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Optimal control of eye-movements during visual search
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Abstract

We study the problem of an optimal oculomotor control during the execution of visual search tasks. We
introduce a computational model of human eye movements, which takes into account various constraints
of the human visual and oculomotor systems. In the model, the choice of the subsequent fixation location
is posed as a problem of a stochastic optimal control, which relies on reinforcement learning methods. We
show that if biological constraints are taken into account, the trajectories simulated under a learned policy
share both basic statistical properties and a scaling behaviour with human eye movements. We validated

our model simulations with human psychophysical eye-tracking experiments.
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1. Introduction

The human oculomotor system performs hun-
dreds of thousands of eye-movements per day during
the execution of different behavioral tasks. In order
to find the details of a visual scene related to the
tasks, humans direct foveal vision to the most in-
formative locations via saccades - high-velocity con-
jugate gaze shifts. Saccades are followed by a vi-
sual fixation, during which the human oculomotor
system generates fixational eye movements involun-
tarily. Despite the remarkable achievements in the
modelling of fixational eye movements and the inter-
pretation of their fundamental properties [II, 2] [3],
there is no comprehensive generic model of fixation
selection [4], Bl [6], which takes into account the un-
derlying mechanisms of visual attention [5 [7, 8] and
qualitatively describes the statistical properties of
saccadic eye-movements during the execution of vi-
sual tasks [9] [10, 1T, 12].

Previously, the problem of fixation selection was
studied in the framework of control models of eye
movements [I3] 11l ¥]. In control models the ob-
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server gathers information about the world during
each fixation, integrates information over all fixa-
tions into a belief state and makes a choice of the
next location on which to fixate. This choice is gov-
erned by the policy of gaze allocation - a function
that specifies the action of decision-maker in a cer-
tain belief state. It was shown that the policy based
on information maximization criteria [9] generates
trajectories that share basic statistical properties
with human eye movements. In this research, we
set the goal of developing a control model of fixation
selection that is capable of interpreting the scaling
behaviour of human eye-movements |10} 14, 2], [15]
and provides a human level of performance to a com-
putational agent.

In contrast to the previous research on control
models, we take into account the inherent uncer-
tainty of human oculomotor system and the dura-
tion of saccadic eye movements. It’s well known
that any motor action of humans is executed with
random error, which increases with movement mag-
nitude [16] [I7]. Despite the oculomotor system hav-
ing developed a correction mechanism for saccade
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2.1 World state

errors [I8], these result in inevitable temporal costs.
Furthermore, the duration of saccades is empirically
correlated with their magnitude as well [19]. These
factors result in situations where the observer has
to choose between more informative remote (and
riskier) locations and those nearby (but less infor-
mative ones). We show that if these constraints
are taken into consideration, the trajectories sim-
ulated under a learned policy share both basic sta-
tistical properties and scaling behavior with human
eye movements, which is not achievable with the
conventional infomax model [9].

On the basis of our results, we argue that we have
made the following contribution:

e The formulation of the biologically plausible
model of gaze allocation in the human observer
from the point of view of stochastic optimal
control. The representation of the model in
the form of partially observable Markov deci-
sion process (PO-MDP) and the proposal of a
heuristic policy.

e The development of robust and high perfor-
mance algorithms of simulation of PO-MDP.
The implementation of reinforcement learning
algorithms of policy optimization and numeri-
cal estimation of the optimal policy of gaze al-
location.

e The comprehensive statistical analysis of sim-
ulated trajectories and data from our psycho-
physical experiments. The policy, which is
learned with the policy gradient REINFORCE
algorithm, shows the highest level of statisti-
cal similarity with human eye-movements. In
our experiments we discovered the dependency
of the mean saccade length and g-order Hurst
exponent on visibility of the target, which was
explained by our model.

2. Model of the ideal observer

In this section we formulate the model of the ideal
observer, which aims to localize the single target
object on the stationary 2D image. We represent
the model in the form of partially observable Markov
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Figure 1:  Flow chart of the model of the ideal observer.
The visual search is a recurrent process that starts after ini-
tialization of the world state. On each consequent step the
observer receives the observation vector Wy, which is then
used for estimation of belief state p,, using Bayesian inference
[20]. After the update of the belief state the observer makes
the decision D,, where to fixate next according to the policy
of gaze allocation: Dy = u(pyn). The next fixation location
is defined by execution function: A,41 = a(Dy). If the ob-
server fixates on the location of target A, 1 = m the process
of visual search is terminated, otherwise the next step starts
with updated values of variables.

decision process (PO-MDP), which is summarized
by flow chart on Figure

2.1. World state

At the beginning of each episode the target ob-
ject appears randomly at one of L possible locations.
We assume that the target is placed on background
noise or surrounded by distractors, which are placed
on vacant locations. The world state S,, is repre-
sented as a tuple:

Sn = (m7 Ana tn) (1)
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where m is a location of the target on the image and
A, is gaze fixation location that changes with the
number of step n, and ¢, is time passed from the
start of a trial and the step n.
If the observer fixates the gaze on the location of
target:
A, =m (2)

the visual task is considered to be accomplished.
This formulation of the terminal state reflects the
necessity to foveate the target in order to extract as
much information about its identity and details as
possible. The location of target m doesn’t change
during a trial.

2.2. Update of belief state

The decision-making of the observer is modeled as
PO-MDP with a belief state p,, - a discreet probabil-
ity distribution function of target location given all
observations received up to the step n. Because the
observer is instructed that the target appears ran-
domly, the initial belief state pq is a discrete uniform
distribution.

On each step n observer receives the observation
vector W,, = (W1, ..., Wy, ), whose elements rep-
resent the perceptual evidence that the target is at
corresponding locations. The probability distribu-
tion function is updated using Bayesian inference
[20]:

P (l) _ Pn—1 (l)p(Wn”v An) (3)
where [ is the index of the location and p(W|i, A) is
an observation model. In order to take into account
the uncertainty of the processing of perceptual in-
formation within the neural circuits of the observer,
we follow the “noisy observation” paradigm [9]. In
this paradigm the observation model p(W|i, A) re-
flects the presence of the observer’s internal sources
of inefliciency, such as physical neural noise on all
stages of information processing. According to the
perceptual model [11] the observation W may be
represented as a random variable with Gaussian dis-
tribution with mean depending on the location m of
the center of target on the lattice:

p(WI, 4) = [[p(Wil4) =
l

1
HN (VVI; O1,m> m) (4)

where 0, ; is Kronecker delta, N(z,u,v) is a value
of Gaussian function with mean g and variance v
for argument x; ||l — A|| is Euclidean distance be-
tween the locations [ and the current fixation A,
and F' is a Fovea-Peripheral Operating Character-
istic (FPOC) [13]. FPOC is a function that repre-
sents the dependence of a signal-to-noise ratio on
the eccentricity. Figure [2] demonstrates FPOC cal-
culated for several values of RMS contrast of the
background 1/f noise: e, € (0.1,0.15,0.2,0.25) and
a single value of RMS contrast of target e; = 0.2.
The calculation are based on the analytical expres-
sions from [I1]. The signal-to-noise ratio has a peak
at fovea and decreases rapidly with eccentricity.

In our simulations we consider only the case of the
rotationally symmetric FPOC. This assumption is
not correct for human observers, and better generic
model of FPOC can be found in [2I]. The broken
circular symmetry of FPOC inevitably results in the
asymmetry of the visual search process [22]. We sim-
plify the model of FPOC, because in this research
we focus our attention more on the temporal struc-
ture of eye-movements rather than on their spatial
distribution.

