
 
 “© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other uses, in any current or future media, including reprinting/republishing this 
material for advertising or promotional purposes, creating new collective works, for resale or 
redistribution to servers or lists, or reuse of any copyrighted component of this work in other 
works.” 



Place Classification with a Graph Regularized Deep Neural Network
Yiyi Liao, Student Member, IEEE, Sarath Kodagoda, Member, IEEE, Yue Wang, Lei Shi, Member, IEEE,

and Yong Liu, Member, IEEE

Abstract—Place classification is a fundamental ability that
a robot should possess to carry out effective human-robot
interactions. In recent years, there is a high exploitation of
Artificial Intelligence algorithms in robotics applications. In-
spired by the recent successes of deep learning methods, we
propose an end-to-end learning approach for the place clas-
sification problem. With deep architectures, this methodology
automatically discovers features and contributes in general to
higher classification accuracies. The pipeline of our approach is
composed of three parts. Firstly, we construct multiple layers
of laser range data to represent the environment information in
different levels of granularity. Secondly, each layer of data is
fed into a deep neural network for classification, where a graph
regularization is imposed to the deep architecture for keeping
local consistency between adjacent samples. Finally, the predicted
labels obtained from all layers are fused based on confidence
trees to maximize the overall confidence. Experimental results
validate the effectiveness of our end-to-end place classification
framework in which both the multi-layer structure and the
graph regularization promote the classification performance.
Furthermore, results show that the features automatically learned
from the raw input range data can achieve competitive results
to the features constructed based on statistical and geometrical
information.

Index Terms—Place classification, graph regularization, deep
learning

I. INTRODUCTION

PLACE classification is an important problem in human-
robot interactions and mobile robotics, which aims to

distinguish differences of environmental locations and assign
a label (corridor, office, kitchen, etc.) to each location [1], [2].
It allows robots to achieve spatial awareness through semantic
understanding rather than having to rely on precise coordinates
in communicating with humans. Furthermore, the semantic
labels has the potential to efficiently facilitate other robotic
functions such as mapping [3], behavior-based navigation [4],
task planning [5], [6] and active object search and rescue [7].
Therefore, the task of place classification has been intensively
explored in the robotics community [8], [9], [10].

In general, place classification is carried out through en-
vironment sensing. Laser range finders, cameras and RGB-
D sensors are the mostly used sensing modalities. Location
and topological information can also be informative in place
classification. In this work, we attempt to exploit both the
sensory data and location information. We assume all the maps
in this paper contain these two parts of information and some
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of the maps are labeled with human knowledge. Then the place
classification problem can be stated as predicting the labels of
new environments given the labeled maps.

By analysing those two forms of data, sensory data and
location information, we can gain insights into the char-
acteristics of the place classification problem. Raw sensory
data encode the environment information at different loca-
tions which can provide discriminative information between
different classes. However, this requires an effective feature
extraction method and most of the previous works tend to
extract hand-engineered features from the raw data [11], [12].
Our opinion is that the handcrafted features may not fully
exploit the potential to achieve higher generalization ability.
On the other hand, locations encode spatial information of
the environment and indicate local consistency of the labels,
which means the positions at spatial proximity have higher
probability of having the same class labels.

It is to be noted that another difficulty in place classification
is the influence of different field of views (FOV) of the sensors
used. For example, the data collected by a 180◦ FOV laser
range finder facing approximately a corner of a corridor may
not contain sufficient information for classification. If the laser
range finder collects 360◦ FOV data at a door of an office
room, the robot might be confused by mixed information from
two classes.

In order to address these problems, in this paper, we propose
a graph regularized deep learning approach with classification
on multi-layer inputs. The pipeline of our system is illustrated
in Fig. 1, which can be split into three parts:

1) Construction of multi-layer inputs: The environmental
information is represented through the generalized Voronoi
graph (GVG) [13], a topological graph in which the nodes
correspond to the sensory data and the edges denote the
relationships in this paper. By fusing the information and
eliminating the end-nodes, we implement a recursive algorithm
to construct multi-layer inputs with hierarchical GVGs. The
inputs of higher layers contain information of larger field of
view, represented by increasingly succinct GVG. The features
are extracted from each layer of input and classified indepen-
dently.

2) The graph regularized deep architecture for feature
learning and classification: We adopt the deep architecture
that learns features from the raw data automatically. A graph
regularizer is imposed to the deep architecture to keep the
local consistency, where an adjacency graph is constructed
to depict the adjacency and similarity between the samples.
Our training map and testing maps are fed into the deep
architecture for feature learning at the same time, which forms
a semi-supervised learning framework. The output of this step
is the predicted labels of different layers.
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Fig. 1. Pipeline of the semi-supervised learning system. Given a training map and a testing map, firstly multi-layer inputs are constructed for both maps to
represent the environmental information with different field of views. At each layer, end-nodes (denoted as red) in the previous layer are eliminated and the
information carried by them are fused to their parent node (denoted as black). Secondly, the raw information carried by each node is represented as a feature
vector using a deep architecture, and predicted labels are also obtained end-to-end. Finally, a confidence tree is constructed to fuse the predicted labels of
different layers.

3) The confidence tree for decision making: After receiving
the classification results of multi-layer inputs, confidence trees
are constructed according to the topological graph, and a
decision making process is carried out to maximize the overall
confidence.

