
IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, VOL. 12, NO. 3, SEPTEMBER 2020 401

A Computational Model for Child Inferences of
Word Meanings via Syntactic Categories for

Different Ages and Languages
Yuji Kawai , Yuji Oshima, Yuki Sasamoto, Yukie Nagai , Member, IEEE, and Minoru Asada , Fellow, IEEE

Abstract—Children exploit their morphosyntactic knowledge
in order to infer the meanings of words. A recent behavioral
study has reported developmental changes in word learning from
three to five years of age, with respect to a child’s native language.
To understand the computational basis of this phenomenon, we
propose a model based on a hidden Markov model (HMM). The
HMM acquires syntactic categories of given words as its hid-
den states, which are associated with observed features. Then,
the model infers the syntactic category of a new word, which
facilitates the selection of an appropriate visual feature. We
hypothesize that using this model with different numbers of cat-
egories can replicate the manner in which children of different
ages learn words. We perform simulation experiments in three
native language environments (English, Japanese, and Chinese),
which demonstrate that the model produces similar performances
as the children in each environment. Allowing a larger number of
categories means that the model can acquire a sufficient number
of obvious categories, which results in the successful inference
of visual features for novel words. In addition, cross-linguistic
differences originating from the acquisition of language-specific
syntactic categories are identified, i.e., the syntactic categories
learned from English and Chinese corpora are relatively reliant
on word orders, whereas the Japanese-trained model exploits
morphological cues to infer the syntactic categories.

Index Terms—Computational model, cross-linguistic differ-
ence, hidden Markov model (HMM), learning of word meanings,
syntactic category.

I. INTRODUCTION

ACRUCIAL aspect in understanding the mechanisms of
human linguistic competence is to reveal the develop-

mental process by which children acquire language. At around
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one year of age, children begin to speak words, and by the age
of two, they typically produce multiword sentences. Although
their utterances obey several syntactic rules [1], they are
unable to apply these rules to a novel word (see [2] and [3]),
suggesting that their syntactic categorization is immature. In
particular, the verb category is not generalized. Tomasello [4]–
[6] hypothesized that the syntactic rules of young children are
constructed in an item-based fashion, i.e., they only remember
the transitions between specific words. More abstract syntactic
categories and their transition rules are gradually learned from
language input between two and five years of age [4]–[7].

Imai et al. [8] examined whether English-, Japanese-, or
Mandarin Chinese-speaking children could infer a target object
or action indicated by a novel word using its basic syntactic
category (here, either the noun or verb category). Between the
ages of three and five years, they observed different develop-
mental changes depending on the children’s native language.
The children were shown a movie in which a woman per-
forms a novel action using a novel object (standard stimulus).
Concurrently, an adult experimenter read a sentence includ-
ing a novel nonsense word, dax. The sentence presented the
word in one of three conditions: as a noun, bare verb, or verb
with arguments. The sentences in these three were “this is a
dax,” “daxing,” and “she is daxing it,” respectively. Two test
movies were then presented to the children. In the first, the
same woman performed the same action with a new unfamil-
iar object [action-same (AS) stimulus]. In the second movie,
the woman performed an unfamiliar action different from the
standard stimulus, but used the same object [object-same (OS)
stimulus]. The children were asked to select the movie that rep-
resented dax. The correct choices were the AS stimulus for the
two verb conditions and the OS stimulus for the noun condi-
tion. The results demonstrated that regardless of the native
language, three-year-old children could successfully choose
the OS stimulus for the noun condition, but were unable to
generalize the verb to the AS video for the two verb condi-
tions [8]. Five-year-old children tended to correctly generalize
the novel verb to the AS video, but the condition in which
the children succeeded in generalizing the verb was different
across the three language groups. The Japanese-speaking five-
year-old children were able to correctly generalize the verb
to the AS video in the bare verb condition. In contrast, the
correct choice percentages for the English-speaking children
were consistent with levels of pure chance, and the Chinese-
speaking children generalized the verb to the OS video in
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the bare verb condition. The English- and Chinese-speaking
children only correctly generalized the verb to the AS video
for the condition of a verb with arguments. The outcome is
that this paper identified developmental changes and cross-
linguistic differences in children’s verb generalizations (see
Appendix A for details of the experimental data we used).

This paper indicates that children’s inferences of word
meanings rely on syntactic structures in their native languages.
To accomplish the task presented by Imai et al. [8], [9],
children must infer the syntactic category of a novel word,
i.e., determine whether it is a noun or a verb. These syn-
tactic categories enable them to select the correct semantic
feature in a scene, based on the knowledge that nouns and
verbs typically designate object and action categories, respec-
tively. A key mechanism here is the acquisition of syntactic
categories. Three-year-old children may exhibit immature syn-
tactic categorization skills, resulting in a lower accuracy in
the word generalization task. Five-year-old children are likely
to exhibit cross-linguistic differences in their performances,
because they have acquired different syntactic categories based
on their native language. This raises two open questions. First,
which structures of syntactic categories lead to the differ-
ences in word generalization? Second, which characteristics
of native languages result in the acquisition of these different
structures of syntactic categories? Behavioral and experi-
mental approaches have struggled to reveal the mechanisms
underlying this process directly from observed data.

In order to address both of these questions concurrently,
we propose a computational model that learns word mean-
ings based on syntactic categories acquired from an input
language. The model can examine the acquired representa-
tion of the syntactic categories and the word meanings learned
through the categories. We evaluate our model by compar-
ing its output with children’s word generalizations reported by
Imai et al. [8]. We employ a hidden Markov model (HMM),
which is an unsupervised machine learning technique, to
learn syntactic categories [10]. Given certain word sequences,
the HMM determines the syntactic categories (hidden states)
of words and the transition probabilities between categories.
A key mechanism for explaining performance differences
between age groups is the number of syntactic categories, i.e.,
hidden states of the HMM. The larger the number of hid-
den states the model has, the more complex syntactic rules it
can acquire, thus achieving more accurate inferences of word
meanings (the first issue). This factor may represent the con-
sequence of child development. We test the performance of
the model in three language environments (English, Japanese,
and Chinese), and identify how the differences among syn-
tactic structures in these languages affect the acquisition of
syntactic categories, and how such language-specific syntactic
categories impact the performance of inferring word meanings
(the second issue).