2.8. Ezecution of saccades

The decision of which location to fixate next, D,
is made on each step of PO-MDP according to the
policy of gaze allocation p :

After making the decision, the coordinates of the
next fixation location A, 41 are defined by the exe-
cution function:

Any1 = a(Dyn) =Dy + Jy, (6)

where J,, is a Gaussian-distributed random error
with zero mean and standard deviation v defined
in [I7]:
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Figure 2: Fovea-Peripheral Operating Characteristic was cal-
culated for several values of the RMS contrast of background
noise: e, € (0.1,0.15,0.2,0.25) and the single value of RMS
contrast of target e = 0.2. The signal-to-noise ratio has a
peak at fovea and decreases rapidly with eccentricity.

v="=_+C||Dn— Ayl (7)

The error of the saccade execution is proportional
to intended saccade amplitude ||D,, — A, || given in
degrees, the value of parameters: (, = 0.87deg,
¢1 = 0.084 (from[I7]).

The next step of PO-MDP starts after the tran-
sition to the location A, ;. This decision-making
model may be easily extended in order to take into
account the extraction of visual information be-
tween the moment of making the decision where to
fixate next and completion of the saccade.

2.4. Duration of the steps

After each consequent step the time variable ¢ of
world state is updated in a deterministic way:

th =tn—1+0O(n) (8)

where ©(n) is a duration of step n. The duration of
time step ©(n) is considered as a total time, which
is required for the relocation of the gaze from a pre-
vious location A(n — 1) to the current one A(n)
and the extraction of visual information from the
location A(n). Therefore, we consider @(n) as a
sum of durations of the fixation ©y;;(n) and the
saccade Ogqc(n). According to the literature, both

of these time intervals are empirically correlated
with a magnitude of the saccade preceding the fix-
ation [19, 23| 24]. The duration of saccadic eye-
movements Og,.(n) in range of magnitudes from
1.5° to 30° is possible to approximate as [25]:

@sac(n) = Tsac ||An - 14’n—1||0‘4 (9)

where 745, = 21lms - deg70‘4. Besides the magni-

tude of saccade, the fixation duration O, (n) is in-
fluenced by various factors as a discriminability of
the target [26], its complexity and the visual task
of the observer [24] 27]. However, if the observer
is correctly informed about the targets’ properties
before the task execution and performs the visual
task without any interruptions, the contribution of
these factors to the fixation duration (with excep-
tion of magnitude) is constant during each trial. The
eye-tracking experiments with the fixations tasks
[23, 24], 28] found that the dependence of fixation
duration on saccade amplitude is linear:

@fiz(n) = [|An — An] iz + O, fix (10)

with a slope 74, = 6ms/deg. The constant
B, riz = 250ms is an intercept, averaged from val-
ues from eye-tracking data [29, [30]. Finally, the du-
ration of step n is:

O(n) = Osac(n) + Ofiz(n) (11)

The values of parameters used in simulations are
consistent with our estimates from the eye-tracking
experiments: 77, = 20+ 3ms - deg "4, Thip = 0.8%
1.8ms/ deg, O, rir = 241+42ms. Within this range
of the parameters’ values we didn’t find a substantial
difference in the estimates of the learned policy of

gaze allocation.

2.5. Value function

Given the initial world state Sy, we define the cost
function for policy p as an expectation of a random
variable V:

Viu(So) = E [V, Sol (12)
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The random variable V' denotes the cost and is de-
fined by:

N
V= CZ O(n) = cty (13)
n=0
where N is a total number of steps in the episode,
and c is a time cost constant.

Formulation of the cost function in a real time
sets this study separately from the previous works
[31L, 111 [13]. We show below, that the policy u opti-
mized for the cost function with the reward defined
in generates the sequences of actions with sta-
tistical characteristics close to the human saccadic
eye-movements.

3. Policy of gaze allocation

3.1. Infomaz approach

In this section we describe two heuristic policies
related to the model of Entropy Limit Minimization
searcher [9]. We define the information gain on the
stepn+1as: Al(n+1) = H(p,) — H(pn+1), where
H (-) is Shannon entropy. The heuristic policy g
is defined as a policy which chooses such decision
D,, that maximizes the expected information gain
AlI(n+1):

To(pn) = Dy, = arg max [E

[AI(n+ 1)]] (14)

The term E [AI(n + 1)] is calculated analytically in
[9] for the case of the saccadic eye-movements with-
out uncertainty (A,+1 = Dy):

(A4 1)) = 5 (b F?) (D) (15)
where sign * denotes a convolution operator, and
F is FPOC represented as a radially symmetric 2D
function: F(A) = F (||A]|). The expression ([15)
gives an approximate value of the expected infor-
mation gain in the case of the stochastic saccadic
placement @

The figure [3| illustrates the decision-making pro-
cess, which corresponds to the policy my. The colour

map (left) represents the function of the expected in-
formation gain (equation (I5)). The blue cross cor-
responds to the location of the current fixation on
the step n. The observer makes a decision to fixate
at the location defined by the policy: D,, = mo(pp)-
This decision results in a saccadic eye-movements to
location A, 1 = a(D,,) marked by the green cross.
After receiving the observation at the step n + 1,
the observer updates the belief state and evaluate
the information gain for the next decision. In this
particular situation, the target was absent at the
vicinity of A,,41, and the observation resulted in the
decline of probability p,41 in the area around the
green cross (figure [3| right). This area is effectively
inhibited from subsequent fixations due to low prob-
ability. The size of this area is defined by values of
FPOC (e; = 0.2, e, = 0.1 in this case). We call the
policy 7 “infomax greedy” in the text below.

The trajectories generated with infomax greedy
policy match the basic properties of human eye
movements [9]. However, the policy doesn’t
consider the correlation between the magnitude of
saccades and the durations of steps of MDP. We
show later that the policy 7 is inferior to the pol-
icy that optimizes the expected rate of information
gain F [AI(n+1)/0(n+1)]:

[AI(n+1)/6(n+1)]] (16)

Using the expression for E[AI(n + 1)] ., for
the deterministic saccadic placement (An+1 Dy):

m1(pn) = argmax [E
D

(pn * Fz) (Dn)

Wl(pn) = Dn = argax @(n ¥ 1)

D

] (17)

The policy 7 is called "infomax rate” in the text
below. The performance of these two heuristic poli-
cies will be compared with a performance of the pol-
icy learned with reinforcement learning algorithms

in the section

3.2. Optimal policy estimation

In this section we describe the evaluation of the
policy of gaze allocation that optimizes the cost
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Figure 3: The decision-making process under the infomax greedy policy 7o [9]. The colour map (left) represents the function
of the expected information gain (equation ) The blue cross corresponds to location of the current fixation on the step
n. The observer makes a decision to fixate at the location defined by the policy: D, = mo(pn). This decision results in the
saccadic eye-movement to location A, 41 = a(Dn) marked by the green cross. After receiving the observation at the step n+1,
observer updates the belief state and evaluates the information gain for the next decision. In this particular situation, the
target is absent in the vicinity of A, 1, and the observation resulted in the decline of probability p,1 in the area around the
fixation (the green cross). This area is effectively inhibited from the subsequent fixations due to low probability p,+1. The size
of this area is defined by the values of FPOC (in this case e; = 0.2, e, = 0.1).

function for any starting world state Sy;. We
start with the representation of the stochastic pol-

icy p in the on [20]:

_ (/D)
SR T

where f(D,p) is a function of expected reward gain
after making the decision D with the belief state
p. In this study we limit the search of f(D,p) to a
convolution [20] of belief state p:

f(D,p)=> K(D-1)p(l) (19)
!

In supplementary materials [Appendix A.1|we jus-

tify this choice of the policy and evaluate the form
of a kernel function K that allows us to effectively
solve the optimization problem with the policy gra-
dient algorithms. Our task is the search of the kernel
function K , which corresponds to the policy
that optimizes the cost function V,:

K™ = argmin V), (x)(So) (20)
K

for any starting world state ¥.Syp. The policy p(K™*)
is called the optimal policy of gaze allocation.