The remainder of this paper is organized as follows:
Section II reviews the related literature. In Section III, we
introduce the construction of our multi-layer inputs and the
confidence tree for decision making. The semi-supervised
classification with graph regularization is given in Section IV.
Experimental results are presented in Section V to validate the
effectiveness of our end-to-end classification framework. Then
the paper is concluded in Section VI.

II. RELATED WORK

There are various sensors that help robots to perceive the
environment, such as cameras and laser range finders. Previous
works have demonstrated the effectiveness of both camera
data and laser range finder data for classifying places. For
example, Shi et al. [14] and Liao et al. [10] extracted features
from the vision data, while Mozos et al. [11] and Sousa et
al. [12] classified the places based on laser range data. In this
paper, we focus on the place classification based on laser range
data, however, our approach can be easily extended to other
modality of sensors such as vision data.

Laser range finders provide nonnegative beam sequences
describing range and bearing to existing obstacles within a
specific range. Mozos et al. [11] extracted features from the
360◦ laser range data and those features were fed into an
Adaboost classifier to label the environment. Sousa et al. [12]
reported superior results on a binary classification task using
a subset of above mentioned features, and the support vector
machine as the classifier. In our past work, we implemented a
logistic regression based classifier, as a binary and multi-class
problem contributing to higher accuracies [15], [16]. The work
was further extended to address the generalizability of the

solution through a semi-supervised place classification over a
generalized Voronoi graph (SPCoGVG) [8]. Recently, Preme-
bida et al. [17] proposed to combine multiple classifiers using a
mixture of probabilistic models, on which a dynamic Bayesian
network was constructed to incorporate the past inferences. In
all of these methods, the features were extracted from the laser
range data based on statistical and geometrical information, or
so-called hand-engineered features. For instance, the average
and the standard deviation of the beam length, the area and
perimeter of the polygon specified by the observed range data
and bearing were included in the feature set.

In the past decade, the unsupervised feature learning has
drawn much attention as the developing of deep learning
methods [18], [19], [20]. The deep learning methods achieved
remarkable results in many areas, including object recogni-
tion [21], [22], natural language processing [23], [24],speech
recognition [25] and even emotion recognition [26], which
demonstrated that discovering and extracting features auto-
matically can usually achieve better results on representation
learning [27], [28], [29]. In the robotics community, deep
learning methods also shown their outstanding performances in
a range of applications [30], [31], [32]. Inspired by the success
of unsupervised feature learning, in this article we present an
end-to-end framework to solve the place classification task,
where the deep learning method is employed to learn features
automatically from the laser range data. A recent approach
based on raw laser range data is proposed by Premebida
et al. [33], where the laser range data are normalized and
classified based on clustering method, which can be regarded
as learning features with a shallow neural network.

We also exploit the local consistency of classes with the
assumption that samples located in the same small region are
more likely to have the same labels. Previous research has in-
cluded this particular characteristic for performance promotion
and many studies were carried out with consideration of the
local consistency [3], [34], [11], [35], [36].
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In this paper, we consider the local consistency during the
feature learning process, where, the features learn to keep the
local invariance with a graph regularization. There is similar
work on implementing the graph regularized deep learning
models [37], [38]. Both [37] and [38] utilized a margin-based
loss function proposed by Hadsell et at. [39]. These works
have demonstrated the effectiveness of the graph embedding
in dimensionality reduction and image classification.

III. MULTI-LAYER CONSTRUCTION AND DECISION
MAKING

In this paper, we assume a laser range finder with a typical
field of view of 180◦. This is a limited field of view which
can give rise to many classification inaccuracies due to the
lack of crucial information. However, the full field of view
may also lead to misclassifications at the boundaries of the
two different classes of places. Therefore, considering these
problems, we propose to construct multi-layer inputs for
classification followed by fusion of the results.

A. Construction of Multi-layer Inputs

1) Data Representation on GVG: In this paper, our multi-
layer inputs is represented by the hierarchical generalized
Voronoi graph (GVG) [13], a topological graph which has been
successfully applied to navigation, localization and mapping.
The general representation of GVG is composed of meet-
points (locations of three-way or more equidistance to ob-
stacles) and edges (feasible paths between meet-points which
are two-way equidistance to obstacles) [40]. GVG can be
constructed with different solutions, and we adopt the finest
available resolution (the same as in our previous work [8]) to
construct the first layer GVG. Then the higher layers of GVGs
are constructed to describe the environment at different levels
of granularity.

Let’s denote hierarchical GVGs as 〈G(1), G(2), · · · , G(L)〉
with G(l) = {V (l), E(l)}, where L denotes the number of
layer, V (l) denotes nodes in layer l and E(l) denotes edges in
layer l. For each layer, the independent sensing information
is carried by the nodes in V (l), and the local connectivity
is represented by the edges in V (l). More specifically, each
node v(l)i ∈ V (l) corresponds to a sequence of range data r(l)i ,
assigned the label y(l)i for the training maps, while e(l)ij ∈ E(l)

reveals the connection between two neighboring nodes v(l)i

and v(l)j .
The first layer G(1) = {V (1), E(1)} describes the environ-

ment in most detailed level of granularity with the originally
adopted laser range data. As the laser range finder is of
180◦ field of view with 1◦ angular resolution, each node
v
(1)
i ∈ V (1) corresponds to a sequence of range data r(1)i with

180 dimension.
2) Recursive Higher Layer Construction Algorithm: The

construction of a higher layer GVG is implemented by fusing
the information carried by connected nodes and then elimi-
nating those marginal nodes. Algorithm 1 demonstrates the
process of building higher layer GVG from a given lower
layer. We make some definitions here for better explanation

Algorithm 1: Generate higher layer of input from the
previous layer.

