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Abstract—Neurorobotic mimics the structural and functional
principles of living creature systems. Modeling a single system by
robotic hardware and software has existed for decades. However,
an integrated toolset studying the interaction of all systems has
not been demonstrated yet. We present a hybrid neuromorphic
computing paradigm to bridge this gap by combining the Neuro-
robotics Platform (NRP) with the neuromorphic snake-like robot
(NeuroSnake). This paradigm encompasses the virtual models,
neuromorphic sensing and computing capabilities, and physical
bio-inspired bodies, with which an experimenter can design and
execute both in-silico and in-vivo robotic experimentation easily.
The NRP is a public web-based platform for easily testing brain
models with virtual bodies and environments. The NeuroSnake
is a bio-inspired robot equipped with a silico-retina sensor and
neuromorphic computer for power-efficiency applications. We
illustrate the efficiencies of our paradigm with an easy designing
of a visual pursuit experiment in the NRP. We study two
automatic behavior learning tasks which are further integrated
into a complex task of semi-autonomous pole climbing. The
result shows that robots could build new learning rules in a
less explicit manner inspired by living creatures. Our method
gives an alternative way to efficiently develop complex behavior
control of the ro As SNN is a bio-inspired neural network and
the NeuroSnake robot is equipped with a spike-based silicon
retina camera, the control system can be easily implemented via
spiking neurons simulated on neuromorphic hardware such as
SpiNNaker.bot.

Index Terms—Neurorobotics, Neuromorphics, Snake-like

Robot, SpiNNaker, Dynamic Vision Sensor

I. INTRODUCTION

HE concept of neurorobotics was firstly introduced in

1933 [1]. A robot was devised with small electromechan-
ical memory cell that could learn its way through a simple
maze via conditioned reflex. Since then, however, robotics
research has focused mainly on industrial applications [2].
Recently, industry technology has been advancing by devel-
oping biologically inspired robots again [2]. With bodies,
sensors, and actuators mimicking structural and functional
principles at work in the organs of living creatures, scientists
studied how the brain, robot body and sensors could work
together, enabling a seamless exchange of knowledge between
neuroscience and robotics [3].
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Fig. 1: (a) The NeuroSnake robot proof-of-principle setup. The
NeuroSnake robot is modular designed and equipped with a
neuromorphic vision sensor in the head module and a SpiNN-
5 48-chip SpiNNaker neuromorphic computer. (b) The virtual
NeuroSnake robot model is performing the visual pursuit
experiment in a virtual environment in the Neurorobotics
Platform.

In a typical neurorobotics experiment, a robot or agent will
perceive its current environment through a set of sensors that
transmit their signals to a simulated brain [2]. Brain models
simulating nervous systems that mimic the structure and
function of biological brains, are varying levels of details [5].
As the brain is a complex structure, an advanced model is
particularly difficult to be simulated in real time. Moreover,
neurorobotics studies the interaction among the brain, body,
and environment in perception-action closed loops. Thus,
modeling brain functions requires the understanding of the
interaction of all subsystems in the loop. In the long run,
learning complex sensorimotor mapping of the robot generated
in the interaction with dynamic and rich sensory environment
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Fig. 2: A hybrid simulation and neuromorphic computing paradigm by combining the Neurorobotics Platform (NRP) [4]
and the neuromorphic snake-like robot the NeuroSnake. ROS interface connects them to each other. SpiNNaker is able to be
integrated into the close loop experiments. For the details of the NeuroSnake and NRP, please refer to Section II and Section III

respectively.

is also required [6, 7]. For instance, human upper extremity is
a highly coupled redundant system. The work of [6] proposed
a promising human inspired motion model for the movement
controlling, which sheds light on the sensorimotor learning
in such complex system. The work is inspired by Qiao’s
concept [8], which was proposed to achieve high-precision
manipulation with low-precision robotic actuators. However,
to further foster the understanding of brains in a right way,
researchers in neuroscience and robotics face several barriers.
These impede the development of modern robots to match the
cognitive or behavioral abilities of even the simplest animals,
let alone humans.

The first barrier comes from a dilemma for the researchers
of neuroscience and robotics: roboticists often use a simplified
brain model in a virtual robot to make real-time simulation,
or neuro-scientists develop detailed brain models which are
not possible to be embedded into a real world due to the high
complexity. Although adequate tools to model virtual robots,
high-fidelity environments, and complex neural network mod-
els already exist, there is so far no public platform that allows
neuro-scientist to test neuro-scientific models coupling with
virtual robot models [6]. On the other side, robots are still
lacking a detailed brain that allows them to exploit the physics
of their bodies. As a result, robotic researchers mainly devel-
oped machine-learning based on algorithms instead of brain-
inspired learning paradigm for pursuing high level intelligence.
Although traditional machine-learning approaches took some
high level inspirations from biology e.g., structures inspired
by the understanding of learning, there is no directly mapping
from biological details to robotics.