We expect the model to behave differently depending on the
language, in the following aspects.

1) In English, owing to stronger syntactic cues (i.e., word
orders) in categorizing verbs, our model mainly learns
word orders. In particular, a verb is positioned after a
noun. Hence, it can infer a novel verb as an action if its

argument structure is followed (i.e., in the condition of
a verb with arguments). Otherwise, it cannot make an
inference, even when the model has a sufficiently large
number of categories.

2) In Japanese, the trained model can correctly infer an
action even for the condition of a verb without argu-
ments, because Japanese contains important morpholog-
ical cues for verbs, e.g., a verb stem and suffix “teiru” for
the progressive form. Japanese contains comparatively
weak syntactic cues, and arguments are often dropped.

3) In Chinese, there are no cues for assigning categories to
bare words. Therefore, the Chinese-learned model can-
not infer the meanings of verbs for the condition of a
bare verb, even with a large number of categories.

We will demonstrate that our model behaves as described
above. In addition, the acquired syntactic categories are ana-
lyzed in order to investigate the origins of language-specific
developmental changes in inferring word meanings.

II. RELATED STUDIES

A. Cues for Syntactic Categorization

Many models and analytical studies have addressed chil-
dren’s acquisition of syntactic categories as explained below.
These suggest that children employ three main cues to induce
syntactic categories, i.e., syntactic (distributional), morpholog-
ical, and phonological.

Almost of all computational models consider syntactic or
distributional information, i.e., patterns of ordered pairs of
words (e.g., [11]–[19]). For example, given sentences such as
“they use balls” and “they throw balls,” we can see that the
words adjacent to “use” and “throw” are the same. Words
belonging to a syntactic category tend to share adjacently
positioned words, providing a reliable cue for categorizing
the words. The accuracy of this categorization is improved
by not only the regularity of word orders, but also by that
of syntactic category orders, e.g., the category of transitive
verbs is placed after the subject category and before the
object category (e.g., [12] and [16]). Put simply, the syntactic
category of a word can be determined from the regulari-
ties of both adjacent words and adjacent categories. Such
syntax-based models employ several unsupervised techniques
to induce categories. Elman [11] demonstrated that a simple
recurrent neural network (SRN) could determine syntactic cat-
egories using simple three-word English sentences. The SRN
was trained to predict the next word using the current word,
resulting in the acquisition of distributional information in
the hidden neurons of the SRN. Syntactic categories were
obtained by clustering the representation in the hidden neu-
rons. Therefore, the output relied on the previous syntactic
category as well as the input (i.e., the previous word). The
HMM that we adopt addresses sentences in a similar man-
ner, where the next word is determined using the syntactic
categories.

Recent studies analyzing child-directed speech have
highlighted the importance of morphological and phono-
logical cues in the acquisition of syntactic categories.
Onnis and Christiansen [20] reported that child-directed
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speech contains rich morphological information that can clas-
sify syntactic categories in many languages. For example,
English verbs are often accompanied by verb suffixes such as
“-ing” and “-ed.” An experimental study found that English-
speaking 15-month-old children could already segment verbs
into bound morphemes and free morphemes [21], [22].
Thus, children seem to employ such morphological cues
to infer syntactic categories. Furthermore, it has been sug-
gested that several phonological components may be use-
ful in distinguishing syntactic categories. For example, the
mean length of syllables is significantly greater for nouns
than for verbs in English [23]. In addition, one modeling
approach demonstrated that considering phonological and
morphological cues, i.e., the number of syllables and the
ending phoneme, can improve the performance of syntactic
categorization [24].

In summary, previous computational studies have proposed
several algorithms for inducing syntactic categories. These
studies suggest that children may categorize words using not
only syntactic cues, but also word-internal cues. However,
most existing studies have only demonstrated limited aspects
of children’s language development. To verify the plau-
sibility of computational models, we need to investigate
the potential of the models for reproducing diverse aspects
of language development, such as the differences between
languages.

B. Existing Models for Inferring Word Meanings Using
Syntactic Categories

The learning of a word meaning is modeled as the calcu-
lation of P(f |w), the probability of some semantic features f
appearing in a scene when given a word w. Cross-situational
learning calculates mappings by considering many utterance-
scene pairs (e.g., [25]–[28]).

The basic idea of inferring a word meaning in the cur-
rent study is to infer f by considering not only w, but also
the syntactic category s of the word, i.e., P(f |w, s). Even if
w is a newly learned word, s helps the learner to map the
word to an appropriate semantic feature, such as in a situa-
tion that corresponds to the experiments of Imai et al. [8], [9].
Alishahi and Fazly [29] demonstrated that a model for infer-
ring word meanings via syntactic categories improves the
accuracy and speed of learning word meanings compared
to a model without s. However, they assumed that s was
completely correct and given in advance. Therefore, their
model cannot explain how s is acquired, or how s influences
developmental changes depending on the input language in
P(f |w, s). Other models acquire s using corpus-based unsu-
pervised machine learning techniques [19], [30]–[33]. In order
to obtain s, Toyomura and Omori [30] employed an SRN
where the syntactic representation in the hidden neurons is
associated with observed semantic features. Their model can
infer the target object indicated by the word through the syn-
tactic representation. Alishahi and Chrupała [32] employed
a statistical unsupervised model to learn s, which may be
a more reasonable method for modeling complex syntac-
tic structures. They demonstrated that the learning efficiency

