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Abstract—This paper introduces a cognitive architecture for
a humanoid robot to engage in a proactive, mixed-initiative
exploration and manipulation of its environment, where the
initiative can originate from both the human and the robot. The
framework, based on a biologically-grounded theory of the brain
and mind, integrates a reactive interaction engine, a number of
state-of-the art perceptual and motor learning algorithms, as
well as planning abilities and an autobiographical memory. The
architecture as a whole drives the robot behavior to solve the
symbol grounding problem, acquire language capabilities, execute
goal-oriented behavior, and express a verbal narrative of its own
experience in the world. We validate our approach in human-
robot interaction experiments with the iCub humanoid robot,
showing that the proposed cognitive architecture can be applied
in real time within a realistic scenario and that it can be used
with naive users.

Index Terms—Cognitive Robotics, Distributed Adaptive Con-
trol, Human-Robot Interaction, Symbol Grounding, Autobio-
graphical Memory

I. INTRODUCTION

T
HE so-called Symbol Grounding Problem (SGP, [1], [2],
[3]) refers to the way in which a cognitive agent forms an

internal and unified representation of an external word referent
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from the continuous flow of low-level sensorimotor data
generated by its interaction with the environment. In this paper,
we focus on solving the SGP in the context of human-robot
interaction (HRI), where a humanoid iCub robot [4] acquires
and expresses knowledge about the world by interacting with
a human partner. Solving the SGP is of particular relevance
in HRI, where a repertoire of shared symbolic units forms the
basis of an efficient linguistic communication channel between
the robot and the human.

To solve the SGP, several questions should be addressed:

• How are unified symbolic representations of external ref-
erents acquired from the multimodal information collected
by the agent (e.g., visual, tactile, motor)? This is referred
to as the Physical SGP [5], [6].

• How to acquire a shared lexicon grounded in the sensori-
motor interactions between two (or more) agents? This is
referred to as the Social SGP [6], [7].

• How is this lexicon then used for communication and
collective goal-oriented behavior? This refers to the
functional role of physical and social symbol grounding.

This paper addresses these questions by proposing a complete
cognitive architecture for HRI and demonstrating its abilities on
an iCub robot. Our architecture, called DAC-h3, builds upon our
previous research projects in conceiving biologically grounded
cognitive architectures for humanoid robots based on the
Distributed Adaptive Control theory of mind and brain (DAC,
presented in the next section). In [8] we proposed an integrated
architecture for generating a socially competent humanoid robot,
demonstrating that gaze, eye contact and utilitarian emotions
play an essential role in the psychological validity or social
salience of HRI (DAC-h1). In [9], we introduced a unified robot
architecture, an innovative Synthetic Tutor Assistant (STA)
embodied in a humanoid robot whose goal is to interactively
guide learners in a science-based learning paradigm through
rich multimodal interactions (DAC-h2).

DAC-h3 is based on a developmental bootstrapping process
where the robot is endowed with an intrinsic motivation to
act and relate to the world in interaction with social peers.
Levinson [10] refers to this process as the human interaction

engine: a set of capabilities including looking at objects of
interest and interaction partners, pointing to these entities [11],
demonstrating curiosity as a desire to acquire knowledge [12]
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and showing, telling and sharing this knowledge with others
[11], [13]. These are also coherent with the desiderata for

developmental cognitive architectures proposed in [14] stating
that a cognitive architecture’s value system should manifest
both exploratory and social motives, reflecting the psychology
of development defended by Piaget [15] and Vygotsky [16].

This interaction engine drives the robot to proactively control
its own acquisition and expression of knowledge, favoring the
grounding of acquired symbols by learning multimodal repre-
sentations of entities through interaction with a human partner.
In DAC-h3, an entity refers to an internal or external referent:
it can be either an object, an agent, an action, or a body part.
In turn, the acquired multimodal and linguistic representations
of entities are recruited in goal-oriented behavior and form the
basis of a persistent concept of self through the development
of an autobiographical memory and the expression of a verbal
narrative.

We validate the proposed architecture following a human-
robot interaction scenario where the robot has to learn concepts
related to its own body and its vicinity in a proactive manner
and express those concepts in goal-oriented behavior. We show
a complete implementation running in real-time on the iCub hu-
manoid robot. The interaction depends on the internal dynamics
of the architecture, the properties of the environment and the
behavior of the human. We analyze a typical interaction in detail
and provide videos showing the robustness of our system in
various environments (https://github.com/robotology/wysiwyd).
Our results show that the architecture autonomously drives
the iCub to acquire a number of concepts about the present
entities (objects, humans, and body parts), whilst proactively
maintaining the interaction with a human and recruiting those
concepts to express more complex goal-oriented behavior. We
also run experiments with naive subjects in order to test the
effect of the robot’s proactivity level on the interaction.

In Section II we position the current contribution with respect
to related works in the field and rely on this analysis to
emphasize the specificity of our approach. Our main contri-
bution is described in Section III and consists in the proposal
and implementation of an embodied and integrated cognitive
architecture for the acquisition of multimodal information about
external word referents, as well as a context-dependent lexicon
shared with a human partner and used in goal-directed behavior
and verbal narrative generation. The experimental validation
of our approach on an iCub robot is provided in Section IV,
followed by a discussion in Section V.

II. RELATED WORKS AND PRINCIPLES OF THE PROPOSED

ARCHITECTURE

Designing a cognitive robot that is able to solve the SGP
requires a set of heterogeneous challenges to be addressed. First,
the robot has to be driven by a cognitive architecture bridging
the gap between low-level reactive control and symbolic
knowledge processing. Second, it needs to interact with its
environment, including social partners, in a way that facilitates
the acquisition of symbolic knowledge. Third, it needs to
actively maintain engagement with the social partners for a
fluent interaction. Finally, the acquired symbols need to be

used in high-level cognitive functions dealing with linguistic
communication and autobiographical memory.

In this section, we review related works on each of these
topics along with a brief overview of the solution adopted by
the DAC-h3 architecture.

A. Functionally-driven vs. biologically-inspired approaches in

social robotics

The methods used to conceive socially interactive robots
derive predominantly from two approaches [17]. Functionally-
designed approaches are based on reverse engineering methods,
assuming that a deep understanding of how the mind operates
is not a requirement for conceiving socially competent robots
(e.g. [18], [19], [20]), whilst biologically-inspired robots are
based on theories of natural and social sciences and expect two
main advantages of constraining cognitive models by biological
knowledge: to conceive robots that are more understandable
to humans, as they reason using similar principles, and to
provide an efficient experimental benchmark from which the
underlying theories of learning can be confronted, tested and
refined (e.g. [21], [22], [23]). One specific approach used
by Demiris and colleagues for the mirror neuron system is
decomposing computational models implemented on robots
into brain operating principles which can then be linked and
compared to neuroimaging and neurophysiological data [23].

The proposed DAC-h3 cognitive architecture takes advantage
of both methods. It is based on an established biologically-
grounded cognitive architecture of the brain and the mind (the
DAC theory, presented below) that is adapted for the HRI
domain. However, while the global structure of the architecture
is constrained by biology, the implementation of specific
modules can be driven by their functionality, i.e. using state-
of-the-art methods from machine learning that are powerful
at implementing particular functions without being directly
constrained by biological knowledge.

B. Cognitive architectures and the SGP

Another distinction in approaches for conceiving social
robots, which is of particular relevance for addressing the
SGP, reflects a divergence from the more general field of
cognitive architectures (or unified theories of cognition [24]).
Historically, two opposing approaches have been proposed to
formalize how cognitive functions arise in an individual agent
from the interaction of interconnected information processing
modules in a cognitive architecture. Top-down approaches
rely on a symbolic representation of a task, which has to be
decomposed recursively into simpler ones to be executed by
the agent. These rely principally on methods from symbolic
artificial intelligence (from the General Problem Solver [25]
to Soar [26] or ACT-R [27]). Although relatively powerful at
solving abstract symbolic problems, top-down architectures are
not able to solve the SGP per se because they presuppose
the existence of symbols. Thus they are not suitable for
addressing the problem of how these symbols can acquired
from low-level sensorimotor signals. The alternative, bottom-
up approaches instead implement behavior without relying
on complex knowledge representation and reasoning. This is

https://github.com/robotology/wysiwyd
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typically the case in behavior-based robotics [28], emphasizing
lower-level sensory-motor control loops as a starting point
of behavioral complexity as in the Subsumption architecture
[29]. These approaches are not suitable to solve the SGP either
because they do not consider symbolic representation as a
necessary component of cognition (referred as intelligence

without representation in [28]).