We approach the optimization problem with
an algorithm named "REINFORCE with optimal
baseline” [32] according to the procedure described
in Supplementary materialAppendix A] The perfor-
mance of REINFORCE was compared with one of
the optimization algorithms named "policy gradi-
ent parameter exploration” (PGPE) adopted from
[33]. The algorithm of REINFORCE with an op-
timal baseline belongs to the class of the likelihood
ratio methods, whereas PGPE is related to the finite
difference methods. Despite the distinction between
these two approaches, both algorithms give a close
estimation of the optimal policy [Appendix A.4.1}
We simulated trajectories for the data analysis in
section [] using the solution provided by REIN-
FORCE due its better performance comparing to
PGPE. Figure [f] demonstrates the decision-making
process under the policy u learned for FPOC corre-
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Figure 4: The decision-making process under the policy learned for FPOC corresponding to conditions e; = 0.2, e, = 0.1.
At the step n observer fixates the location marked by a blue cross. The policy p defines a probability density function of a
decision D where to fixate next (A.5). Observer chooses the decision D, according to the policy, which results in a saccadic
eye-movement to location Ap4+1 = a(Dy) (the green cross). As well as in the case of dynamics under the heuristic policy o
previously visited locations are inhibited from the subsequent fixations. Note that movements to remote locations are inhibited
by the radial function. This results in co-directed short movements, which are also characteristic of human observer.

sponding to the conditions e; = 0.2, e, = 0.1 (see
ﬁgurefor its kernel function). At the step n the
observer fixates the location marked by a blue cross.
The policy u defines a probability density function
of the decision D where to fixate next (A.5)). The
observer chooses the decision D,, = pu(py,), which
results in a saccadic eye-movement to the location
Apt1 = a(D,) (green cross). As well as in the case
of dynamics under the heuristic policy g, previously
visited locations are inhibited from the subsequent
fixations.

4. Basic properties of trajectories

In this section we discuss the statistical proper-
ties of trajectories generated with the learned pol-
icy p and the heuristic policies mg and 7. The
simulations were performed on the grid with size
128 x 128 that corresponds to the visual field with
size of 15 x 15 deg in the psychophysical experiment.
In order to justify our computational model, we re-
produced the psychophysical experiments from [9].
The detailed description of the experiments can be

found in AppendifAppendix C|

4.1. Performance

Although this computational model was not de-
signed for an exact prediction of a response time
of human observers, it demonstrates a high level
of comsistency in a performance of the visual task
execution with human observers. The performance
was measured as an average time to reach the tar-
get (the mean response time) and as a percentage
of the correct fixations on target’s location on an
N-Alternative Forced Choice task (N-AFC). The
unsuccessful trials from the psychophysical exper-
iments were excluded from the consideration. We
found that the number of the unsuccessful trials
grows with the contrast of noise: 2.3%, 5.7%, 9.8%,
16.4% for the corresponding numbers of the contrast
e, = (0.1, 0.15, 0.2, 0.25).

Figure 5] (left) demonstrates the percentage of cor-
rect fixations on the target location for the exper-
imental conditions: e; = 0.2, e, = 0.15. Means
and standard errors of the response time of the hu-
man observers is presented on Figure [5| (right) to-
gether with means of the response time for three
policies estimated from 10* episodes of PO-MDP.
The learned policy outperforms two heuristics and
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the human observers both in the mean response time
and the percentage of the correct fixations for all
experimental conditions. Human observers signif-
icantly outperformed the infomax rate for the ex-
perimental conditions: e, = (0.2,0.25) (Student’s
t-test p < 0.05) and the infomax greedy for the con-
ditions e, = (0.15,0.2,0.25) (p < 0.05) on the mean
response time, which was previously found in [22][9].
In the same time the learned policy outperformed
the human observers significantly for the condition
en = 0.25, while for other conditions t-test didn’t re-
ject hypothesis that distributions have equal means
at 5% significance level.

4.2. Amplitude distribution

The Figure [6] (left) shows the length distributions
of saccades of the human observers and the simu-
lated agents performing the visual search task corre-
sponding to the experimental conditions: e, = 0.2,
€t = 0.2.

The distributions for all policies and the human
observers exhibit an ascent between 0 deg and max-
imum around 2 deg. The difference in the behaviour
of the distributions starts from 4 deg. In this exper-
imental conditions the share of the saccades of the
human observer with the length larger than 4deg
is 18%, whereas this value for mg is 38%. The
length distribution for m stabilizes on the interval
[4.0,14.0] deg that was observed in the earlier work
[11], and we found that length of this "stability"
interval increases linearly with the grid size. The
reason behind this is an uniform radial ranking of
policy g for all locations due to the constant radial
function . The decline of probability starts only
at a distance compared to the size of visual field.

On the other hand the length distributions of
trajectories under p,7; are concave on an interval
[4.0,14.0] deg, which is also a characteristic for hu-
man eye-movement [34 B5]. The behaviour of the
radial function of y reflects the non-uniform radial
ranking (a preference in decision-making, see figure
(D)) of the locations. As a result, the remote lo-
cations have significantly lower probabilities to be
chosen as the next destinations.

We performed Kolmogorov-Smirnov (K-S) test to
check equality of distributions of experimental and

8

Cases K-S test statistics

noise critical | infomax | infomax | learned
contrast value greedy rate policy

0.1 0.067 0.312 0.121 0.124

0.15 0.052 0.256 0.082 0.081

0.2 0.047 0.212 0.053 0.04

0.25 0.035 0.201 0.095 0.074

Table 1: Statistics for K-S test between the experimental
distribution of saccade length and simulated distributions for
different policies. The first and the second columns show the
values of RMS contrast in the psycho-physical experiment
and corresponding critical values of test statistics for signifi-
cance level a = 0.01. The next three columns show K-S test
statistics for distribution of saccades simulated under differ-
ent policies.

simulated saccades. The results of the test are
summarized in table [l . The first and the second
columns show the values of RMS contrast in the
psycho-physical experiment and corresponding crit-
ical values of the test statistics at a significance level
a = 0.01. The critical values are different due to the
difference in number of saccades for each experimen-
tal condition. The next three columns show K-S test
statistics for the distributions of the saccades simu-
lated under the different policies. K-S test indicated
a higher statistical similarity between the distribu-
tions of the experimental saccades and the saccades
simulated under the learned policy p for the cases
en = (0.15,0.2,0.25). In the case e, = 0.1 the in-
fomax rate and the learned policy explained the ex-
perimental distribution equally well. From this, we
can make a conclusion that simulations under the
learned policy explained the best the length distri-
bution of the human eye-movements.

The mean length of the saccades was estimated
from 10* episodes of PO-MDP for all three policies
and compared with the mean length of the saccades
of the human observers (see figure [0 right). Ac-
cording to our results, the mean length of the sac-
cades decreases with e,, which is consistent with
our simulations. It’s an immediate consequence of
the decrease of values of FPOC with the increase
of the RMS contrast of noise, which is illustrated
on figure 2] The amplitude of the signal exceeds
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Figure 5: The performance of the human observers and the simulated agents. The learned policy outperforms two heuristics
both in the mean completion time and the percentage of correct responses in N-AFC task (left) for the experimental conditions:
et = 0.2, e, = 0.15. The dependence of mean completion time (right) for the learned policy resembles one for the human

observer.
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Figure 6: The histograms of the length distribution of the saccadic events (left) for trajectories generated under the policies

70,71 and feonv and the human eye-movements corresponding to the experimental conditions: e, = 0.2, e, = 0.2. The data
was binned with the resolution of 0.1deg. The distribution function for all policies and human observer exhibits an ascent
between 0deg and maximum around 2 deg. The distribution of length corresponding tothe infomax greedy 7 stabilizes after
4 deg and declines only after 10 deg. It is not consistent with length distribution of human saccadic eye-movements, which is
concave on an interval [4.0°,14.0°]. The mean length of saccades decreases with e, (right). It’s immediate consequence of the
decrease of the width of FPOC with e, which defines the area of inhibition from the subsequent fixations.
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the amplitude of noise within the circle area with
radius r that satisfies the condition F(r) = 1 (we
call this radius the "width of FPOC”). This circle
area is effectively inhibited from the subsequent fix-
ations (see figures and ), because information
is already gathered with a sufficient level of confi-
dence. However, we found that our model provides
close estimates of the mean length only for high val-
ues of the RMS contrast of noise. Our experimental
findings are consistent with previously reported re-
sults [36], where the visual search experiments were
set for several levels of the RMS contrast of back-
ground noise. In future works we plan to incorporate
more complex saccade execution model that takes
into account the bias toward the optimal saccade
length [I7] in order to explain a lower variability of
the saccade length in the experiments.

