisconsin diagnostic breast cancer:
https://goo.gl/U2Uwz2

 https://goo.gl/U2Uwz2
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Fig. 5: Contract items under different preference parameters Uref and
η in Case 1.

1) Privacy protection for users: With the role of the user-

centric privacy-preserving training framework, users can

keep sensitive data in the physical space and customize

uploading non-sensitive data to virtual spaces for learning-

based tasks, thus protecting user privacy effectively.

2) Without the intervention of the only trusted third party:

Cross-chain interactions are completed in the cross-chain

management platform without relying on a third party,

thus making the system scalable and robust. Note that the

interaction protocol design is based on the 2PC protocol

[35]. Specifically, the 2PC protocol, as a widely used coor-

dination protocol in distributed systems, can enable secure

and efficient cross-chain interactions, which is important

in the proposed framework for cross-chain interactions to

ensure consistency and reliability.

3) Data authentication and unforgeability: We use the Practi-

cal Byzantine Fault Tolerance (PBFT) consensus algorithm

in the hierarchical cross-chain architecture for lightweight

consensus [47]. With the role of PBFT, all data are strictly

audited and authenticated by delegates (i.e., miners). Be-

sides, because of the decentralized nature of consortium

blockchains combined with digitally signed transactions,

attackers cannot impersonate users or compromise the

system [48], thus ensuring data unforgeability.

B. Performance Analysis of the Proposed Incentive Mecha-

nism

Figure 2 shows the utilities of the service provider and

workers in terms of the idle duration parameter a under dif-

ferent incentive mechanisms. In Fig. 2 (a), with the parameter

a increasing, the utility of the service provider first increases
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Fig. 6: Utilities of the service provider and workers under different
loss aversions η in Case 2.
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Fig. 7: Utilities of the service provider and workers under different
loss aversions η in Case 1.

and then decreases, which indicates that there exists an optimal

parameter a for maximizing the utility of the service provider.

For a given parameter a, the service provider under the CC

mechanism has the highest utility. The reason is that the

service provider knows the exact type information of workers

and thus offers the most suitable contract item for each worker.

Besides, the service provider under the CS mechanism gets

a lower utility than that under the proposed CA mechanism.

The reason is that the CS mechanism tends to maximize social

welfare so that it reaches a balance between the utility of the

service provider and that of workers [41]. In summary, our pro-

posed CA mechanism allows the service provider to achieve

the highest utility under asymmetric information. Although the

SG mechanism aims at maximizing the objective utilities of

both the service provider and workers, the service provider

under the SG mechanism gets the lowest utility. The reason is

that for all types of workers, the SG mechanism allows only

the workers with the highest four types to participate in the FL

task under the Nash equilibrium [41]. In Fig. 2 (b), with the

parameter a increasing, the utilities of workers decrease. We

can find that the workers have the highest utility under the CS

mechanism and the lowest utility under the CC mechanism.

Moreover, the utilities of workers under the SG mechanism

are between the utilities of the proposed CA mechanism and

the CC mechanism. These results further indicate that our

proposed CA mechanism has the highest performance under

asymmetric information.

Figure 4 shows the impacts of preference parameters on

PT and EUT-based solutions, namely the reference point Uref

and the loss aversion η. We compare the performance of PT

and EUT-based solutions for the proposed CA scheme. The
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Fig. 8: Validation of contract properties with the utilities of type-4
and type-6 workers under different loss aversions.

reference point Uref can affect the PT-based solution of fn
for each worker type, which is different from the EUT-based

solution of fn. As shown in Fig. 4 (a) and Fig. 4 (b), the larger

Uref, the more workers with low types improve the subjective

utility of the service provider by adjusting their PT-based

solution of fn. For example, when Uref = 13970 and η = 0.5,

the service provider adjusts the optimal update frequency and

the corresponding reward for worker types 1, 2, 3, 4, 5, 6, and

7. However, when Uref is reduced to 13870 and η is unchanged,

the service provider only adjusts the optimal update frequency

and the corresponding reward for worker types 1, 2, 3, 4, 5, and

6. With given a reference point Uref and a risk-averse behavior

(i.e., η > 1), the PT-based solution of each worker is always

better than its corresponding EUT-based solution. In turn, with

a fixed reference point Uref, when the service provider has a

risk-preferred behavior (i.e., η < 1), the PT-based solution of

workers with low types (e.g., type-1, type-2, and type-3) is

worse than their corresponding EUT-based solutions.

Figure 6 shows the impacts of preference parameters on

the utilities of the service provider and workers. With a

given reference point Uref, as the loss aversion η increases,

the subjective utility of the service provider decreases while

the objective utilities of workers increase. The reason is that

the increase of the loss aversion η means that the service

provider tends to have a risk-averse behavior. Therefore, the

service provider needs more update frequency from workers

with higher types to avoid utility losses, which can increase

the objective utilities of workers. Besides, the more update

frequency indicates that the service provider needs to send

more rewards to workers, which reduces the subjective utility

of the service provider. When the loss aversion η is fixed

and η < 1, with the increase of the reference point Uref, the

subjective utility of the service provider decreases while the

objective utilities of workers increase. In turn, when η > 1,

with the increase of the reference point Uref, the subjective

utility of the service provider increases while the objective

utilities of workers decrease.