Interestingly, this historical distinction between top-down
representation based and bottom-up behavior based approaches
still holds in the domain of social robotics [30], [31]. Represen-
tation based approaches rely on the modeling of psychological
aspects of social cognition (e.g. [32]), whereas behavior
based approaches emphasize the role of embodiment and
reactive control to enable the dynamic coupling of agents
[33]. Solving the SGP, both in its physical and social aspects,
therefore requires the integration of bottom-up processes for
acquiring and grounding symbols in the physical interaction
with the (social) environment and top-down processes for taking
advantage of the abstraction, reasoning and communication
abilities provided by the acquired symbol system. This has been
referred to as the micro-macro loop, i.e. a bilateral relationship
between an emerged symbol system at the macro level and a
physical system consisting of communicating and collaborating
agents at the micro level [34].

Several contributions in social robotics rely on such hybrid
architectures integrating bottom-up and top-down processes
(e.g. [35], [36], [37], [38]). In [35], an architecture called
embodied theory of mind was developed to link high-level
cognitive skills to the low-level perceptual abilities of a
humanoid and implementing joint attention and intentional
state understanding. In [36], or [37], the architecture combines
deliberative planning, reactive control, and motivational drives
for controlling robots in interaction with humans.

In this paper, we adopt the principles of the Distributed

Adaptive Control theory of the mind and the brain (DAC, [39],
[40]). DAC is a hybrid architecture which posits that cognition
is based on the interaction of four interconnected control loops
operating at different levels of abstraction (see Figure 1). The
first level is called the somatic layer and corresponds to the
embodiment of the agent within its environment, with its
sensors and actuators as well as the physiological needs (e.g. for
exploration or safety). Extending bottom-up approaches with
drive reduction mechanisms, complex behavior is bootstrapped
in DAC from the self-regulation of an agent’s physiological
needs when combined with reactive behaviors (the reactive

layer). This reactive interaction with the environment drives the
dynamics of the whole architecture [41], bootstrapping learning
processes for solving the physical SGP (the adaptive layer) and
the acquisition of higher-level cognitive representations such as
abstract goal selection, memory and planning (the contextual

layer). These high-level representations in turn modulate the
activity at the lower levels via top-down pathways shaped by
behavioral feedback. The control flow in DAC is therefore
distributed, both from bottom-up and top-down interactions
between layers, as well as from lateral information processing
within each layer.

C. Representation learning for solving the SGP

As we have seen, a cognitive architecture solving the SGP
needs to bridge the gap between low-level sensorimotor data
and symbolic knowledge. Several methods have been proposed
for compressing multimodal signals into symbols. A solution
based on geometrical structures was offered by Gärdenfors with
the notion of conceptual spaces (e.g., [42]), whereby similarity
between concepts is derived from distances in this space. Lieto
et al. [43] advocate the use of the conceptual spaces as the
lingua franca for different levels of representation.

Another approach has been proposed in [44], [45], which
involves a single class of mental representations called “Seman-
tic Pointers”. These representations are particularly suited in
solving the SGP as they support binding operations of various
modalities, which in turn result in a single representation. This
representation (which might have been initially formed by an
input of a single modality) can then trigger a corresponding
concept, whose occurrence leads to simulated stimuli in the
other modalities. Furthermore, while semantic pointers can
be represented as vectors, the vector representation can be
transformed in neural activity which makes the implementation
biologically plausible and allows mapping to different brain
areas.

Other approaches consider symbols as fundamentally senso-
rimotor units. For example, Object-Action Complexes (OACs)
build symbolic representations of sensorimotor experience and
behaviors through the learning of object affordances [46] (for
a review of affordance-based approaches, see [47]). In [48], a
framework founded on joint perceptuo-motor representations
is proposed, integrating declarative episodic and procedural
memory systems for combining experiential knowledge with
skillful know-how.

In DAC-h3, visual, tactile, motor and linguistic information
about the present entities is collected proactively through
reactive control loops triggering sensorimotor exploration in
interaction with a human partner. Abstract representations are
learned on-line using state-of-the-art machine learning methods
in each modality (see Section III). An entity is therefore
represented internally in the robot’s memory as the association
between abstracted multimodal representations and linguistic
labels.

D. Interaction paradigms and autonomous exploration

Learning symbolic representations from sensorimotor signals
requires an autonomous interaction of a robot with the physical
and social world. Several interaction paradigms have been
proposed for grounding a lexicon in the physical interaction of
a robot with its environment. Since the pioneering paradigm
of language games proposed in [49], a number of multi-
agent models have been proposed showing how particular
properties of language can self-organize out of repeated dyadic
interactions between agents of a population (e.g. [50], [51]).

In the domain of HRI, significant progress has been made
in allowing robots to interact with humans, for example in
learning shared plans [52], [53], [54], learning to imitate actions
[55], [56], [57], [58], and learning motor skills [59] that can
be used for engaging in joint activities. Other contributions
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have focused on lexicon acquisition through the transfer of
sensorimotor and linguistic information from the interaction
between a teacher and a learner through imitation [60] or action
[61], [62]. However, in most of these interactions, the human
is in charge and the robot is following the human’s lead: the
choice of which concept to learn is left to the human and the
robot must identify it. In this case, the robot must solve the
referential indeterminacy problem described by Quine [63],
where the robot language learner has to extract the external
concept that was referred to by the human speaker. However,
acquiring symbols by interacting with other agents is not only a
unidirectional process of information transfer between a teacher
and learner [10].

Autonomous exploration and proactive behavior solves this
problem by allowing robots to take the initiative in exploring
their environment [64] and interacting with people [65]. The
benefit of these abilities for knowledge acquisition has been
demonstrated in several developmental robotics experiments.
In [66], it is shown how a combination of social guidance
and intrinsic motivation improve the learning of object visual
categories in HRI. A similar mechanism is adopted in [67]
for learning complex sensorimotor mappings in the context
of vocal development. In [68], planning conflicts due to the
uncertainty of the detected human’s intention are resolved by
proactive execution of the corresponding task that optimally
reduces the system’s uncertainty. In [69], the task is to acquire
human-understandable labels for novel objects and learning how
to manipulate them. This is realized through a mixed-initiative
interaction scenario and it is shown that proactivity improves
the predictability and success of human-robot interaction.

A central aspect of the DAC-h3 architecture is the robot’s
ability to act proactively in a mixed-initiative scenario. This
allows self-monitoring of the robot’s own knowledge acquisi-
tion process, removing dependence on the human’s initiative.
Interestingly, proactivity in a sense reverses the referential
indeterminacy problem mentioned above by shifting the re-
sponsibility of solving ambiguities to the agent who is endowed
with the adequate prior knowledge to solve it, i.e., the human,
in a HRI context. The robot is now in charge of the concepts
it wants to learn, and can use joint attention behaviors to guide
the human toward the knowledge it wants to acquire. In the
proposed system, this is realized through a set of behavioral
control loops, by self-regulating knowledge acquisition, and
by proactively requesting missing information about entities
from the human partner.

E. Language learning, autobiographical memory and narrative

expression

We have just described the main components that a robot
requires to solve the SGP: a cognitive architecture able to
process both low-level sensorimotor data and high-level sym-
bolic representation, mechanisms for linking these two levels
in abstract multimodal representations, as well autonomous
behaviors for proactively interacting with the environment. The
final challenge to address concerns the use of the acquired
symbols for higher-level cognition, including language learning,
autobiographical memory and narrative expression.

Several works address the ability of language learning in
robotics. The cognitive architecture of iTalk [70] focuses
on modeling the emergence of language by learning about
the robot’s embodiment, learning from others, as well as
learning linguistic capability. Cangelosi et al. [71] propose that
action, interaction and language should be considered together
as they develop in parallel, and one influences the others.
Antunes et al. [72] assume that language is already learned,
and address the issue that linguistic input typically does not
have a one-to-one mapping to actions. They propose to perform
reasoning and planning on three different layers (low-level robot
perception and action execution, mid-level goal formulation and
plan execution, and high-level semantic memory) to interpret
the human instructions. Similarly, [73] proposes a system to
recognize novel objects using language capabilities in one shot.
In these works, language is typically used to understand the
human and perform actions, but not necessarily to talk about
past events that the robot has experienced.

A number of works investigate the expression of past events
by developing narratives based on acquired autobiographical
memories [74], [75], [76]. In [75], a user study is presented
which suggests that a robot’s narrative allows humans to get an
insight into long term human-robot interaction from the robot’s
perspective. The method in [76] takes user preferences into
account when referring to past interactions. Similarly to our
framework, it is based on the implementation and cooperation
between both episodic and semantic memories with a dialog
system. However, no learning capabilities (neither language
nor knowledge) are introduced by the authors.

In the proposed DAC-h3 architecture, the acquired lexicon
allows the robot to execute action plans for achieving goal-
oriented behavior from human speech requests. Relevant
information throughout the interaction of the robot with humans
is continuously stored in an autobiographical memory used
for the generation of a narrative self, i.e., a verbal description
of the own robot’s history over the long term (able to store
and verbally describe interactions from a long time ago, e.g. a
period of several months).

