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Abstract—Perception-driven approach and end-to-end system
are two major vision-based frameworks for self-driving cars.
However, it is difficult to introduce attention and historical infor-
mation of autonomous driving process, which are the essential
factors for achieving human-like driving into these two methods.
In this paper, we propose a novel model for self-driving cars
named brain-inspired cognitive model with attention (CMA). This
model consists of three parts: a convolutional neural network
for simulating human visual cortex, a cognitive map built to
describe relationships between objects in complex traffic scene
and a recurrent neural network that combines with the real-
time updated cognitive map to implement attention mechanism
and long-short term memory. The benefit of our model is that
can accurately solve three tasks simultaneously: i) detection
of the free space and boundaries of the current and adjacent
lanes. ii)estimation of obstacle distance and vehicle attitude,
and iii) learning of driving behavior and decision making from
human driver. More significantly, the proposed model could
accept external navigating instructions during an end-to-end
driving process. For evaluation, we build a large-scale road-
vehicle dataset which contains more than forty thousand labeled
road images captured by three cameras on our self-driving
car. Moreover, human driving activities and vehicle states are
recorded in the meanwhile.

Index Terms—autonomous mental development, cognitive
robotics, end-to-end learning, path planning, vehicle driving.

I. INTRODUCTION

A
UTOMATICALLY scene understanding is the core tech-

nology for self-driving cars, as well as a primary pursuit

of the computer vision. During the recent decades, consider-

able progress and development have been achieved in the field

of vision-based self-driving cars. It is well known that most

of related information required for self-driving cars can be

obtained by cameras, which is originally inspired by humans’

driving behaviors. Besides, the mechanism of attention can

help people choose the effective data in memory to determine

the objects existing in the current image and their relationships,

so as to form correct decisions in current moment. Therefore, it

is significant to develop a self-driving car only based on vision

[1], [2], [3], where the mechanism of attention is felicitously

implemented.

Nowadays, there are two popular vision-based paradigms for

self-driving cars: the perception-driven method and the end-

to-end method. For the perception-driven method [4], it is

required to establish a detailed representation of the real world.
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By fusing multi-sensor data, a typical world representation

usually contains descriptions of the prime objects in various

traffic scene, including (but not limited to) lane boundaries,

free space, pedestrians, cars, traffic lights and traffic signs.

With such descriptions, the path planning module and the

control module are used to determine the actual movement

of the vehicle. In the path planning process, besides accurate

perception results and high-precision map information, it is

often necessary to design some assistant rules manually. Such a

motion trajectory needs to be adjusted and updated in real-time

according to the state of the vehicle at each moment, taking

the temporal dependences into account, so as to form a correct

trajectory sequence. With the motion trajectory calculated by

planning module, the vehicle is steered to track each task

point on the planned path under the guidance of high-precision

positioning information.

As for the end-to-end method [5], based on the break-

through of convolutional neural networks (CNN) [6] and GPU

technology, a deep neural network is able to learn the entire

processing pipeline needed for controlling a vehicle, direct

from the human driving behaviors. Instead of using hand-

crafted features as in perception-driven method, we enable the

CNN to learn the most valuable image features automatically

and directly map them to the control of the steering angle.

Since the actual control of the car only relates to the velocity

and steering angle, such method of directly mapping images

to the control of direction, is more efficient and effective in

some scenarios.

The perception-based method was the most widely used

one in the past decades. It can be applied to most challeng-

ing tasks, but the disadvantage is that all features and task

plans are manually designed, and the entire system lacks the

self-learning ability. In recent years, the end-to-end learning

strategy for self-driving gradually boomed with the success of

deep learning [7]. End-to-end strategy merely requires some

visual information, and is capable of learning from human

driving behaviors. However, the disadvantage is, when the

system structure is simple, the external information is unable

to be introduced in to control the behavior of the self-driving

system. Therefore, while the system is running, we have no

way to know where the vehicle is going, neither can we control

the system as well. In the meanwhile, temporal information

has never been considered in this end-to-end process.

In our point of view, it is believed that a highly effective

and reasonable autonomous system should be inspired by the

cognitive process of human brain. First of all, it is able to

perceive the environment as rationally as the visual cortex, and

then to process the perception results in a proper way. After

http://arxiv.org/abs/1702.05596v1
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Fig. 1. Framework of our cognitive model with attention (CMA). The road images are first processed by multiple convolutional neural networks to simulate
the function of human visual cortex. A cognitive map consists of vehicle states, navigation inputs and perception results. Based on the information of cognitive
map, recurrent neural network models the attention mechanism by historical states and scene data in time to form driving decision in each computing step.

that, the system plays a role of the motor cortex to plan and

control the driving behaviors. And in the whole process, the

concept of human-computer collaborative hybrid-augmented

intelligence [8] is well referred, so that the self-driving system

can learn smartly from human driving behaviors.

In this paper, we aim to build a brain-inspired cognitive

model with attention. When a person view a scene, the

message flows through LGN to V1, onward to V2, then to V4

and IT [9], which occurs within the first 100ms of a glance

to objects. This process is proved to be highly similar to the

operating principle of the convolutional neural network. Thus

in our model, we adhere to apply CNNs for the processing

of the visual information, which is a simulation of the visual

cortex to process information. Similarly, as in On Intelligence,

Jeff Hawkins argues [10] that time holds the vital place in

brain when solving a problem. We believe that brain has to

deal with spatial and temporal information simultaneously,

since spatial patterns need to be coincident with temporal

patterns. Therefore, we need to simulate the functions of motor

cortex, which means, in dealing with planning and control

problems, a long-term memory must be considered to form the

optimal driving strategy for the current. With this motivation,

it is necessary to introduce the attention mechanism into the

cognitive computing model for self-driving cars, which allows

the model to choose reasonable information from a large set

of long-term memory data at each computing step.