The second challenge comes from the computing infras-
tructure of neurorobotics. Neurorobotics applications require
strictly real-time execution of large neural simulations [9].
However, the most commonly used computing architecture is
still the desktop computer which is under a traditional Von

Neuman architecture with many computing cores sharing a
common large RAM. Depending on the underlying computing
requirement, a conventional computing architecture is not
optimized for simulating large neural networks in which all
the neurons work in parallel [10]. Although FPGAs and GPUs
are more readily available, large-scale neural simulation is still
bounded by communication. This issue is well discussed in the
recent work [11]. The GPUs and FPGAs are typically better
suited for tasks where the ratio of communication/computation
favours the latter. In addition, the high power requirements
hamper the usability for mobile robots.

To this end, our study looks to demonstrate a hybrid sim-
ulation and neuromorphic computing paradigm by combining
the Neurorobotics Platform (NRP) [4] and the neuromorphic
snake-like robot the NeuroSnake (See Fig .2). The NRP allows
users to connect pre-defined and customized brain models
to detailed simulations of robot bodies and environments in
in-silico experiments. The aim of this platform is twofold:
from one side, the NRP can be used to test and validate
the brain functionalities; on the other side, users can develop
a brain-inspired controller by taking advantage of the com-
prehensive development framework for creating brain, robot
and environment models. One pillar of the NRP is that in-
silico experiment has the advantage that physics can be slowed
down that the robot simulation and detailed brain simulation
run in lockstep. The working principles of the brain model
in the NRP can be exported to control physical robotics in
real world, which address the first barrier mentioned above.
Also, by adding a robotic middleware interface such as ROS
interface, it is possible to communicate with the real robot
through the interface compatible with the NRP.

The NeuroSnake is a bio-inspired robot developed in Tech-
nische Universitdt Miinchen which is equipped with silico-
retina sensors and neuromorphic computing processors, named
the SpiNNaker computing platform [12]. The NeuroSnake is
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a bio-inspired robot consisting of 13 actuated module. The
head module has a mininature embedded dynamic vision
sensor (meDVS) [13] as shown in Fig. 1. The meDVS is an
address-event silicon retina. Compared to conventional frame-
based cameras transmit complete images at fixed latency, the
meDVS emit events individually and asynchronously at the
time they occur, with high temporal resolution, low latency
and high dynamic range. The SpiNNaker computing system is
a massively-parallel chip multiprocessor system for modelling
large systems of spiking neurons in real time. Our previous
work demonstrated a scalable approach that could be used to
build and control an anthropometric human-scale robot [14].
By taking advantages of these neuromorphic sensor and hard-
ware, the proof-of-principle setup of our neuromorphic snake-
like robot offers a prime opportunity to let large neural network
interact with and adapt to the real world.

Our main contribution is a hybrid paradigm of simulation
and neuromorphic mobile computing platform enabling effi-
cient brain-inspired learning in-silico and in-vivo experiments.
We present our NRP platform targeting on the immediate
demands of neuro-scientist and robotistics, for the first time
to allow the coupling of robots and detailed brain models.
We demonstrate the proof-of-principle setup of our neuro-
morphic snake-like robot which has a unique combination of
modular robot design, neuromorphic sensing and computing
processors. We illustrate the capabilities and efficiencies of
our paradigm with a visual pursuit experiment in the NRP
by easily integrating the virtual model of the NeuroSnake
robot with a simplified brain model, and a semi-autonomous
locomotion of the NeuroSnake robot with lightweight central
pattern generator and automatic behavior learning rules.

II. THE NEUROMORPHIC SNAKE-LIKE ROBOT:
NEUROSNAKE

The Neurorobotics Platform offers an internet accessible
system where scientists from many disciplines can test their
brain models. To support both simulated and physical robots
and enhance the NRP capabilities, at the Technische Univer-
sitdt Miinchen, the Chair of Robotics and Embedded Systems
and the Group of Neuroscientific System Theory developed a
proof-of-principle setup of a neuromorphic snake-like robot,
the NeuroSnake as shown in Fig. 2.

A. Modular Snake-like Robot

The NeuroSnake robot is modular designed, consisting of
13 actuated modules, a tail module with power supply, and
a special designed head module mounting the meDVS [15]
sensor as shown in Fig. 1. All the modules are alternately
connected with the robot’s lateral and dorsal planes. Each
module allows a full 180° rotation driven by a servo and a
set of gears. The DC servo (DS1509MG) has a maximum
torque of 12.8Kg-cm and drives a gearbox with a reduction
factor of 3.71. For the electronic hardware, each module has an
modified arm chip, joint encoder, and other sensors. The arm
chip runs three tasks: controlling the servo, reading the joint
angle and other sensors information, and communicating with
the other modules. The snake robot is power supplied by cables

from external power source. Tab. I summarizes the technical
specifications of our snake-like robot. The SpiNNaker gener-
ates the control signals and transfer them to those modules via
I>C bus. The neuromorphic vision sensor in the head module
sends back the real-time event-stream to the host computer via
wireless module.