In the next section, we describe how the above features are
implemented in a coherent cognitive architecture made up of
functional YARP [77] modules running in real-time on the
iCub robot.

III. THE DAC-H3 COGNITIVE ARCHITECTURE

This section presents the DAC-h3 architecture in detail, which
is an instantiation of the DAC architecture for human-robot
interaction. The proposed architecture provides a general frame-
work for designing autonomous robots which act proactively for
1) maintaining social interaction with humans, 2) bootstrapping
the association of multimodal knowledge with its environment
that further enrich the interaction through goal-oriented action
plans, and 3) express a verbal narrative. It allows a principled
organization of various functional modules into a biologically
grounded cognitive architecture.

A. Layer and module overview

In DAC-h3, the somatic layer consists of an iCub humanoid
robot equipped with advanced motor and sensory abilities
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for interacting with humans and objects. The reactive layer

ensures the autonomy of the robot through drive reduction
mechanisms implementing proactive behaviors for acquiring
and expressing knowledge about the current scene. This
allows the bootstrapping of adaptive learning of multimodal
representations about entities in the adaptive layer. More
specifically, the adaptive layer learns high-level multimodal
representations (visual, tactile, motor and linguistic) for the
categorization of entities (objects, agents, actions and body
parts) and associates them in unified representations. Those
representations form the basis of an episodic memory for goal-
oriented behavior through planning in the contextual layer,
which deals with goal representation and action planning.
Within the contextual layer, an autobiographical memory of
the robot is formed that can be expressed in the form of a
verbal narrative.

The complete DAC-h3 architecture is shown in Figure 1.
It is composed of structural modules reflecting the cognitive
modules proposed by the DAC theory. Each structural module

might rely on one or more functional modules implementing
more specific functionalities (e.g. dealing with motor control,
object perception, and scene representation). The complete
system described in this section, therefore, integrates several
state-of-the-art algorithms for cognitive robotics and integrates
them into a structured cognitive architecture grounded in
the principles of the DAC theory. In the remainder of this
section, we describe each structural module layer by layer,
as well as their interaction with the functional modules, and
provide references which provide more detail for the individual
modules.

B. Somatic layer

The somatic layer corresponds to the physical embodiment
of the system. We use the iCub robot, an open source humanoid
platform developed for research in cognitive robotics [4]. The
iCub is a 104 cm tall humanoid robot with 53 degrees of
freedom (DOF). The robot is equipped with cameras in its
articulated eyes allowing stereo vision, and tactile sensors
in the fingertips, palms of the hand, arms and torso. The
iCub is augmented with an external RGB-D camera above the
robot head for agent detection and skeleton tracking. Finally,
an external microphone and speakers are used for speech
recognition and synthesis, respectively.

The somatic layer also contains the physiological needs of
the robot that will drive its reactive behaviors, as described in
the following section on the reactive layer.

C. Reactive layer

Following DAC principles, the reactive layer oversees the
self-regulation of the internal drives of a cognitive agent from
the interaction of sensorimotor control loops. The drives aim at
self-regulating internal state variables (the needs of the somatic

layer) within their respective homeostatic ranges. In biological
terms, such an internal state variable could, for example, reflect
the current glucose level in an organism, with the associated
homeostatic range defining the minimum and maximum values
of that level. A drive for eating would then correspond to a
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Figure 1. The DAC-h3 cognitive architecture (see Section III) is an
implementation of the DAC theory of the brain and mind (see Section II-B)
adapted for HRI applications. The architecture is organized as a layered control
structure with tight coupling within and between layers: the somatic, reactive,
adaptive and contextual layers. Across these layers, a columnar organization
exists that deals with the processing of states of the world or exteroception
(left, red), the self or interoception (middle, blue) and action (right, green).
The role of each layer and their interaction is described in Section III. White
boxes connected with arrows correspond to structural modules implementing
the cognitive modules proposed in the DAC theory. Some of these structural
modules rely on functional modules, indicated by acronyms in the boxes
next to the structural modules. Acronyms refer to the following functional
modules. SR: Speech Recognizer; PASAR: Prediction, Anticipation, Sensation,
Attention and Response; AD: Agent Detector; ARE: Action Rendering Engine;
OR: Object Recognition; LRH: Language Reservoir Handler; SSM: Synthetic
Sensory Memory; PT: Perspective Taking; SRL: Sensorimotor Representation
Learning; KSL: Kinematic Structure Learning; OPC: Object Property Collector;
ABM: Autobiographical Memory; NSL: Narrative Structure Learning.

self-regulation mechanism where the agent actively searches
for food whenever its glucose level is below the homeostatic
minimum and stops eating even if food is present whenever
it is above the homeostatic maximum. A drive is therefore
defined as the real-time control loop triggering appropriate
behaviors whenever the associated internal state variable goes
out of its homeostatic range, as a way to self-regulate its value
in a dynamic and autonomous way.

In the social robotics context that is considered in this paper,
the drives of the robot do not reflect biological needs as above
but are rather related to knowledge acquisition and expression
in social interaction. At the foundation of this developmental
bootstrapping process is the intrinsic motivation to interact and
communicate. As described by Levinson [10] (see Introduction),
a part of the human interaction engine is a set of capabilities
that include the motivation to interact and communicate through
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universal (language independent) manners; including looking
at objects of interest and at the interaction partner, as well as
pointing to these objects. These reactive capabilities are built
into the reactive layer of the architecture forming the core of
the DAC-h3 interaction engine. These interaction primitives
allow the DAC-h3 system and the human to share attention
around specific entities (body parts, objects, or agents), and
to bootstrap learning mechanisms in the adaptive layer that
associate visual, tactile, motor and linguistic representations
of entities as described in the next section.

Currently, the architecture implements the following two
drives: one for knowledge acquisition and one for knowledge
expression. However, DAC-h3 is designed in a way that
facilitates the addition of new drives for further advancements
(see Section V). First, a drive for knowledge acquisition

provides the iCub with an intrinsic motivation to acquire
new knowledge about the current scene. The internal variable
associated with this drive is modulated by the number of entities
in the current scene with missing information (e.g. unknown
name, or missing property). The self-regulation of this drive is
realized by proactively asking the human to provide missing
information about entities, for instance, their name via speech,
synchronized with gaze and pointing; or asking the human to
touch the robot’s skin associated with a specific body part.

Second, a drive for knowledge expression allows the iCub
to proactively express its acquired knowledge by interacting
with the human and objects. The internal variable associated
with this drive is modulated by the number of entities in the
current scene without missing information. The self-regulation
is then realized by triggering actions toward the known entities,
synchronized with verbal descriptions of those actions (e.g.
pointing towards an object or moving a specific body part,
while verbally referring to the considered entity).

The implementation of these drives is realized through the
three structural modules described below, interacting with each
other as well as with the surrounding layers: 1) sensations, 2)

allostatic controller, and 3) behaviors (see Figure 1).

1) Sensations: The sensations module deals with low-level
sensing to provide relevant information for meaning extraction
in the adaptive layer. Specifically, the module detects presence
and position of other agents and their body parts (agent detector

functional module; of interest are the head location for gazing
at the partner and the location of the hands to detect pointing
actions) based on the input of the RGB-D camera. Similarly,
it detects objects based on a texture analysis and extracts their
location using the stereo vision capabilities of the iCub [78].
The prediction, anticipation, sensation, attention and response

functional module (PASAR; [79]) calculates the saliency of
agents based on their motion (increased velocity leads to
increased saliency), and similarly the saliency for objects is
increased if they move or the partner points at them. Finally,
the speech recognition functional module extracts text from
human speech sensed by a microphone using the MicrosoftTM

Speech API. The functionalities of the sensations module
can, therefore, be summarized as dimensionality reduction
and saliency computation, and the resulting data are used for
bootstrapping knowledge in higher layers of the architecture.

2) Allostatic Controller: In many situations, several drives
which may conflict with each other can be activated at the
same time (in the case of this paper, the drive for knowledge
acquisition and the drive for knowledge exploration). Such
possible conflicts can be solved through the concept of an
allostatic controller [80], [81], defined as a set of simple
homeostatic control loops and dealing with their scheduling
to ensure an efficient global regulation of the internal state
variables. The scheduling is decided according to the internal
state of the robot and the output of the sensations module.
The decision of which drive to follow depends on several
factors: the distance of each drive level to their homeostatic
boundaries, as well as predefined drive priorities (in DAC-h3,
knowledge acquisition has priority over knowledge expression,
which results in a curious personality).

3) Behaviors: To regulate the aforementioned drives, the
allostatic controller is connected to the behaviors module, and
each drive is linked to corresponding behaviors which are
supposed to bring it back into its homeostatic range whenever
needed. The positive influence of such a drive regulation
mechanism on the acceptance of the HRI by naive users has
been demonstrated in previous papers [82], [83].