Moreover, Mountcastle et al. [11] points out that the func-

tional areas in the cerebral cortex have similarities and consis-

tency. He believes the regions of cortex that control muscles

are similar to the regions which handle auditory or optical

inputs in structure and function. Inspired by this, we argue that

the recurrent neural network (RNN), which performs well in

processing sequential data and has been successfully applied in

video sequence classification and natural language processing

tasks, is also capable to solve planning and control problems

simultaneously as human motor cortex. The discussion above

is an important motivation for us to implement planning and

control decision with RNN.

In order to introduce attention mechanism into the proposed

cognitive model, and to solve the problem that general end-

to-end models cannot introduce external information to guide,

we define the concept of cognitive map in real traffic. The

term of cognitive map was first coined by Edward Tolman

[12] as a type of mental representation of the layout of one’s

physical environment. Thereafter, this concept was widely

used in the fields of neuroscience [13] and psychology. The

research results on cognitive map in these areas provide an

important inspiration for us to construct a new model of

autonomous driving. To apply this concept to the field of self-

driving, combining with our work, cognitive map for traffic

scene is built to describe the relationship between objects in

complex traffic scene. It is a comprehensive representation of

the local traffic scene, including lane boundary, free space,

pedestrian, automobile, traffic lights and other objects, as well

as the relationships between them, such as direction, distance,

etc. Furthermore, the prior knowledge of traffic rules and the

temporal information are also taken into consideration. The

cognitive map defined in this paper is essentially a structured

description of vehicle state and scene data in the past. This

description forms the memory of a longer period of time.

The proposed cognitive model, in which the cognitive map

combines long-short term memory, mimics the human driving
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ability to understand about traffic scene and to make decisions

of driving.

In precise, our framework first extracts valid information

from the traffic scene of each moment by a convolutional

neural network to form the cognitive map, which contains the

temporal information and a long-term memory. On this basis,

we add external control information to some descriptions of

the cognitive map, e.g., the guidance information from the

navigation map. And finally, we utilize a recurrent neural

network to model attention mechanism based on historical

states and scene data in time, so as to perform path planning

and control to the vehicle.

With all above, in our model, a novel self-driving framework

combined with attention mechanism has come to form, which

is inspired by human brain. The framework is named brain-

inspired cognitive model with attention (CMA). It is able to

handle the spatial-temporal relationships, so as to implement

the basic self-driving missions. In this paper, we realized a

self-driving system with only vision sensors. It performs well

in making path planning and producing control commands

for vehicles with attention mechanism. Fig. 1 shows the main

scheme of our CMA method. The remainder of the paper is

organized as follows: in section II, we review some previous

studies of self-driving cars; in section III, we describe our

approach in detail; in section IV and V, we present a large-

scale labeled self-driving dataset and the evaluation of our

method; finally section VI concludes the work.

II. RELATED WORK

In the past decades, remarkable achievements [14], [1], [4]

have been reached with perception-driven method in the filed

of self-driving cars. Several detection methods for car and lane

boundary have been proposed to build a description of the local

environment.

Many lane detection methods in [15], [16], [17], [18] have

been developed to locate the lane position with canny edge

detection or hough transformation. The defect of these meth-

ods is that they lack some geometric constraints to locate the

arbitrary lane boundary. Therefore, Nan et al. [19] presented

a spatial-temporal knowledge model to fit the line segments,

which finally outputs the lane boundaries. Huval et al. [20]

introduced a deep learning model to perform lane detection at

a high frame rate. Different from the traditional lane boundary

detection approach whose output is the pixel location of the

lane boundary, the work [14] represented a novel idea which

uses convolutional neural network to map an input image

directly to a deviation between vehicle and lane boundary.

With this method, the output of the neural network can be

directly used in controlling the vehicle, without coordinate

transformation. The limitation of this model is that per-training

for a specific vehicle is needed.

For object detection task, researches [21], [22] adopt the

method of generating a bounding box to describe the location

of the object. However, in the self-driving task, it is not

necessary to get a precise location of the bounding box. We

only need to know if there is a obstacle in our lane and how

far the obstacle is. Thus it is a more convenient and efficient

way to represent the obstacle as a point instead of a bounding

box.

The concept of end-to-end learning method was originally

inspired by Pomerleau et al. [23], and it was further developed

in the works [24], [5], [25]. Pomerleau et al. [23] attempted to

use a neural network to navigate an autonomous land vehicle.

With breakthrough of deep learning, DAVE-2 in [5] learned the

criterion to steer a vehicle automatically. Similarly, Xu et al.

presented a FCN-LSTM architecture in [25], which can predict

egomotion of the vehicle by its previous state. All the works

above lack the ability to supervise the action of the vehicle,

which means we have no way to know where the vehicle is

going, although the vehicle may safely drive on road.

Several control strategies using deep learning approach

to control robot have been proposed in many papers. A

vision-based reinforcement learning method and evolve neural

network as a controller in TORCS game have been reported

in [26], [27]. Reinforcement learning approach in [28], [29],

[30] has been successfully used to train the artificial agent

which has an capability to play several games. Although the

combination of convolutional neural network and reinforce-

ment learning has shown a good performance in some strategic

games [31]. This is because the decision-making in such games

usually relies on a short-term of time information or the current

image information. However, for complex tasks such as self-

driving cars, planning and control decisions must be made with

a long-term information, so as to form the optimal driving

strategy for current in real traffic scene. In [14], a direct

perception approach is used to manipulate a virtual car in

TORCS game. The controller in this work is a hand-crafted

linear function which directly uses vehicle’s position and pose.

This approach may preform well in game environment, but the

action generated by this function is different from human’s

behavior and it can not be applied in real traffic as well.

Other path planning and control methods for self-driving car

in [32] commonly require real time GPS information to form a

real trajectory. Nevertheless, as known that a human being can

drive a car only by visual information, it is a promising way

to develop a model which can handle planning and control

simultaneously based only on vision.

III. BRAIN-INSPIRED COGNITIVE MODEL WITH ATTENTION

In driving, human visual cortex and motor cortex play the

leading roles. On the one hand, the visual cortex contributes

to perceiving environment and form a cognitive map of the

road scene by combining the memory of the traffic knowledge

with external information, such as map navigation information.