Fig. 1. Overview of the model for inferring word meanings via syntactic
categories. This indicates the inference process of a target semantic feature
o designated by a novel word X (wt) through the syntactic category s and
semantic category m. There are two inference processes. At first, the model
infers s of a given word sequence w using an HMM. Then, the model infers
m of X using co-occurrence probability between m and s. The model thus
chooses o from observing semantic features f based on m, where it is assumed
that the relationship between o and m is given.

of the model is similar to that of the model using the
supervised syntactic categorization [29]. Attamimi et al. [33]
showed that syntactic categorization using an HMM can help
associate between words and semantic features. The hidden
states represent a category of functional words and seman-
tic properties of words such as an object, motion, and place.
These information enables the model to accurately infer word
meanings. However, they did not consider cross-linguistic
differences or developmental changes in terms of the cate-
gorization of nouns and verbs. Most of the above-mentioned
models have only been evaluated in terms of their learning
efficiency, rather than with respect to language dependencies
or developmental changes. A similar problem is observed in
studies regarding syntactic categorization. The efficiency of a
system does not always guarantee its plausibility as a cognitive
mechanism.

III. WORD-LEARNING MODEL BASED ON

SYNTACTIC CATEGORIES

Fig. 1 presents an overview of our model for inferring the
probability of a visual semantic feature P(o) designated by a
word wt, for a given word sequence w = (w1, w2, . . . , wt, . . .)

and observing semantic features f . It is assumed that w is
a word sequence containing a verb suffix separated from a
verb stem. Furthermore, f denotes a set of semantic features
corresponding to nouns, verbs, and adjectives. The purpose of
the model is to compute P(o|wt, f ). The model selects a target
semantic feature o, which is designated by a given word wt,
from the feature candidates f in a given scene. This probability
is proportional to P(o|wt)P(o|f ), where it is assumed that wt

and f are independent. Here, P(o|f ) is given as a uniform
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Fig. 2. Generative model of a trigram HMM [34]. A word is generated
by a syntactic category that is generated by the previous two categories. W
indicates the number of words in a corpus, i.e., the length of a corpus.

distribution over the semantic features present in the currently
observed scene. This assumption means that a target feature
exists in the observed scene and the model does not have
semantic bias to infer the target. The model learns P(o|wt)

using many pairs of scenes and words. However, the model
cannot infer a semantic feature o designated by a newly given
word wnovel, because it has not yet acquired the direct relation
P(o|wt = wnovel). Therefore, the model indirectly infers o in
two stages.

1) Inference of the syntactic categories s of w using an
HMM.

2) Inference of the semantic category m of st using co-
occurrence probability between semantic and syntactic
categories.

Finally, the model chooses o from f based on m. Here, s =
(s1, s2, . . . , st, . . .) denotes the sequential syntactic categories
of w, and s−t denotes s excluding st.

In the first stage of inference, we employ an HMM to
derive the syntactic categories P(st|wt = wnovel, s−t) as its
hidden states. The generative model for the HMM is shown in
Fig. 2 [34], where W indicates the length of a corpus. We
assume a trigram Markov chain in the transitions between
syntactic categories. The probability of the current syntactic
category is estimated based on the previous two categories, i.e.,
P(st|wt, s−t) ≡ P(st|wt, st−2, st−1). The HMM induces these
transition probabilities between the syntactic categories, cor-
responding to simple syntactic rules. For example, an English-
trained model is expected to acquire comparatively high values
of P(st = “verb stem”|st−2 = “noun”, st−1 = “be-verb”).

The model infers o from an estimated category st, as P(o|st).
However, there is no chance of learning the probability for
a newly given semantic feature. Note that the children were
presented with a novel object and action in the experiments of
Imai et al. [8]. To address this issue, the model needs the sec-
ond stage of inference. We introduce a semantic category m,
to denote more abstract categories of semantic features, such
as action, object, or property. We assume that this category
unambiguously corresponds to semantic features, and the cor-
respondence is given a priori. The distribution of P(o|m = mi)

is uniform over semantic features that belong to the cate-
gory mi. The model cannot learn the direct mappings between
s and the novel semantic feature o in advance. Nevertheless,
it can learn the mappings between s and m. We assume
that the model can recognize m for the novel o. Thus, the
newly given o can be indirectly inferred from s through m, as
P(o|st) = ∑

m P(o|m)P(m|st).

The probability that o is referred to by wt is obtained as
the product of the direct pass P(o|wt) and the indirect one∑

st

∑
m P(o|m)P(m|st)P(st|wt, s−t)

P(o|wt, s−t, f )

∝
∑

st

∑

m

P(o|m)P(m|st)P(st|wt, s−t)P(o|wt)P(o|f ) (1)

where P(o|wt) on the right-hand side denotes a direct map-
ping from a word to semantic features. This probability is
uniform if wt is novel. Furthermore, we divide the right-hand
side of (1) by maxo(P(o|wt)) to ensure that a novel word read-
ily corresponds to a novel semantic feature. This assumption
is an example of the mutual exclusivity that a newly given
word should correspond to a novel visual feature [35].

The model must learn two probabilities in (1). First,
P(st|wt, s−t), i.e., the induction of the syntactic category of a
novel word on the basis of the transition rules between the cat-
egories, and second P(m|st), i.e., the correspondence between
the syntactic and semantic categories. As mentioned above,
we employ an HMM to determine P(st|wt, s−t). In this HMM,
learning is based only on a learning corpus w, and does not
rely on o or m (see Appendix B.A for further details). In addi-
tion, P(m|st) is obtained in a cross-situational manner. Given
many pairings of a sentence with various semantic features,
the probability is calculated based on co-occurrence between
the syntactic and semantic categories in each sentence-feature
pair (see Appendix B.B for further details).