The drive for knowledge acquisition is regulated by requiring
information about entities through coordinated behaviors. Those
behaviors depend on the type of the considered entity:

• In the case of an object, the robot produces speech (e.g.
“What is this object?”) while pointing and gazing at the
unknown object.

• In the case of an agent, the robot produces speech (e.g.
“Who are you?”) while looking at the unknown human.

• In the case of a body part, the robot either asks for the
name (e.g. “How do you call this part of my body?”)
while moving it or, if the name is already known from a
previous interaction, asks the human to touch the body
part while moving it (e.g., “Can you touch my index while
I move it, please?”).

The multimodal information collected through these behaviors
will be used to form unified representations of entities in the
adaptive layer (see next section).

The drive for knowledge expression is regulated by executing
actions towards known entities, synchronized with speech
sentences parameterized by the entities’ linguistic labels
acquired in the adaptive layer (see next section). Motor actions
are realized through the action rendering engine (ARE [84])
functional module which allows executing complex actions
such as push, reach, take, look in a coordinated human-like
fashion. Language production abilities are implemented in
the form of predefined grammars (for example asking for the
name of an object). Semantic words associated to entities
are not present at the reactive level, but are provided from
the learned association operating in the adaptive layer. The
iSpeak module implements a bridge between the iCub and
a voice synthesizer by synchronizing the produced utterance
with the lip movements of the iCub to realize a more vivid
interaction [85].
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D. Adaptive layer

The adaptive layer oversees the acquisition of a state space
of the agent-environment interaction by binding visual, tactile,
motor and linguistic representations of entities. It integrates
functional modules for maintaining an internal representation
of the current scene, visually categorizing entities, recognizing
and sensing body parts, extracting linguistic labels from
human speech, and learning associations between multimodal
representations. They are grouped in three structural modules
described below: perceptions, associations and action selection

(see Figure 1).
1) Perceptions: The object recognition functional mod-

ule [86] is used to learn the categorization of objects directly
from the visual information given by the iCub eyes with resort
to the most recent deep convolutional networks. The bounding
boxes of the objects found in the Sensations module are fed to
the learning module for the recognition stage. The output of
the system consists of the 2D (in the image plane) and 3D (in
the world frame) positions of the identified objects along with
the corresponding classification scores as stored in the objects

properties collector memory (explained below).
There are two functional modules related to language

understanding and language production, both integrated within
the language reservoir handler (LRH). The comprehension of

narrative discourse module receives a sentence and produces
the representation of the corresponding meaning, and can
thus transform human speech into meaning. The module for

narrative discourse production receives a representation of
meaning and generates the corresponding sentence (meaning
to speech). The meaning is represented in terms of PAOR:
predicate(arguments), where arguments correspond to thematic
roles (agent,object,recipient). Both models are implemented
as recurrent neuronal networks based on reservoir computing
[87], [88], [89].

The synthetic sensory memory (SSM) module is currently
employed for face recognition and action recognition using a
fusion of RGB-D data and object location data as provided
from the sensations module. In terms of action recognition,
SSM has been trained to automatically segment and recognize
the following actions: push, pull, lift, drop, wave, and point,
while also actively recognizing if the current action is known
or unknown. More generally, it has been shown that SSM
provides abilities for pattern learning, recall, pattern completion,
imagination and association [90]. The SSM module is inspired
by the role of the hippocampus by fusing multiple sensory input
streams and representing them in a latent feature space [91].
During recall, SSM performs classification of incoming sensory
data and returns a label along with an uncertainty measure
corresponding to the returned label, which is a use case of
the action and face recognition tasks within DAC-h3. SSM
is also capable of imagining novel inputs or reconstructing
previously encountered inputs and sending the corresponding
generated sensory data. This allows for the replay of memories
as detailed in [92].

2) Associations: The associations structural module pro-
duces unified representations of entities by associating the
multimodal categories formed in the perception module. Those
unified representations are formed in the objects properties

collector (OPC), a functional module storing all information
associated with a particular entity at the present moment in a
proto-language format as detailed in [82]. An entity is defined
as a concept which can be manipulated and is thus the basis
for emerging knowledge. In DAC-h3, each entity has a name
associated, which might be unknown if the entity has been
discovered but not yet explored. More specifically, higher level
entities such as objects, body parts and agents have additional
intrinsic properties. For example, an object also has a location
and dimensions associated with it. Furthermore, whether the
object is currently present is encoded as well, and if so, its
saliency value (as computed by the PASAR module described
in Section III-C). On the other hand, a body part is an entity
which contains a proprioceptive property (i.e. a specific joint),
and a tactile information property (i.e. association with tactile
sensors). Thus, the OPC allows integrating multiple modalities
of one and the same entity to ground the knowledge about
the self, other agents, and objects, as well as their relations.
Relations can be used to link several instances in an ontological
model (see Section III-E1: Episodic Memory).

Learning the multimodal associations that form the internal
representations of entities relies on the behavior generated by
the knowledge acquisition drive operating at the reactive level

(see previous section). Multimodal information about entities
generated by those behaviors is bound together by registering
the acquired information in the specific data format used by
the OPC. For instance, the language reservoir handler module
described above deals with speech analysis to extract entity
labels from human replies (e.g. “this is a cube”; {P:is, A:this,
O:cube, R:∅}). The extracted labels are associated with the
acquired multimodal information which depends on the entity
type: visual representations generated by the object recognition

module in case of an object or agent detector in case of an
agent, as well as motor and touch information in case of a
body part.

The associations of representations can also be applied to the
developmental robot itself (instead of external entities as above),
to acquire motor capabilities or to learn the links between motor
joints and skin sensors of its body [93]. Learning self-related
representations of the robot’s own body schema is realized by
the sensorimotor representation learning functional module
dedicated to forward model learning [94]. The module receives
sensory data collected from the robot’s sensors (e.g. cameras,
skin, joint encoders) and allows accurate prediction of the next
state given the current state and an action. Importantly, the
forward model is learned based on sensory experiences rather
than based on known mechanical properties of the robot’s body.

The kinematic structure learning functional module [95],
[96] estimates an articulated kinematic structure of arbitrary
objects (including the robot’s body parts and humans) using
visual input videos of the iCub eye cameras. This again is based
on sensory experiences rather than known properties of the
agents, which is important to autonomously identify the abilities
of other agents. Based on the estimated articulated kinematic
structures [95], we also allow the iCub to anchor two objects’
kinematic structure joints by observing their movements [96]
and formulating the problem of finding corresponding kinematic
joint matches between two articulated kinematic structures. This
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Figure 2. Examples of the kinematic structure correspondences which the
iCub has found. The top figure shows the correspondences between the left
and right arm of the iCub, which can be used to infer the body part names of
one arm if the corresponding names of the other arm are known. Similarly,
the bottom figure shows correspondences between the robot’s body and the
human’s body.

allows the iCub to infer correspondences between its own body
parts (its left arm and its right arm), as well as between its
own body and the body of the human as retrieved by the agent

detector [93] (see Figure 2).
Finally, based on these correspondences, the perspective

taking functional module [97] enables the robot to reason
about the state of the world from the partner’s perspective.
This is important in situations where the views of the robot
and the human diverge, for example, due to objects which are
hidden to the human but visible to the robot. More importantly,
perspective taking is thought to be an essential element for
successful cooperation and to ease communication, for example
by resolving ambiguities [98]. By mentally aligning the self-
perspective with that of the human partner, this module allows
algorithms (concerned with the visuospatial perception of the
world) to reason as if the input was acquired from an egocentric
perspective; which allows to use learning algorithms trained on
egocentric data to reason on data acquired from the human’s
perspective without the need of adapting them.

3) Action Selection: The action selection module uses
the information from associations to provide context to the
behaviors module at the reactive level. This context corresponds
to entity names which are provided as parameters to the
behaviors module, for instance pointing at a specific object or
using the object linguistic label in the parameterized grammars
defined at the reactive level. This module also deals with the
scheduling of action plans from the contextual layer according
to the current state of the system as explained in the following.

E. Contextual layer

The contextual layer deals with higher-level cognitive
functions that extend the time horizon of the cognitive agent,
such as an episodic memory, goal representation, planning and
the formation of a persistent autobiographical memory of the
robot interaction with the environment. These functions rely on
the unified representations of entities acquired at the adaptive

level. The contextual layer consists of three functional modules
that are described below: 1) episodic memory, 2) goals and

action plans, and 3) autobiographical memory used to generate
a narrative structure.

1) Episodic Memory: The episodic memory relies on ad-
vanced functions of the object property collector (OPC) to
store and associate information about entities in a uniform
format based on the interrogative words “who” (is acting),
“what” (they are doing), “where” (it happens), “when” (it
happens), “why” (it is happening) and “how” called an H5W
data structure [82]. It is used for goal representation and as
elements of the autobiographical memory. H5W have been
argued to be the main questions any conscious being must
answer to survive in the world [99], [100].