On the other hand, planning and control are determined by

the motor cortex. With the information from the cognitive

map in a long memory, mechanism of attention will help

people discover the most significant information in time to

form planning and control strategy. In one word, the entire

driving behavior consisting of sensing, planning and control

are guided and inferred mainly by the above two cortexes in

brain.

Similarly, a brain-inspired model based on the perception,

memory and attention mechanisms of human can be con-

structed. In this paper, it is believed that the most primary
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perception relies on a single frame of the road scene. However,

as for planning and controlling processes, multiple frames and

many historical states of vehicle are required to form long

memory or short memory to actually manipulate the self-

driving car.

Fig.1 shows our CMA method for self-driving cars. Our

ultimate goal with this network is to build a cognitive model

with attention mechanism, which can handle sensing, planning

and control at the same time. And differing from other deep

learning or end-to-end learning methods which just map input

images to uncontrollable driving decisions, our network can

not only make a car run on a road, but also accept external

control inputs to guide the actions of the car. To achieve

this goal, the road images are first processed by multiple

convolutional neural networks to simulate the function of

human visual cortex and form a basic cognitive map similar

to human brain’s, which is a structured description of the

road scene. And this description of road contains both human-

defined features and latent variables learned by the network.

A more explicit cognitive map can be constructed based on

the contents of the basic cognitive map above and combined

with prior knowledge of traffic, states of vehicle and external

traffic guidance information. Therefore, the cognitive map is

built by the description of the road scene, the current states of

vehicle and the driving strategy of the near future. Through the

recurrent neural network(RNN), the cognitive map formed in

each frame is modeled to give a temporal dependency in mo-

tion control, as well as the long-term and short-term memory

of past motion states, imitating human motor cortex. Finally,

the real motion sequences with consideration of planning and

control commands of self-driving cars can be generated.

A. Perception Simulating Human Visual Cortex

The purpose of the CMA framework is to solve the defect

that the conventional end-to-end learning methods can not

incorporate external control signals, which causes that the

vehicle can only produce an action based on the input image,

but does not know where it will go. By constructing a cognitive

map, additional control information can be put into the end-to-

end self-driving framework. The establishment of a cognitive

map primarily relies on the perception of the environment.

It is well known that the perception of environment is the

focus and challenge of self-driving missions. Thus, in the

CMA framework, inspired by the architecture of human visual

cortex, we use a state-of-art convolutional neural network

to learn and generate basic descriptions of road scene. We

fixed three cameras in our self-driving car to capture the

scene in current lane and the lanes on both sides. Different

from the conventional method, the scene representations in

our approach are learned by convolutional neural network but

not hand-crafted. We apply several convolutional layers to

process images captured by on-board cameras on vehicles. In

our approach, we launch multiple convolutional networks to

extract different road information from different camera views.

Instead of directly using the network as a classifier, we utilize

it as a regressor to directly map an input image to several key

pixel points that will be used in path planning and control.

With the pixel points extracted by multiple CNNs, one can

calculate and construct a basic cognitive map to describe the

local environment surrounding the vehicle, as shown in Fig.

2.

We define the input images as It = {Itm, Itl , I
t
r}, which are

captured by the middle, left and right cameras, respectively.

Based on the input images, a self-driving car needs to know the

accurate geometry of the lane and position of the obstacles. So

the output vector Xt of the convolutional neural network for

each camera is composed with five different point identities,

that is

Xt = [pl t, pl b, pr t, pr b, po], (1)

where pl t and pl b represent the x-coordinates of the inter-

sections of the left lane boundary’s extended line with the top

and the bottom edges of image plane, pr t, pr b denote the

x-coordinates corresponding to the points on the right lane,

and the po stands for the y-coordinate of the obstacle point in

corresponding lane.

To achieve a high performance in real-time, the architecture

of our convolutional neural network is very simple and shal-

low. Five convolutional layers are utilized to extract spatial

features from each image It. The configurations of the five

convolutional layers are the same as [5]. The first three layers

are stride convolutional layers with a 2× 2 stride and a 5× 5
kernel. While the last two convolutional layers have a 3 × 3
kernel and with no stride. Since we use the network to locate

feature points rather than classify, the pooling layer which

makes the representation become invariant to small translations

of the input is unnecessary in our network . The convolution

operation without pooling layer is expressed as

Zi,j,k =
∑

l,m,n

[Vl,(j−1)×s+m,(k−1)×s+nKi,l,m,n], (2)

where Z and V are the output feature maps with i channels

and input feature with l channels, s denotes the number

of stride, j and k are the indexes of row and column. A

rectified linear units (ReLU) is used for each hidden neurons

of the convolutional layers. Following the five convolutional

layers, three fully connected layers are utilized to map the

representations extracted by the convolutional layers, to the

output vector Xt.

According to the five descriptors in Xt, we can calculate the

physical quantities as shown in Fig. 2. Suppose Dm left and

Dm right are the lateral distances to the vehicle respectively

from the left and the right lane boundary in the view of the

middle camera. Dl left, Dl right, Dr left and Dr right are

respectively the two distances in the view of the left and the

right camera, similar to the middle one. We define the angle

between vehicle and road as Va, and obstacle distances in

each lane as OC line, OL line and OR line. With the obstacle

distances, driving intention Dt
i could be derived by Algorithm

1. For calculating these physical distances described above,

we define that any two pixel points in a lane boundary are

(lxm, lym) and (lxb, lyb), and y-coordinate of the obstacle is

oy . With the optical center (u0, v0), and the height of camera

H , the positions of two points (Xm, Zm), (Xb, Zb) in vehicle

coordinate system can be presented as
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Fig. 2. Illustration of constructing a basic cognitive map. The convolutional neural network will output the pixel location of lane boundary and obstacle
vehicles. And based on the output, a description of local environment can be generated.