Input: G(l) = {V (l), E(l)}, the range data r(l)i on each
node v(l)i

Output: G(l+1) = {V (l+1), E(l+1)}, the range data
r
(l+1)
i on each node v(l+1)

i

1 for v
(l)
i ∈ V (l) do

2 if numel(N(v
(l)
i )) > 1 then

3 Preserve v(l)i , i.e. v(l+1)
i = v

(l)
i ;

4 Construct r(l+1)
i and r̂(l+1)

i from r
(l)
i and all of

the r(l)j carried by v(l)j ∈ N(v
(l)
i );

5 end
6 for v

(l)
j ∈ N(v

(l)
i ) do

7 if v(l)j ∈M(v
(l)
i ) then

8 Eliminate e(l)ij and v(l)j ;
9 else

10 Preserve e(l)ij , i.e. e(l+1)
ij = e

(l)
ij ;

11 end
12 end
13 end

of the algorithm. N(vi) is defined as the directly connected
neighbour set of vi, then vj ∈ N(vi) means there is an
edge eij ∈ E between vi and vj . In addition, numel(N)
is defined as the number of elements contained in N . Then
numel(N(vi)) = 1 means vi is an “end-node”, i.e. the node
without children. Further define M(vi) as the set of end-
nodes connected to vi, which is obviously M(vi) ⊆ N(vi).
As seen from Algorithm 1, the construction process fuses the
information carried by vi’s neighbors if vi is not an end-node
(detailed fusion process is given in section III-A3), otherwise
vi is eliminated from the higher layer.

The L layer of data can be generated by recursively applying
Algorithm 1 for L−1 times, which means by taking the output
of the lth layer as the input of the (l+1)th layer. This process
can be illustrated in Figure 2 with L = 3. In this example,
the end-nodes are denoted as red. It is to be noted that when
moving to higher layers, the number of nodes in each layer
decreases with the elimination of the end-nodes. More details
are given in the caption of Figure 2.

An illustration of the different G(l) = {V (l), E(l)}, l =
1, 2, 3 layers constructed from a specific map is given in
Figure 3. In the first layer, the nodes are distributed more
densely in the map. When approaching higher layers, the tree
structure represents more and more abstract information. It is
to be noted that the number of the end-nodes (denoted as red
asterisks) decreases as the progression of the layers which is
a consideration for choosing the L = 3 in our experiments.

3) Data generation: This section describes the details about
the construction of the higher-layer range data r

(l+1)
i and

r̂
(l+1)
i , where the latter is generated from the former with

fixed length. As stated in Algorithm 1, given v
(l)
i satisfying

numel(N(v
(l)
i )) > 1 (i.e. v(l)i is not end-node), range data
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Fig. 2. An example of multi-layer GVG: The end-nodes are denoted as red.
The red nodes v

(1)
1 , v(1)2 and v

(1)
6 in layer 1 are fused with their neighbours

respectively, where, v(2)1 is composed of (v(1)1 , v
(1)
2 , v

(1)
5 ), v(2)2 is composed

of (v
(1)
1 , v

(1)
2 , v

(1)
3 , v

(1)
4 ) and v

(2)
6 is composed of (v

(1)
1 , v

(1)
6 , v

(1)
7 , v

(1)
8 ).

Then all the red nodes are eliminated from layer 1. This process will be
performed recursively on layer 2 to generate layer 3.

received at the respective nodes are integrated to achieve a
better perception.

Given each v
(l)
i with numel(N(v

(l)
i )) > 1, firstly a local

map is generated using occupancy grid mapping [41] based on
the respective range data in lth layer, including r(l)j carried by
v
(l)
j ∈ N(v

(l)
i ) and r

(l)
i . This is achieved by transforming all

r
(l)
j to r(l)i ’s coordinate frame, which assumes the knowledge

of the global robot poses at all times. In this local map, a
virtual scan r

(l+1)
i is then generated by applying ray casting

at position v(l)i with 1◦ angular resolution, which is the same
as the setting of the real laser range finder.

As the dimensions of the fused range data r(l+1)
i could be

different in various nodes, linear interpolation on the data is
then performed to keep same dimension of data throughout the
process. This leads to an sequence r̂(l+1)

i with fixed dimension
of 360.

Acknowledging the fact that the interpolated points may
not contain high information, a completeness rate, which is
the proportion of the laser measured data (dimension of r(l)i

to the whole 360◦ data (dimension of r̂(l)i ) is defined as:

q
(l)
i =

length(r
(l)
i )

length(r̂
(l)
i )

(1)

where l = 2 · · ·L. This measure is used in the decision making
process which is discussed in the next section, thus we denote
q
(1)
i = 180/360 = 0.5 for uniformity when l = 1. However,

the linear interpolation is not applied to layer 1 since the initial
laser range data r(1)i always has the same dimension of 180,
so that linear interpolation becomes unnecessary. By applying
this data pre-processing approach, the laser range data in layer
2 to layer L are kept in the fixed length of 360. Note that it
is always r(l)i which is employed to construct the next layer,
rather than the pre-processed r̂(l)i .