The concept of relations is the core of the H5W framework.
It links up to five concepts and assigns them with semantic roles
to form a solution to the H5W problem. We define a relation

as a set of five edges connecting those nodes in a directed
and labeled manner. The labels of those edges are chosen so
that the relation models a typical sentence from the English
grammar of the form: Relation → Subject Verb [Object] [Place]
[Time]. The brackets indicate that the components are optional;
the minimal relation is therefore composed of two entities
representing a subject and a verb.

2) Goals and action plans: Goals can be provided to the
iCub from human speech, and a meaning is extracted by the
language reservoir handler, forming the representation of a
goal in the goals module. Each goal consequently refers to
the appropriately predefined action plan, defined as a state
transition graph with states represented by nodes and actions
represented by edges of the graph. The action plans module
extracts sequences of actions from this graph, with each action
being associated with a pre- and a post-condition state. Goals
and action plans can be parameterized by the name of a
considered entity. For example, if the human asks the iCub to
take the cube, this loads an action plan for the goal “Take an
object” which consists of two actions: “Ask the human to bring
the object closer” and “Pull the object”. In this case, each action
is associated with a pre- and post-condition state in the form of
a region in the space where the object is located. In the action

selection module of the adaptive layer, the plan is instantiated
toward a specific object according to the knowledge retrieved
from the associations module (e.g. allowing to retrieve the
current position of the cube). The minimal sequence of actions
achieving the goal is then executed according to the perceived
current state updated in real-time, repeating each action until
its post-condition is met (or cease making the effort after a
predefined timeout).

Although quite rigid in its current implementation, in the
sense that action plans are predefined instead of being learned
from the interaction, this planning ability allows closing
the loop of the whole architecture, where drive regulation
mechanisms at the reactive layer can now be bypassed through
contextual goal-oriented behavior. Limitations of this system
are discussed in Section V: Conclusions.

3) Autobiographical Memory: The autobiographical mem-

ory (ABM [101], [102], [103]) collects long term information
(days, months, years) about interactions motivated by the
human declarative long term memory situated in the medial
temporal lobe, and the distinction between facts and events
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[101]. It stores data (e.g. objects locations, human presence)
from the beginning to the end of an episode by taking snapshots
of the environmental information from the episodic memory

containing the pre-conditions and effects of episodes. This
allows the generation of high-level concepts extracted by
knowledge-based reasoning. In addition, the ABM captures
continuous information during an episode (e.g. images from the
camera, joints values) [102], which can be used by reasoning
modules focusing on the action itself, leading to the production
of a procedural memory (e.g. through learning from motor
babbling or imitation) [103].

The narrative structure learning module builds on the
language processing and ABM capabilities. Narrative structure
learning occurs in three phases: 1) First the iCub acquires
experience in a given scenario, which generates the meaning
representation in the ABM. 2) The iCub then formats each
story in term of initial states, goal states, actions and results
(IGARF graph [89]). 3) The human then provides a narration
(that is understood using the reservoir system explained in
Section III-D) for the scenario.

By mapping the events of the narration to the event of the
story, the robot can extract the meaning of different discourse
functions words (such as “because”). It can thus automatically
generate the corresponding form-meaning mapping that defines
the individual grammatical constructions and their sequencing
that defines the narrative construction of a new narrative.

F. Summary on the DAC-h3 architecture

The DAC-h3 architecture, therefore, integrates several state-
of-the-art algorithms for cognitive robotics and integrates
them into a structured cognitive architecture grounded in the
principles of the DAC theory. The drive reduction mechanisms
in the reactive layer allow a complex control of the iCub
robot which proactively interacts with humans. In turn, this
allows the bootstrapping of adaptive learning of multimodal
representations about entities in the adaptive layer. Those
representations form the basis of an episodic memory for goal-
oriented behavior through planning in the contextual layer. The
life-long interaction of the robot with humans continuously feed
an autobiographical memory able to retrieve past experience
from request and to express it verbally in a narrative. Altogether,
this allows the iCub to interact with humans in complex
scenarios, as described in the next section.

IV. EXPERIMENTAL RESULTS

This section validates the cognitive architecture described
in the previous section on a real demonstration with an iCub
humanoid robot interacting with objects and a human. We first
describe the experimental setup, followed by the behaviors
provided to the robot (self-generated and human-requested).
Finally, we analyze the DAC-h3 system in two ways: a complete
version reporting the full complexity of the system through
multiple video demonstrations and the detailed analysis of a
particular interaction, as well as a simplified version showing
the effect of the robot’s proactivity level on naive users.

The code for reproducing these experiments on any iCub
robot is available open-source at https://github.com/robotology/

Figure 3. The setup consists of an iCub robot interacting with objects on the
table and a human in front of it. The table is separated (indicated by horizontal
lines) into three areas: I for the area only reachable by the iCub, S for the
shared area, and H for the human-only area (compare with Section IV-A).

wysiwyd. It consists of all modules described in the last section
implemented in either C++ or Python, and relies on the YARP
middleware [77] for defining their connections and ensuring
their parallel execution in real-time.

A. Experimental setup

We consider an HRI scenario where the iCub and a human
face each other with a table in the middle and objects placed
on it. The surface of the table is divided into three distinct
areas, as shown in Figure 3:

1) an area which is only reachable by the iCub (I),
2) an area which is only reachable by the human (H), and
3) an area which is reachable by both agents (S for Shared).
The behaviors available to the iCub are the following:
• “Acquire missing information about an entity”, which is

described in more detail in Section IV-B1.
• “Express the acquired knowledge”, which is described in

more detail in Section IV-B2.
• “Move an object on the table”, either by pushing it from

region I to S or pulling it from region S to I ,
• “Ask the human to move an object”, either by asking to

push the object from region H to S or by asking to pull
it from region S to H .

• “Show learned representations on screen” while explaining
what is being shown, e.g. displaying the robot kinematic
structure learned from a previous arm babbling phase.

https://github.com/robotology/wysiwyd
https://github.com/robotology/wysiwyd
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• “Interact verbally with the human” while looking at
her/him. This is used for replying to some human requests
as described in Section IV-C.

These behaviors are implemented in the behaviors module
and can be triggered from two distinct pathways as shown in
Figure 1. The behaviors for acquiring and expressing knowl-
edge are triggered through the drive reduction mechanisms
implemented in the allostatic controller (Section III-C) and
are self-generated by the robot. The remaining behaviors are
triggered from the action selection module (Section III-D),
scheduling action sequences from the goals and action plans

modules (Section III-E). In the context of the experiments
described in this section, these behaviors are requested by the
human partner. We describe these two pathways in the two
following subsections.

B. Self-generated behavior

Two drives for knowledge acquisition and knowledge ex-
pression implement the interaction engine of the robot (see
Section III-C). They regulate the knowledge acquisition process
of the iCub and proactively maintain the interaction with the
human. The generated sensorimotor data feeds the adaptive
layer of the cognitive architecture to acquire multimodal
information about the present entities (see Section III-D).
In the current experiment, the entities are objects on the
table, body parts (fingers of the iCub), human partners, and
actions. The acquired multimodal information depends on
the considered entity. Object representations are based on
visual categorization and stereo-vision based 3D localization
performed by the object recognition functional module. Body
part representations associate motor and touch events. Agents
and actions representations are learned from visual input in the
synthetic sensory memory module presented in Section III-D1.
Each entity is also associated with a linguistic label learned
by self-regulating the two drives detailed below.

1) Drive to acquire knowledge: This drive maintains a
curiosity-driven exploration of the environment by proactively
requesting the human to provide information about the present
entities, e.g. naming an object or touching a body part. The
drive level decays proportionally to the amount of missing
information about the present entities (e.g. the unknown name
of an entity). When below a given threshold, it triggers a
behavior following a generic pattern of interaction, instantiated
according to the nature of the knowledge to be acquired. It
begins with a behavior to obtain a joint attention between the
human and the robot toward the entity that the robot wants
to learn about. After the attention has been attracted toward
the desired entity, the iCub asks for the missing information
(e.g. the name of an object or of the human, or in the case of
a body part the name and touch information) and the human
replies accordingly. In a third step, this information is passed
to the adaptive layer and the knowledge of the robot is updated
in consequence.

Each time the drive level reaches the threshold, an entity is
chosen in a pseudo-random way within the set of perceived
entities with missing information, with a priority to request the
name of a detected unknown human partner. Once a new agent

enters the scene, the iCub asks for her/his name, which is stored
alongside representations of its face in the synthetic sensory

memory module. Similarly, the robot stores all objects it has
previously encountered in its episodic memory implemented by
the object property collector module. When the chosen entity
is an object, the robot asks the human to provide the name
of interest while pointing at it. Then, the visual representation
of the object computed by the object recognition module is
mapped to the name. When the chosen entity is a body part
(left-hand fingers), the iCub first raises its hand and moves a
random finger to attract the attention of the human. Then it
asks for the name of that body part. This provides a mapping
between the robot’s joint identifier and the joint’s name. This
mapping can be extended to include tactile information by
asking the human to touch the body part which is being moved
by the robot.