(Xm, Zm) = (
(lxm − v0) ·H

(lym − u0)
,

f ·H

lym − u0
), (3)

(Xb, Zb) = (
(lxb − v0) ·H

(lyb − u0)
,

f ·H

lyb − u0
). (4)

The distance D from vehicle to the lane boundary can be

obtained by

D =
|XmZb −XbZm|

√

(Xb −Xm)2 + (Zb − Zm)2
. (5)

Meanwhile, the angle between the vehicle and the lane bound-

ary Va is

Va = arctan
Xb −Xm

Zb − Zm

. (6)

Similarly, obstacle distance in each lane is presented as

O =
f ·H

oy − u0
. (7)

By Eq. 3, 4, 5, 6 and 7, we can obtain the perception results

{Xt
m, Xt

l , X
t
r} from the views of three cameras.

B. Planning and Control Simulating Human Motor Cortex

The structured description of cognitive map Ct with the

vehicle states VStates, formed as

Ct =
[

Xt
m Xt

l Xt
r Dt

i Vstates

]

, (8)

is extracted from each frame in three cameras. With these

representations, the CMA method will model a temporal

dynamical dependency of planning and control. In an ordinary

self-driving framework, path planning and vehicle control are

two separate tasks. Different from traditional method, the new

approach contains memories of the past states and generates

control commands with recurrent neural network, so the two

tasks are driven simultaneously.

Long Short-Term Memory (LSTM) is a basic unit of

recurrent neural network and it’s well known in processing

sequential data and molding temporal dependencies. LSTMs

have many varieties, a simple one is used in our CMA

framework. One cell in a LSTM unit is controlled by three

Algorithm 1 Generating Driving Intentions with Basic Cog-

nitive Map in Real Traffic

Input:

Gnavi: guidance information from the navigation

Output:

Dt
i : drive intention based on obstacle distances and naviga-

tion signal;

1: if Gnavi = stay in line ∧OC line ≥ safety distance then

2: return Di = stay in line

3: else if Gnavi = stay in line ∧ OC line ≤ safety distance

then

4: if OL line ≥ safety distance then

5: return Dt
i = change to left

6: else if OR line ≥ safety distance then

7: return Dt
i = change to right

8: else

9: return Dt
i = break and stay in line

10: end if

11: else if Gnavi = change to left∧OL line ≥ safety distance

then

12: return Dt
i = change to left

13: else if Gnavi = change to right ∧ OR line ≥
safety distance then

14: return Dt
i = change to right

15: else

16: return Dt
i = break and stay in lane

17: end if

gates (input gate, output gate and forget gate). Forgot gate and

input gate use a sigmoid function, while output and cell state

are transformed with tanh. With these gates, LSTM network

is able to learn long-term dependencies in sequential data

and model the attention mechanism in time. We employ the

outstanding characteristics of LSTM in our CMA framework,

so that it can learn human’s behaviors during a long-term

driving process. The memory cell is used to store information

in time, such as historical vehicle states in its vectors, which

can be chosen with attention mechanism in the network.

Meanwhile, the dimension of the hidden states should be
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chosen according to the input representation Ct.

Based on the driving intention Di in cognitive map Ct,

a lateral distance Do from the current point to the objective

lane is calculated by Algorithm 2. Then a more complicated

cognitive map Ct is built as

Ct =
[

Xt
m, Xt

l , Xt
r, Dt

i , V t
states, Dt

o

]

. (9)

Before importing the representation of cognitive map Ct to the

LSTM block, a fully connected layer is utilized to organize

the various information in Ct. The representation Rt can be

presented by the fully connected layer with a weight matrix

WC
f and a bias vector bC

f as

Rt = Wc
fCt + bc

f . (10)

The descriptor Rt contains much latent information orga-

nized by the fully connected layer, which means a description

of traffic scene and driving intentions. The effectiveness of this

descriptor can be improved by an appropriate training process

with human driving behaviors.

In the proposed CMA framework, we adopt three LSTM

layers, making the network learn higher-level temporal repre-

sentations. The first two LSTM blocks return their full output

sequences, but the last one only returns the last step in its

output sequence, so as to map the long input sequence into

a single control vector to vehicles. The mapping ΦR contains

three LSTM layers with parameters ΘR to explore temporal

clues in the representation set

{Rt}, t = 1, 2, ..., n, (11)

which contains multiple cognitive results in different time

steps. The hidden state ht
3 is the tth output of the third layer

and it shows the result of a temporal model which processes

the tasks of path planning and control. The hidden state ht
3 is

presented as

ht
3 = ΦR(ΘR, {ht}, {Rt}), (12)

where {ht}, t = 1, 2, ..., n, is the hidden states set of each

LSTM layer. Then, a fully connected layer defined by weights

WR and bias bR will map the hidden state ht
3 to a driving

decision used to control self-driving cars. In a word, with

the memory and predictive abilities in an LSTM block, we

consider planning and controlling process as a regression

problem.

In automatic driving mode, steering command and velocity

command are used to control the vehicles. In our self-driving

framework, we generate these two commands separately. For

the velocity command, it will be determined by traffic knowl-

edge and traffic rules. The real velocity of the vehicle will be

treat as a part of vehicle state V t
states to form cognitive map

of current time step. According to a long-term cognitive map

{Ct}, steering angle Sa is generated by

Sa = WR · ΦR(ΘR, {ht}, {Wc
fCt + bc

f}) + bR, (13)

which is described above in detail.

Suppose Dm left and Dm right are respectively the lateral

distance from the left and the right lane boundary to vehicle

in the view of middle camera. And Dl left, Dl right, Dr left

and Dr right are respectively the two distances in the left and

right camera views, same as the middle one. We define the

angle between vehicle and road as Va. And we use Vstates as

a representation of the states of vehicle which can be obtained

through OBD port in vehicle.

With these notations, the entire workflow of CMA frame-

work is summarized in Algorithm 2. In a self-driving pro-

cedure, cognitive map is first constructed with the multiple

convolutional neural networks. Subsequently, based on the

cognitive map and vehicle states in a period of time, a

final control command will be generated by recurrent neural

network.