As an example, Figure 4 illustrates the construction of a
sequence of input in layer 2 using the corresponding inputs in
layer 1, followed by the result after linear interpolation. The
details are given in the caption of Figure 4.

B. Decision on Multi-layer Results

1) Construction of the Confidence Tree: With the L layer of
inputs, we can obtain the predicted labels from L independent
classifiers, which can be formed to be confidence trees with L
layers shown in Figure 5(a), where each node denotes the pre-
dicted label ŷ(l)i of v(l)i and its corresponding confidence c(l)i

. By maximizing the overall confidence of each tree structure,
it is intended to obtain higher accuracy in classification.

All of these tree structures are built from the dependencies
in Algorithm 1 except for some minor difference — during
the construction of these tree structures, a parent node v(l+1)

i

owns its children v
(l)
i and v

(l)
j ∈ M(v

(l)
i ), while the range

data of v(l+1)
i is constructed from the range data carried by

v
(l)
i and v

(l)
j ∈ N(v

(l)
i ). The reason is that for those nodes

v
(l)
j ∈ N(v

(l)
i ) and v

(l)
j /∈ M(v

(l)
i ), they are also reserved in

the higher layer as v(l+1)
j and have their own predicted labels,

so we don’t consider the influence of v(l+1)
i to them. It is to

be noted that the number of such tree structures is equal to
the number of nodes left in the layer L, where the v(L)

i are
the root nodes of these trees.

In our framework, two factors are considered when com-
puting the confidence c(l)i , one is the probability p(l)i obtained
from the classifier for labeling ŷ

(l)
i and the other is the

completeness ratio q(l)i obtained from the input sequence r(l)i

which is given in (1). Then the confidence c(l)i is constructed
as:

c
(l)
i = p

(l)
i × q

(l)
i (2)

2) Decision Algorithm: With the confidence trees denoting
the predicted label ŷ(l)i and its corresponding confidence c(l)i

for each given v
(l)
i , the aim of decision making is then to

search the optimized confidence c(l)i∗ and assign the optimized
label ŷ(l)i∗ to each node, leading to the maximum value of the
overall confidence.

In each tree structure, we make decisions from children to
parents while comparing two consecutive layers based on the
decision Algorithm 2. It is to be noted that for the comparison
between layer l and layer l − 1, the confidence of the parent
v
(l)
i is always compared to the average optimized confidence

of its children v(l−1)
j and we assume the optimized confidences

in layer 1 are known as the original confidences. As for the
optimized predicted labels, Algorithm 2 tells that they are only
changed to follow their ancestor when this ancestor beats its
children in confidence. In other words, if no ancestor of a leaf
node gain advantages in confidence, then this leaf node would
keep the initial label ŷ(1)i as its optimized label ŷ(1)i∗ . Note
that although we can obtain the optimized labels for all nodes
from this decision algorithm, only the labels of the leaf nodes
are exported as output since the classification performance is
evaluated based on these leaf nodes. An example is given in
Figure 5(b) for better clarity.



(a) Layer 1

(b) Layer 2

(c) Layer 3

Fig. 3. Multi-layer of the GVG graph G(l) = {V (l), E(l)}, l = 1, 2, 3 on Fr79. The red nodes correspond to the end-nodes, which will be eliminated in the
next layer, and the black nodes will be preserved. The edges reveals the connection between these nodes.

Fig. 4. An example of constructing r
(2)
i and r̂

(2)
i where the axes are in meters. The left four figures illustrate r

(l)
i and all of the r

(l)
j carried by v

(l)
j ∈ N(v

(l)
i ),

where the black asterisk node denotes the position of v(l)i , the red asterisk nodes denote the position of v(l)j and the blue nodes denote the range data collected

from the real environment. Then the middle figure shows the constructed r
(2)
i using ray casting. The interpolated sequence is given on the right, where the

magenta points correspond to the interpolated ones. In this example, we have q
(2)
i = 332/360 = 0.9222.



Algorithm 2: Decision making on the confidence trees.

Input: Confidence trees where each node v(l)i denotes
the predicted label ŷ(l)i and the corresponding
confidence c(l)i .

Output: Optimized labels of leaf nodes ŷ(1)i∗ .

1 Initialize c(1)i∗ = c
(1)
i and ŷ(1)i∗ = ŷ

(1)
i ;

2 for l = 2 · · ·L do
3 for v

(l)
i ∈ V (l) do

4 Average the optimized confidence of v(l)i ’s
children v(l−1)

j as 1
ni

∑
j c

(l−1)
j∗ ;

5 if 1
ni

∑
j c

(l−1)
j∗ > c

(l)
i then

6 Denote c(l)i∗ = 1
ni

∑
j c

(l−1)
j∗ ;

7 else
8 Denote c(l)i∗ = c

(l)
i ;

9 All descendants of v(l)i are assigned the label
ŷ
(l)
i∗ .

10 end
11 end
12 end

We can also evaluate the results obtained from those L
independent classifiers separately with the help of these con-
structed trees. To ensure the fairness, results obtained from
different layer of classifiers are all compared on the accuracy
of bottom layer. Obviously, the results observed from the input
of layer 1 do not need to be modified while the higher layers
should spread their predicted labels to the bottom layer. Given
a specific layer l (l > 1), all of the nodes on the bottom layer
are assigned the same label as their ancestor in layer l. For
example, as shown in Figure 5(b), the v(l)1 , v

(l)
2 , · · · , v(l)5 will

be labeled by the v(3)1 ’s predicted label when we evaluate the
results of layer 3.

