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Abstract—Brain decoding is a hot spot in cognitive science,
which focuses on reconstructing perceptual images from brain
activities. Analyzing the correlations of collected data from
human brain activities and representing activity patterns are
two problems in brain decoding based on functional magnetic
resonance imaging (fMRI) signals. However, existing correlation
analysis methods mainly focus on the strength information of
voxel, which reveals functional connectivity in the cerebral cortex.
They tend to neglect the structural information that implies the
intracortical or intrinsic connections; that is, structural connec-
tivity. Hence, the effective connectivity inferred by these methods
is relatively unilateral. Therefore, we proposed a correlation
network (CorrNet) framework that could be flexibly combined
with diverse pattern representation models. In the CorrNet
framework, the topological correlation was introduced to reveal
structural information. Rich correlations were obtained, which
contributed to specifying the underlying effective connectivity.
We also combined the CorrNet framework with a linear support
vector machine (SVM) and a dynamic evolving spike neuron
network (SNN) for pattern representation separately, thus pro-
viding a novel method for decoding cognitive activity patterns.
Experimental results verified the reliability and robustness of
our CorrNet framework and demonstrated that the new method
achieved significant improvement in brain decoding over compa-
rable methods.

Index Terms—Brain decoding, functional magnetic resonance
imaging (fMRI), connection, topological correlation, correlation
network (CorrNet) framework, pattern representation.

I. INTRODUCTION

ONLY with a good understanding of the brain can we
develop more robust artificial intelligence (AI) [1]. Re-

grettably, the cognitive mechanism of the human brain remains
unclear. Brain decoding that focuses on reconstructing percep-
tual images from brain activities is faced with great challenges.
In recent decades, brain decoding with functional magnetic
resonance imaging (fMRI) signals has driven plenty of studies
[2], [3]. Most relevant methods are based on multi-voxel
pattern analysis [4] or voxel-wise modeling [5]. The main idea
is the decoding of fMRI signals evoked by perceptual stimuli
to obtain brain activity patterns, and representing these patterns
for perceptual image reconstruction [6], [7]. Hence, there are
two primary problems in brain decoding with severe noise
and high-dimensional fMRI signals. One is how to thoroughly
analyze the correlations of collected data, and the other is how
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to effectively represent the brain’s activity patterns, which can
rely on powerful classifiers in machine learning [8]. We believe
that the former is more critical to cognitive science.

Complex brain activity states with limited data instances
make it necessary to analyze the correlations between fMRI
signals and visual stimuli. As is well known, the human brain
encodes perceptual images into hierarchical signals, while the
reconstruction task aims to decode the brain’s responses to
the stimuli; hence, the reconstruction process reverts to the
process of the human brain’s mechanism. In terms of studies
on structure-function relationships from the view of brain
network theory, it is believed that, as Fig. 1 shows, there are
three types of connections between brain nodes: functional
connectivity, structural connectivity, and effective connectivity
[9]. Actually, the brain nodes are the basic elements of brain
network studies, such as neurons in anatomy or voxels in
fMRI experiments. The correlations in reconstruction tasks are
expected to correspond to the three kinds of connectivity, even
for simulating and modeling them, so that the correlation anal-
ysis can contribute to revealing the working mechanism of the
human brain. An earlier study proposed a modular decoding
approach [10]. Later, Bayesian canonical correlation analysis
(BCCA) [11] was proposed for brain decoding. Meanwhile,
generative models with variational autoencoders (VAEs) [12]
were introduced, such as deep canonically correlated autoen-
coders (DCCAE) [13]. Nevertheless, most existing correlation
models [14], [15] may be poor in capturing the correlations
because they tend to focus mainly on the strength information
of voxel, which reveals the functional connectivity in the
cerebral cortex, while neglecting the structural information
of voxel, implying the intracortical or intrinsic connections,
i.e., the structural connectivity. An early study [16] proved
that adjacent neurons in the same cortex tend to present
similar activity patterns; that is to say, the functional similarity
between neurons is dependent on the structural connectivity.
Notably, the effective connectivity expected to be inferred in
experiments is exactly constrained by structural connectivity.
Therefore, the effective connectivity specified by previous
reconstruction methods seems not to be comprehensive and
have limited performance. Thus, it is necessary to analyze both
the strength values of voxel and the structural information to
enrich the correlations and explore the effective connectivity in
attention tasks (perceptual tasks). This is the main contribution
of this paper.