Algorithm 2 Planning and Control Processes by Cognitive

Map and LSTM

1: while in self-driving mode do

2: generate cognitive map Ct with multiple CNNs

3: if Di = stay in line then

4: Do =
Dm left+Dm right

2
5: generate steering angle by RNN

6: generate pedal commands by desired speed

7: else if Di = change to right then

8: d = Dr right −Dr left

9: while changing lanes do

10: if Dm right < Dr right then

11: the car still in current lane

12: Do = Dr right −
d
2

13: generate steering angle by RNN

14: generate pedal commands by desired

speed

15: else if Dm right == Dr right ∨
the car is on the boundary of lane then

16: if (Dm right −Dm light) ≫ d then

17: the car is on the boundary of lane

18: Do = Dm right −
d
2

19: generate steering angle by RNN

20: generate pedal commands by desired

speed

21: else

22: the car has changed lane

23: Di = stay in line

24: break

25: end if

26: end if

27: end while

28: else if Di = change to left then

29: while changing lanes do

30: similar to change to right lane

31: end while

32: end if

33: end while

IV. DATA COLLECTION AND DATASET

For exploring a new framework of self-driving cars and

evaluate the proposed method, we construct and publish a

novel dataset: Road-vehicle Dataset (RVD), for training and

testing our model. 1 The platform of data collection is shown

1The Road-vehicle Dataset is available at iair.xjtu.edu.cn/xszy/RVD.htm
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in Fig. 3a. The data is collected on a wide variety of roads in

different lighting and weather conditions. In total, we recorded

more than 10 hours of traffic scenarios using different sen-

sors, such as color cameras, high-precision inertial navigation

system and differential GPS system. Three cameras are used

to record images and the data of driver’s behaviors, which

are reflected through the steering angle and pedals’ states, are

recorded by the CAN bus of OBD interface. The GPS/IMU

inertial navigation system is used to recorded accurate attitude

and position of our vehicle. Meanwhile, in order to generate

images at different views, we use viewpoint transformation

method to augment our dataset.

(a)

(b)

(c)

(d)

Fig. 3. Challenger self-driving car. (a) Challenger is based on a CHERY

TIGGO. The TIGGO has four-wheel drive system (4WD), and a 4-speed auto
transmission. (b) Computing system and GPS/IMU inertial navigation system
in the vehicle’s trunk. (c) Three cameras on the top of the vehicle. Each
camera monitors a corresponding lane. (d) A mechanism with a DC motor
installed on the steering is used to control the steering electronically.

A. Sensors and Calibration

The sensor setup is shown in Fig. 3b, Fig. 3c, and Fig. 3d:

• 3 × IDS UI-5240CP color cameras, 1.31 Megapixels,

1/1.8” e2v CMOS, global shutter

• 3 × KOWA LM3NCM megapixel lens, 3.5mm, horizon-

tal angle of view 89.00◦, vertical angle of view 73.8◦

• 1 × NovAtel ProPak6 Triple-Frequency GNSS Receiver,

TERRASTAR-C accuracy 4cm

• 1 × OXTS RT2000 inertial and GNSS navigation system,

6 axis, 100Hz

For calibrating the extrinsic and intrinsic parameters of the

three vehicle mounted cameras, we use trilinear method [33] to

calibrate extrinsic parameters and method proposed by Zhang

et.al [34] to calibrate intrinsic parameters. The position matrix

is given as T , pitch angle matrix is given by R, and internal

parameters matrix is given by I . And these parameters will be

used later in the experiment part.

B. RVD Dataset

In the data acquisition process, drivers were asked to drive

in a diverse set of weather and road conditions at different

times of the day. Furthermore, to collect abundant data of

driving behaviors, we required the drivers to do lane changing

and turning operations in suitable cases. For the mission of

self-driving, it is a key problem to make the vehicle recover

from error states. Therefore, with the method of viewpoint

transformation, we combined the data from three cameras

to simulate the visual data of the error-state vehicle, and

generated additional road images in a variety of viewpoints.

In precise, our dataset covers:

1) Diverse Visual data: Visual data including kinds of

roads, such as the urban roadways and the highways of single-

lane, double-lane and multi-lane. The data was collected in

different weather conditions, such as day, night, sunny, cloudy,

and foggy, by three viewpoint changeable cameras, which

extends our data scale up to 146,980 images.

2) Vehicle States Data: We recorded the data of real-time

vehicle states while collecting the road video, where more than

100 kinds of internal and external vehicle information, such

as speed, attitude and acceleration, was included.

3) Driver behavior Data: We collected real-time behavior

(operation to the vehicle) of the driver in each moment,

including steering angle, control to the accelerator pedal and

the brake pedal.

4) Artificial Tagged Data: In our collected video, we man-

ually tagged the 43,621 pieces of road image data, where the

lane position, obstacle location, etc. were marked.

Our dataset is innovative in two aspects: i)covers most of

the visual data in scene of self-driving, all data are collected

by three points of view simultaneously, and the dataset is

expanded in the later stage by means of viewpoint trans-

formation; ii)contains abundant records of vehicle states data

and human drivers’ driving behaviors , which provide better

exploration and training for the end-to-end frameworks of self-

driving cars.

V. EXPERIMENTS

In this section, experiments are presented to show the

effectiveness of the proposed CMA model. Comprehensive

experiments are carried out to evaluate the cognitive map (free

space, lane boundary, obstacle, etc.) formed by CNNs based

on the data of real traffic scene videos. We also evaluate the

path planning and vehicle control performance of the RNN that

integrates the cognitive map with the long-short term memory.

In addition, a simulation environment is set up,in which some

experiments hard to operate in reality can be carried out. All

experiments are based on the challenger self-driving car, as

shown in Fig. 3, a tuning vehicle on CHERY TIGGO.
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A. Constructing Cognitive Maps with Multiple Convolutional

Neural Networks

1) Visual Data and Visual Data Augmentation: Training

a convolutional neural network to generate the descriptions

of road scenarios needs a lot of image data. Although we’ve

already got plenty of images taken by the vehicle-mounted

camera, it’s still hard to cover all possible situations a self-

driving vehicle may encounter. Only recording images from

the driver’s point of view is inadequate, so our method should

have an ability to adjust the vehicle to recover from an error

state. For example, the samples taken from a human-driven

vehicle can not cover the situation where its yaw angle is very

large, since a human driver does not allow the car to deviate

too much from the middle of the road. Thus, the collected

data may be unbalanced, and it is hard to train a network that

can deal with various road situations. In order to augment our

training data and simulate a variety of attitudes of vehicle driv-

ing on the lane, we propose a simple viewpoint transformation

method to generate images with different rotations from the

direction of the lane. We record images from three different

viewpoints by three cameras mounted on the vehicle, and then

simulate other viewpoints by transforming the images captured

by the nearest camera. Viewpoint transformation requires the

precise depth of each pixel which we cannot acquire. However

in our research, we only care about the lanes on the road. We

assume that every point on the road is on a horizontal plane.