B. Neuromorphic Computing System: SpiNNaker

The SpiNNaker computing system is a massively-parallel
chip multiprocessor system for modelling large systems of
spiking neurons in real time. It is mainly developed in the
University of Manchester [16]. Each SpiNNaker chip has 18
programmable ARMO968 cores (200MHz). The communication
infrastructure for the processors and inter-chips are specially
optimized for massively-parallel computing. It is programmed
with the standard neural description languages PyNN [17].
For our NeuroSnake robot, we chose the Nengo open-source
neural compiler [18, 19] and the custom Nengo backend that
compiles high-level neural models into optimized SpiNNaker
code [20].

C. Neuromorphic Vision Sensor: meDVS

The dynamic vision sensor (DVS) [21] is an address-event
silicon retina. It detects temporal changes in the perceived
illumination and fires pixel location events when a quantized
change of log intensity is above a certain threshold [22]. A
single event is a tuple (x,y,7,p), where x, y are the pixel
coordinates of the event in 2D space, ¢ is the time-stamp of
the event, and p =1 is the polarity of the event, which is the
sign of the brightness change (increasing or decreasing).

The sensor system used in our NeuroSnake Platform is the
miniature embedded dynamic vision sensor (meDVS), shown
in Fig. 1. The meDVS is a 128x128 pixel neuromorphic
camera. It is preliminary designed for application scenarios
where space and weight constraints are crucial, such as
our NeuroSnake robot. Since the snake-like robot achieves
locomotion by twisting its body, the head module is high-
frequency rotating and unstable, which can not gather stable
visual images by using conventional image sensors. By taking
the advantage of high response speed, high dynamic range,
and power efficiency, the meDVS is a perfect match for the
brain-inspired learning tasks such as autonomous locomotion
of the NeuroSnake robot.

TABLE I: Overview of Snake-like robot specifications

Items Discriptions
Dimensions Diameter 60mm
Length 70cm
Module 0.3kg
Mass Full 2kg
. Max Torque 12.8kg.cm
Actuation Max Speed 0.07sec/60°
Power 24V DC
Communication >C Bus
Sensin Angular Sensor MLX90316KDC
& IMU BMIO55
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Fig. 3: (a) An example scenario of the NeuroSnake robot turning head to show the advantage of the NEF. Two blinking
LEDs on each half field of the view of the dynamic vision sensor serve as stimulus. (b) The neural model implemented in
the Nengo software includes two input populations to encode the processed retina data, one Ratio population for the data
transformation, and one motor population generates the output command. (¢) The learned sensorimotor mapping of the neural
model by Nengo and NEF. The event streams are preprocessed to calculate the ratios of event numbers for left view and right
view of the dynamic vision sensor (row 1). The decoded neural representation of the inputs indicates the accuracy of the neural
model (row 2). The neural activity represents the output motor commands (row 3). The neural model is able to generate an
approximation of the desired motor commands (row 4), given the processed retina input and target function.

D. The Neural Engineering Framework

As a general purpose neural compiler, the Neural Engineer-
ing Framework (NEF) allows users to define a high-level algo-
rithm that is then compiled down to a neural approximation of
that algorithm [23]. The first biologically realistic brain model
with 2.5 million neurons, named Spaun [24], was built with
the NEF and the Nengo software. A special simulator called
Nengo-SpiNNaker is supported by Nengo, which enable users
to run Nengo models in real-time and interacts with external
hardware devices such as our NeuroSnake robot.

As an example to show the advantage of the NEF for rapidly
building the neural models instead of writing customized ap-
plication, we demonstrate here a task to turn the NeuroSnake’s
head according to the salient stimulus. The neural model
embodied in the agent is presented in Fig 3b. There are three
groups of neurons, each representing different values needed
in the task. The retina input is a combination of information
from 128 x 128 silicon neurons representing the retinas of the
NeuroSnake robot. The input populations estimate the ratio of
events, ¢y, and o, in half FOV over the total number of events.
Two LEDs, randomly blinking at 300 Hz and thus producing
a large number of events, are used as the stimulus for the task.
Each input population is connected to the 200 neurons in the
Ratio population to form a distributed representation of oy,
and ag. The concept is illustrated in Fig. 3: if one stimulus

is present and another stimulus is off (as the status(D) and
@ in Fig. 3a), then the ratio population will drive the motor
population and send out the left/right command. If both the
stimulus are presented or off (as the status@) in Fig. 3a), the
motor population will keep the snake head in the center of the
field of view.