Moreover, suitable classifiers are required to reveal brain
activity patterns as pattern representation models on the basis
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Fig. 1. The three types of connections between brain nodes: functional connectivity, structural connectivity, and effective connectivity. The big blue point in
the brain presents a certain module that contains some nodes (small points), and we highlight the module in the gray circle. The dotted gray lines between
nodes in the four circles are the imaginary connections used to shape the module. In terms of functional connectivity, nodes in different colors are of different
response values. The more red the node, the stronger is its response. Thick red lines are used to connect nodes with the same response strength, revealing
functional connectivity. In the pink circle, the thick yellow lines connect nodes that are adjacent according to anatomy. In the green circle, effective connectivity
can be inferred by yellow one-sided or two-sided arrows. The one-sided arrows represent the structure-function relationships between two adjacent nodes with
different response patterns. The arrow direction means a strong-response node can affect its neighborhood. When two adjacent nodes have the same response
pattern, there is a potential interaction effect; this is indicated by the two-sided arrows.

of the correlations, overcoming the perplexing measurement
noise. It is hard to make a reliable choice from the numerous
machine learning algorithms. Existing studies generally use
simple methods (linear models) because fMRI signals have
severe noise, are high-dimensional, and often involve small
sample sizes. However, most linear reconstruction models
may be weak in feature extractions of brain activity patterns.
Although some complicated pattern representation models,
like DCCAE, have been used and have achieved relatively ef-
fective performance, they require many intermediate variables
and strong hypotheses, thus bringing severe computational
problems. Obviously, a single deep learning (DL) model,
which has been a topic of active research in recent years, is
not suitable for analyzing brain signals with a small sample
size in the early visual cortex. A single DL model can result
in over-fitting. There are still no powerful, general methods
for perceptual image reconstruction for both correlation anal-
ysis and brain activity pattern representation. Support vector
machines (SVMs) [17] have been used to efficiently represent
activity patterns; they are powerful for pattern recognition and
classification. Therefore, SVM was one of our optional pattern
representation methods. Recently, researchers have tried to
use more biological models, such as spike neuron networks
(SNNs) [18], to reconstruct perceptual images [19], [20].
Compared with artificial neural networks (ANNs), the learned

connections of SNNs demonstrate the dynamic spatiotemporal
relationships in fMRI signals; however, there have not been
many studies on this to date. Since we believe that SNNs can
be promising for brain decoding, this was the other choice for
the pattern representation process in the novel method.

In this paper, we proposed a novel brain decoding method
composed of a self-adaptive correlation network (CorrNet)
framework and a pattern representation model. The CorrNet
framework was established by considering three correlations
(the correlation among brain activity, the correlation between
brain activity and visual stimuli, and the correlation among
visual stimuli), and could be combined with diverse pattern
representation models. In the CorrNet framework, firstly, the
topological correlation and strength correlation were consid-
ered. Then, a probabilistic correlation graph in a joint space
was generated by iteratively updating the CorrNet framework
in a self-learning manner to obtain the pixel-wise correlation
pairs (pixelvoxel pairs). Next, the pattern representation model
was trained to learn connection weights from the correlation
pairs to represent brain activity patterns. Specifically, the linear
SVM and the dynamic evolving SNN were both used as
pattern representation models separately. This could verify the
reliability and robustness of our CorrNet framework. Finally,
we tested our method and other methods (Miyawaki[10] and
BCCA [11]) on a new fMRI dataset from the early visual
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cortex (mainly area V1). Experimental results demonstrated
that our method achieved better performance than the other
methods in brain decoding, and the CorrNet framework was
reliable and robust.

The rest of this paper is organized as follows: Section 2
reviews some related works about brain decoding. Then, the
proposed method is introduced in Section 3. Section 4 reports
the experimental results. Finally, our conclusion is given in
Section 5 as well as some directions for future work.

II. RELATED WORKS

Much of the literature in cognitive science is devoted to
brain decoding. An earlier method combined multi-scale local
image bases with multiple scales to decode brain activities
[10]. Furthermore, Bayesian inference algorithms and correla-
tion neural networks have been combined [11], [21] to analyze
the correlations. The existing correlation methods were derived
from a voxel receptive-field model and only relied on the
strength information to locate a small perceptual stimulus that
elicits activity spatially spread over voxels [22], [23]. As for
pattern representation, machine learning algorithms are used,
such as linear regression [24], [25], Bayesian classifiers [26],
[27], and linear observation models [28], [29]. These methods
generally have limited feature extraction power. In addition,
some researchers attempted to use deep VAEs, like DCCAE.
However, models with VAEs require many intermediate vari-
ables and strong hypotheses, leading to poor generalization
and high computational cost. Some researchers found that
the linear SVM combined with multivariate voxel selection is
effective in classifying fMRI spatial patterns [30]. Recently, a
spatiotemporal data machine of evolving SNNs was proposed
to represent activity patterns of fMRI signals [20].

Notably, theories about structural and functional brain net-
works offer insight into connection-to-cognition modeling [9],
[31]. Inspired by the cognitive studies, in this paper we
proposed a CorrNet framework that could be combined with
diverse pattern representation models. The CorrNet framework
reserves the advantages of past correlation analysis methods in
learning the relationships between the strength of fMRI signals
and visual stimuli, which reveal the functional connectivity in
the human brain. Meanwhile, it considers structure information
of voxels by introducing the topological correlation, thus
specifying the structural connectivity. Therefore, the effective
connectivity inferred by the CorrNet framework to resolve the
dialectic between structure and function is more reliable and
comprehensive than previous models. For pattern represen-
tation, both a linear SVM model and an SNN model were
separately combined with the CorrNet framework, proposing
a new method to reconstruct visual images. Our method could
avoid many intermediate variables and unnecessary strong
hypotheses. To the best of our knowledge, this paper is
the first to study topological correlation in perceptual image
reconstruction and to discuss the three types of connections
(functional connectivity, structural connectivity, and effective
connectivity) in attention tasks.