4.8. Geometrical persistence

In this section we analyze the distribution of the
directional angle 6, (this notation was introduced in
[10]) of the human saccadic eye-movements and the
simulated trajectories. The directional angle is the
angle between two consequent saccades, and, there-
fore, can be defined as 6; = tan™! (y41/Tns1) —
tan~! (y,/x,), where (y,,z,) are the coordinates of
nth fixation. According to this definition, the move-
ment is related to a persistent one if the directional
angle is close to 0 or 27. The angles with the values
close to 7 correspond to anti-persistent movements.

The distributions of the directional angle were cal-
culated for the trajectories generated by Markov de-
cision process with the policies 7y, 71 and p. Figure
(7) (left) demonstrates the distribution of the direc-
tional angle of the saccadic events for the human ob-
servers and the simulated trajectories for e, = 0.2
and e; = 0.2. The infomax greedy policy my gen-
erates the trajectories with stable anti-persistent
movements, because the policy my chooses the next
fixation location without taking the current location
into consideration. Due to the inhibitory behavior
of infomax, it’s much less likely to choose the nearby
location instead of remote and relatively unexplored
ones. Only geometrical borders limit the choice of
the next fixation, which results in fixations on the
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opposite side of the visual field (as the most remote
point, look at the figure )

In contrast, the decision process under the learned
policy p tends to preserve the direction of the move-
ment. The dynamic of the system under the policy
is quite similar to self-avoiding random walk model
described in [I]. Due to the asymptotic behavior of
the kernel function K(x,y), the reward gain from
the remote locations is suppressed, meanwhile, the
locations, which are already visited, are also inhib-
ited (look at the figure (4)). This results in short-
range self-avoiding movements, which demonstrate
the persistent behavior [37, [I], and, therefore, the
probability distribution of the directional angle 6,4
is biased towards values 0 or 27w. According to the
Figurem (left), the dynamics under the heuristics m;
is also characterized as a persistent random walk.
The learned policy p has, in general, a stronger ra-
dial ranking of locations than 7y, which results in
a shorter range of saccades, and a repulsion, caused
by inhibition, becomes more relevant. The distri-
bution of average length of saccades depending on
04 is shown on Figure [7] (right). On average the
co-directed movements are shorter than the reversal
ones for all policies.

In our experiments we discovered that the geo-
metrical persistence depends on the visibility of tar-
get (on FPOC in the simulations). We measured
the share of the saccades, which retain the direction
of the previous movement: cos(fg) > 0. This quan-
tity is called “persistence coefficient”. The figure
demonstrates the dependency of the persistence co-
efficient on the RMS contrast of background noise
for the human observers and the simulated trajec-
tories. As it was mentioned previously, the aver-
age saccade length is decreasing with the growth of
RMS contrast @ Therefore, the linear term
in the duration of steps becomes less relevant, and
the decision-making becomes more agnostic about
the temporal costs (closer to the information greedy
mo). The decline of the persistent coefficient is also a
characteristic of human eye movements, which was
not covered in the previous research.
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Figure 8: The share of saccades, which retain the direction
of the previous movement: cos(6y) > 0, is called the "per-
sistence coefficient". This quantity demonstrates the depen-
dence of the persistence on the visibility of the target. As
it was mentioned previously, the average saccade length is
decreasing with the growth of the RMS contrast @ There-
fore, the linear term in the duration of the steps becomes
less relevant, and the decision-making becomes more agnostic
about temporal costs (closer to the information greedy o).
The decline of the persistent coefficient is also a characteristic
of the human eye movements, which was not covered in the
previous research.

5. Statistical persistence

In the previous section we have analyzed the ge-
ometrical persistence of the human eye-movements
and the trajectories simulated under three different
policies. However, this statistical property doesn’t
give any insight into a long-range correlation in
time-series. In this section we show that dynam-
ics under the learned policy p have a multifractal
behavior, which is similar to that of the human
eye-movements during execution of the visual search
task .

In contrast to the previous research [10] in our
analysis we distinguish between two different types
of the multifractality by a calculation of a gener-
alized Hurst exponent for shuffled time series. We
separate the time series on fixational and saccadic
eye-movements, which allows us to demonstrate the
fundamental difference in the temporal structure of
these types of eye-movements. It was shown that the
behaviour of the generalized Hurst exponent is con-
sistent with the basic statistical properties of eye-
movements. After this we demonstrate that the dy-
namics under the optimal policy of gaze allocation
explains the changes in scaling behaviour of eye-
movements with difficulty of the visual task both
on qualitative and quantitative levels.



5.1 Multifractality of human eye movements

For statistical analysis of simulated trajectories
we use a multifractal detrended fluctuation analy-
sis (MF-DFA)[38], which is a widely-used method
for detection of long-range correlations in stochastic
time-series. It has found successful applications in
the field of bioinformatics [39], 40], nano and geo-
physics [41]. This method is based on the approxi-
mation of trends in time-series and the subtraction
of detected trends (detrending) from original data
on different scales. The detrending allows deducting
the undesired contribution to long-range correlation,
which is a result of non-stationarities of physical pro-
cesses. We use the package provided by Espen Ihlen
[42] for all our estimations of the generalized Hurst
exponent in this section.

In the appendix we thoroughly ex-
plain the details of the multifractal analysis. The
subsection presents the details of MF-
DFA algorithm. In the subsections
and we explain how MF-DFA is per-

formed over the simulated trajectories. The re-
sults of the multifractal analysis of the human eye-
movements are presented in The subsection 5.2
summarizes our findings and compares the general-
ized Hurst exponent of the simulated trajectories to
one of human eye-movements for different experi-
mental conditions.

5.1. Multifractality of human eye movements

We perform MF-DFA over the difference of time
series of the human gaze positions and in order to
compare the estimated generalized Hurst exponent
with the simulations. The differentiated time series
was estimated from raw data of coordinates of the
gaze fixations A = {(x1,91),... (xn,yn)}with the
resolution of 7 ms:

AX ={(v2 —71),...(zn —2N-1)} (21)

AY ={(y2—vy1),..- (yn —yn-1)} (22)

The time series AX and AY were estimated for
each trial with certain experimental conditions and
concatenated over all participants. After this, we
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represent the differentiated time series in the fol-
lowing way: AX = {Fy,S1,....; Fn—1,Sm-1,Fm},
where F; and S; correspond to the sequences of the
movements during time interval of i-th fixation and
saccade respectively [I0]. We separate the differen-
tiated time series on the fixational and the saccadic
time series:

AXp={F,04,,...Fp_1,0s, ,F} (23)

AXS = {Of1’517'"0f7rL717Sm’0f7n} (24)

where 0,, corresponds to zero array with the length
n, and f,, and s,, are the lengths of corresponding
sequences F,, and S,.

The figure [9] demonstrates the scaling of the g-
order fluctuation function Fy(s) (B.4). This graph is
a result of the application of MF-DFA over the hor-
izontal concatenated differentiated time series AX
of the human scan-paths for the experimental condi-
tions: e; = 0.2, e,, = 0.25. The red, blue and green
lines correspond to the linear approximation of func-
tion log, (Fy(s)) for the orders ¢ = {—10;0;10}.
The scaling of F,(s) exhibits the crossover on a time
scale of 256 ms. The crossover separates the "lower”
and "upper” regimes mentioned in [I0]. According
to Amor et. al. the crossover is caused by the pres-
ence of two different generative mechanisms of eye-
movements. The lower regime is related to fixational
eye-movements (which is supported by the value of
crossover scale s...,s being close to the average fixa-
tion duration), and upper regime - to the saccadic
ones. The crossover in the scaling of Fj(s) was ob-
served for all experimental conditions. The value
of generalized Hurst exponent H(q) (Figure |§| right)
is obtained through linear regression of log, (Fy(s)).
Our estimates of H(q) are consistent with the ones
of Amor et. al. for both directions and all regimes.