The implementation is done in the Nengo software, which
using the SpiNNaker computing system as the running back-
end. The NEF is also used to compute the connection weights
from the 200 Ratio neurons to the 100 Motor neurons by
encoding the function:

1 if (op - o) > Ay
-1 if (og - o) > Ay
0 otherwise

M — (D

If we run this model on the snake robot and make the
two LEDs randomly blink in left and right FOV, the neural
activity of the 100 neurons will change depending on the
state of the LEDs. This neural activity can then be decoded
(via the NEF) to show how well the neurons are representing
this information. The neural model is effectively a neural
computational module, where processed spiking retina inputs
are fed into the system, manipulated by a sequence of spiking
neurons and their connections, and finally decoded and sent
to the motors (see Fig. 3c)).
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In the experiment section of this article, we have integrated
the neural model constructed by the NEF framework with our
CPG based locomotion to achieve semi-autonomous locomo-
tion (See Section V). The neural model was built with the
Nengo and running on the SpiNNaker Computing system.

III. THE NEUROROBOTIC PLATFORM

Compared to the classic robot control paradigm, neuro-
robotics are controlled by simulated nervous systems which
mimic the biological brain at different levels of details. While
existing approaches are able to simulate either biological
realistic brain model or bio-inspired robots and their inter-
acting world, there is so far no work to facilitate the easily
establishment of an interactive research platform of robotics
and neuroscience. We therefore developed the neurorobotics
platform (NRP) in the scope of the European Unionfunded
Human Brain Project!. The NRP facilitated a direct link
between robotics and neuroscience, enabling a seamless and
efficient exchange of knowledge between these two fields. In
the following, we briefly describe the architecture and the key
components of the NRP. For a detailed introduction of the
NRP, we strongly refer to our report paper [4] and our official
website?.

A. Functional Architecture of the NRP

The Neurorobotics Platform is composed of six key soft-
ware components (see Fig. 4) which are needed to construct
neurorobotics experiments from scratch. It can be seen that the
NRP provides a complete framework for coupled simulation
of robots and brain models. The Brain Simulator simulates
the brain by bio-inspired learning algorithms such as spiking
neural network to control the robot in a silico neurorobotics
experiment. The World Simulator simulates the robots and
their interacting environment. The Brain Interface and Body
Integrator (BIBI) builds a communication channel between
brain models and robot models. The Closed Loop Engine
(CLE) is responsible for the control logic of experiments
as well as for the data communication between different
components. The Backend receives requests from the frontend
for the neurorobotics experiment and distributes them to the
corresponding component, mainly via ROS. The Frontend is
web-based user interface to neurorobotics experiments. Users
are able to design a new experiment or edit existing template
experiments.

B. Key Components in the NRP

1) Brain Simulator: In the NRP, the Brain Simulator is
implemented with spiking neural network (SNN) [25] to
simulate a brain circuit. The current supported brain simulator
is NEST [26], which is a simulator for spiking neural network
models that focus on the dynamics, size and structure of neural
systems rather than on the exact morphology of individual
neurons.

Uhttps://www.humanbrainproject.eu/
Zhttp://neurorobotics.net/

2) World Simulator: In order to couple with the accurate
brain simulation to perform a realistic neurorobotic exper-
iment, a realistic simulation of the physic world for both
the robot and the environment (in which the robot interacts)
is required. The Gazebo is chosen and extended as the
world simulator inside the NRP. This dynamic simulation can
be computed with different supported software libraries like
ODE [27] and Bullet [28]. For communicating with the sim-
ulated robot, we use the Robot Operating System (ROS) [29]
as a middle-ware. The platform uses the asynchronous event-
based communication through ROS topics.

3) Brain Interface and Body Integrator: The Brain Inter-
face and Body Integrator (BIBI) is the crucial component
in the NRP because it establishes the connection between
the robot and brain simulation. The BIBI is composed of a
bunch of Transfer Functions which can be defined by the
users. We defined two main types of TFs inside the NRP:
the Robot to Neuron TFs (R2NTFs) and the Neuron to Robot
TFs (N2RTFs). The R2NTFs translate the robot output signals
such as images and joint states into neuron signals such as
spikes, electric currents or firing rates. The N2FTFs convert
the neural signals from neurons into the motor commands
for robot motors. Therefore, the perception-action loop of the
interaction of the brain, body and environments is closed by
these two types of transfer functions.

4) Closed Loop Engine: The Closed Loop Engine or-
chestrates the two simulations and the data transfer. It is
responsible for the synchronization and data exchanges among
the above three components. The CLE guarantees that both
simulations run at the same time-step, and the TFs run at the
end of the simulation steps. A typical execution of a time-step
is: after the physics and neural simulations have completed
their execution in parallel, the TFs receive and process data
from the simulations and produce an output, which is the
input for the execution of the next step. The idea behind the
proposed synchronization mechanism is to let both simulations
run for a fixed time step, receiving and processing the output
of the previous steps and yielding data that will be processed
in the future steps by the concurrent simulation [4].

5) Backend: The backend is acting as the bridge to connect
the user interface and other core components of the NRP.
On the user interface end point, it exposes a web server
implementing RESTful APIs. It is the first handler for user
request, and forwards processed user requests vis ROS on
the other end point. The backend in turn provides lists of
actions to the user interface which contains simulation listing,
simulation handling, simulation creation, experiment listing
and manipulation, and backend diagnostic information.