IV. SEMI-SUPERVISED LEARNING AND CLASSIFICATION

We have introduced the construction of multi-layer inputs
and decision making on the multi-layer results in Section III.
In this section, we discuss the classification problem of how
to train on each layer with the input data and obtain the
predicted labels of the testing maps. This is implemented by
a deep learning structure, with the capability to automatically
learn features from the raw input data. The L layer of inputs
are trained through L independent deep learning modes as
indicated in Figure 1, though, these models have the same
structure with raw laser range data being the input and
predicted labels being the output as shown in Figure 6. Thus
the discussion below in this section is not confined to any
specific layer and hence the superscripts are omitted. It is to
be noted that our training process is semi-supervised since
both the training map and the testing map are employed for
model training, where only the labels of the training map
are available. The semi-supervised learning process has the
advantage of gaining richer information of data distribution,

(a) Confidence tree

(b) A decision example

Fig. 5. Confidence trees built from Figure 2 and a corresponding example. (a)
The confidence tree: Each parent node v

(l+1)
i has children v

(l)
i and v

(l)
j ∈

M(v
(l)
i ). (b) The decision example: in this example, let’s assume that the

confidence of each node is known. By applying the decision method given
in Algorithm 2, firstly we have the initialization c

(1)
i∗ = c

(1)
i and ŷ

(1)
i∗ =

ŷ
(1)
i . And then average confidence of the children in bottom most layer are

compared with their corresponding parents in the immediate upper layer. In the
left tree, c(2)1 is larger than the average value of c(1)1 and c

(1)
5 , and therefore

c
(2)
1∗ = 0.8 and both the respective children (v(1)1 and v

(1)
5 ) are assigned the

label ŷ(2)1 . The c
(2)
2 is smaller than the average value of c(1)2 , c

(1)
3 and c

(1)
4 ,

hence these leaf nodes remain their initial label and c
(2)
2∗ = (0.5 + 0.4 +

0.4)/3 = 0.4333. Finally c
(3)
1 = 0.6 is compared with (c

(2)
1∗ + c

(2)
2∗ )/2 =

0.6167. Since the confidence of layer 3 is smaller than the optimized average
confidence combined from layer 1 and layer 2, the final optimized confidence
is c

(3)
1∗ = 0.6167 and the optimized labels do not change. By applying the

same decision process on the right tree in the figure, v(1)6 , v(1)7 and v
(1)
8 are

labeled the same as v
(3)
6 .

while keeping the spatial consistency as we will introduce in
this chapter.

A. Semi-supervised Learning with Graph Regularization

In the classification problem, we denote the training pairs
as (Xl ∈ Rm×nl , Yl ∈ R1×nl ) as a convention, where m
denotes the input dimension, nl denotes the number of training
samples. Particularly, each column in Xl is a sequence of laser
range data r, i.e. xil = ri. The testing data can be defined in the
same way as Xu ∈ Rm×nu , where nu denotes the number of
testing samples. Then the task of the classification problem is
to obtain predicted labels of Xu given Xl and Yl. In addition,
we denote X = [Xl Xu] ∈ Rm×n as the combination of
training data and testing data with n = nl + nu, since X
is fed into the model as a whole during our semi-supervised
training process.

As illustrated in Figure 6, the input is firstly fed into a set of
fixed parameters (denoted as red) to compute the differences
between the consecutive beams in each raw scan, as the
consecutive differences can also provide rich information to
the place classification and is often employed for extracting
geometric features in the previous works [11], [12]. In the
practical experiments, we sort both of the input and consecu-
tive differences to guarantee the rotational invariance.



Fig. 6. Model training in semi-supervised learning: The second layer has fixed
parameters which computes the consecutive differences of our input (denoted
as red). Then both the input and the output of the second layer will be fed
into the latter process. For the fine-tuning process, the Jlabel is imposed to
the softmax classifier and all of the parameters in the neural network (except
the fixed layer) will be adjusted, while Jgraph is imposed to the last hidden
layer and will only influence the feature learning process.

From this point on, both the input and output of this fixed
layer are fed into the stacked auto-encoders for feature learn-
ing. Auto-encoder is the widely used structure for building
deep architectures, which is composed of an encoder and a
decoder. By feeding the representation learned from the pre-
vious encoder as the input into another auto-encoder, we can
obtain the stacked hidden representations as shown in Figure
6. Let’s denote sigmoid function as f(x) = 1/(1 + e−x), then
the ith layer of encoder and decoder can be represented as
follows:

Hi = f(WiHi−1 + bi)

Ĥi−1 = f(WT
i Hi + ci)

(3)

where Hi−1 and Ĥi−1 denote the input and its reconstruction,
Hi denotes the hidden representation and Wi, bi, ci denote the
weighted parameters respectively1. In this paper, the weights
in each pair of encoder and decoder are tied together as shown
in (3).

For each layer of auto-encoder, the unsupervised pre-
training is applied to obtain better parameters than random
initialization [18] by minimizing the reconstruction cost:

Jpre =
1

m
‖Hi−1 − Ĥi−1‖2F (4)

Note that the decoder is discarded after pre-training while the
encoder is preserved. The hidden representation learned by the
last auto-encoder can be regarded as the feature for the input
to the classifier.