III. PROPOSED METHOD

Our work rests on how the early visual cortex organizes
local interactions to deal with different perceptual stimuli on
the basis of functionstructure relationships in the brain. In
other words, the proposed method was expected to reveal
the functional connectivity by the correlation between brain
activities based on blood oxygenation level-dependent (BOLD)
fMRI signals acquired during perceptual task performance.
Additionally, we attempted to specify the structural connec-
tivity by using the adjacent relationships of voxels in the
cortex, instead of analyzing diffusion MRI signals or anatomy.
Therefore, the effective connectivity could be inferred by using
our model-based method to estimate the model parameters
(weight values) that can best reconstruct the perceptual images.
As long as we can model the brain activity patterns from the
obtained effective connectivity, human-like computer vision
in the complex visual scenario may no longer be a mystery.
Actually, for attention tasks, like perceptual tasks, existing
studies have not found a reliable way to analyze the struc-
ture correlation. Besides, in past reconstruction experiments
that only considered the function correlation, the effective
connectivity between voxels was not comprehensive due to
the lack of structure correlation; this led to unsatisfactory
experimental results. In this paper, we tried to compensate
for these past studies by introducing a topological model
into our CorrNet framework. All brain decoding methods
can use our proposed CorreNet framework in the correlation
analysis stage. Therefore, to some extent, our work explains
and simulates the brain’s cognitive mechanism.

As Fig. 2 shows, the proposed method contained two parts
in terms of the two primary problems in brain decoding. One
is the CorrNet framework for obtaining the correlations of
fMRI signals and perceptual images; the other is the pattern
representation model for learning brain activity patterns by
training a classifier on the basis of the CorrNet framework. The
procedure is simple: First, there are two distinct views (X,Y),
denoted by (x1,y1),..., (xN ,yN ), where N is the number of
training trials, xi ∈ RD1 , and yi ∈ RD2 for i = 1, ..., N .
X ∈ RD1×N and Y ∈ RD2×N denote fMRI signals with D1

voxels and visual images with D2 pixels. Besides, posj ∈ R3

for j = 1, ..., D1 denotes the position of the jth voxel in
the three-dimensional world coordinate frame. In addition,
vj ∈ RN , j = 1, ..., D1 and pk ∈ RN , k = 1, ..., D2 denote
the strength value vector of the jth voxel and the pixel value
vector of the kth pixel, respectively. Based on the pixel-wise
inverse receptive field, the CorrNet framework was generated
to obtain the correlation voxel bins, denoted as bink for
k = 1, ..., D2. bink={vj |Corr(vj ,pk)= 1, j ∈ {1, ..., D1}}
presents the set of voxels that are in the inverse receptive
field of pixel pk, where Corr(vj ,pk) is the correlation
matrix. Corr(vj ,pk) = 1 indicates that vj is in the inverse
receptive field of pk; otherwise, Corr(vj ,pk) = 0. Then,
based on pixel-wise modeling, we used a distributed pattern
representation model to build the maps from bink to pk

directly:

pk = f (k)(bink), k = 1, ..., D2, (1)



4

Perceptual image

12 12 pixels

Structure of voxels fMRI signals

Data Collection

144 pixels

Correlation 

connections 

3037 voxels Iteratively 
updating

Correlation  graph

the Correlation Network Framework

Reconstruction image

Reconstruction image

Reconstruction pixels

Reconstruction pixels

144 voxel bins

Linear SVM train

Spike train

the Pattern Presentation Model

Fig. 2. Flow chart of the proposed method. The complete process of brain
decoding contains three steps. In data collection, stimuli, fMRI signals, and
the brain structure information of subjects are collected. Then, the CorrNet
framework analyzes the data correlations. Finally, with suitable classifier
models, such as SVM and SNN, the activity patterns can be represented.

where f (k) denotes the reconstruction function of pk. Since
each pixel is reconstructed by the pixel-wise representation
method, the reconstruction image is available.

A. Correlation Network Framework

The CorrNet framework is one of the contributions in this
paper. As Fig. 3 shows, the CorrNet framework was proposed
to generate the correlation bins bink and the correlation
matrix Corr ∈ RD1×D2 from the stimuliresponse pairs. There
are three kinds of correlations considered in this paper: the
correlation among brain activities, the correlation between
brain activities and visual stimuli, and the correlation among
visual stimuli. We believe the three kinds of correlations
correspond to the three kinds of connections mentioned above;
that is, functional connectivity, structural connectivity, and
effective connectivity. In the CorrNet framework, when ana-
lyzing the strength information of voxels under diverse stimuli,
the correlation between brain activities and visual stimuli can
be obtained to reveal the functional connectivity in the early
visual cortex. Once we modeled the topological correlation
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Fig. 3. The updating procedure of the CorrNet framework includes the
following: generating the topological structure to obtain the topological
neighborhood Tbinj of vj ; finding the strength correlation set of pk; using
the topological correlation and strength correlation to update the probabilistic
correlation graph; and getting the bink .

underlying the structure information of voxels, the struc-
tural connectivity could be viewed. Therefore, the effective
connectivity could be inferred by the CorrNet framework,
which adequately considers the correlations of collected data
and contains the reliable model parameters helping to best
reconstruct the perceptual images.