A key mechanism of the model is the inference of syntac-
tic categories, P(st|w, s−t). This probability is acquired based
on a language corpus (see the next section for details of the
corpora employed for the learning). Thus, the syntactic cate-
gories and their transition rules rely on the syntactic structures
in the given language. The number of hidden states S in the
HMM is a given constant for each age simulation. We sug-
gest that the number has a crucial influence on the accuracy
of the estimated syntactic category. If S is small, such as two,
then the hidden states may only represent a start-word cate-
gory and a category for other words, as illustrated in Fig. 3(a).
Such immature categories lead to inaccurate estimations of the
probabilities of o and m. In contrast, a model with sufficiently
large S can correctly infer m and o, because the verb cat-
egory is suitably differentiated from the noun category [see
Fig. 3(b)]. We hypothesize that different Ss can replicate the
manners in which children learning novel nouns and verbs at
different ages, as reported by Imai et al. [8]. We expect models
with smaller and larger values of S to reproduce the behaviors
of three- and fiver-year-old children, respectively.

IV. EXPERIMENTAL SETTING

An experiment was conducted to investigate whether the
model can replicate children’s generalizations of nouns and
verbs [8], and to clarify the origins of the observed differences
between ages and three languages. The model was trained
using artificial utterance-scene pairs, and then evaluated by
inferring a target semantic feature designated by a novel word.
Subsequently, the internal representation, i.e., the hidden states
of the model, were analyzed to reveal the syntactic categories
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(a)

(b)

Fig. 3. Inference of word semantics depending on the number of syn-
tactic categories. (a) Model acquires obscure syntactic categories because
the number of syntactic categories S is smaller, resulting in the failure to
infer a target semantic feature designated by a novel word. (b) Sufficiently
large S enables the model to acquire well-differentiated syntactic categories.
The larger S improves the accuracy with which target semantic features
are inferred. (a) Estimation through nondifferentiated syntactic categories.
(b) Estimation through well-differentiated syntactic categories.

that contributed to the inference of meanings of novel nouns
and verbs. The following sections describe the learning and
evaluation processes of the model.

A. Utterance-Feature Pairs for Learning

We created artificial corpora containing the syntactic and
morphological structures of English, Japanese, and Mandarin
Chinese, to be used as learning datasets. To avoid any seman-
tic influences, we employed these artificial corpora instead of
real ones to focus on the acquisition of syntactic categories.
Probabilistic transition rules between word categories (e.g.,
subject, object, verb, object, and adjective categories) were
designed for each language, and words were selected from the
vocabulary of each category in a random manner. The word
categories and their transition probabilities were determined
based on real corpora, consisting of utterances made by care-
givers to children aged between two and five years [36]–[38].
These were obtained from the CHILDES database [39]. In
particular, the ratios of syntactic structures in the English

corpus are identical to those from an analysis of child-directed-
speech [40] (see Appendix C for details). For simplicity, no
nested sentences are contained in the artificial corpora, i.e.,
simple sentences such as “the man is reading a book” are
given to the model.

In general, subject and object words are dropped from sen-
tences in the Japanese corpus more often than in English and
Chinese. Japanese sentences can also exchange the subject
with the object, whereas the word orders of the English and
Chinese corpora are more stable. The percentage of single
sentences consisting of free morphemes of a verb and the pro-
gressive tense suffix “-ing,” i.e., bare-verb sentences, is very
small (0.2%) in the English corpus. In contrast, more bare-verb
sentences occur in the Japanese corpus.

An important assumption is that the words in all of the cor-
pora have separate suffixes and free morphemes. For example,
progressive verbs were separated into two morphemes (a verb
stem and the suffix “-ing”) in the English corpus. This cod-
ing allows the model to infer syntactic categories based on
morphological cues as well as syntactic cues. This assump-
tion is plausible, because young children already have the
ability to segment a verb into its bound morpheme and free
morpheme [21], [22].

The scenes corresponding to utterances in each corpus were
fed to the model simultaneously. These scenes artificially con-
sist of semantic features designated by nouns, verbs, and
adjectives in the utterances. In addition, a property is virtu-
ally assigned to a noun unless that noun is qualified by any
adjectives in the text. Hence, we assumed that all objects and
agents have properties of some types. For example, for the
utterance “the man is reading a red book,” the semantic fea-
tures “property of the man,” “man,” “read,” “red,” and “book”
are observed by the model. We adopted three types of semantic
categories: object, action, and property. They unambiguously
correspond to nouns, verbs, and adjectives, respectively. It
was assumed that the model knew the allocation of semantic
categories to semantic features. (Categorization of semantic
features is also a big issue in language development, but it
is not addressed in the present study.) In this experiment, the
model learned 10 000 utterance-scene pairs.

B. Evaluation

A sentence containing a novel word X that did not occur
in the learning corpora was provided to the model follow-
ing the learning process. We examined whether the model
could estimate the correct target semantic feature for X under
three conditions regarding sentences containing X. This con-
stitutes the same experiment as that of Imai et al. [8], [9] (see
Appendix A for details).

1) English
a) Noun condition: This is an X.
b) Bare verb condition: X-ing.
c) Verb with arguments condition: She is X-ing it.

2) Japanese
a) Noun condition: X ga (nominal particle) aru (exist).
b) Bare verb condition: X teiru (verb suffix:

progressive).
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c) Verb with arguments condition: Oneesan (noun:
girl) ga (nominal particle) nanika (noun: some-
thing) wo (accusative particle) X teiru (verb-suffix:
progressive).