6) Frontend: The Frontend serves as the user interface to
the NRP. For the purpose of being accessed and used easily
by a broader user base, it is implemented as a web based
application using standard web technologies and supporting
cross-platform. The Frontend is composed of an Experiment
Simulation Viewer and Editors for designing and editing an
experiment. The main features of the ESV is that it embeds a
high-fidelity 3D view that allows the user to navigate through
the virtual environment with the robot model. The Frontend
also provides the user with a complete list of editors, Envi-
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Fig. 4: Functional architecture of the NRP consisting of 6 key software components: Brain Simulator, World Simulator, Brain
Interface and Body Integrator, Closed Loop Engine, Backbend, and Frontend.

ronment Editor, Brain Editor, Transfer Function Editor and
Experiment Workflow Editor, to configure all the aspects of
an experiment.

IV. AUTONOMOUS LOCOMOTION OF NEUROSNAKE
ROBOT BASED ON CPG

Inspired by the morphology of real snakes, the gait of snake-
like robots is usually controlled with serpenoid curves [30]. To
generate these serpenoid curve signals, one of the most widely
adopted control strategy is the Center Pattern Generator. CPG
can autonomously produce rhythm signals without external
input, which is widely used for snake-like robot locomotion.
To achieve autonomous locomotion of the NeuroSnake robot,
we designed an oscillator model for the chain-coupled CPG
network based on the convergence behavior of the gradient
system, which can adjust the output signals frequency, phase
difference, amplitude and amplitude bias. The flexibility of
our CPG network enables the high-level neural models (e.g.,
neural network learned in Nengo) to control the gaits of the
NeuroSnake robot.

A. Central Pattern Generator

For topological structures, CPG networks are roughly clas-
sified into two kinds, chain-type and ring-type. The unique
chain-type appearance of our NeuroSnake robot makes it
applicable to use chain-type CPG network. Each module of
the robot can be treated as a signal CPG unit, which coupling
the neighbour units as a chain as shown in Fig. 5.

CPGy CPGi PG
Phase @ i s - P " - e I -y
Phase Difference i, , [ 8.

Fig. 5: Parameters setting of CPG net with chain-type.

The mathematic model of one CPG unit consists of two
parts, amplitude equations and phase equations. For the first
part, two PD controllers are adopted to ensure the convergence
of the amplitude [31] and the amplitude bias,

a;

iy = ail - (Ri—ri) —ri] 2
G = a,-[%(c,- e 3)

where, R; determines the stable amplitude in finite time. C;
is used to adjust the biased value of the stable amplitude. r;,
¢; are the amplitude and the amplitude bias variables of the

i oscillator, respectively. For the second part, a second-order
gradlent system is designed to generate the desired signal’s
phase.

¢ = w+A{i,:} - P+B{i:}-6
i = ail§(Ri—ri)—7] )
c'",' = ai[%(C,- — C,’) — Ll]

where A{i,:} is the matrix that describes the gradient descent
parameters, and B{i,:} is a transfer matrix for the desired
phase differences. More details and equations are explained
in [32]. @ is the vector of the CPG neurons’ phase, and
O is the vector of the phase difference among the CPG
neurons. The state variable ¢; is the phase of the i’ oscillator,
respectively. The positive constants @; and b; are used to adjust
the convergence speed of the amplitude.

(&)

The variable x; is the rhythmic output signal integrated by the
phase ¢;, the amplitude r;, and the amplitude bias c;. Fig. 6
shows the output signals of the proposed CPG model by
adjusting different parameters with time.

Xi =¢C+ri Sil’l(q)i)

B. Locomotion Gaits

Snake-like robots can travel with several kinds of gaits,
exhibiting diverse motion morphology. Slithering is one of
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TABLE II: Description of the parameters in extended gait equation for slithering and rolling gaits

Items Descriptions Rolling Slithering
n Module subscript 1~ 16 1~16

N Module numbers 16 16

Coad> Ceven offset in lateral and dorsal plane 0°, 0° 0°, 0°
Apdd> Aeven  Amplitude in lateral and dorsal plane 40°, 40°  60°, 40°
Qi Spatial frequency in lateral plane 0 n-3.5/N-1m
Qeven Spatial frequency in dorsal plane 0 n-7/N-m
Wodd, Deven  Time frequency in lateral and dorsal plane 7, 1,2

Xodds Xeven Cycle numbers 0,0 1.75, 3.5

¥, Z Linear coefficient 1,0 0.3, 0.7

CPG Signals

(o2 ]
T

[$)]

Unit (rad/s)

o =~ N W b
T

Fig. 6: CPG output waves with changing parameters controlled
by high-level brain model. The upper figure shows four CPG
output signals. The bottom figure shows different sets of CPG
parameters.

the most promising gait for autonomous locomotion, since the
robot can travel and observe in the roughly same direction.
According to the available literatures, regular gaits can be
simply obtained by gait equation [33] in 7, such as rolling,
sidewinding, and slithering. The meaning of the parameters
are depicted in Tab. II.