Once a behavior has been triggered, the drive is reset to
its default value and decays again as explained above (the
amount of the decay being reduced according to what has been
acquired).

2) Drive to express knowledge: This drive regulates how the
iCub expresses the acquired knowledge through synchronized
speech, pointing and gaze. It aims at maintaining the interaction
with the human by proactively informing her/him about its
current state of knowledge. The drive level decays propor-
tionally to the amount of already acquired information about
the present entities. When below a given threshold (meaning
that a significant amount of information has been acquired),
it triggers a behavior alternating gazing toward the human
and a known entity, synchronized with speech expressing the
knowledge verbally, e.g. “This is the octopus”, or “I know you,
you are Daniel”. Once such a behavior has been triggered, the
drive is reset to its default value and decays again as explained
above (the amount of the decay changing according to what is
learned by satisfying the drive for knowledge acquisition).

These two drives allow the robot to balance knowledge
acquisition and expression in an autonomous and dynamic
way. At the beginning of the interaction, the robot has little
knowledge about the current entities and therefore favors
behaviors for knowledge acquisition. By acquiring more and
more knowledge, it progressively switches to behaviors for
knowledge expression. If new entities are introduced, e.g. a
new object or another human, it will switch back to triggering
more behaviors for knowledge acquisition and so on.

C. Human-requested behavior

The representations which are acquired through satisfying
the drives introduced above allow a more complex interaction
through goal-oriented behavior managed by the contextual layer
(see Figure 1 and Section III-E). Goals can be provided to
the iCub from human speech and a meaning is extracted by
the language reservoir handler, forming the representation of
a goal in the goals module. Each goal is associated with an
action plan on the form of a sequence of actions together with
their pre- and post-conditions in the action plans module. The
action selection module takes care of the execution of the plan
according to the associations known to the robots, triggering
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I S H
Push

Pull

Ask Pull

Ask Push

Figure 4. State transition graph used for generating the action plans of the
goals “Give” and “Take”. Nodes correspond to the table regions indicated
in Figure 3. Arrows correspond to the actions to be executed for realizing a
transition. According to the observed current state of the object, the iCub will
execute the action which brings it closer to the goal state. For example, if the
goal is to take an object which is in the human area, the robot will first ask
the human to push it, and subsequently pull it into its own area.

the appropriate behaviors according to its current perception
of the scene updated in real time. Goal achievement bypasses
the reactive behavior described in the previous subsection by
freezing all the drive levels during the execution of the plan.
The available goals are described below.

1) Give or take an object: These goals are generated from a
human verbal request, e.g. “Give me the octopus” or “Take the

cube”. Here, the goal is represented as a region on the table,
either the human area H (for the “Give” goal) or the iCub area
I (for the “Take” goal), where the mentioned object should
be placed. Action plans are generated from the state-transition
graph shown in Figure 4. State perception is updated in real-
time according to the perceived location of the object computed
through stereo-vision in the object recognition module.

2) Point to an object: This goal is generated through a
verbal request, e.g. “Point to the octopus”. If the mentioned
object is not known to the iCub, it will first ask the human to
point to it to learn the new association between the name and
the object’s visual representation. Once the name is known, or
if it was already known, the iCub will point to the object.

3) Say the name of a recognized action: This goal is
generated through a verbal request, e.g. “How do you call

this action?” formulated just after the human has performed
an action on an object. Six actions can be recognized by
the synthetic sensory memory module: “push”, “pull”, “lift”,
“drop”, “wave”, and “point”. The reply from the iCub provides
the name of the action and the object as well as the hand used
by the human, e.g. “You pushed the cube with your left hand”.

4) Say what happened during a past interaction with a

human: This goal is generated through a verbal request,
e.g. “What have you done the other day?”. Based on its
past interactions with the environment and with humans, the
iCub has stored all the relevant information in its autobio-

graphical memory (see Section III-E), including its own drives,
motivations, and actions, as well of the actions of the human
(both, spoken and physically enacted). The narrative handler

functional module can generate a narrative discourse from the
content of the autobiographical memory and to generate an
action plan in the form of a sequence of sentences. The human
can request more detailed information about an event using
sentences like “What happened next?” or “Why did you do

that?”, this later question being answered according to the
stored drive levels and goal states of the considered events.
The robot can also learn a set of questions that it can re-use
in the context of another story. Figure 5 shows an example of
a generated narrative.

First I wanted to get the toy.
First you have the toy.
Then I fail to grasp it.
After I fail to grasp, I reasoned.
Because I reasoned, I ask for the toy to you

Finally you gave me the toy

Now I have the toy

I have the toy because you gave it to me

You gave the toy to me because I wanted it

Figure 5. Example of a narrative generated by the robot. The language

reservoir handler will decompose the words in the narrative discourse in 3
categories: the discourse function words (DFW) which direct the discourse
from one sentence to the other, the open class words (OCW) which correspond
to the meaningful words in terms of vocabulary of the sentence, and the closed

class words (CCW) which have a grammatical function in the sentence (see
[89]).

5) Show the learned kinematic structure: As for the previous
goals, this goal is generated through verbal requests. When
asked “What have you learned from your arm babbling?”,
the iCub refers the human to look at the screen where the
kinematic structures of its arms are displayed. Also, lines
which connect nodes of the kinematic structures indicate the
correspondences which the iCub has found between its left and
right arm. Similarly, the iCub displays the correspondences
which it has found between one of its arms and the body of
the human (see Figure 2). This knowledge is further employed
to point to the human’s arm, which is interesting as both the
name as well as the kinematic location of the human’s arm are
inferred from self-learned representations and mapping these
representations to the partner.

D. Scenario Progression

We first show how the full DAC-h3 system we have just
described is able to generate a complex human-robot interaction
by providing videos of live interactions (see https://github.com/
robotology/wysiwyd) and a detailed description of a particular
interaction. Then, in the next subsection, we will analyze
more specifically the effect of the robot’s proactivity level
on naive users. In both cases, we consider a mixed-initiative
scenario, where the iCub behaves autonomously as described
in Section IV-B, and so does the human. The human can
interrupt the robot behavior by formulating verbal requests as
described in Section IV-C. The scenario can follow various
paths according to the interaction between the iCub’s internal
drive dynamics, its perception of the environment, and the
behavior of the human.

Here, we describe one particular instance of the scenario.
Figure 6 shows the corresponding drive dynamics and human-
robot interactions, and Figure 1 shows the connections between
the modules of the cognitive architecture. Each of the numbered
items below refers to its corresponding number in Figure 6.

1) At the beginning of the interaction, the iCub has only
limited knowledge about the current scene. In the sensa-

tions module, the agent detector detects the presence of
a human and extracts its skeleton. The object recognition

module performs blob detection for extracting objects on
the table from the visual input of the eye cameras and

https://github.com/robotology/wysiwyd
https://github.com/robotology/wysiwyd
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Figure 6. Drive level dynamics during a typical mixed-initiative scenario
described in Section IV-D. Each drive starts at its default value and decays
following the dynamics described in Section IV-B. When reaching a given
threshold (dashed horizontal line) the associated behavior is triggered (green
rectangles), the corresponding drive level is reset to its default value and both
drive levels are frozen for the duration of the behavior. Human behavior is
indicated by the red rectangles, being either a reply to a question asked by
the iCub (small rectangles) or a request to the iCub triggering goal oriented
behavior (here: “Take the cube”). The numbers refer to the description of the
scenario progression in the main text.

trains a classifier to categorize them. The 3D locations of
the present objects are also computed in object recognition

through stereo vision. This forms a first incomplete
representation of the scene in the episodic memory where
the object property collector registers the location and
type of each detected entity (here objects and an agent).
It also contains slots for unknown body parts of the iCub,
here the five fingers of its right hand.

2) The presence of a large amount of missing information
(presence of unknown objects, human and body parts)
in the sensations module makes the drive for knowledge
acquisition to decay rapidly in the allostatic controller

and the drive for knowledge expression is kept constant
(since there is no knowledge to express yet).

3) When the knowledge acquisition drive level is below
threshold, it triggers the associated behavior (behaviors

module) for acquiring information about an entity. The
choice of the unknown entity is pseudo-random, with
priority for requesting the name of an unknown human.
This makes the robot look at the human. The visual input
is passed to the perceptions module where the synthetic

sensory memory segments the face from the background
and attempts to recognize it from previously seen faces.
If it does not recognize the face, the robot asks, “I do
not know you, who are you?”. The human can then reply,
e.g., saying “I am Daniel”. The level of the drive is reset
to its default value and both drives are frozen during the
behavior execution.