So one can accurately calculate the depth of each pixel on the

road area by the height of camera.

Fig. 4. Principle of viewpoint transformation.

Suppose a point p(x, y) in the image coordinate system is

known, the pitch angle of the camera is approximate to 0. With

the basic camera model illustrated in Fig. 4, one can obtain

the position of the point P (X,Y, Z) in the camera coordinate

system as

Z = Y ×
f

y
, (14)

X = Z ×
x

f
, (15)

where Y equals the height h of the camera, and the focal

length of the camera is f .

A point P ′(X ′, Y ′, Z ′) in the simulated camera coordinate

system can then be derived as




X ′

Y ′

Z ′



 = R×





X

Y

Z



+ T, (16)

where R is the rotation matrix and T is the translation vector.

Therefore, as shown in Fig. 5, the augmented samples are

generated.

2) Effects of Multiple CNNs in Constructing Cognitive

Map: Within the proposed CMA framework, the CNN re-

gressor takes responsibility for the construction of a basic

cognitive map. In a vision based self-driving car, how precisely

the visual module can perceive the surrounding environment

is of particular importance, and the perception results directly

affect the planning and control. In most self-driving scenarios,

detections of the free space, the current and adjacent lanes, as

well as the obstacle vehicles are primary indicators. Therefore,

we mainly evaluate our model on detecting these items.

TABLE I
PARAMETERS OF THE FIVE CONVOLUTIONAL LAYERS

Layers Operations Attributions

1st

Convolution Size: [5× 5× 3× 24]

Activation ReLU

Max pooling (Not Used)

2nd

Convolution Size: [5× 5× 24× 36]

Activation ReLU

Max pooling (Not Used)

3rd

Convolution Size: [5× 5× 36× 48]

Activation ReLU

Max pooling (Not Used)

4th

Convolution Size: [5× 5× 48× 64]

Activation ReLU

Max pooling (Not Used)

5th

Convolution Size: [5× 5× 64× 128]

Activation ReLU

Max pooling (Not Used)

Our CNN regressor is built on TensorFlow [35]. As given

in Table I, there are 5 convolutional layers in our model. An

image with resolution 320× 240 is processed by those convo-

lutional layers to form a tensor with dimension 25×33×128.

And 4 fully connected layers with output size 500, 100, 20, 5
are used to map 128 features to a 5-dimensional vector, which

represents the lane boundary and obstacle location in the input

image.

The performance of free-space estimation is evaluated

by a segmentation-based approach. In our approach, we can

estimate the free-space in the ego-lane or the adjacent lanes.

Free-space in a lane is determined by two lane boundaries

and obstacle position in the lane. We evaluate the consistency

between the model output and accurately labeled ground

truth. Despite that in [36], the authors recommend to estimate

the free space in bird’s eye view regardless of the type of

traffic scenarios, here in our model, we alternatively choose to

evaluate by perspective image pixels. Since what we concern

indeed is the free-space in a lane, the adopted perspective is

more convenient for us. We choose the criteria of precision,
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Fig. 5. Illustration of data augmentation process. Images in different viewpoints are generated by the method of viewpoint transformation. The origins are
the actual images taken by the three cameras.

recall and F-measure to evaluate the performance of our

model, which are defined by:

Precision =
NTP

NTP +NFP

, (17)

Recall =
NTP

NTP +NFN

, (18)

F1 =
2

Precision−1 +Recall−1

=
2NTP

2NTP +NFP +NFN

, (19)

where NTP is the number of free-space pixels correctly

labeled as ground truth, NFP is the number of free-space

pixels in model output but not in the ground truth labeling,

and NFN is the number of free-space pixels in ground truth

but not in model output. In our study, three lanes (ego-lane,

two adjacent lanes) are captured by three different cameras.

We only present the evaluation results on the images of the

middle camera and the left camera, since the images of the

right camera are similar to those of the left one.

For comparison purpose, the free space detection perfor-

mance is evaluated on the RVD and Nan’s dataset [19],

respectively. Table II presents the quantitative analysis of

our model in different scenarios. Some results of free-space

detection on testing set are shown in Fig. 6.

TABLE II
THE PERFORMANCE OF FREE-SPACE DETECTION IN OUR RVD DATASET

AND NAN’S [19]

Traffic Scene Precision[%] Recall[%] F1[%]

Urban 98.16 97.51 97.82

Moderate Urban 98.33 97.68 97.98

Complex Illumination 97.88 99.45 98.65

HighWay 98.97 98.94 98.95

HighWay (Left Lane) 99.48 92.02 95.59

Cloudy 98.33 97.68 97.98

Rainy & Snowy Day 96.83 97.99 97.37

Night 97.68 97.70 97.66

Heavy Urban [19] 98.32 96.91 97.58

Highway [19] 99.24 98.43 98.83

The results of lane boundary detection is evaluated with

the criteria presented in [19]. If the horizontal distance be-

tween detected boundary and ground truth labeling is smaller

Fig. 6. Free-space detection results. The proposed model is evaluated on our
RVD dataset and Nan’s [19], where various traffic scenes such as night, rainy
day and complex illumination are included.

than a predefined thresholds, the detected boundary will be

regard as true positive. We compared our approach with

the state-of-art method. The two methods were evaluated

respectively in our RVD dataset and Nan’s dataset [19].