a(nvt)odd = Codd +A0dd . Sin(g()dd N+ Wydq t) (6)
- i . PRy
a(ny t)even even T Aeven Sln(Qeven N+ Weyep - + )

We adopted a modified slithering gait to achieve au-
tonomous locomotion, because it can ensure the best stability
of the meDVS mounted in the head module. Slithering is
adopted by snakes to move forward with a S-like shape. The
challenge to utilize this gait, is the orientation of the head
module, causing by the twist of the whole body. Although the
orientation is significantly smaller than other gaits, like rolling
or sidewinding, we still have to compensate that instability.
Because there is no IMU sensor in the NeuroSnake robot at
this moment, we have designed a head scanning gait to make
sure that the the view of meDVS is always horizontal. In a
typical autonomous locomotion scenario, this head scanning
gait is used to identify the target together with the slithering
gait. The slithering gait and rolling are modeled as (7). The

parameters and values are listed in Tab. II.

a(”»[)even = Ceven +P-Acven - Sin(Qeven N+ Weyen 't)
a(n,t)oga = Coad +P-Aoga - Sin(Qoga - 1+ Wpgq -t + 0)

Q:(w—kx-%)-n 0
P=(2.z4y) €[0,1] Vnelo,N]

N

V. EXPERIMENT

We demonstrate the capabilities and efficiencies of our
hybrid simulation and neuromorphic computing paradigm by
both in-silico and in-vivo experiments. With the NRP and
the virtual model of the NeuroSnake robot, we firstly present
the designing process of a visual pursuit experiment. The
main purpose of this experiment is to show that users can
easily connect pre-defined and customized brain models to
detailed simulations of robot bodies and envrionments in in-
silico experiments. With the NeuroSnake robot, we present two
automatic behavior learning tasks which are further integrated
into a complex task for snake-like robot: the autonomous pole
climbing. The core concept of these simple automatic learning
tasks is to show that our NeuroSnake robot is able to build
new learning rules in a less explicit manner, inspired by living
creatures rather than defining explicit rules from the theory.

A. Visual Pursuit Experiment of NeuroSnake Robot in NRP

The NRP provides a number of design applications for
robot, brain and environment models as well as simulation en-
gines. Users can ensemble a neurorobotics experiment quickly
by constructing a robot model, designing (or selecting) its
brain-based controller, and selecting an interactive environ-
ment (or uploading customized environment). In principle,
researchers can design many kinds of experiments rapidly by
matching the specific characteristics of the robot models. In
this work, we designed a visual pursuit experiment as a user
case to demonstrate the theme of modular brains for modular
bodies of the NRP platform. We embedded the simplified
brains, Braitenberg vehicles brain [34], in the appropriate
robotic embodiment, the NeuroSnake robot. The visual pursuit
experiment shows how the virtual NeuroSnake robot with a
stereo camera head can be controlled by an artificial brain.
The virtual NeuroSnake robot stands in front of a blue screen
with a moving green circle, which is the target of the tracking.
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Fig. 7: The NeuroSnake visual pursuit experiment. (a) The overall control architecture implemented in the NRP. (b) Snapshot of
the NeuroSnake performing the visual pursuit inside the NRP when the target moves to the left side. (c) Target and NeuroSnake
robot eye alongside the x axis during an oscillation frequency of 0.3 Hz. (d) The spikes of the brain network neurons during
the experiment (e) Snapshot of the NeuroSnake performing the visual pursuit inside the NRP when the target moves to the

right side.

The robot reaches and follows such a target using only eye
movements.

1) The NeuroSnake Robot Model in the NRP Platform: We
created a Gazebo SDF model of the NeuroSnake robot with
the Blender Robot Designer, which is a standalone application
of the NRP platform. The NeuroSnake robot model has 13
revolutionary joints for the connections of the snake head,
snake body, and snake tail. In the head of the NeuroSnake
robot model, there are one eye tilt joint, two left eye pan and
right eye pan joints, and two virtual joints, named vergence
and version. Two virtual joints compute the difference and
the mean between the pans respectively. Each eye also has a
camera model with 320 x 240@60Hz. Joints are controlled by
a gazebo plugin by two PID controllers, one for the position
and another for the velocity. The plugin publishes the encoders
values to a ROS topic and subscribes to other ROS topics
to receive position and velocity commands. The standard
Gazebo camera plugin was used for the camera models. In
this experiment, we control the eye version, which is directly
connected with the eye pan joints.

2) The Design of Visual Pursuit Experiment: One advan-
tage of the NRP platform is making the design of neuro-

robotics experiment as simple as possible. In the rest of this
section, we describe the implementation of such an experi-
ment in the NRP with the NeuroSnake robot model. Fig. 7a
shows the overall control architecture of the NeuroSnake
visual pursuit experiment. In a visual pursuit task, the target
position must be extracted from the camera images, and further
be sent to a brain-based controller. Motor commands are
then generated and executed to move the gaze towards the
targets. To achieve this in the NRP, the target extraction is
implemented as Robot to Neuron Transfer functions (R2N
TF), while the controller corresponds to a brain model. The
command generation is implemented as Neuron to Robot
Transfer Functions (N2R TF).