In the work reported here, the softmax classifier is applied
to the features learned from stacked auto-encoders for classi-
fication, which is formulated as follow:

pi =
exp(wT

i h)∑
j exp(w

T
j h)

(5)

1When i=1, Hi−1 is the raw input — the combination of X and its
consecutive differences Xs.

where pi corresponds to the probability that the hidden repre-
sentation vector h belongs to the ith class.

After pre-training and classification, back propagation can
be used to fine-tune the whole learning process for further
promotion, which means the parameters of preserved encoders
and softmax are trained together. In order to keep the local
consistency, we add a graph regularization term during fine-
tuning to learned representation. The cost function of the fine-
tuning is given as follow:

Jfine = Jlabel + Jgraph

=
1

nl

nl∑
i=1

Jlabel(x
i
l, y

i
l) +

λ

n

n∑
i=1

n∑
j=1

sij‖hi − hj‖2
(6)

where the first term corresponds to the prediction error of the
training data, and the second term is the graph regularization.
Here hi and hj are the outputs of the last hidden layer with
respect to the inputs xi and xj (xi and xj are two arbitrary
columns in X), and sij is the similarity measurement between
the samples xi and xj that are connected in GVG, which is an
element of the adjacency graph S = [sij ]n×n. Figure 6 also
illustrates the way our cost function work. The costs caused by
the prediction error is imposed on the softmax classifier and
then our graph regularization is imposed on the last hidden
layer. Therefore during the fine-tuning the Jlabel influences all
of the parameters, while Jgraph influences parameters except
for the softmax classifier.

B. Graph Regularization in Place Classification Problem

As shown in (6), the learned features hi and hj with
large weight sij will be pushed together with the graph
regularization term. In this section, we describe the details
about the construction of the adjacency graph S which can be
built in two steps. Firstly we define the connected relationships
between samples and then calculate their weights of the
connected edges.

In the place classification problem, the connected relation-
ships in the topological graph GVG are directly employed to
the adjacency graph. Then the samples with close coordinates
are forced to be represented by the features with close dis-
tances. As for the weights which corresponds to the strength
of the graph regularization, it is inversely associated with
two distances, i.e. the distance between coordinates and the
distance between the input data, which can be formulated as:

sij =
α

dij
+

β

‖xi − xj‖2
(7)

where α and β are constant weights, dij denotes the Euclidean
distance between the sample coordinates. The second term
defines the Euclidean distance between the input data. This
weighting scheme dose not only evaluate the geometrical
information, but also considers the closeness between inputs.
For example, given an edge that connects two nodes belonging
to corridor and office respectively, although dij is small,
‖xi − xj‖2 can be large. Therefore, these two nodes are not
forced to be too close in the representation space and the
discriminative information could be preserved.



V. EXPERIMENTS

To validate the effectiveness of our end-to-end multi-layer
learning system, we conduct experiments on six data sets
collected from six international university indoor environments
using (including the Centre for Autonomous Systems at the
University of Technology, Sydney, several buildings in the
University of Freiburg, the German Research Centre for Artifi-
cial Intelligence in Saarbruecken, and the Intel Lab in Seattle).
On each real grid map, a simulated robot collected laser range
data using a virtual on-board 2D laser range finder (with a
maximum range of 30m and a horizontal field of view of 180◦)
at the previous mentioned GVG nodes.

It is to be noted that the classes defined by humans can
be somewhat vague and plentiful according to the different
functions of places. However, the 2D range data do not contain
enough discriminative information to classify all these human-
designed classes. Therefore, we consider 3 target classes as:
Class 1-space designed for a small number of individuals
including cubicle, office, printer room, kitchen, bathroom,
stairwell and elevator; Class 2-space for group activities in-
cluding meeting room and laboratory; Class 3-corridor.

Among these six data sets, two of them (Fr79 and Intellab)
contain all of the 3 classes but the others contain only parts
of these classes. We conduct leave-many-out training, which
means one data set is utilized for training and others are used
for testing. Therefore, we obtained two groups of results by
training on Fr79 and Intellab respectively.

For parameter setting, we choose L = 3 based on the
difference between two consecutive layers, which is measured
by distance between their mean completeness rates. The mean
completeness of layer l is given as follow:

q(l) =
∑
i

q
(l)
i (8)

where q
(l)
i is the completeness rate of node i in layer l as

defined in (1). If the distance between q(l) and q(l+1) is tiny,
then for a node existing in both layer, its corresponding laser
measured data in these two layers are very close. Consequent-
ly, the slightly difference leads to tiny change in the predicting
results and thus it is meaningless to consider the higher layer
l+1 . Taking the map Fr79 as an example, it has q(1) = 0.50,
q(2) = 0.91, q(3) = 0.98 and q̄(4) = 0.99. Since q(4) is very
close to q(3), we choose L = 3 in this paper. For dimension
configuration of the deep architecture in Figure 6, we set the
dimension of each layer as m−m− 100− 24− 3 given the
input X ∈ Rm×n. The input and the consecutive differences
layer both have the same dimension as the raw input m, where
m = 180 for L = 1 and m = 360 for L = 2, 3. For the
following hidden layers, we set the dimension of the hidden
representation H1 as 100 based on experience. The dimension
of the hidden representation H2 is set to be 24, which is the
same as the dimension of the handcrafted features in [8] for
fair comparison. Finally the output of our model represents
a probabilistic measure of data belonging to each class. Thus
the output dimension is the same as the number of our classes.