In order to distinguish between two different types
of multifractality [38] we calculated the generalized
Hurst exponent Hgpyf(q) for the shuffled differen-
tiated time series. The first type of multifractal-
ity is a consequence of a broad probability density
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Figure 9: The scaling of the g-order fluctuation function Fy(s) (left), and the generalized Hurst exponent H(q) (right) computed
through a linear regression of log, (F4(s)). This graph is a result of application of MF-DFA over the horizontal differentiated
time series AX of the concatenated human scan-paths for the experimental conditions: e; = 0.2, e, = 0.25. The red, blue and
green lines correspond to the linear approximation of function log, (Fy(s)) for the orders ¢ = {—10;0;10}. The scaling of Fg(s)
exhibits the crossover the crossover on a time scale of 256 ms. The crossover separates the "lower" and the "upper" regimes
mentioned in [I0]. The lower regime is related to fixational eye-movements (which is supported by the value of crossover scale
Scros being close to average fixation duration), and the upper regime - to saccadic ones. The crossover in the scaling of Fy(s)

was observed for all experimental conditions.

function for the values of time series. If only mul-
tifractality of the first type presents in time series:
H(q) = Hspus(q).- The second type of multifractal-
ity is caused by the difference in correlation between
large and small fluctuations, which is a scenario de-
scribed in [I0]. In this case Hspyuf(q) = 0.5 and
H(q) = 0.5 + Heorr(q), where Heprr(g) is (nega-
tive) positive for the long-range (anti-)correlation.
If both types of multifractality present in time se-
ries: H(q) = Hsnuf(q) + Heorr (q)-

The figure [10| demonstrates our estimates of the
Hurst exponent of the shuffled time series Hgpyr(q)
(top) and the correlational Hurst exponent Ho-(q)
(bottom) for the horizontal (left) and the vertical
components (right). We estimated both exponents
for the saccades (green dashed line) and FEM (pur-
ple dashed line) in the upper and the lower regimes
of scales respectively. As well as a previous graph
[ this one is a result of an application of MF-DFA
over the concatenated differentiated time series of
the human eye-movements for the experimental con-
ditions: e; = 0.2, e, = 0.25. The behaviour of

Hpup(q) for the full time series and the saccadic
time series in the upper regime corresponds to the
one mentioned in [38] (eq. 27):

H(q)N{ 1/q (¢ > a) (25)

la (¢<a)

with a ~ 1. The equation 25| was derived for time
series of uncorrelated random values with the power
law distribution:
—(atl) 2 >1
or x
P = - 26
{ 0 z<1 (26)

One can see a similarity of the function with
the distribution of the amplitude of the saccadic
events for humans (see figure @ The amplitude
distribution of the saccades demonstrates the power
law behavior on the interval [4.0°,14.0°] with o &~ 1.
The probability distribution function also re-
flects an absence of saccades with the length lower
than minimal one. Therefore, the first type of mul-
tifractality of the saccadic time series is caused by
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Figure 10: The Hurst exponent of the shuffled time series Hpyp(q) (top) and the correlational Hurst exponent Heorr(q)
(bottom) for the horizontal (left) and the vertical components (right) of the human eye-movements. As well as a previous graph
E[, this one is a result of an application of MF-DFA over the concatenated human scan-paths for the experimental conditions:
et = 0.2, en, = 0.25. The behaviour of Hgp,f(q) for both horizontal and vertical shifts for full scales corresponds to the one
mentioned in [38] (eq. 27). We assume that multifractality of the first type is caused by an asymptotic behaviour of the
amplitude distribution of saccades (see figure @ The difference in the long-range correlation of large and small fluctuations is
reflected by Hcorr(q) (figure [10| bottom). Due to the properties of the fluctuation function for positive (negative) g-orders
the main contribution are coming from segments containing small (large) fluctuations [38]. The positive (negative) long range
correlation (Heorr(q) > 0) is, therefore, a characteristic of small (large) fluctuations in the upper and the full scales regimes for
both directions. In general, these results are consistent with the distribution of the average length of saccades to the directional
angle (see figure [7| right), which also indicates the difference in persistence of large and small saccades.



the broad probability distribution of saccade mag-
nitude.

The difference in the long-range correlation of
large and small fluctuations is reflected by Heorr(q)
(figure bottom). Due to the properties of fluc-
tuation function for the positive (negative)
g-orders the main contribution are coming from
segments containing the large (small) fluctuations
[38]. The positive (negative) long-range correlation
(Heorr(q) > 0) is, therefore, a characteristic of the
small (large) fluctuations in the upper regime for
the saccadic and the full time series. These results
are consistent with the distribution of the average
length of saccade to the directional angle (see fig-
ure [7| right), which also indicates the difference in
the persistence of large and small saccades. There-
fore, we confirm here that the small saccadic eye-
movements demonstrate the long-range correlations
as well as fixational eye-movements.

The time series of FEM demonstrates the
monofractal behaviour and the positive correlations
with H ~ 0.8 in the lower regime of scales [10]. How-
ever, the behaviour of both Heorr(¢) and Hgpur(q)
for the full time series in the lower regime indicates
the presence of multifractalities of both types. At
the present moment we have no explanation of the
multifractality in the lower regime and leave this
problem for a future work.

5.2. Dependence on visibility

In this section we present a comparison of the
generalized Hurst exponent for the human eye-
movements in the upper regime and the simulated
trajectories under the learned policy. As well as in
the case of the geometrical persistence, we claim the
quantitative properties of the statistical persistence
depend on the visibility of the target.

We estimated the correlational Hurst exponent
Horr(q) and the Hurst exponent of the shuffled
time series Hgpyr(g) for the differentiated trajec-
tories of the human eye-movements for all lev-
els of the RMS contrast of background noise:
en € (0.1,0.15,0.2,0.25). Figure [11] (left) shows
H_orr(q) (left) of simulated trajectories (blue) un-
der the learned policy p and the correlational
Hurst exponent for the human eye-movements
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(pink) averaged over two directions: Heorr(q) =
(HZ,,.(q) + HY,.(q)) /2 in the upper regime. The
correlational Hurst exponents for the negative g¢-
orders declines with the growth of the RMS con-
trast of background noise both for the human eye-
movements and the simulated trajectories. This in-
dicates the weakening of the correlation between
small fluctuations. For the positive g-orders the
correlational Hurst exponent is less affected by the
change of the visibility of target. The H.u-(q) for
q = 10 stabilized on values 0.04 and —0.12 for hu-
man eye-movements and the simulated trajectories
correspondingly. In general, the correlations weaken
with the growth of the RMS contrast, which is con-
sistent with the decline of the geometrical persis-
tence 8] The decline of the Hurst exponent with the
increase of difficulty of visual search task was also
observed in the previous work [12].

The Hurst exponent of the shuffled time series
(Figure 11| right), as well as the correlational Hurst
exponent, demonstrates the decline with the growth
of the RMS contrast for the negative g-orders both
for the human eye-movements and the simulated
trajectories. In the subsection [5.1] we mentioned
that the behaviour of Hgp,r(g) resembles the one
related to time series of random values with the
power law distribution [26] The average value of
this time series equals 1/ (o —1) for @ > 1. The
increase of «a results both in the decrease of the av-
erage value in time series and the decrease of the
value of Hgpyuyp(q) ~ 1/a for ¢ < 0. Therefore,
the average value in time series and the values of
Hpup(q) for the negative g-orders are correlated in
the assumption of the power-law distribution. Pre-
viously we found the decrease of the average saccade
length with the growth of RMS of background noise
[l which is consistent with the decrease of values
of Hspyuy(q) for negative g-orders. We assume that
this correlation is caused by the power-law asymp-
totic behaviour of the length distribution of human
eye-movements ([26]).