A Robot to Neuron TF translates the image sensor data
into the input of the brain model, which comes from the
NeuroSnake robot model . A simple color filter is applied to
extract the target position. In order to feed the object position
information to the brain model, the angle of the object o in
the camera coordinate is converted with a sigmoidal logistic
function: r = Hﬁ The object position is then represented
by a parameter r from O (closer to the left side) to 1 (closer
to the right side), which is further processed by using two
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poisson spike generators. Their rates are computed as follows:
ri = 1000 x r and r, = 1000 x (1 —r). A simplified brain
model composed of 8 adaptive exponential integrate and fire
neurons was implemented, depicted in Fig. 7a. Among them,
neurons from O to 4 are sensor neurons, and neurons from 6
to 7 are motor neurons. The neurons labelled as O to 3 receive
input from the first Poisson spike generator of the Robot to
Neuron TF. Neuron 4 receives input from the second spike
generator. Neurons 6 and 7 send the output of the Neuron
to Robot TF. They are connected to two leaky integrators,
implemented with inhibited integrate and fire neurons. The
input of the Neuron to Robot TF are the two membrane
potentials of these two neurons. The motor command for
moving the eyes is computed as a function of the current
eye position and a displacement of two membrane potentials
such that the eyes move to the opposite directions, when the
two motor neurons firing rates differs. The behavior of this
brain network is to codify the direction, towards which the
eye should move. The experiment is shown in Fig. 7b and
Fig. 7e. The NeuroSnake robot had to follow a green ball
(target) displayed on a blue screen moving with a sinusoidal
motion. The performances of the model were tested at various
frequencies (from 0.1 to 0.3 Hz), with an amplitude of 18
degrees. It can be observed from Fig. 7c that the model is
able to pursue the target the at oscillation frequency of 0.3Hz,
by comparing the target and current eye horizontal positions
in time.

B. Automatic Learning Experiments with the NeuroSnake
Robot

Living creatures observe the world and learn the sensori-
motor mapping by random exploration. Similarly, for robotic
application, a neural control system should be developed and
updated by exploring the environment instead of explicating
rules. The core idea is that by exploring the environment in
the same way of animals or humans, the robot builds new
rules in a less explicit manner by learning the mapping from
the recorded sensory to the motor values. This subsection
firstly introduced two automatic learning examples with the
NeuroSnake robot. Based on the basic behaviors learned in the
examples, we demonstrated the autonomous locomotion of our
robot in a complex task the semi-autonomous pole climbing.

1) Automatic Behavior Learning: 1t is easy to define an
explicit rule for a simple behavior from the theory by a
developer e.g., the section IV, however it is infeasible and
inefficient for learning complex behaviors without hard-coding
rules. We discover the implicit action rule by exploring the
environment randomly for the behaviors automatic turning
motion and the environment adaptability of slithering gait of
the NeuroSnake robot. The implementation is pretty intuitively
inspired from the behavior learning principles of humans
and animals. Living creatures develop the decision-making
rule e.g., turn left and right in the real world by randomly
performing the right behavior. They remember the sensory
data and their responses during these times and increased the
likelihood of performing that in the future whenever there is
a similar sensory state.

To examine the behavior learning tasks with the NeuroSnake
robot, we designed two simple behaviors learning cases. The
first and simplest learning behavior is automatic turning mo-
tion, which plays an important role in autonomous locomotion
of the snake-like robot. One flashing LED serves as the
stimulus in test environment. The NeuroSnake achieves the
180-degree scanning by turning the head module, in which
the meDVS is equipped, to detect the position of the LED.
The NeuroSnake performs a head scanning gait by following
a slithering gait. The slithering gait randomly turns the snake
to right or left by giving an arbitrary amplitude bias defined
in Section IV. To eliminate the effect of slithering gait on the
relative LED position, the snake robot is moved back manually
to the start position while keeping the slithering direction. The
NeuroSnake calculates the exactly time for turning the head
from the start position to the end position where the LED is
in the center of view field of the meDVS. The NeuroSnake
records the sensory state (the relative LED position) and the
motor value (the amplitude bias) whenever the time taken to
perform the head scanning gait is less than the last performing
of head scanning gait. With the sensory and motor values, the
NeuroSnake robot learns the rule for the automatic turning
motion by using Nengo and NEF. We found that our learning
system quickly learn to perform this behavior well, given only
10 examples. The second learning example is the environment
adaptability of slithering gait. In the second scenario, the robot
lied in the center of the two flashing LEDs (each attached to a
pole) at a fixed distance in the slithering direction. The robot
firstly detects the positions of two LEDs and performs the
slithering gait with a random amplitude (see the definition
of amplitude in Section IV). We record the sensory state
(positions of two LEDs) and the motor values (the amplitude)
only when the robot could successfully pass through the two
poles. With the same learning paradigm, the robot learns a new
rule mapping the recorded sensory states to the amplitude.
Having this rule, the robot is able to make the adaptation
of slithering gait automatically in a novel situation such as
passing through a narrow space.