First, the correlation among visual stimuli were visualized
as reconstruction results and verified through experiments.
Then, we generated a probabilistic graph in a joint space to
analyze the the correlation among brain activities as well as
the correlation between brain activities and visual stimuli. In
detail, the correlation among brain activities is denoted as a
binary matrix Cv ∈ RD1×D1 . Cv is determined by the two
factors of the voxels (strength information S and structure
information POS, which is measured in the three-dimensional
world coordinate frame):

Cv(j,m) =

 1 , p(S, POS)j,m ≥ εCv

0 , otherwise

p(S, POS) = p(S|POS)p(POS),

(2)

where p(POS) ∈ RD1×D1 represents the topological correla-
tion and is viewed as the prior probability. The computation
procedure will be detailed subsequently. εCv ∈ [0, 1] is
an adjustable parameter and was set to 0.1 in this paper.
p(S|POS) ∈ RD1×D1 denotes the strength correlation mea-
sured by a full covariance matrix:

p(S|POS)j,m=
E(vjvm)− E(vj)E(vm)√

D(vj)
√
D(vm)

, (3)
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where D(vj) is the variance of vj .

1) Topological correlation: Because the function of certain
brain regions are inevitably dependent on structure, the diverse
responses of neurons rely on their various distributions in the
cortex. An earlier study proved that adjacent neurons tend
to have similar receptive fields and activity patterns [16],
[31]. However, almost all existing reconstruction methods have
neglected the structure information of voxels. Hence, to enrich
the correlations in brain decoding, we analyzed the struc-
ture information of voxels and obtained the prior probability
p(POS). Because there are complex drapes, hierarchies, and
numerous neurons in the cortex, it seems impossible to unfold
the visual cortex to model the spatial relationship neuron-
by-neuron. In this paper, spatial variation was introduced by
utilizing the three-dimensional position in the world coordinate
frame. In fact, there is exactly a bijective mapping between the
voxel position in the cortex and that in the three-dimensional
world coordinate frame. Because the visual cortex is a two-
dimensional overlapped structure, two voxels that are adjacent
in the three-dimensional world coordinate frame may be non-
neighboring in the cortex. Inversely, it can be ascertained that
voxels adjacent in the cortex are bound to be neighboring in
the three-dimensional world coordinate frame. In summary,
because the spatial variation from the cortex to the world
coordinate frame may shorten the distance between voxels,
the topological neighborhood of a certain voxel in the cortex
is the subset of that in the world coordinate frame. Based on
this conclusion, we computed p(POS) by using the position
posj for j = 1, ..., D1 directly in the world coordinate frame.

In the world coordinate frame, an undirected graph G =
{V, E} was generated by Delaunay triangulations to present
the topological (structural) connections of all voxels [32]. V
is the set of all voxels vj , and E presents the set of valid
Delaunay edges, which define the topological correlations
among voxels. Notably, the reason why we use Delaunay
triangulations for the voxels instead of simply the physical dis-
tance within the brain is because Delaunay triangulations can
reveal hierarchical (superficial) connectivity, consistent with
the hierarchical structure of the cerebral cortex. Therefore,
the topological method, instead of the anatomy method, was
utilized to simulate the structural connectivity in the brain.
Only based on the hierarchical connectivity revealed by De-
launay triangulations can the physical distance be meaningful
to the simulation. These Delaunay triangulations guarantee
that the nearest neighbor graph is a subgraph of the Delaunay
triangulation. Thus, the topological neighborhood of the jth

voxel can be found and is denoted as Tbinj for j = 1, ..., D1.
Tbinj is defined as Tbinj={vm|E(posj ,posm)= 1,m ∈
{1, ..., D1}}∪{vl|d(j, l) ≤ εdj

, l ∈ {1, ..., D1}}, where d(j, l)
presents the Euclidean distance between vj and vl in the world
coordinate frame, and εdj is a self-adaption distance parameter
and varies from diverse pattern representation models. The
value of εdj

was used to adjust the influence of the topological
correlation in the CorrNet framework, and a large value means
that the topological correlation has a high influence. Finally,

p(POS) was obtained as below.

p(POS)j,m =

 1 ,vm ∈ Tbinj

0 , otherwise
(4)

2) Probabilistic correlation graph: The objective correla-
tion matrix Corr was determined by the correlation pairs
(pk,bink) for k = 1, ..., D2 in a probabilistic correlation
graph, denoted GCorr = {VP, ECorr}. VP is the set of all
voxels and pixels. ECorr represents the weighted edges that
define the correlation connections between vj and pk. The
weight values are equal to the probability that vj belongs to
bink, denoted as p(pk,vj |bink), which can be expressed by
Bayes rules:

p(pk,vj |bink)=
p(bink|pk,vj)p(pk,vj)

p(bink)
, (5)

where p(bink|pk,vj) is dependent on the topological correla-
tion and will be detailed later; p(bink)=1 is fixed and means
there must exist bink for pk. p(pk,vj) is defined by a full
covariance matrix:

p(pk,vj)=

N∑
i=1

(vi,j − v̄)(pi,k − p̄)