3) Mandarin Chinese
a) Noun condition: Nali (noun: there) you (verb:

exist) ge (classifier) X.
b) Bare word condition: X.
c) Verb with arguments condition: Ayi (noun: girl)

zai (adverb: progressive) X yi (one) ge (classifier)
dongxi (noun: thing) ne (mode marking particle).

The model also observes five semantic features that denote
“property of the girl,” “girl,” “a novel object,” “a novel action,”
and “property of the novel object” in all conditions. The prop-
erties of the girl and the novel object were randomly assigned
to adjectives of the corpora’s vocabulary. The model then esti-
mated the probabilities that X refers to semantic features o in
the utterance, based on (1). The estimated probabilities for
the semantic features other than the novel object and action,
i.e., property of the girl, girl, and property of the novel object,
were equally given to the probabilities for the novel object and
action. This additional operation is consistent with the chil-
dren’s forced choices between the OS and AS stimuli, even
if they selected semantic features other than the novel object
and action as the target.

We evaluated 20 variations of the model with different initial
hidden states, and averaged the conditional probabilities for
the novel action referred to by X under each condition. A
t-test (two-tailed with α = 0.05) was employed to evaluate
the accuracy of the estimation. Values that are significantly
smaller than a chance level (0.5) are considered correct in the
noun condition, and significantly larger values are correct in
the verb conditions. We compared these values for in the cases
of three- and five-year-olds, which have smaller and larger
numbers of hidden states S, respectively. The numbers were
determined in order to fit the model performance to that of
the children in the experiment of Imai et al. [8], resulting in
two states for the three-year-old case and between four and six
states for the five-year-old case (see Appendix D for details).

Furthermore, we analyzed the acquired hidden states to
investigate the structures of the syntactic categories. We tagged
the learned corpora with their parts of speech, and investi-
gated which parts of speech were represented by the hidden
states. For example, the value for the representation of verbs
is given by

∑

i∈“verbs”

P(si|w, s−i) (2)

where “verbs” is a set of indexes of verbs in the corpus. The
percentage of values for all parts of speech was then calculated
in each hidden state.

V. RESULTS

A. Inferring the Meaning of Novel Word

Fig. 4 presents the experimental results for the (a) English,
(b) Japanese, and (c) Chinese language conditions. The verti-
cal axis indicates the percentage with which the novel action

(a)

(b)

(c)

Fig. 4. Estimation of the target semantic feature corresponding to a novel
word by the model (bars) and children (points). Results for the model trained
with the (a) English, (b) Japanese, and (c) Chinese corpus. The bars indicate
the average percentage of model estimates in which the inferred semantic
feature was a novel action. The white and black bars denote the results for the
models with fewer hidden states (three-year-old case) and more hidden states
(five-year-old case), respectively. The stars above the bars denote significant
differences (*: p < 0.05, **: p < 0.01) between the model estimation and the
chance level (0.5), shown as a dashed line. The error bars indicate the standard
error. The black and white points denote the results achieved by three- and
five-year-old children, respectively, as reported by Imai et al. [8].

was selected as a target semantic feature of the novel word.
Therefore, the value in significantly more than the chance
level (the dashed line) exhibits that the target is corresponded
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to the action. Conversely, the significantly lower value than
the chance level indicates that the target is corresponded to
the object. The bars and circles denote the performance of the
model and the experimental results reported by Imai et al. [8],
respectively. The white and black bars indicate the results for
the three- and five-year-old cases, i.e., those with smaller and
larger values of S, respectively. The solid and empty circles
indicate the results from children aged three and five years,
respectively.

For all of the conditions, estimations of the model were
similar to the children’s results, suggesting that the model is
able to replicate the language-specific differences in inferring
the meanings of novel nouns and verbs in terms of age. Both
the model and the children correctly selected the novel object
in the noun condition, regardless of their language and age (all
with p < 0.01). The values in the three-year-old cases (with
S = 2) were less than or close to a chance level for both verb
conditions. In contrast, the results for the five-year-old cases
exhibit differences depending on the learned language for the
verb conditions. Although the English-trained model with six
hidden states successfully selected the novel action for the
condition of a verb with arguments (p < 0.05), it did not suc-
ceed in the bare verb condition (p > 0.05) [see Fig. 4(a)]. The
averaged results for the Chinese-trained model (with S = 4)
indicate a similar tendency to the English-trained model, but
the estimation value for the novel bare verb was significantly
higher than the chance level (p < 0.05) [see Fig. 4(c)]. In con-
trast, in the case of five-year-olds for Japanese with five hidden
states (S = 5), the novel verbs could be properly mapped to
the target action for both of the verb conditions (p < 0.01)
[see Fig. 4(b)]. However, the percentage of the actual chil-
dren’s choices for the condition of the verb with arguments was
not statistically significant compared to the chance level [8],
although the averages of the model’s and children’s estimations
exhibited similar trends.

B. Representation of Syntactic Categories

To understand how the differences arising between the ages
and languages in the above results arise, we analyzed the part-
of-speech representation of the hidden states of the HMM
using (2). Fig. 5 illustrates a typical representation of the (a)
English, (b) Japanese, and (c) Chinese cases. The graphs on the
left and the right represent the three- and five-year-old cases,
respectively. The colored blocks denote the ratios of the part-
of-speech representations. Parts of speech that are common
between the languages include nouns (red), transitive verbs
(deep blue), intransitive verbs (blue), and adjectives (orange).
Other parts of speech are defined according to the syntactic
structures (see Appendix C for a detailed explanation of parts
of speech).