4) The perceived speech is analyzed by the language reser-

voir handler in perceptions to extract the name “Daniel”
and is associated with the face representation in the
associations module. Thus, the next time the iCub will
interact with this person, it will directly recognize him
and not ask for his name.

5) Once this interaction is achieved, the drives continue to
decay. Since the iCub has just acquired more information,
the decay of the drive for knowledge acquisition is slower

and the one for knowledge expression is increased. Still,
the drive for knowledge acquisition reaches the threshold
first. The behavior for acquiring information is therefore
triggered again. This time, the random choice of an
unknown entity makes the robot point to an object and
ask, “What is this object?”. The human replies e.g. “This
is the cube”. The language reservoir handler extracts the
name of the object from the reply and the associations

module associates it with the visual representation of the
pointed object from object recognition. Now the cube can
later be referred by its name.

6) The drives continue to decay. This time, the drive for
knowledge expression reaches the threshold first. This
triggers the behavior for expressing the acquired knowl-
edge. A known entity is chosen, in this example it is the
cube, which the robot points at while saying “This is a
cube”.

7) The human asks “Take the cube”. A meaning is extracted
by the language reservoir handler in perceptions and
forms the representation of a goal to achieve in the goal

module (here the desired location of the object, i.e. the
region of the iCub I for the goal “take”, see Figure 4). An
action plan is built in action plans with the sequence of
two actions “Ask the human to push the object” then “Pull
the object”, together with their pre- and post-conditions in
term of states (I , S or H). The action selection module
takes care of the realization of the plan. First, it instantiates
the action plan toward the considered object, here the
cube, through its connection with associations. Then, it
executes each action until its associated post-condition
is met (repeating it up to three times before giving up).
Since the cube is in the human area H , the iCub first
triggers the behavior for interacting verbally with the
human, asking “Can you please bring the cube closer
to the shared area?”. The human pushes the cube to the
shared area S and the state transition is noticed by the
robot thanks to the real-time object localization performed
in the object recognition module. Then the robot triggers
a motor action to pull the cube. Once the goal is achieved
(i.e. the cube is in I), the drive levels which were frozen
during this interaction continue to decay.

8) The drive for knowledge acquisition reaches the threshold
first. The associated behavior now chooses to acquire the
name of a body part. The robot triggers the behavior for
raising its hand and moving a random unknown body part,
here the middle finger. It looks at the human and asks
“How do you call this part of my body?”. The name of
the body part is extracted from the human’s reply and is
associated with the joint that was moved in associations.

The interaction continues following the dynamics of the
drives and interrupted by the requests from the human. Once
all available information about the present entities is acquired,
the drive for knowledge acquisition stops to decay. However,
the robot still maintains the interaction through its drive
for knowledge expression and the human can still formulate
requests for goal-oriented behavior. When new entities are
introduced, e.g. an unknown object or another human entering
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the scene, the drive for knowledge acquisition decays again
and the process continues.

E. Effect of the robot’s proactivity level on naive users

We now test the DAC-h3 architecture with naive users having
to perform a collaborative task with the iCub robot. For this
aim, we conduct experiments on six subjects and compare
different configurations of the DAC-h3 drive system reflecting
different levels of robot’s proactivity.

To better control the experiment, we simplify the setup de-
scribed above by limiting it to object tagging and manipulation.
This means that in this study we do not use the functionalities
for agent or body part tagging, action recognition, kinematic
structure learning and narrative discourse. The iCub can only
proactively tag or point at objects on the table, whereas the
human can reply to object tagging requests and provide orders
for taking or giving an object. These orders trigger action plans
combining object manipulation by the iCub with requests to
the human to do so, as described above. We note that, due
to the distributed implementation of the DAC-h3 systems as
interacting YARP modules operating in parallel, deactivating
functionalities simply requires to not launch the corresponding
modules and does not imply any modification in the code.

Three objects are placed on the table: an octopus, a blue cube

and a duck. Initially, the names of the objects are unknown
to the iCub and they are placed on the table as shown on
Figure 7 (left). The task given to the subjects is to achieve a
goal configuration of object positions (Figure 7, right). The
experiment terminates when the task is achieved.

To do so, the subject is instructed to interact with the iCub
in the following way. At any time of the interaction, s/he can
provide speech orders on the form of the sentences “Give me

the <object name>” and “Please take the <object name>”,
where <object name> is the name of one of the three objects.
These names are provided to the subject before the experiment
starts to make the speech recognition more robust. Whenever
the iCub asks the subject for the name of an object, s/he can
reply with “This is the <object name>”. Moreover, whenever
the iCub asks to show a specific object, the subject can point
to it using her/his right hand. This latter behavior is added to
the state transition graph described in Figure 4 and executed
when the subject requests to perform an action on an object
which is unknown to the iCub. To augment the difficulty of
the task, the subject is asked to not move objects on its own
initiative, but only when the iCub asks to do so.

Achieving the goal configuration requires a complex interac-
tion between the subject and iCub. For example, moving the
octopus from the human region to the iCub region requires to
first inform the iCub about which object the octopus is, and
then asking the iCub to take that object. Informing the robot
about the name of an object can occur either from the iCub’s
initiative through the knowledge acquisition drive, or from the
human’s initiative by requesting an action on this object (when
the object is unknown to the iCub, it will first ask the human
to point at it). Since the octopus is not within the reach of
the iCub, the robot will first ask the human to move it to the
shared region, before executing the motor action for pulling
the object in the iCub region.

I

S

H

I

S

H

Initial configuration Goal configuration

Figure 7. The experimental task. Each panel shows a top view of the table,
where the three letters I , S and H indicates the iCub, Shared and Human
areas as in Figure 3. Starting from the initial configuration of object positions
on the left, the subject is asked to achieve the goal configuration on the right.
This is done by interacting with the iCub following the instructions described
above. The three objects are: an octopus (orange object on the left of the
table), a blue cube (blue object in the middle) and a duck (yellow object on
the right).

We run the experiment with six naive subjects on three
different conditions. The three conditions correspond to three
different levels of the robot’s proactivity, defined by setting
different drive decays in the allostatic controller module. The
two drives for knowledge acquisition and knowledge expression
are initialized to a default value of 0.5. Then, they decay
linearly at a rate of nobj ∗ δ unit/s, where δ is a constant value
defining the proactivity level. For the knowledge acquisition
drive, nobj is the number of perceived objects which are
unknown to the robot. For the knowledge expression drive,
it is the number of known objects. Therefore, the drive for
knowledge acquisition (resp. knowledge expression) decays
proportionally to the number of unknown objects (resp. known
objects). We define three conditions: medium proactivity (δ
for knowledge acquisition = 0.01, for knowledge expression
= 0.004), slow proactivity (δ for both drives are 2.5 times
lower than in medium proactivity) and fast proactivity (δ for
both drives are 2.5 times higher than in medium proactivity).
Corresponding behaviors are triggered when a drive value goes
below 0.25. For example, for the knowledge acquisition drive
in the medium-proactive condition (δ = 0.01) at the beginning
of the interaction when all objects are unknown (nobj = 3), it
takes approximately 8 seconds for the drive to decay completely
from the default value of 0.5 to the threshold 0.25.

Figure 8 shows the interaction diagrams for the six subjects
grouped by condition. In the slow-proactive condition, we
observe that the task can be solved very rapidly, as seen by
the subject S1. Here the iCub has initiated only the first action
(Tagging (knowledge acquisition)). With drives decaying slower,
the robot acts less often by its own initiative, which leads to the
subject leading the interaction according to its own goal. Since
the iCub is rarely acquiring information by itself, the subject
has to request actions on objects which are not yet known
to the robot, triggering tagging behaviors (Tagging (human

points)) prior to asking or moving objects. However, solving
the task can also be quite long in this condition as seen by
subject S2. This can be due to several factors such as the
robot’s failure to perceive or manipulate objects, or the time
required by the subject to fully apprehend the system. This
can also be due to the personality or the mood of the subject
who can her/himself be more or less proactive.