N − 1
. (6)

Then, in the CorrNet framework, the weights p(pk,vj |bink)
are iteratively updated. The procedure is shown in Algo-
rithm.1. After the iteration, if p(pk,vj |bink) ≥ εCorr, vj is
in the inverse receptive field of pk; namely, Corr(vj ,pk) = 1
, and vj ∈ bink. εCorr ∈ [0, 1] is a correlation parameter and
was set to 0.5 in this paper.

B. Pattern representation model

Most reconstruction methods tend to model on the stimu-
lusresponse pair (X,Y) and decode the most probable image
Y from the fMRI signal X. In this paper, the pixel-wise
retinotopy in V1 is utilized to build a map from the voxel
bin bink to its correlation pixel pk directly, finding the
corresponding activity patterns. For pattern representation, the
linear SVM has been proved to be effective. In addition,
compared with ANNs, SNNs are more biomimetic in both
information transmission and structure. Therefore, both the
linear SVM model and SNN model were trained to learn
brain activity patterns from the correlation pairs, verifying the
robustness of the CorrNet framework. In the training process,
our models served as distributed multi-voxel receptive-field
models. The activity patterns were learned through construct-
ing the maps in pairs (pk,bink). bink was the input, and
pk was the expected output. The reconstruction procedure
involved monitoring bink corresponding to the retinotopy
map of pk by inversing the receptive-field model. Compared
with conventional retinotopy, our pixel-wise method solved
the problem of missing activity patterns by using the multi-
voxel correlation bin bink. Meanwhile, the proposed CorrNet
framework took the various correlations into full consideration,
guaranteeing the accuracy of the reconstruction models. The
submodels in Equation 1 worked in parallel, and the pair
(pk,bink) contained N trials in the training process.
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Algorithm 1 Generating the Probabilistic Graph GCorr.
Input:

Matrix Cv, the correlation parameter εCorr, and the
strength correlation p(pk,vj)

Output:
The correlation probability p(pk,vj |bink)

1: Initial p(bink|pk,vj) = 1 and p(pk,vj |bink) =
p(pk,vj) and L(k) = ∅ (k = 1 → D2, j = 1 → D1)

2: for k = 1 to D2 do
3: for j = 1 to D1 do
4: if p(pk,vj) ≥ εCorr then
5: Update L(k) = L(k) ∪ {m|Cv(j,m) = 1};

kt = min
m∈L(k),m6=j

d(vj ,vm);

for all m ∈ L(k), calculate:
p(bink|pk,vm) = kt/d(vj ,vm);
pt = p(pk,vm)× p(bink|pk,vm);
p(pk,vm|bink)= max(p(pk,vj |bink), pt);

6: end if
7: end for
8: if L(k) == ∅ then
9: j = arg max

j∗∈{1,...,D1}
p(pk,vj∗ |bink);

Return to step 5;
10: end if
11: bink = L(k);
12: end for

1) Linear support vector machine: We assumed that the
pattern representation model was given by the linear SVM to
find a linear decision boundary in the feature space, such that

pk = WT
k X

(k) + w0, k = 1, ..., D2, (7)

where WT
k defines the linear decision boundaries, and each

attribution of X(k)= [x
(k)
1 ,x

(k)
2 ,...,x

(k)
N ]

T . x(k)
i for i = 1, ..., N

is the strength value vector of the voxels in bink for the ith

trial. WT
k is dependent on the support vectors of bink, which

are exactly active voxels corresponding to a certain activity
pattern. Therefore, the linear SVM model could highlight
the activity patterns that tended to be ambiguous because of
measurement noise. For this reason, the linear SVM model
was used in this paper. Because pk = [p1,k, p2,k, ..., pN,k]T

and pi,k ∈ {0, 1} , the solution of WT
k was a binary optimal

problem. The final optimal problem [33] was as below.

minmize : J(Wk) = 1
2‖Wk‖2+C

N∑
i=1

ξ
(k)
i

subject to : y
(k)
i (WT

k Θ(x
(k)
i ) + w0) ≥ 1

ξ
(k)
i ≥ 0, i = 1, ..., N

(8)

Here, Θ is a linear kernel function, and C is the free parameter
that affects the trade-off between complexity and the number
of nonseparable samples. ξ(k)i denotes the slack variables.