In most of the English-trained three-year-old cases, the
model acquired hidden states that separately represent nouns
(ID 1) and verbs [ID 2 on the left of Fig. 5(a)]. The noun cat-
egory enabled the model to predict the semantic feature of the
novel noun correctly. However, the verb category included the
adjectives and part of the nouns, resulting in chance-level esti-
mations in the verb conditions. In contrast, the model acquired

a well-differentiated part-of-speech representation for the five-
year-old case [on the right of Fig. 5(a)]. The model was able to
infer the target action for the novel verb with arguments using
the verb category (ID 3 and ID 4). The noun category was sep-
arated into an object-words category (ID1) and a start-words
category, i.e., a subject category (ID 2), suggesting that the
structure of the syntactic categories depends on the word order.
Thus, given the bare verb, the model regarded the start word
as a noun, although the following word was the progressive
suffix. Such competition between syntactic and morphologi-
cal cues resulted in chance-level estimates in the bare verb
condition.

There were two representations in the Japanese-trained
three-year-old case. First, the category of open-class words
(nouns, verbs, and adjectives) (ID 1) and the category of
closed-class words (ID 2) were acquired, as shown on the
left of Fig. 5(b). These undifferentiated categories resulted in
the estimation being almost at a chance level in all conditions.
This occurred 11 out of 20 times. In the other representation,
the nouns and verbs were represented separately. As the verb
category also included adjectives, the average performance of
the model was at a chance level. In contrast, one category in
the five-year-old case only represented verbs [ID 2 on the right
of Fig. 5(b)]. The novel verbs were classified into the verb cat-
egory, because the model acquired the rule that this category is
arranged before the category of verb suffixes (ID 5). Japanese
sentences often drop subject and object words and change the
word order, resulting in the acquisition of syntactic categories
that rely on word suffixes, i.e., morphological cues rather than
syntactic ones. Therefore, competition between cues, as was
present in the English-trained model, did not occur in the
Japanese-trained model, which was able to infer the correct
target semantic feature in the bare verb condition.

In the Chinese-trained three-year-old case, category ID 1 [on
the left of Fig. 5(c)] consisted of start words, such as nouns,
adjectives, and verbs, and words following words belonging
to the other category (ID 2). The other category included
adverbs and verbs without any adverbs. Hence, the novel verbs
were allocated to category ID 1, because they were located
at the beginning of a sentence or after an adverb, resulting
in estimation at close to a chance level. In the five-year-old
case, the model acquired a category consisting of only verbs
[ID 2 on the right of Fig. 5(c)]. However, the Chinese-trained
model was unable to classify the bare word into the verb cat-
egory, because it did not acquire any categories representing
verb suffixes, unlike the English- and Japanese-trained mod-
els, i.e., there were no word-internal cues. When the novel
verb was placed after a word from the adverb category (ID 4),
the model could correctly map the novel word to the action
feature.

C. Development of Syntactic Categories: Predictions From
the Model’s Approach

Fig. 6 illustrates the contents of the hidden states in terms
of S. We set the concrete number of hidden states in each trial
because our model cannot gradually increase this number dur-
ing the learning. The corpus was fed into the model to learn it



408 IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, VOL. 12, NO. 3, SEPTEMBER 2020
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Fig. 5. Part-of-speech representation for each hidden state of the HMMs. These HMMs were learned the (a) English, (b) Japanese, and (c) Chinese corpus.
The graphs on the left indicate a typical representation of the three-year-old cases, whereas the graphs on the right indicate a typical representation of the
five-year-old cases.

in the same manner as previous sections. We hypothesize that
changes in these contents may correspond to the development
of syntactic categories in children.

The result shows that the model roughly represented main
grammatical structures, e.g., relation between a subject and
object, in the smaller number of S. As the number became

larger, the model could capture more fine-grained grammat-
ical structure, e.g., a suffix and particles. This complements
the results at the ages of three and five in the previous
sections. In the English-trained model [Fig. 6(a)], a noun
category was generated first. This category was then differ-
entiated into a category of subject nouns (initial words) and
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Fig. 6. Differentiation processes of syntactic categories. Different part-of-
speech representation of the hidden states with the number of hidden states
varying from two to six in the (a) English, (b) Japanese, and (c) Chinese
cases.

one of noninitial words. This result suggests that the process of
acquiring English syntactic categories relies on the word order,
i.e., syntactic cues. In contrast, the Japanese model displayed
differences between closed- and open-class word categories
[see Fig. 6 (b)]. The closed-class word category separated a
suffix category from a particle one, suggesting that this acqui-
sition process is based on the particles and suffixes. Similarly,
the Chinese-trained model [Fig. 6 (c)] produced a category of
closed-class words. However, this model did not represent suf-
fixes, and the category of closed-class words was subdivided
into adverb and particle categories. The adverbs are important

syntactic markers, because a word can be both a noun and a
verb in Chinese.

VI. DISCUSSION

We have proposed a model that may represent children’s
inferences of novel nouns and verbs. Namely, an HMM derives
the syntactic categories of words from the input sentence,
and these categories are associated with observed seman-
tic features. The proposed model then infers an appropriate
semantic feature that is referred to by a novel word using
the acquired syntactic categories. The model was evaluated
by comparing its output with the performance of children in
English, Japanese, and Chinese environments, as reported by
Imai et al. [8]. The experimental results demonstrate that the
model can successfully replicate the language-specific differ-
ences in the performances of the children, in terms of age (see
Fig. 4). Further analysis of the hidden states in the learned
HMMs revealed a detailed representation of the syntactic cat-
egories that yielded the differences in performance in the three
languages (see Fig. 5). Our findings prompt the following three
major suggestions.

A. HMM as Model Toward Syntactic Development

First, the proposed model offers a computational frame-
work for explaining young children’s syntactic categorization
from language input. We have also demonstrated that these
abstract syntactic categories may affect the learning of words
by children. There is strong evidence that a single model
could replicate the multiple tendencies in children’s inferences
of word meanings in the three language environments for
the two age groups considered here. Generalizing syntactic
knowledge to a novel word requires abstract syntactic cat-
egories and schemas, which seem to develop from around
two to three years of age [4]–[6]. Tomasello also empha-
sized the importance of language input for the construction
of a child’s syntactic knowledge. Connectionist studies agree
with this view, i.e., language acquisition is regarded as the
learning of several statistical and probabilistic properties in
the language children are exposed to [41] and [42].