The experimental results show that our approach exhibits a

nearly consistent precision with the state-of-art approach in

some typical traffic scenes. However, in challenging scenarios,
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TABLE III
COMPARISON WITH OTHER LANE BOUNDARY DETECTION METHODS IN

DIFFERENT TRAFFIC SCENES

Traffic Scenes Methods Precision[%] Frame Rate

Highway
Ours 99.9 93

Nan’s 99.9 28

Moderate Urban
Ours 96.2 90

Nan’s 97.7 21

Heavy Urban
Ours 96.1 90

Nan’s 95.4 16

Illumination
Ours 95.8 89

Nan’s 100.0 23

Night
Ours 90.7 94

Nan’s 99.4 35

Rainy & Snowy Day
Ours 87.1 89

Nan’s 47.3 21

such as in rainy, snowy and hazy day, our model shows

better performance, indicating that it has a relatively strong

robustness. Additionally, with the utilization of convolutional

neural network, our model can be processed in parallel on

GPU, which leads to a higher frame rate comparing with the

state-of-art method.

The quantitative results of our model in lane boundary

detection are presented in Table III. The lane boundary de-

tection results of our model in different scenes and datasets

are demonstrated in Fig. 7.

The estimation of obstacle position with our model is

evaluated in perspective image pixels, since the real distance

between obstacle vehicle and our car is related to extrinsic

parameters of camera which may differ in different self-

driving cars. At first we calculate the accuracy of the obstacle

detection. The distributions of the distance errors in different

scenes are shown in Fig. 8.

B. Generating Control Command Sequences with Recurrent

Neural Network

1) Experiment Setup: As shown in Fig. 9, the simulation

environment we constructed mainly contains three parts, which

are road circumstance, vehicle model and internal controller

(driver model included). There are two main proposes for our

simulator, one is to evaluate the performance of our method,

the other is to augment the data of driver behaviors. In our

simulator, the car model interacts with the road circumstance,

and their status are sent to the internal controller as inputs to

simulate human driver’s behaviors, so as to generate control

sequences to adjust the attitude of the car. These three modules

constitute a complete closed-loop simulation cycle.

2) Effects of Control Sequence Generation: Training a

recurrent neural network to learn human’s driving behavior

needs a large-scale driving behavior data. However, lots of

unexpected factors may take effect on the data we get from the

real world driving. For example, a human’s driving behavior

is partially based on his subjective decision, which may be

absolutely different even in a same circumstance. Existences

of such things in our training data may lower the confidence of

Fig. 7. Lane boundary detection results on different datasets.
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Fig. 8. Distributions of the distance errors.

our network’s output. Therefore, to evaluate the planning and

control part, we use the data not only from our dataset, which

contains both road data we marked and actions the driver

actually made, but also from the simulation environment,
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Cognitive Map Based Neural Model 

Environment
Data

Desiered
Speed

Car
Data

Steering
Angle

Internal Controller

Car ModuleEnvironment

Fig. 9. The block diagram of our simulator, which is used to evaluate the
performance of our CMA model in path planning and control. The simulation
system mainly consists of three parts, which are internal controller, vehicle
model and road circumstance.

shown in Fig. 9. By setting the parameters of both the vehicle

and the road module properly, the desired driving data can be

reliably generated from the simulation environment, such as

the driving trajectory and the commands of steering the wheel

of the car. We set multiple parameters for the road module,

and run the simulator repeatedly, so as to obtain information

of vehicle states (vehicle attitude, speed etc.) and deviation

between the vehicle driving trace and the lane to improve and

extend our driving behavior dataset.

TABLE IV
PARAMETERS OF RECURRENT NEURAL NETWORK WITH LSTM BLOCK

Layers Operations Attributions

Dense
Input Size:

[

20× Ct
]

Output Size: [20× 16]

LSTM
Input Size: [20× 16]

Output Size: [20× 64]

LSTM
Input Size: [20× 64]

Output Size: [20× 64]

LSTM
Input Size: [20× 64]

Output Size: [64]

Dense
Input Size: [64]

Output Steering angle Sa

As shown in Table. IV, we build a LSTM network to model

the temporal dependencies in driving process. Path planning

and vehicle control will be accomplished simultaneously in the

LSTM network. In order to quantitative analyze the efficiency

of our method in path planning and control, we evaluate the

proposed method in the simulator, instead of implementing

it on a real vehicle. In the simulator, we set two lanes in

the road, and the speed of vehicle is set but not limited to

40 Km/h. In the meanwhile, there will be two obstacles set

on the lane to test if our model can achieve the control of

Ideal Track Proposed Model Chen's Method
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Fig. 10. Simulation of planning and control process with CMA model.
Simulative vehicle trajectories on diverse lanes. From 10a to 10f, obstacles
are put respectively at 50, 80, 100, 200, 100, 100 meters from the self-driving
car, and occurs at random moments to test the planning and control ability
of models. In 10a - 10d, the lanes are 3.5 meters in widths, and in 10e - 10f,
the widths are of 4 meters.

human-level in the lane changing scenario. As shown in Fig.

9, the proposed method replaces the internal controller (driver

model) in the simulator. A steering angle to control the car

module in real-time can be generated from the proposed model

by using information of car states and environment data.

As shown in Fig. 10, we present the driving trajectories

generated by our method and Chen’s method [14] in different

lane changing scenarios. In testing procedure, we randomly set

obstructions in front of the vehicle to test its performance on

lane changing operation when faced with obstacles of different

distances. As for the lane changing operation, compared with

Chen’s method, our approach takes account of the temporal

dependence, which implies the states of the vehicle over a
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period of time are memorized. Therefore, the trajectory of our

model is consistent with the ideal curve, and the vehicle can

drives in a steady and smooth state. The whole process is

similar to the operation of human drivers, where the drivers’

behaviors are absolutely learn by model.

VI. CONCLUSION

In this paper, we proposed a cognitive model with attention

for self-driving cars. This model was proposed, inspired by

human brain, to simulate human visual and motor cortices for

sensing, planning and control. The mechanism of attention was

modeled by a recurrent neural network in time. In addition,

the concept of cognitive map for traffic scene was introduced

and described in detail. Furthermore, a labeled dataset named

Road-Vehicle Dataset (RVD) is built for training and evaluat-

ing. The performance of the proposed model in planning and

control was tested by three visual tasks. Experimental results

showed that our model can fulfill some basic self-driving tasks

with only cameras.