Notably, for the linear SVM model, we set the self-adaptive
distance parameter in the CorrNet framework as follows:

εdj
=

m 6=j

min
E(posj ,posm)=1

{d(j,m)}. (9)

2) Spike neural network: Because the learned connections
of SNNs represent dynamic spatiotemporal relationships de-
rived from fMRI signals, SNNs are more biomimetic than
ANNs in both information transmission and structure. There-
fore, in this paper, a dynamic evolving SNN was also used
as another pattern representation model. The SNN was built
in a brain template by mapping the correlation bin bink

into the input template of the SNN. Then, the input data
were transformed into spike trains, which revealed the spa-
tiotemporal patterns in the correlation pair (pk,bink). The
strength value vector x

(k)
i for i = 1, ..., N, k = 1, ..., D2 in

bink constitutes a spike train for the ith trial. Specifically, all
spike trains derived from the encoding module included D2

patch states, which were injected into D2 Tempotron neurons
in the leaky integrate-and-fire (LIF) model [34]. Each spike
was transmitted by the synapse between the input neuron and
output neuron, and each synapse had its own weight w(k)

equivalent to synaptic efficacy. The spiking neuron model can
be presented as follows:

τm
∂v

∂t
= −v(t) +MI(t), t = 1, ..., N, (10)

where τm presents the constant membrane time (we chose
τm = 4 × τs = 20ms), It is the input of a leaky integrator
at t time, v(t) denotes the membrane potential, and M is
the membrane resistance. Here, the spiking threshold vthre
is introduced. When v(t) ≥ vthre , the neuron will fire the
spike, and the membrane potential will immediately reset to
the reset potential vrest = 0.6. Then, it maintains v(t) =
vrest for a short period of time, which refers to the absolute
refractory period of the biologic neuron [35]. The subthreshold
membrane potential was determined by the weighted sum of
postsynaptic potentials (PSPs) from all incoming spikes:

V (k)(t) =
∑
i

w(k)
i

∑
ti

K(t− ti) + Vrest, (11)

where w(k)
i

and ti are, respectively, the synaptic efficacy and
fire time of the ith afferent neuron, and K is a normalized PSP
kernel. Because pk = (p1,k, p2,k, ..., pN,k)T and pi,k ∈ {0, 1},
two modes corresponding to the two states (0 and 1) were
defined: the bright mode, and the dark mode. The learning
procedure of a neuron was conducted by changing its synaptic
efficacy w(k)

i
when error occurred. There were two error

modes: the bright error means that a neuron failed to fire when
it should fire; otherwise, the dark error occurs. In the training
process, based on the analysis of different errors, the learning
rule could be demonstrated as below.

∆wi =



lr
∑

ti<tmax

K(tmax − ti) ,bright error

−lr
∑

ti<tmax

K(tmax − ti) ,dark error

0 , otherwise

(12)
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Here, tmax represents the time when the voltage reaches the
maximum value, and lr = 0.005 is the learning rate. Con-
sidering that the SNN requires plenty of spikes to enable the
encoding modes, we extended the bink by increasing the self-
adaptive distance parameter εdj

in the CorrNet framework:

εdj
=

1

D1

D1∑
l=1

d(vj ,vl). (13)

IV. EXPERIMENTS

A. Data preparation

Three male subjects participated in the fMRI study. They
had an average age of 23, and normal or corrected-to-normal
visual acuity. Informed written consent was obtained from
all subjects. Each subject participated in two scan sessions.
The rst session included 352 patterns with random shapes
,and the second session had 80 patterns with regular shapes.
The random shapes of patterns were mainly used to train
the decoding model, while the other group was used to
test the performance of the model. Each stimulus pattern
consisted of 12×12 pixel patches (1.13◦×1.13◦ each). There
were two types of patches: a flickering checkerboard (spatial
frequency: 1.78 cycles/◦; temporal frequency: 6 Hz), and a
neutral gray area. Each type of patch was randomly used with
equal probability. Each pattern formed by different types of
patches was presented on a neutral gray background. There
was a fixation spot in the center of each stimulus, and we
instructed subjects to fixate on it. There were 20 kinds of
stimulus patterns in regular shapes, including digital numbers
and geometric shapes.

A rear-projection display device was used to present the
stimuli outside the scanner. The resolution of the display
device was 800 × 600 at 60Hz. Subjects watched the stimuli
presented by the device via a mirror placed above the subject
and attached to the receptive field (RF) coil. The visual angle
was 13.5◦. A laptop controlled stimuli presentation using the
E-prime software. Each subject underwent two scan sessions.
Random shape stimuli were displayed in the first session.
There were 11 runs in the session. Each run began with a
28s null stimulus, followed by presenting 18 stimulus blocks,
and ending with a 12s rest period. In each stimulus block, a 6s
stimulus period, followed by a 6s rest period, was presented.
A 3060s rest period was inserted between two runs. A total
of 198 different stimulus patterns were used in this session.
Regular shape stimuli were displayed in the second session.
There were ten runs, including five geometric-shape runs and
five alphabet runs. The block design was the same as in the first
scan session. Each specific shape stimulus was repeated six
times during the whole scan session. The color of the fixation
spot in the center of each stimulus changed randomly during
stimulus presentation. Each subject was asked to press a button
when the color changed.