In the present model, hidden Markov states constitute a key
structure for representing syntactic categories. Note that struc-
tures of this type have been widely applied to computational
models of cognitive competence and artificial intelligence,
such as in action learning [43] and the theory of mind [44].
This suggests that the framework of our model would not be
specific to the language competence, which contrasts with the
strict universalist view that only accounts for the human lan-
guage as universal grammar. However, our model is too simple
to explain some linguistic properties, such as syntactic hierar-
chies. From the viewpoint of natural language processing, the
unsupervised learning of this hierarchical structure is based on
part-of-speech categorization (see [45]). Therefore, our model
might be considered as a primitive syntactic structure.

Our model simply investigated the effects of linguistic (mor-
phosyntactic) properties on word learning. However, we do not
claim that linguistic factors exclusively determine the learning
of word meanings in the early stages of lexical development.
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The acquisition of a lexicon is supported by multiple factors,
i.e., linguistic and extralinguistic (perceptual and semantic)
factors that describe categories of words and semantic features.
In fact, Imai et al. [8] highlighted the importance of extralin-
guistic cues in learning the meanings of novel words (see also
Appendix A). In particular, the Chinese-speaking five-year-
old children begin to incorrectly select a target object for the
verb condition if the object was more salient in the standard
stimulus movie. An open question is how children integrate
linguistic and extralinguistic cues, i.e., how the model acquires
the semantic categories from visual input and processes inter-
actions between the syntactic and semantic categorizations to
construct a lexicon. Our model can easily adapt with such
semantic constraints because of its simplicity. A recent robotic
study proposed a system for acquiring word meanings by cat-
egorizing raw visual and auditory information sensed by a
robot in a real environment [33], [46]. By applying such a
technique, we plan to integrate the perceptual and syntactic
mechanisms, in order to propose a more plausible model for
lexical development.

B. Developmental Change

The differences in the inferences of word meanings for
different ages can be explained by the different numbers of
hidden states of the HMM. When this number was small, the
model acquired ambiguous syntactic categories in the hidden
states. The acquired noun category was relatively unambigu-
ous, but the verb category included words belonging to other
parts of speech in all of the three languages. This is because
nouns have more distributional cues for finding the correct
syntactic category universally, e.g., a word at the beginning
of a sentence. Therefore, the model was able to infer that an
object feature was referred to by a novel noun although it
did not correctly choose an action for a verb. In contrast, a
larger number of hidden states enabled the model to obtain
well-differentiated syntactic categories, resulting in successful
inferences of novel verbs. We employed different numbers of
syntactic categories for the five-year-old cases for different lan-
guages, i.e., S = 6 for English, S = 5 for Japanese, and S = 4
for Chinese. These numbers were chosen to fit the resulting
performances to those presented by Imai et al. [8]. The differ-
ences may reflect different levels of grammatical complexity
in the learning corpora. Therefore, the absolute values of these
numbers are not of key importance, but rather we emphasize
that the different numbers can explain the inferences of word
meanings by children at different ages.

Constructing a mechanism to increase this number, i.e.,
a trigger for syntactic development, remains an open issue,
because the current model requires the number to be set
in advance. We could investigate advantages of starting
small [47], [48] which if the model automatically and gradu-
ally developed the categories. In accordance with this hypoth-
esize, starting learning of word meaning from a small number
of categories might facilitate the learning. However, the cur-
rent model could learn syntactic categories well even if it starts
to learn the categories from the large number of categories.

There are two potential types of trigger: 1) input-
independent and 2) input-dependent factors. The first includes
brain growth, which is mostly independent of linguistic input.
A child’s brain develops rapidly between the ages of three and
five years (e.g., [49]–[51]). Although some brain networks are
organized by sensory information, genetic mechanisms appear
to be a strong factor in brain maturation. The developmental
mechanism in the current model assumes that this automatic
brain growth is independent of any linguistic and sensory
input.

Regarding an input-dependent factor, many studies have
indicated that verb-argument structures in utterances by
young children are similar to those of their caregivers
(see [52] and [53]). Therefore, it is widely accepted that a
caregiver’s language input is an important factor in the devel-
opment of a child’s syntactic competence. Speech directed
to younger children has been found to be simpler than that
directed to older children (see [54] and [55]). Snow [54]
compared utterances to English-speaking two-year-old chil-
dren with those to English-speaking ten-year-old children. The
mean length of utterances to the two-year-old children was
found to be shorter, and the utterances consisted of fewer com-
pound verbs and subordinate clauses. It was asserted that such
grammatically simplified speech is tractable for the younger
children, which aids their language learning [54]. We hypoth-
esize that exposure to grammar of an increasing complexity
as a child becomes older may be a trigger for syntactic devel-
opment. A small number of hidden states in the HMM is
sufficient for representing simple constructions. Additional
hidden states are required to model the complex sentences that
are conveyed to older children. It is known that the model
parameters, including the number of hidden states, can be
optimized to provide a better representation of the language
input. An HMM-based machine learning method to optimize
the number of hidden states has been proposed [56]–[58]. In
the future, we plan to employ such a model to verify our
hypothesis that the complexity of language input is one of the
triggers of syntactic development.

To begin with, how a child forms semantic categories is
also a big problem although we assumed that they were given
in advance. The well-known hypothesis about semantic cat-
egorization is the noun predominance, i.e., the learning of
nouns is easier and faster than that of verbs (see [59]–[62]).
Some observational and experimental studies have assigned the
origin of noun predominance to perceptual and semantic fac-
tors. Namely, it is more difficult to parse actions than objects,
because the spatiotemporal boundaries of actions are not
clear [8], [59], [60], [63]. Such semantic categorization may
affect syntactic development. Further research is needed to
understand interactively development of semantics and syntax.