6. Conclusion

We have presented a computational model of the
ideal observer that both qualitatively and quantita-
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Figure 11: This figure demonstrates Hcorr(g) (left) of the simulated trajectories (blue) under the learned policy p and the correla-
tional Hurst exponent for the human eye-movements (pink) averaged over two directions: Heorr(q) = (HZ,(q) + Hiorr(q)) /2
in the upper regime. The correlational Hurst exponents for negative g-orders declines with the growth of RMS contrast of noise
both for human eye-movements and the simulated trajectories. For the positive g-orders the correlational Hurst exponent is less
affected by the change of the visibility of the target. In general, the correlations weaken with the growth of the RMS contrast,
which is consistent with the decline of the geometrical persistence The Hurst exponent of the shuffled time series (right), as
well as the correlational Hurst exponent, demonstrates the decline with the growth of the RMS contrast for negative g-orders
both for the human eye-movements and the simulated trajectories. In the subsection we mentioned that the behaviour of

Hpyuy(q) resembles the one related to time series of random values with power law distribution

tively describes the human visual behaviour during
the execution of the visual search task. The basis
of this model is the observer’s representation of the
constraints of its own visual and oculomotor sys-
tems. We demonstrated that a consideration of the
temporal costs and uncertainty of the execution of
saccades results in the dramatic change of the basic
statistical properties and the scaling behavior of the
simulated time series.

We performed the multifractal analysis of our
data and discovered the presence of two types of
multifractality both in time series of the human eye-
movements and the model simulations. The multi-
fractality caused by the broad amplitude distribu-
tion of the saccades (the first type of multifractal-
ity) makes a significant contribution to the multi-
fractal behaviour of time series, which was not cov-
ered in the previous work [I0]. After the estimation
of the correlational part of the Hurst exponent [38]
we confirmed the presence of the long-range posi-
tive correlations of the small saccades in the upper
regime. On the contrary, the large saccades exhibit
the weak long-range anti-correlations for the model

simulations and the human eye-movements in the
upper regime. As well as in the case of the geomet-
rical persistence, we found that the long-range cor-
relations between eye-movements weaken with the
decline of the target’s visibility, which is consistent
with the previous work on this topic [12].

In this research we focused our attention more
on the persistence of eye-movements rather than on
their spatial distribution. That’s why we didn’t con-
sider the factors that are not directly related to the
trade-off between the temporal costs and the ex-
pected information gain. We estimate the optimal
policy under the assumption that the visual search
process is characterized by shift-rotational symme-
try [20], which was not observed in the previous
work with similar experimental settings [22]. The
symmetry of the visual search can be broken by an-
gular dependency of FPOC in both cases of normal
controls and patients with vision disabilities [43].
We plan to include the angular dependency to radial
and smoothing functions of policy (see eq. (A.4)) in
order to consider the asymmetry of the visual field
in our future works.



Appendix A.1 Kernel function

To sum up, this framework provides an elegant
explanation of scaling and persistent dynamic of the
voluntary saccades from an optimality point of view.
It clearly demonstrates that control models are able
to describe human eye-movements far beyond their
basic statistical properties.

Appendix A. Implementation of reinforce-
ment learning algorithms

Appendiz A.1. Kernel function

We assume that the process of the visual search is
characterized by shift-rotational invariance [13]. In
this research we focus our attention on the persis-
tence of eye-movements rather than on their spatial
distribution. That’s why we use the approximation
of the shift-rotational invariance in which we don’t
need to consider the factors that are not directly
related to the trade off between the temporal costs
and the expected information gain, such as an asym-
metry of FPOC.

The coefficients in the set of dynamic equations
are unaltered under any distance preserv-
ing transformations. The last dynamic equation,
which is the policy of gaze allocation , should
be shift-rotational invariant as well. The policy
is determined by function of an expected reward
f(D,p). Due to the property of shift invariance we
can represent the function of an expected reward
with Volterra series [44]:

N L L n
F(D,p) = fot Y Y -+ Y Kn(D—l,...,D=1,) [ [ (1))
1

n=11[;=1 ln=1 i=
(A1)
Where K, (l1, .., 1) are called Volterra kernels. The
constant fy is eliminated in the equation and,
therefore, will not be considered. The dimensional-
ity of Volterra kernels K, scales with the number
of the potential locations as L™. The estimation of
Volterra kernel for n > 2 is computationally unfeasi-
ble for the grid size in our simulations: L = 27 x 27.
For this reason we consider only the linear term:

f(D,p)=>_ K(D—1)p(l) (A2)
l
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We do not expect that the estimation of higher order
terms will result in improvement of the performance
of the policy. The current observation model [ is
based on independent inputs W; on each individual
location, which results in independence of the values
of the probability distribution p; for a sufficiently
large grid size. Therefore, higher order terms don’t
provide additional information on the location of the
target.

The function of the expected reward should be
computed taking into account the current location
of the gaze A. Considering its rotational invari-
ance the most general form of this function is:
F(D.p) = SE(ID 1] |ID ~ Al)p(). The sofi-

max policy for the function of the expected re-
ward is:

1Dy, pr) o

exp (an(l)K(an - l” ) HDn - Anl)) (A.3)
l

Together with the set of the equations , this
form of the policy keeps the evolution of the system
invariant under any distance-preserving transforma-
tion. The convolution of the probability distribution
with the kernel function K (x,y) in general form[A.3
is difficult to optimize, and the problem can be ef-
fectively solved only in a separable approximation:

K([[Dn = Anll, [ Dn — )

~ R([|Dn = Anl) S (| Dn — z]) (A.4)

We call R and S the radial and the smoothing
functions correspondingly. The first one character-
izes the dependence of the expected reward on the
intended saccade length. The motivation behind
the introduction of the radial function R are both
growing uncertainty of the fixation placement @
and the duration of the step with the length
of the saccade. We assume that the radial func-
tion R equals zero outside an interval [amin, Gmaz],
where a,,;, and @4, are minimal and maximal sac-
cade length correspondingly. The minimal saccade
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length @i, = 1deg [45] is chosen as a magnitude
of the shortest possible voluntary movement. The
maximal saccade length a,,ee = V2 - 15 deg is equal
to the length of the diagonal of the stimulus image
in our experiments. The smoothing function S de-
scribes the relative contribution of the surrounding
locations to the reward. The smoothing function
has the same role as a term F (see eq. (I5)) in
the definition of the information maximization pol-
icy 7o, and it basically defines how meaningful the
certain location is without consideration of the time
costs of a relocation.

The form of policy in the separable approx-

imation is:

M(Dnapn) X
exp (R (|| Dn — Aull) (pn * S) (D)) (A.5)

which is used in the simulation of the trajectories
and the training phase. Two heuristic policies pre-
sented in section [3.1] are both special cases of the
general form of a policy in the separable approxi-

mation(A.5)).

Appendiz A.2. Parametrization of policy

The radial R(x) and the smoothing S(x) functions
are represented with Fourier-Bessel series:

U1:¢ (T—Amin)

Amaxz —Amin

0,

) y Omin < T < Omax

else

R(z) = { 255:1 7“€J1<

S(a:){

where u;.¢ are zeros of Bessel function of order i
and b is the radii of the visual field. This repre-
sentation allows us to control the dimensionality
of the kernel and to effectively store the policy in
memory. The choice of orders (i = 0,1) of Bessel
functions in is caused by boundary con-
ditions for the radial and the smoothing functions:
R(amin) = R(Gmaz) = 0; S(b) = 0. The boundary
conditions on the radial function forbid the model

(A.6)

Y sedo ("5T), @ <b
0, else

(A7)
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observer to fixate the same location again R(0) =0
and to make unlikely large saccades R(amqz) = 0.
The condition on the smoothing function S(b) = 0
corresponds to the absence of any information gain
from remote locations, and, therefore, their irrele-
vance to the process of fixation selection. So, the
policy () is represented by set of parameters:
Y= (’I“Q;E, 50;5).