A 3.0-Tesla GE MR Scanner was used to collect func-
tional MRI data at the First Affiliated Hospital of Xi’an
Jiaotong University. A T1-Weighted, magnetization-prepared
rapid-acquisition gradient-echo (MP-RAGE) sequence (TR:
2250 ms; TE: 2.98 ms; Tl: 900 ms; Flip angle: 9◦; FOV:

256×256 mm; Voxel size: 1.0×1.0×1.0 mm), was firstly used
to acquire high-resolution structure images of the same slices
in echo-planar imaging (EPI) sequence. Then, a T2∗-weighted
gradient-echo EPI sequence (TR: 4000 ms; TE: 30 ms; Flip
angle: 80◦; FOV: 192×192 mm; Voxel size: 1.875×1.875×3
mm; Slice gap: 0 mm; Number of slices: 48) was used to
collect functional images covering the whole brain. The first
three volumes of each run were discarded in order to avoid
the noise caused by the MRI scanner’s instability. SPM12 was
used to preprocess the MRI data. First, slice-timing correction
was implemented to correct the differences in slice acquisition
times. Second, slice-timing corrected data underwent head
motion correction. Then the structure data of the first scan
session were coregistered to all data in this session. Next, the
structure data in the second scan session was coregistered to
those in the first scan session. Finally, all data in the second
scan session were coregistered to the structure data in this
session.

B. Performance evaluation and analysis

The 352 stimulusresponse pairs with random shapes were
used as the training set, and the other 80 with regular shapes
were used as the test set. In the experiments, to demonstrate the
reliability and robustness of the CorrNet framework combined
with the linear SVM (Our SVM) and the dynamic evolving
SNN (Our SNN), we compared our method to baseline meth-
ods, that is, the linear SVM without the CorrNet process (Pure
SVM) [30] and the SNN without the CorrNet process (Pure
SNN) [20]. Pure SVM and Pure SNN both used all 3037
voxels as input for pixel-wise reconstruction. The fixed-basis
model [10] and BCCA [11] were also used for comparison.
In addition, we combined our CorrNet framework with the
fixed-basis model (Our Multiscale) by replacing the weights
of voxels optimized by sparse logistic regression [25] with
the coefficients of voxels in the probabilistic correlation graph
produced by our CorrNet framework when the self-adaptive
distance parameter was defined by Eq. 9. All experiments were
implemented in MATLAB R2016b, and used the LIBSVM
Toolbox [36].

Fig. 4 shows the topological distribution of the 144 cor-
relation bins, when the self-adaptive distance parameter was
defined by Eq. 9 in the CorrNet framework. The average
number of voxels in the bins was 30, and the utilization of
all 3037 voxels was 58%. Obviously, the CorrNet framework
could improve the efficiency of the reconstruction method by
condensing data. Besides, a heat map was used to reveal the
quantitative distribution of voxels by mapping the number of
voxels in bink into the coordinates of pk in the image coor-
dinate frame, as shown in Fig. 5. The middle region contains
the most voxels, which conforms to the attention mechanism
in human perception. Therefore, our CorrNet framework could
reveal the attention mechanism by combining the topological
correlation with the strength correlation.

The test set includes geometric shape images and digit
images with 144 binary pixels. Notably, when compared with
baseline methods, the reconstruction results of our method
were binary images because the pattern representation was
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Fig. 4. Topological distribution of all correlation bins. The voxels in the same
bin are filled with the same color, and different bins are expressed in different
colors.

Fig. 5. Quantitative distribution of voxels in the image coordinate frame.
The first picture shows the original quantitative distribution, and the more red
the pixel patch, the more voxels the corresponding correlation bin contains.
The second and third picture shows the perceptual images with a quantitative
distribution overlay.

processed as a binary classification problem. Conversely, the
results of Miyawaki, BBCA, and Our Multiscale were gray
value because the pattern representation was processed as a re-
gression problem. The reconstruction results are shown in Fig.
6, where the first row denotes the original perceptual images,
and below rows are the reconstruction images obtained from
all methods in our experiments. Obviously, the reconstruction
images obtained by our methods (Our SVM, Our SNN, and
Our Multiscale) were much more recognizable than those of
baseline methods Miyawaki and BBCA. Specially, Our SVM
and Our SNN (the third and fifth rows) achieved significant
improvement over baselines (the second and fourth rows); in
particularly, Our SNN achieved nearly 100% accuracy in the
margins of the image coordinate frame. Therefore, it can be
said that the CorrNet framework indeed contributed to the
visually significant improvement. As for the gray images, Our
Multiscale (the last row) successfully reconstructed the rela-
tively legible geometric shapes and digits while Miyawaki and
BBCA nearly failed to separate the meaningful shapes from
the background. This result strongly verifies the reliability
and robustness of the proposed CorrNet framework. Besides,
in the middle area, our methods all performed much better
than baseline methods in reconstructing visually recognizable
figures, which demonstrated that the attention mechanism
could be revealed by our methods (see Figure 5).