At the other extreme, in the fast proactive condition (bottom
of the figure), we observe that the interaction is dominated
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Figure 8. Interaction diagrams for the six subjects (S1 to S6, two per condition) interacting with the iCub to solve the task described in Figure 7. Top: slow
proactivity condition. Middle: medium proactivity. Bottom: fast proactivity. In each condition, the first five rows shows the interaction of one subject (e.g. S3 in
the medium proactivity condition) and the five last rows the the interaction of another subject (e.g. S4 in the medium proactivity condition). For each subject,
the colored bars show the times (x-axis) when specific actions (y-axis) are executed by the iCub. The two first rows (Tagging (knowledge acquisition) and
Pointing (knowledge expression)) are actions initiated by the iCub through its drive regulation system in the allostatic controller as described in section IV-B.
The three last rows (Tagging (human points), Robot moves object and Ask human to move object) are actions initiated by the human through a speech order
and executed by the iCub through action plans in the contextual layer, as described in section IV-C. They are sequenced according to the current state of the
world and the current knowledge of the robot. The vertical arrow in each subject’s interaction plot shows the time at which all the three object names are
known to the robot.

by the iCub’s self-generated actions (Tagging (knowledge

acquisition) and Pointing (knowledge expression)). There is
little time for the subject to request orders through speech
between two consecutive actions of the iCub and it requires
some time to succeed doing it. In consequence, solving the
task can require quite a long time as seen by the subject S6.
However, the names of all objects tend to be acquired faster
in this condition (vertical arrows). This is because the drive
for knowledge acquisition decays rapidly, especially at the
beginning of the interaction where all objects are unknown,
pushing the iCub to ask the name of everything around. Indeed,
the three first actions are Tagging (knowledge acquisition) for
both S5 and S6.

Finally, in the medium-proactive condition, we observe a

mixed initiative between the iCub and the subject. A possible
positive effect of such a moderate proactivity of the robot
is to maintain the social interaction when the subject is less
proactive by her/himself, preventing long silent gaps in the
interaction but still largely allowing the human to take the
initiative. We observe a better interplay between iCub- and
human-initiated actions in this condition.

Subjects are also asked to fill pre- and post-questionnaires
before and after the interaction. The pre-questionnaire attempts
at characterizing the personality traits of the subject, while
the post-questionnaire evaluates subjective feelings about the
interaction. As the main focus of this paper is on presenting
a coherent cognitive architecture rather than the evaluation of
the emerging human-robot interaction, we do not analyze these
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data in this paper. Providing a solid statistical analysis will
require acquiring data of many more subjects which will be the
aim of a follow-up paper. However, the presented human-robot
interaction study shows that proactivity is an important factor
in HRI and that it can be controlled by simple modifications
of the drive dynamics. As observed in Figure 8, the level
of robot’s proactivity has a clear influence on the resulting
interaction by modulating the interplay between the robot and
human initiatives.

V. CONCLUSION AND FUTURE WORKS

This paper has introduced DAC-h3, a proactive robot cogni-
tive architecture to acquire and express knowledge about the
world and the self. The architecture is based on the Distributed
Adaptive Control (DAC) theory of the brain and mind, which
provides a biologically grounded framework for organizing var-
ious functional modules into a coherent cognitive architecture.
Those modules implement state-of-the-art algorithms modeling
various cognitive functions for autonomous self-regulation,
whole-body motor control, multimodal perception, knowledge
representation, natural language processing, and goal-oriented
behavior. They are all implemented using the YARP robotic
middleware on the iCub robot, ensuring their parallel execution
in real time and providing synchronous and asynchronous
communication protocols among modules.

The implementation of DAC-h3 is flexible so that existing
modules can easily be replaced by more sophisticated ones
in the future. Moreover, most modules can be configured
according to the user’s needs, for example by adding new
drives or more complex grammars into the system. This makes
DAC-h3 a general framework for designing autonomous robots,
especially in HRI setups. The underlying open-source code
contains some modules which are specific to the iCub robot
(modules related to action execution; which work on both real
and simulated iCub’s), but all cognitive nodes (autobiographical
memory, allostatic controllers, etc.) can be freely used with
other robots (most easily with YARP-driven robots, but thanks
to YARP-ROS intercommunication also with ROS driven
robots).

The main contribution of this paper is not about the modeling
of the specific functional modules, which already have been
published (see Section III), but rather about the integration
of a heterogeneous collection of modules into a coherent and
operational cognitive architecture. For this aim, the DAC-h3

architecture is organized as a layered control structure with tight
coupling within and between layers (Figure 1 and Section III):
the somatic, reactive, adaptive, and contextual layers. Across
these layers, a columnar organization exists that deals with
the processing of states of the world or exteroception, the
self or interoception, and action. Two main control loops
generate the behavior of the robot. First, a reactive-adaptive
control loop ensures autonomy and proactivity through the
self-regulation of internal drives for knowledge acquisition
and expression. It allows the robot to proactively manage
its own knowledge acquisition process and to maintain the
interaction with a human partner, while associating multimodal
information about entities with their linguistic labels. Second,

an adaptive-contextual control loop allows the robot to satisfy
human requests, triggering goal-oriented behavior relying
on the acquired knowledge. Those goal-oriented behaviors
are related to action planning for object passing, pointing,
action recognition, narrative expression and kinematic structure
learning demonstration.

We have shown that these two control loops lead to a well-
defined interplay between robot-initiated and human-initiated
behaviors, which allows the robot to acquire multimodal
representations of entities and link them with linguistic symbols,
as well as to use the acquired knowledge for goal-oriented
behavior. This allows the robot to learn reactively as well as
proactively. Reactive learning occurs in situations where the
robot requires obtaining new knowledge to execute a human
order (e.g. grasping an object with an unknown label), and thus
leads to an efficient interaction for acquiring the information
before acting according to the human desire. At the same time,
the robot can also learn proactively to optimize its cognitive
development by triggering learning interactions itself, which
allows the robot to learn without having to wait for the human
to teach new concepts. Moreover, this is supposed to reduce the
cognitive load of the human teacher, as the robot 1) chooses
the target entity of the learning interaction, 2) engages the joint
attention by making the human aware of the target entity, and
3) asks for the corresponding label. Therefore, the human only
needs to provide the label, without having to be concerned
about the prior knowledge of the robot.

We have implemented the entire DAC-h3 architecture and
presented an HRI scenario where an iCub humanoid robot
interacts with objects and a human to acquire information
about the present objects and agents as well as its own body
parts. We have analyzed a typical interaction in detail, showing
how DAC-h3 is able to dynamically balance the knowledge
acquisition and expression processes according to the properties
of the environment, and to deal with a mixed initiative scenario
where both the robot and the human are behaving autonomously.
In a series of video recordings, we show the ability of DAC-h3

to adapt to different situations and environments. We have
also conducted experiments with naive subjects on a simplified
version of the scenario, showing how the robot’s proactivity
level influences the interaction.

Adapting the proactivity level also provides a step towards
personalities of robots. The curiousness (i.e. favoring proactive
learning) or talkativeness (i.e. communicating about its own
knowledge) of the robot is determined by the decay rates of
the corresponding drives. Thus the personality of the robot can
be altered by a simple modification of the decay values, as
done for skill refinement by Puigbo et al. [104].

The current work has the following limitations. First, some
of the available abilities deserve to be better integrated into the
HRI scenario. For example, this is the case for the kinematic
structure learning process which is currently executed in a
separated learning phase instead of being fully integrated
within the interaction scenario. Similarly, the narrative can
only be generated from specific chunks of the robot’s history
as recorded in the autobiographical memory. Second, in this
paper, we do not provide a statistical analysis of the HRI
experiments. The reason is that we focus on the description
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of the entire architecture and on their theoretical principles.
A thorough statistical analysis will require collecting much
more data to fully demonstrate the utility of some of these
principles, for example how proactivity helps to solve the
referential indeterminacy problem, as well as the effect of
the robot’s autonomy on the acceptability of the system by
naive users. Third, although DAC-h3 can solve parts of the
Symbol Grounding Problem (SGP), it still presupposes a
symbolic concept of an entity which is given a priori to the
system. Therefore, our contribution is more about the ability to
proactively acquire multimodal information about these entities
and linking them to linguistic labels that can be reused to
express complex goal-oriented behavior later on.

We are currently extending the proposed architecture in the
following ways. First, we are better integrating some of the
available abilities within the interaction scenario as mentioned
above. This will allow starting the knowledge acquisition
process from scratch in a fully autonomous way. Second,
we are considering to use more biologically plausible and/or
computationally scalable models for some of the existing
modules, namely the action planning and action selection

modules. These are currently algorithmic implementations using
predefined action plans. We want to replace it with an existing
model of rule learning grounded in the neurobiology of the
prefrontal cortex which can learn optimal action policies from
experience to maximize long-term reward [105]. An interesting
feature of this model for solving the SGP is that it relies
on neural memory-units encoding sensorimotor contingencies
with causal relationships learned through adaptive connections
between them. An alternative solution is to use state-of-the art
AI planners such as the Planning Domain Definition Language
(PDDL), where multi-agent planning extensions are particularly
relevant in the context of social robotics [106]. Third, we are
also integrating more low-level reactive control abilities through
an acquired notion of a peri-personal space [107], where the
robot will be able to optimize its own action primitives to
maintain safety distances with aversive objects (e.g. a spider)
in real time while executing reaching actions toward other
objects. Finally, we are working on a self-exploration process to
autonomously discover the area which is reachable by the robot,
similarly to Jamone et al. [108], and subsequently employing
this self-model and applying it to the human partner to estimate
his/her reachability.
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