Appendiz A.3. REINFORCE

We solve the optimization problem for the value
function with a policy gradient algorithm
adopted from [32]. This optimization procedure is
represented as an iterative process of a gradient es-
timation and an update of the policy parameters at
the end of each training epoch - the sequence of M
episodes.

Repeat

1. Perform a training epoch with M episodes
and get the sequence of observations, ac-
tions and costs for each time step ¢ and

episode m: (Dt m, Gtm, Vin)-

2. Estimate optimal baseline for
each gradient element ¢&: be =
2
Z(ng logﬂo(at,m,pt,m)) Vin
m t =
;n: (;VE 1Og Mo (at,wupt,'m))
3. Estimate the gradient for
each element: Ne =
2
5 (S Vetonss (Gumopin) ) = Vi)
m t
4. Update policy parameters: ¥ <— 9 4+ an

until gradient 1 converges.

Appendiz A.4. PGPE

The second approach to the optimization prob-
lem is a parameter exploring policy gradient
presented in [33]. As well as in the previous section,
we estimate the gradient and update the policy pa-
rameter at the end of each training epoch. We use
a symmetric sampling of the policy parameters for
gradient estimation. At the beginning of each step



we generate the perturbation e from normal distri-
bution N (0, Io?) and create the symmetric param-
eter samples 97 = p+e and 9 = p — ¢, where p is
the current values of the policy parameters for the
training epoch. Then we simulate one episode for
each parameter sample and denote the cost V' for
the episode generated with 97 , and V'~ for 9~ cor-
respondingly. At the end of each training epoch the
policy parameters and the standard deviation of the
distribution of perturbation are updated according
to the equations:

M
Hi = i + az ¢, (Vi =v") (A.8)
j=1

M ei. 2—0'.2 + o
Uz':Urf‘CVZ((j)U, Z> <<V>_Vj ;—Vj )
j=1 !

(A.9)
where for jth episode 6;» is the perturbation for the
parameter ¢ and Vji are sampled costs. The cost
baseline is chosen as a mean cost for the training
epoch.

Appendiz A.4.1. Convergence of policy gradient

The Markov decision process defined by set of
dynamic equations (4l6I111A.5) was simulated on
N x N grid, which comprises the N? possible tar-
get locations, where N=128. At the beginning of
the optimization procedure we pick the policy pa-
rameters ¥ randomly from the uniform distribution
U(—0.5,0.5) and fix parameter A = 0.001. For both
algorithms we use the same parametrization of pol-
icy. The training epoch for both PGPE and RE-
INFORCE consists of 400 episodes. Learning rate
« = 0.2 was the same for both algorithms.

Figure illustrates the performance of two
policy gradient methods we used for search of the
optimal policy for the case of FPOC corresponding
to e, = 0.25 and e; = 0.2. Both algorithms used
Fourier-Bessel parametrization of policy with a di-
mensionality = = 45 for the radial and the smooth-
ing functions. REINFORCE performed better for
all parameter settings. On average, it takes around
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Figure A.12: The performance of parameter exploration pol-
icy gradient (PGPE) and episodic REINFORCE with an op-
timal baseline.

50 and 40 learning epochs to converge for REIN-
FORCE and PGPE correspondingly. The choice of
the dimensionality higher than 45 doesn’t improve
the performance of both algorithms.

Figure[AT3|shows the results of optimization: the
radial R(x) and the smoothing S(z) functions. Both
REINFORCE and PGPE provide close estimates of
the smoothing and the radial functions for eccen-
tricity smaller than ¢ < 3°. In order to compare
the solution with the heuristic policies , we
presented FPOC on the same plot with the smooth-
ing function. The smoothing function provided by
REINFORCE is monotonously decreasing as well as
FPOC, whereas for PGPE we have a fluctuating so-
lution with a decreasing amplitude of oscillations.
The behavior of the radial function is similar for
both solutions, with higher amplitude of oscillations
for PGPE solution.

Appendix B. Implementation of MF-DFA

Appendiz B.1. Multifractal analysis

In this chapter we present the details of MF-DFA
algorithm used here for calculation of the general-
ized Hurst exponent. All of this section is based on
Kantelhardt et al.[38].
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Figure A.13: The results of the optimization: the smoothing S(x) funtion (left) and the radial R(x) function (right).

The procedure of MF-DFA starts with definition
of a profile for time series X = {z1,...,zx} with a
compact support:

(B.1)

The profile Y'(¢) is divided on Ny = int(N/s) seg-
ments, where s is chosen among some linear space
s € 5 = {Smin,Smin + DS, ..., Smaz ;- The segmenta-
tion starts from the beginning of time series, there-
fore, there are residual N + s number of the ele-
ments at the end of time-series. In order to process
the residual elements, the segmentation is also per-
formed from the end of time series. So, at the end of
segmentation procedure we have 2N segments for
each value of s.

The calculation of the variance is based on an
approximation of local trend for each segment v =
1,..., Ny with a polynomial function y,. Then, the
variance on each segment is calculated as:

Fus) = - SV (= s +il — ()} (B2)

for each segment v =1, ..., Ny and

F) = YV IN = (0= Ns ] = )

(B.3)

for v = Ng+1,...,2N,. The order m of polynomial

function must satisfy the condition m < s — 2. The

variance over all segments are averaged to obtain
the gth order fluctuation function:

1 2N, ) 1/q
Fy(s) = {2 ¥ S [P, s)]" } (B.4)

According to the properties of gth order fluctua-
tion function [46], the scaling behavior of Fy(s) is
governed by the generalized Hurst exponent:

Fy(s) ~ s™@ (B.5)
The value of H(q) is usually obtained through a
linear regression of log, (Fy(s)).

Appendiz B.2. Interpolation of simulated trajecto-
ries

We perform MF-DFA analysis on the magnitude

of the saccadic events simulated by MDP defined

above. Each episode of MDP provides the sequence

of vectors of gaze positions: A1, ..., Ay. In order to



Appendix B.3 Multifractality of simulated trajectories

get the time series of the gaze allocation in real time
- A, we follow the simple procedure of an interpola-
tion:

e The calculation of the duration of each time
step n with the total time of episode T =
Zﬁil ©; and start time of each discrete step:

0,ifn=1
T, = 1 ) B.6
{ Zz’:ll @i, ZfTL >1 ( )
e The choice of the length of the real-time se-
quence M = 25 % T, which corresponds to 40
millisecond resolution.

e For each element ¢ of A we define, which dis-
crete time step it belongs: T,, < % < Thy1.

e If time step ¢ of A; corresponds to the fixation
during the discrete time step n : % T, <
Ofiz(n), than Ay = A,,. In the other case, if
time t corresponds to the saccadic movement
within the discrete time interval n, we have:

A Anp1—A,
A, = A"+TS“07IAK,:LA"| (2—% -7, — Qfm(n)).
Therefore, we have defined the function that
maps the discrete sequence A to real-time se-

quence A.

The real-time sequences A from 1000 episode corre-
sponding to each policy are merged, and the result-
ing sequences fl#, A1, Aro are analyzed with MF-
DFA.

Appendiz B.3. Multifractality of simulated trajecto-
ries
We perform MF-DFA over the differentiated tra-
jectories generated with PO-MDP under the heuris-
tic policies 7y, m; and the learned policy u. Before
differentiation trajectories were represented as real
time sequences with the procedure of the interpola-
tion
The model presented here is not devoted to FEM
and can’t describe the combined movement of both
FEM and the saccades. The results of our analy-
sis should be compared with the scaling behavior
of F,(s) for human eye-movements on the scales
s > 256 ms, which corresponds to the upper regime.
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Therefore, we set the minimal time scale $,,;, =
256ms. The choice of S0 = 2% 103ms corresponds
to the average length of episode. We assume that
there is no correlation between the episodes due to a
random location of the first fixation and the location
of the target.