Figure 8 shows the validation of contract properties in both

two cases. Figure 8 (a) shows the utilities of type-4 and type-

6 workers under different loss aversions η when selecting all

the contract items (fn, Rn), n ∈ N offered by the service

provider. In Fig. 8 (a), we find that when the service provider

has a risk-tolerance behavior (i.e., η = 0.5), the objective

utility of each worker is lower than that when the service

provider has a risk-neutral behavior (i.e., η = 1.0), and the

objective utility of each worker is the highest when the service

provider has a risk-averse behavior (i.e., η = 1.5). When the

loss aversion η is fixed, we can see that each type of worker

receives a positive utility when selecting the contract item that

fits its type, which demonstrates that our designed contract

guarantees the IR condition. Furthermore, each worker can

maximize its utility when selecting the contract item that fits its

type, which demonstrates that our designed contract guarantees

the IC condition. Therefore, we validate that our proposed

CA scheme satisfies the IR and IC conditions. Additionally,

the utilities of higher types of workers are larger than those

of lower types of workers, which demonstrates Lemma 1.

Based on the above analysis, we can conclude that the service

provider can overcome the problem of asymmetric information

between the service provider and workers by utilizing the

proposed CA scheme.

C. Performance Analysis of the Cross-chain Empowered FL

Framework

Figure 9 (a) shows the accuracy of FL for the prediction of

breast cancer. Since users have different numbers and types of

features in the dataset, vertical FL training is performed for the

prediction of breast cancer. After 25 iterations, the prediction

accuracy can be reached at 93.71%, which demonstrates

that our proposed cross-chain empowered FL framework has

good performance. Figure 9 (b) shows the time spent by

vertical FL in 25 iterations. The time spent in the blockchain

(e.g., consensus time and cross-chain interaction time, etc.) is

181.3 s, the time spent in the local model training (e.g., the

data process and homomorphic encryption, etc.) is 8930.3 s,
and the total time spent in the whole system is 9111.6 s. Note

that the homomorphic encryption algorithm Paillier is used for

ensuring the security of the training process [45], [49]. With

the iterations increasing, the time consumption of the proposed

system increases nonlinearly, and the local model training

takes up much time because of homomorphic encryption.

Figure 9 (c) shows the storage distribution of completing a

global iteration in the single-chain system and the cross-chain

system. We can see that the total storage of the single-chain

system is 25.461MB, and the total storage of the cross-chain

system is 50.981 MB, which is the sum of storage on the

server, client A, and client B. Although the total storage of

the cross-chain system is almost twice as much as the storage

of the single-chain system, the storage on the server in the

cross-chain system is only 0.787 MB, which is about 3.09%
of the storage in the single-chain system. Therefore, in our

cross-chain empowered FL system, the storage pressure on

the server is greatly reduced, which allows more clients (i.e.,

workers) to join FL training. Figure 9 (d) shows consensus

time corresponding to different numbers of miners on the

server under different block sizes. From Fig. 9 (d), we can

find that as the number of miners increases, the consensus time

increases. Besides, the bigger the block, the more consensus

time. Based on the above analysis, the server has higher

consensus efficiency due to less stored data in the cross-chain

empowered FL system, which indicates the good performance

of our proposed system.



12

(a) Prediction accuracy. (b) Time spent by vertical FL. (c) Data storage distribution. (d) Consensus time.

Fig. 9: The performance of the cross-chain empowered FL framework.

Fig. 10: Transaction information in three blockchains. Without loss of generality, we set two subchains that are used to store the local models
on client A and client B separately and one main chain that is used to store data on the server.

VII. CONCLUSION

In this paper, we have studied user privacy protection issues

and incentive mechanism design for healthcare metaverses.

We have proposed a user-centric privacy-preserving framework

based on FL technologies for data training in both the virtual

space and the physical space of the healthcare metaverse.

To ensure secure, decentralized, and privacy-preserving model

training, we have designed a decentralized FL architecture

based on cross-chain technologies, which consists of a main

chain and multiple subchains. Additionally, to improve the

service quality of time-sensitive learning tasks, we have ap-

plied the AoI as a data-freshness metric and designed an AoI-

contract model for incentivizing fresh sensing data sharing in

a user-centric manner. Furthermore, we have utilized PT to

capture the utility of the service provider considering decision-

making under risks and uncertainty. Finally, numerical results

demonstrate the effectiveness and reliability of the incen-

tive mechanism and the proposed cross-chain empowered FL

framework for healthcare metaverses. For future work, we will

further enhance the security and performance of our proposed

cross-chain empowered FL framework by considering specific
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features of health data for healthcare metaverses. Besides,

we will use AI tools like deep reinforcement learning or the

diffusion model to enhance the solution methodology of the

AoI-based contract model under PT.
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