Besides attention mechanism, the permanent memory plays

a crucial role in human cognition. How to incorporate the

permanent memory into the proposed cognitive model is left as

our future work. In addition, there are many abnormal events in

the actual traffic scene. How to develop an efficient cognitive

model to deal with these situations is an interesting topic for

future study.

ACKNOWLEDGMENT

This research was partially supported by the National Natu-

ral Science Foundation of China (No. 91520000, L1522023),

the Programme of Introducing Talents of Discipline to Uni-

versity (No. B13043), 973 Program (No. 2015CB351703).

REFERENCES

[1] J.-r. Xue, D. Wang, S.-y. Du, D.-x. Cui, Y. Huang, and N.-n. Zheng,
“A vision-centered multi-sensor fusing approach to self-localization and
obstacle perception for robotic cars,” Front. Inform. Technol. Electron.

Eng, vol. 18, no. 1, pp. 122–138, 2017.
[2] S. Tsugawa, “Vision-based vehicles in japan: Machine vision systems

and driving control systems,” IEEE Transactions on Industrial Electron-

ics, vol. 41, no. 4, pp. 398–405, 1994.
[3] M. A. Turk, D. G. Morgenthaler, K. D. Gremban, and M. Marra,

“Vits-a vision system for autonomous land vehicle navigation,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 10,
no. 3, pp. 342–361, 1988.

[4] J. Leonard, J. How, S. Teller, M. Berger, S. Campbell, G. Fiore,
L. Fletcher, E. Frazzoli, A. Huang, S. Karaman et al., “A perception-
driven autonomous urban vehicle,” Journal of Field Robotics, vol. 25,
no. 10, pp. 727–774, 2008.

[5] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang et al., “End
to end learning for self-driving cars,” arXiv preprint arXiv:1604.07316,
2016.

[6] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[7] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[8] N. Zheng, Z. Liu, P. Ren, Y. Ma, S. Chen, S. Yu, J. Xue, B. Chen, and
F. Wang, “Hybrid-augmented intelligence: collaboration and cognition,”
vol. 18, no. 2, pp. 153–179, 2017.

[9] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT Press,
2016.

[10] J. Hawkins and S. Blakeslee, On intelligence. Macmillan, 2007.

[11] V. Mountcastle, “An organizing principle for cerebral function: the unit
model and the distributed system,” in The Mindful Brain, G. Edelman
and V. Mountcastle, Eds. Cambridge, Mass.: MIT Press, 1978.

[12] E. C. Tolman et al., “Cognitive maps in rats and men,” 1948.
[13] B. L. McNaughton, F. P. Battaglia, O. Jensen, E. I. Moser, and M.-B.

Moser, “Path integration and the neural basis of the’cognitive map’,”
Nature Reviews Neuroscience, vol. 7, no. 8, pp. 663–678, 2006.

[14] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “Deepdriving: Learning
affordance for direct perception in autonomous driving,” in Proceedings
of the IEEE International Conference on Computer Vision, 2015, pp.
2722–2730.

[15] Y. Wang, E. K. Teoh, and D. Shen, “Lane detection and tracking using
b-snake,” Image and Vision computing, vol. 22, no. 4, pp. 269–280,
2004.

[16] A. A. Assidiq, O. O. Khalifa, M. R. Islam, and S. Khan, “Real time lane
detection for autonomous vehicles,” in Computer and Communication

Engineering, 2008. ICCCE 2008. International Conference on. IEEE,
2008, pp. 82–88.

[17] Y. Li, A. Iqbal, and N. R. Gans, “Multiple lane boundary detection using
a combination of low-level image features,” in Intelligent Transportation
Systems (ITSC), 2014 IEEE 17th International Conference on. IEEE,
2014, pp. 1682–1687.

[18] J. He, H. Rong, J. Gong, and W. Huang, “A lane detection method
for lane departure warning system,” in Optoelectronics and Image
Processing (ICOIP), 2010 International Conference on, vol. 1. IEEE,
2010, pp. 28–31.

[19] Z. Nan, P. Wei, L. Xu, and N. Zheng, “Efficient lane boundary detection
with spatial-temporal knowledge filtering,” Sensors, vol. 16, no. 8, p.
1276, 2016.

[20] B. Huval, T. Wang, S. Tandon, J. Kiske, W. Song, J. Pazhayampallil,
M. Andriluka, P. Rajpurkar, T. Migimatsu, R. Cheng-Yue et al., “An em-
pirical evaluation of deep learning on highway driving,” arXiv preprint

arXiv:1504.01716, 2015.
[21] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Region-based

convolutional networks for accurate object detection and segmentation,”
IEEE transactions on pattern analysis and machine intelligence, vol. 38,
no. 1, pp. 142–158, 2016.

[22] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2016, pp. 779–
788.

[23] D. A. Pomerleau, “Alvinn, an autonomous land vehicle in a neural
network,” Carnegie Mellon University, Computer Science Department,
Tech. Rep., 1989.

[24] Y. LeCun, U. Muller, J. Ben, E. Cosatto, and B. Flepp, “Off-road
obstacle avoidance through end-to-end learning,” in NIPS, 2005, pp.
739–746.

[25] H. Xu, Y. Gao, F. Yu, and T. Darrell, “End-to-end learning of
driving models from large-scale video datasets,” arXiv preprint
arXiv:1612.01079, 2016.

[26] J. Koutnı́k, G. Cuccu, J. Schmidhuber, and F. Gomez, “Evolving large-
scale neural networks for vision-based torcs,” 2013.

[27] ——, “Evolving large-scale neural networks for vision-based reinforce-
ment learning,” in Proceedings of the 15th annual conference on Genetic

and evolutionary computation. ACM, 2013, pp. 1061–1068.
[28] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.

MIT press Cambridge, 1998, vol. 1, no. 1.
[29] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.

Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[30] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural networks
and tree search,” Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[31] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learn-
ing,” arXiv preprint arXiv:1312.5602, 2013.
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