2) Semi-Autonomous Pole Climbing: For a typical way of
autonomous locomotion with snake-like robot, developers are
required to design different gaits specifically. However, based
on the learning rules in V-B1, we avoid the manually designing
processes. We demonstrated the usage of two sets of behaviors
automatic turning motion and the environment adaptability
of slithering gait in a complex behavior semi-autonomous
pole climbing. At the initial position (See Fig. 8a) of a pole
climbing scenario, the robot firstly identifies the LED (attached
to a pole) by scanning around the environment as shown in
Fig. 8b. Based on the detected sensory state (LED position)
and the learned rule of the behavior automatic turning motion,
the robot adopts the left slithering gait automatically to move
towards the pole. To prepare the rolling gait for the pole
climbing, the robot stops the turning motion at a pre-defined
distance and kept its moving direction parallel to the right side
of the pole (See Fig. 8c). During the approaching process, the
robot stops and scans again to estimate the relative position
between the LED and itself (See Fig. 8d). To avoid the
future collision with the pole, the robot adjusts the amplitude
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Fig. 8: Montage of the snake-like robot achieves semi-autonomous locomotion. The orange pads are used as the reference

positions.

based on the learning rule of the behavior the environment
adaptability of slithering gait (See Fig. 8e). After getting
close to the pole, the snake robot is stopped at a proper
position Fig. 8f), where the body is symmetrical spread over
the sides of the pole. After that, the last step is conducted,
which is to roll sideways to the pole as seen in Fig. 8g). The
arc formed by the body will embrace the pole more and more
tight. The robot further increases the amplitude of each module
to climb up the pole (see Fig. 8h).

3) Results: We have shown that the NeuroSnake robot
started from learning simple behavior rules inspired by live
creatures, and further performed more complex functions
based on these basic learning rules. This approach also
makes use of the power-efficiency of neuromorphic sensing
and computing processors. Importantly, the neurons learn to
approximate these functions which are not defined explicitly.
This means that simply giving the robot examples of its desired
behavior, robot should be able to develop the learning rules
automatically comparing to traditional methods of defining an
explicit set of rules. Basic learned rules from simple behav-
iors gives an alternative way to efficiently develop complex
behavior control of the robot.

C. Limitations

It is worth noting that, in the semi-autonomous climbing
experiment, we do not claim the learning of our approach is
entirely autonomous. In fact, there are human interventions
during learning and testing phases of the experiments. The
reason is that we are not able to get a high-accuracy 3D
position estimation of the LED when the snake-like robot
is under slithering gait. The vibration of the snake robot
head module makes the DVS sensor unstable. In particularly,
the semi-autonomous climbing experiment requires human
intervention for two specific tasks: 1. we tell the robot to stop
at a pre-defined distance to the pole so that the snake-like
robot can adjust the amplitude based on the learning rule of the

behavior the environment adaptability of slithering gait (See
Fig. 8e). 2. We tell the robot to stop at a pre-defined position
when the snake is getting close to the pole Fig. 8f). However,
this problem is expected to be solved when the snake-like
robot equips more sensors in the head module.

VI. CONCLUSION AND FUTURE WORK

Learning brain-inspired model in an efficient way is not
easy. We tackled this problem by proposing a hybrid simula-
tion and neuromorphic computing paradigm. Specifically, we
present our NRP platform from a virtual simulation standpoint
enabling a seamless and efficient exchange of knowledge
between neuroscience and robotics. The NRP is a public plat-
form opening to all users, which for the first time allows the
coupling of robots and detailed brain models. We demonstrated
the proof-of-principle setup of our neuromorphic snake-like
robot and open the opportunity for learning brain-inspired
model efficiently on neuromorphic hardware. The NeuroSnake
has a unique combination of a modular design of snake-like
robot, a neuromorphic vision sensor, and a scalable spiking
neural network infrastructure (SpiNNaker). We illustrated the
capabilities and efficiencies of our paradigm with a visual
pursuit experiment in the NRP by easily integrating the virtual
model of NeuroSnake robot with a simplified brain model.
We studied two automatic behavior learning tasks which was
further integrated into a complex task for snake-like robot: the
autonomous pole climbing. The core concept of these simple
automatic learning tasks was to show that the NeuroSnake
robot was able to build new learning rules in a less explicit
manner inspired by living creatures rather than defining ex-
plicit rules from the theory. In future, we plan to conduct
more realistic experiments with Spiking Neural Network based
control system. There are also other possibilities with the NRP
and the NeuroSnake robot in the future. As the NRP is a
ten year project under active development, it is possible to
couple the NeuroSnake robot to more detailed models of the
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brain when the detailed brain is ready. The final goal will
be translating virtual robots and brain-derived controllers to
physical robotics.
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