Referring to past reconstruction studies [10], [11], [29], the

reconstruction accuracy was computed pixel-by-pixel under
Euclidean Distance measurements. The results on the training
set, geometry, digit, and the test set are shown in Table
I. Both Our SVM and Our SNN achieved at least a 10%
improvement over the baselines (Pure SVM and Pure SNN),
indicating the effectiveness of the CorrNet framework. The
proposed methods could also avoid the over-fitting problem
existing in the Pure SVM. Notably, for pattern representation,
the SNN achieved higher average accuracy than the linear
SVM, implying the prospect of SNNs in brain decoding. In
addition, comparison with Miyawaki and BBCA confirmed
the superiority of our methods and CorrNet framework. The
85.11% and 84.86% accuracy achieved by Our SNN and Our
Multiscale surpasses the state-of-the-art methods (which have
around 80% accuracy) in reconstructing perceptual images
from fMRI signals.

Furthermore, in Fig. 7, where the coordinate frame corre-
sponds to the image coordinate frame, the accuracy distribu-
tion of a single reconstruction pixel on the test set is shown.
The more red points means higher accuracy. Observably, if
ignoring some bad points, which can be ascribed to noise, the
accuracy of the pixels in the middle of the image coordinate
frame is relatively high. Again, the attention mechanism was
revealed. Specifically, more than 80% of pixels reached 0.9
accuracy by Our SNN, and more than 65% of pixels reached
0.75 accuracy by Our SVM and Our Multiscale. Moreover,
the proportion of pixels with lower than 0.5 accuracy was
reduced to less than 15% by our methods. In particular, Our
SNN achieved comparably comparative accuracy in both the
middle and the margin of the image coordinate frame, thus
illustrating the topological robustness inside the symmetrical
structure of the SNN.

As Fig. 8 shows, we computed the pixel-patch accuracy,
which denotes the average reconstruction accuracy of the pixel
patches with diverse scales ( 1 × 1,..., 10 × 10 ). A pixel
patch with a certain scale presents a certain region extracted
from the middle to the margin in the image coordinate frame.
The accuracy curves of our methods, Miyawaki, and BBCA,
were all in decline. However, the curves of Our SNN all
had an overall uptrend, going down before going up. Visibly,
considering the obviously distinct gap in accuracy between
Miyawaki and Our Multiscale, the proposed CorrNet frame-
work led to a distinct improvement on every patch scale in
the fixed base method. Our Multiscale had obvious superiority
over all methods, which implies that multiscale reconstruction
has great prospects in brain decoding with compound models.
Additionally, our methods tended to provide more smooth
curves. This can be owed to the CorrNet framework derived
from brain structure and function, which may simulate the
robustness in signal process of the human brain.

V. CONCLUSION

In this paper, we proposed a CorrNet framework for brain
decoding in terms of two primary problems now; this frame-
work could be flexibly combined with diverse pattern repre-
sentation models. As far as we know, topological correlation
has been fused with the strength correlation to enrich the
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Fig. 6. Image reconstructions of geometric shapes and digits taken from the test set in the experiments. The second to fifth rows are the binary reconstruction
images, and the latter rows are the gray reconstruction images

TABLE I
AVERAGE ACCURACY OF ALL METHODS IN OUR EXPERIMENTS.

Dataset Pure SVM Our SVM Pure SNN Our SNN Miyawaki BBCA Our Multiscale
Training set 98.87±1.13 78.71±1.04 84.84±2.54 98.02±0.23 95.02±0.67 82.06±1.30 84.94±0.13
Geometry 60.01±3.30 75.60±3.52 73.36±1.27 84.55±0.97 60.36±3.21 73.75±0.27 84.10±0.57

Digit 57.37±3.96 78.09±2.03 78.52±1.67 85.61±1.62 56.17±3.46 73.18±0.96 85.63±0.52
Test set 58.68±3.54 76.85±3.13 75.06±1.41 85.11±1.22 58.92±3.44 73.46±0.57 84.86±0.79
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Fig. 7. The accuracy distribution of each pixel. (a)∼(c) show the distribution of our SVM, our SNN, and Our Multiscale, respectively. The more red the
point, the higher the accuracy of the corresponding pixel.
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Fig. 8. Reconstruction accuracy of pixel patches with diverse scales in our
experiments. The horizontal ordinate denotes the scale values of pixel patches,
and the vertical ordinate presents the accuracy.

correlations for the first time. Then, we represented brain
activity patterns by combining the linear SVM and the dy-
namic evolving SNN separately, with the correlation pairs
derived from the CorrNet framework. The experimental results
demonstrated that our method could achieve a significant
improvement in perceptual image reconstruction over baseline
methods. The CorrNet framework was reliable and robust.
In addition, the attention mechanism was revealed by the
new method. Notably, for the first time, we discussed the
three types of connections (functional connectivity, structural
connectivity, and effective connectivity) in attention tasks
based on fMRI signals.

Our work contributes to revealing the working mechanism
of the human brain, simulating the effective connectivity
of the early visual cortex, and establishing mapping from



10

perceptual tasks to voxels. In engineering, this study promotes
the development of efficient brainmachine interface. Thus,
future work can be focused on hybrid models fusing the Cor-
rNet framework with diverse pattern representation models.
Besides, more experiments on other fMRI datasets are required
to further improve and generalize the CorrNet framework for
practical applications.
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