TABLE I
MULTI-LAYER RESULTS TRAINED ON INTELLAB.

Map L1(%) L2(%) L3(%)
UTS 85.20 89.49 91.24
SarrB 86.55 87.64 91.32
FrUA 86.23 92.96 91.69
FrUB 90.29 98.87 99.84
Fr79 81.99 85.87 87.90

Average 86.05 90.97 92.40

TABLE II
MULTI-LAYER RESULTS TRAINED ON FR79.

Map L1(%) L2(%) L3(%)
UTS 81.70 85.99 89.93
SarrB 84.16 95.44 90.46
FrUA 90.43 94.70 96.91
FrUB 88.67 98.87 99.51

Intellab 72.55 79.81 82.73
Average 83.50 90.96 91.91

A. Multi-layer Results without Graph Regularization

We first conduct experiments to evaluate the performance of
our multi-layer inputs. Table I and Table II shows the leave-
many-out classification results training on Intellab and Fr79
respectively. It is to be noted that the graph regularization is
not considered here and therefore, λ = 0 in the cost function
(6). In general, results of higher layers are better than that of
lower layers due to the richer information contained in each
node on the higher layers.

B. Multi-layer Results with Graph Regularization

We also carried out experiments to validate the effectiveness
of the graph regularization. The algorithm remains the same
as previous settings, however, we changed the value of λ = 1
to add the graph regularization. In this experiments, we pay
more attention to the geometrical neighborhood, thus we use
α = 2/3 and β = 1/3 in (7) for the construction of
the adjacency graph. The classification results are shown in
Table III and Table IV, which are trained on Intellab and
Fr79 respectively. The results have the similar trends as in
Table I and Table II, where higher layers give rise to better
accuracies. Further comparisons of Table I and Table III show
that the feature learning with graph regularization performs
better than without it. It reveals that the graph regularization
has the advantage of improving classification performances by
keeping the local consistency.

C. Fusion Results

Finally, we show the accuracies of the multi-layer graph
regularized method with fusion in Table V and Table VI. When
compared with the results of each single layer as shown in
Table III and Table IV, the fusion results achieved better accu-
racies. For the results trained on Intellab, the average accuracy
of fusion results risen to 94.02% from L1:87.71%, L2:92.14%
and L3:92.66%, and the results trained on Fr79 also reached
93.59% from L1:84.24%, L2:92.17% and L3:92.95%. The
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TABLE III
MULTI-LAYER RESULTS TRAINED ON INTELLAB WITH GRAPH

REGULARIZATION.

Map L1(%) L2(%) L3(%)
UTS 83.54 87.3 92.29
SarrB 89.59 96.31 90.89
FrUA 91.48 91.77 96.68
FrUB 89.97 99.19 99.84
Fr79 83.96 86.12 88.65

Average 87.71 92.14 93.67

TABLE IV
MULTI-LAYER RESULTS TRAINED ON FR79 WITH GRAPH

REGULARIZATION.

Map L1(%) L2(%) L3(%)
UTS 80.47 89.23 90.02
SarrB 87.20 96.75 95.23
FrUA 91.06 96.12 97.47
FrUB 89.48 98.87 99.51

Intellab 73.00 79.89 82.51
Average 84.24 92.17 92.95

fused test results trained on Intellab are diagrammatically
illustrated in Figure 7. It is to be noted that confusions between
Class 1 (office room and other rooms) and Class 2 (meeting
room) account for the major misclassifications especially in the
test map of Fr79. The cause might be that Class 1 is featured
with narrow environment including massive clutters while the
Class 2 is featured with relatively larger spaces, therefore the
corners of meeting room are mostly classified as office room
and other rooms and some center positions of office room are
assigned as office room.

Through the experiments above, one can see that our
framework is beneficial from these two aspects:

1) By regularizing the deep architecture with the adjacency
graph, the learned features are expected to be learned with
spatial invariance intrinsically, while the hand-crafted features
not able to encoding the relationship between neighboring n-
odes. The automatic feature learning also simplifies the feature
engineering significantly, enabling the end-to-end learning.

2) The better discriminative performance is achieved by
fusion on the confidence tree, which comprehensively consid-
ers the results from different layers. The information can be
insufficient in lower layer due to narrow FOV. In addition, in
higher layers, as the FOV may cover more than one place, the
multiple labels may confuse the classifier. The tree decision
avoids the two problems to some extent.

D. Algorithm Comparison

To further validate the effectiveness of the proposed algo-
rithm, it is compared to one baseline method as well as three
state-of-the-art methods, including:

• SVM The support vector machine (SVM) is employed as
a baseline classifier. It is based on 24-dimensional hand-
engineered features as implemented in [8]. Specifically,
21 features are constructed based on statistical and geo-
metrical information from the 180◦ FOV raw range data,

which is a subset of the features used in [11]. The other
3 features are constructed to describe the time domain
information follow [42].

• SPCoGVG Semi-supervised place classification over a
generalized Voronoi graph (SPCoGVG) [8], which is
composed of SVM and conditional random field (CRF)
to ensure the generalization ability. It also uses the 24-
dimensional hand-engineered feature the same as the
SVM.