The figure demonstrates the scaling of the
g-order fluctuation function Fj(s) (B.4) for simu-
lated trajectory under the infomax greedy policy 7
for the conditions: e; = 0.2, e, = 0.15. The red,
blue and green lines correspond to the linear ap-
proximation of the function log, (F,(s)) for the or-
ders ¢ = {—10;0;10}. The scaling of F,(s) doesn’t
exhibit the crossover for positive g-orders on an
interval of scales [Smin,Smaz], however the behav-
ior of log, (Fy(s)) deviates from linear at the large
scales s ~ S;nqz- The simulations on different grid
sizes, which correspond to different average time of
task execution, have shown that the interval of lin-
ear behavior of log, (F,(s)) always coincides with
[Smin,Smaz]. The scaling of Fy(s) on [Smin,Smaz] 18
different for different orders ¢ and, therefore, the
trajectories A, are multifractal time series.

The figure[B-15] demonstrates our estimates of the
correlational Hurst exponent Heorr(q) (left) and the
Hurst exponent of shuffled time series Hgpyr(q) of
time series simulated under the different policies.
As well as in the case of the human eye-movements,
two types of multifractality present in the simulated
time series. The behavior of Hgp,, r(q) resembles the
power-law distribution scenario 25| for all policies,
except the infomax greedy my. The distribution of
the saccade length doesn’t correspond to the power-
law for 7 , which was demonstrated on figure [f] .
On the contrary, the infomax rate 7m; and the learned
policy p generate the movement with the distribu-
tional multifractality that presents in human eye-
movements as well.

For all policies the correlational Hurst exponent
is positive for the negative g-orders. This indicates
the presence of long-range correlations for small fluc-
tuations. The large fluctuations are anticorrelated
for m; and exhibit weak anti-correlation for p. We
observe the last scenario for upper regime of hu-
man eye-movements[I0} where the large fluctuations
demonstrate a weak anticorrelation in a contrary to
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Figure B.14: The scaling of the g-order fluctuation function Fy(s) (left) estimated for the simulated trajectories under the
infomax rate policy 71, and the generalized Hurst exponent H(g) (right) computed through a linear regression of logy (Fy(s)).
The red, blue and green lines correspond to the linear approximation of function log, (Fy(s)) for orders ¢ = {—10;0;10}. The
scaling of Fy(s) doesn’t exhibit the crossover for the positive g-orders on an interval of scales [Smin,Smaaz]-
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Figure B.15: The Hurst exponent of the shuffled time series Hgp,, ¢(q) (right) and the correlational Hurst exponent Heorr(q)
(left) of the trajectories simulated under the different policies. As well as in the case of human eye-movements, two types of
multifractality present in the simulated time series. The behavior of Hgp, f(g) resembles the power-law distribution scenario
for all policies, except the infomax greedy mp. The distribution of saccade length doesn’t correspond to the power-law for
7o , which was demonstrated on the figure [§] . On the contrary, the infomax rate 71 and the learned policy p generate the
movement with the distributional multifractality that presents in human eye-movements as well.



positively correlated small fluctuations.

Appendix C. Implementation of
chophysical experiments

psy-

We set a goal to reproduce the eye tracking exper-
iment described in [II]. In this section we provide
the description of the psychophysical experiments.

Appendiz C.1. Participants

The group of nine patients with normal to
corrected-to-normal vision participated in the ex-
periment. The group included four postgraduate
students (age 23 £ 7, 4 males) from Queen Mary
University of London. This group was aware of
the experimental settings and passed 10 minutes
of training sessions with four different experimental
conditions, which correspond to the certain value
of the RMS contrast of background noise. The ex-
periments were approved by the ethics committee
of Queen Mary University of London and informed
consent was obtained.

Appendiz C.2. Equipment

We used DELL P2210 22” LCD monitor (resolu-
tion 1680 x 1050, refresh rate 60 Hz) driven by a
Dell Precision laptop for all experiments. The eye
movements of the right eye were registered using Eye
Tracker device SMI-500 with a sampling frequency
of 120 Hz. The Eye tracker device was mounted on
the monitor. Matlab Psychtoolbox was used to run
the experiments and generate the stimulus images.

Appendiz C.3. Stimulus and procedure

The participants set in front of the monitor with
their heads fixed with a chin rest at a distance of
110 ¢m from the monitor. The monitor subtended
a visual angle of 21 x 15deg. Each participant was
shown the examples of the stimulus image before the
experiments and was instructed to fixate the target
object as fast as possible and to press the certain
button on a keyboard to indicate that they found the
target. All four participants completed one practice
session with 40 trials before the experiment.
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The stimuli were the static images generated be-
fore each session according to the description from
the original experiment [II]. The 1/f noise was gen-
erated on a square region on the screen, which spans
the visual angle of 15 x 15 deg. The target was sine
grating 6 deg™! framed by symmetric raised cosine.
The target appeared randomly at any possible loca-
tion on the stimuli image within the square region.
The experiments were provided for one level of RMS
contrast of target e; = 0.2 and several levels of 1/f
noise RMS contrast e,, € (0.1,0.15,0.2,0.25).

The participants completed four experimental ses-
sions with 120 trials. The experimental session
started after inbuilt nine-point grid calibration of
the eye-tracking device. The participants were given
3 minutes of rest between sessions. One of 120 stim-
uli images were shown at the beginning of each trial.
The participants are assumed to perform the vi-
sual search task, which is finished by pressing the
"END" button. In our experimental settings, the
signal from the participants was blocked for 300 ms
from the start of each trial. If the gaze position
measured by the eye tracking device is in the vicin-
ity of 2 deg around the location of the target at the
moment participant presses the "END" button, the
task is considered successful. Due to the presence
of a temporal delay between the moments of local-
ization of target and pushing of "END" button we
block the signal from END button for 400 ms. After
a completion of each trial the central fixation cross
was shown for 500 ms, then the next trial started
and new stimulus image was shown to participants.

Appendix D. Influence of saccade latency

According to the literature, the saccade program-
ming is assumed to be the two-stage process that
consists of labile and non-labile stages [I7]. The la-
bile stage is the first stage of the saccade program-
ming, during which the initial saccade command can
be cancelled in a favour of saccade to another loca-
tion. The saccade to the next location is executed
after the non-labile stage. The visual input is active
during both labile and non-labile stages and sup-
pressed during the execution of a saccade. There-
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Figure C.16: The completion time (left) and the saccade length (right) for the human observers, the simulated agents with the

initial observation model and the extended one.

fore, the decision D,, is made at the end of the labile
stage, and the visual input received at the location
A,, during non-labile stage of saccade programming
can be used for decision-making only at the next
step n + 1. As a result, the observer receives two
separate observation vectors Wl‘?‘l and Wﬁﬁ;l from
the previous and the current fixation locations. The
observation model [ doesn’t take into account the
duration of the observation. We assume that ob-
servation vector is integrated continuous-time Gaus-

sian white noise: W(l, A) = tt+@ w(t,l, A)dt, which
satisfies following:

1. Elw(t, 1, A)] = d1.m/b
2. E[w(tl,ll,A),w(tQ,ZQ,A)] =

Oty ,t5014 1o

Oo F2([lI—AJD)

where 0y = 250 ms is a time interval is the detec-
tion experiment [I1], for which the visibility maps
were measured. This model of noise generalizes the
"noisy observation" paradigm for variable fixation
duration. The result of integration of continuous
time noise w is Gaussian white noise W with mean
O-E[w] and variance ©-02[w]. Next, we assume that
the duration of the non-labile stage is @,;;, = 41,6
ms [47] and the rest of fixation duration is allocated
for the labile stage @y, &~ 200 ms (the average fix-
ation duration according to our data: Oy, = 240
ms). Using [l| and [2| we compute mean and variance
of observation inputs Wf‘lfl and Wﬁflgl , and suc-
cessively apply the equation [3| to evaluate the belief
state pyy1.

We learned the policy of gaze allocation for the
extended observation model using REINFORCE.
We compared the basic characteristic of trajecto-
ries simulated under this policy with the simulations
for the initial model and data from the human ob-
servers (Look at The initial model outper-
formed the extended one, but no significant differ-
ence was found. We didn’t expect any significant
difference in performance, because the observer re-
ceives the same amount of information on average
in both models.
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