• LVQ Mar. This method uses Learning Vector Quantiza-
tion (LVQ) for classification and Markov Model to incor-
porate the past inference [33]. Similar to our work, they
take raw laser scans as input, while their input can only
be calibrated 360◦ FOV range data. LVQ can be regarded
as a shallow neural network with one hidden layer, thus
the dimension of the hidden layer is set to be 24, which
is the same as the dimension as SVM, SPCoGVG and
our method. To build the time sequence, we generate a
moving trajectory based on our GVG nodes, on which the
Markov Model is applied. We reimplement their method
follow their paper for comparison.

• DBMM Dynamic Bayesian Mixture Models (DBM-
M) [17] is a method that combines two SVM classifiers
using a mixture of probabilistic models, and incorporates
past inferences using a dynamic Bayesian process. It
is also based on hand-engineered features constructed
follow [11], while a larger subset with 50 dimensions
is considered in this work. The features are extracted
from both 180◦ FOV and 360◦ FOV laser scan data for
comparison. A time sequence is also required to build the
dynamic Bayesian network, which is the constructed the
same as the moving trajectory in the LVQ Mar. We reim-
plement their method follow their paper for comparison.
We also reimplement this method by ourselves.

As can be seen from Table V and Table VI, our method
achieves superior results compared to the others. Specifically,

1) Our method and LVQ Mar. both employ the raw data to
learn the features. However, LVQ Mar. is not comparable to
SVM while ours outperforms SVM considerably. Particularly,
LVQ performs poor when trained on FR79 and tested on
Intellab as shown in Table VI. A main reason is that the
structure of Class 1 (corridors) at Intellab is slightly different
than that of the other maps, and LVQ is not able to capture
the variance with its features learned from the shallow ar-
chitecture. As a result, the average performance of LVQ is
even poorer when trained on Intellab and tested on the others
maps in Table V. The result indicates that our method learns
more generalizable features by owning the deep architecture
and considering the spatial consistency. With the shallow
architecture, LVQ Mar. cannot generate a good performance
even it models the temporal information (spatial consistency
in moving direction).

2) DBMM is expected to outperform SVM as it fuses two
SVMs with different set of hand-crafted features. Though it
outperforms SVM in Table VI, the DBMM with 180◦ FOV
achieves low accuracy on SarrB in Table V. In this case, one
of the SVMs has severe misclassification between the Class
1 and Class 2 with only accuracy at 77.87%. Even with the
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other SVM having accuracy at 85.03%, the combined accuracy
with consideration of temporal information only achieves
79.83%. This result indicates the hand-crafted features should
be carefully chosen, while their robustness to different maps
is not guaranteed. It is also worth to mention that DMBB
with 180◦ FOV outperforms the DBMM with 360◦ FOV in
Table VI, especially on the test SarrB, while in Table V
the DBMM with 360◦ FOV generally performs better. This
fact reflects that only considering the sensor information in
one resolution can be insufficient to make a comprehensive
classification.

3) Another possible reason that our method and SPCoGVG
outperform LVQ Mar. and DBMM is that, the completed
spatial consistency modeling by the adjacency graph can better
constrain the classifier than the temporal consistency modeling
by moving trajectory. For example, when the robot moves from
Class 1 to Class 2, LVQ Mar. and DBMM only consider the
past inferences of the nodes with Class 1, while our method
and SPCoGVG additionally take the inference of consequent
nodes with Class 2 into consideration. Besides, our method
is slightly better than SPCoGVG, indicating that considering
the constraints, e.g. spatial consistency, in feature learning step
may be better than in classification step, as the former occurred
in nonlinear feature space, while the latter utilizes the simple
weighted sum.

In summary, the proposed method achieves state-of-art per-
formance by using the spatial proximity aided feature learning
and confidence tree based multi-layer fusion, without referring
to the hand-crafted feature engineering. Besides, we think a
more valuable insight is that the practice with architecture of
hierarchical feature learning and decision, which can simply
incorporate the prior knowledge at the same time, can be
leveraged to in other tasks, especially the robot cognitive and
decision tasks, as they have many structured or hierarchical
priors.

VI. CONCLUSIONS

In this paper, we presented an end-to-end place classification
framework. We implemented a multi-layer learning frame-
work, including the construction of multi-layer inputs and de-
cision making on the multi-layer results. Each layer of inputs
were fed into a semi-supervised model for feature learning and
classification, which guaranteed the local consistency with a
graph regularization.

Experimental results showed that the higher layer input
data led to higher classification accuracy, which validated
the effectiveness of the multi-layer structure. By performing
the semi-supervised learning with or without graph regu-
larization, we also showed that graph regularization helps
promoting the classification performance by incorporating the
local consistency. Furthermore, the fusion results based on the
confidence tree achieved comparable results to the state-of-
the-art method. In a nutshell, we achieved the generalization
ability and preserved the local consistency in our end-to-end
place classification framework. Future work is to apply our
framework on other type of sensor data, such as RGB-D data,
which have more representative and discriminative ability.
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(a) FrUA, Acc = 95.02% (b) FrUB, Acc = 99.84%

(c) SarrB, Acc = 96.53% (d) UTS, Acc = 91.24%

(e) Fr79, Acc = 89.76%

Fig. 7. Test results corresponding to Table V, the GVG nodes are labeled with the graph regularized fusion results trained on Intelmap.