We made several assumptions on the given utterances
and scenes: The utterance had only simple but typical
grammatical structures (see Appendix C) and, similarly, the
scenes consisted of the limited features corresponding to
the utterances. These assumption enhanced the learnability
of the model and be considered as scaffolding from care-
givers [64]–[66]. Furthermore, not only the scaffolding but
also social interactions between caregivers and learners are
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definitively important for language acquisition [67]. For exam-
ple, the caregivers should change ways of emphasizing a target
object and speech depending on the learners’ behavior, e.g.,
attention. It is expected that we will extend the model so as
to adapt such scaffolding to the learner’s behavior and explore
how to design the interactions.

C. Cross-Linguistic Difference

Cross-linguistic differences in generalizations for verbs in
the five-year-old case were the result of different processes
to acquire categories between the input languages. English
contains more morphosyntactic cues for inferring syntactic cat-
egories, i.e., syntactic rules for the English corpus are more
stable. That is, change in word orders and dropped subject or
object words rarely occur. In addition, English verbs are often
with bound morphemes. Therefore, if the one-word sentence
“X-ing” was given, the model inferred the syntactic categories
of X using two cues: 1) an initial word or a word following
an article is a noun and 2) a word preceding “-ing” is a verb.
Consequently, for the bare verb condition the result was at a
chance level, because of conflicts between the cues.

However, syntactic cues, i.e., subject and object words, are
often omitted in the Japanese corpus although Japanese verbs
have similar morphological cues as English verbs do. The
syntactic categories learned from the Japanese corpus relied
on morphological cues, resulting in the correct inference of a
verb category in the bare verb condition. On the other hand,
there are no verb suffixes in the Chinese corpus, therefore,
word order (e.g., an adverb coming before a verb) is a rela-
tively strong cue for identifying the verb category. Thus, the
Chinese-trained model could not successfully determine the
verb category when a novel bare word was provided with-
out any syntactic cues. Consequently, the model used proper
cues to acquire the syntactic categories. If the test sentences
included cues, then the model could identify the correct cat-
egory for a novel word, resulting in a successful inference of
its meaning. Although previous studies have pointed out the
computability of syntactic categories using several cues, as
commonly observed in many languages (see [17], [20], [23]),
our model suggests that children may use suitable cues for
their native language, as demonstrated in the experimental
study [8]. This mechanism reminds us of the competition
model (see [68], [69]), positing that a word meaning is inferred
through a competition between many cues within a sentence.
A competitive mechanism is not explicitly embedded in our
model. Nevertheless, our model automatically selects more
advantageous cues in identifying syntactic categories through
learning. Our approach provides new insight into how the
competitive mechanism develops in children.

VII. CONCLUSION

We have proposed a computational model that can repro-
duce the inferences of meanings of novel words by children
at different ages with different languages, as reported by
Imai et al. [8]. Employing different numbers of hidden states
made it possible to represent children’s performances at dif-
ferent ages. The model acquired language-specific syntactic

categories, which produced the observed cross-linguistic dif-
ferences. As a result, the estimates provided by the model were
similar to the performances of the children. An analysis of the
representation of the hidden states revealed the detailed struc-
ture of the acquired categories underlying the differences. The
English-learned syntactic categories relied on syntactic cues,
because English contains stable syntactic rules. The English
model consequently failed to select a target action designated
by a novel verb without arguments. Japanese sentences often
lack syntactic cues, such as subject and object words, resulting
in a stronger influence of morphological cues for the acquisi-
tion of Japanese syntactic categories. Therefore, the Japanese
model was able to map a novel bare verb to an action correctly.
In contrast, Chinese does not contain any morphological cues,
but does have syntactic cues. Thus, the Chinese-trained model
was unable to determine the reference of a bare word in a sig-
nificant proportion of cases. In addition, by using our model
we deduced a hypothesis regarding the processes underlying
the development of children’s syntactic categories based on the
number of hidden states, which corresponds to the number of
syntactic categories.

Our model can generate testable predictions for language
development study. It suggests that children select more
advantageous cues (e.g., word order and morphology) to
infer word meanings as the result of grammatical statistical
learning. Children’s behavior given the competitive cues are
interesting for a benchmark of cognitive models as well as
research of developmental psycholinguistics. Further compu-
tational and experimental investigation is expected to verify
this hypothesis.

APPENDIX A

DATA CITED FROM IMAI et al. [8]

We used experimental data provided by Imai et al. [8] to
compare with our simulation results. The Japanese, English,
and Chinese data sets were borrowed from the results of
Study 1 (Table 3), Study 2 (Table 3), and Study 5 (Table 5) in
the article [8], respectively. In the Japanese and English exper-
iments (Studies 1 and 2), a stimulus video showed an actor
holding an object for around half a second, to ensure that chil-
dren could clearly see the object. The actor then begins to act
with the object. The object-holding segment was removed in
the Chinese experiment (Study 5), because Chinese-speaking
children tend to select the highlighted object in test trials. In
Study 3, Chinese-speaking children were examined using the
same video stimuli as the Japanese and English experiments,
including the object-holding segment. The results demon-
strated that a significant number of five-year-olds incorrectly
considered a novel verb as the object. In contrast, Chinese
five-year-olds were able to select an action as a novel verb
in Study 5. When Japanese and English three-year-olds were
tested using the video without the object-holding segment
(Study 6), the results did not significantly differ from those
of Studies 1 and 2. Imai et al. [8] discussed the difference
between Studies 3 and 5, stating that Chinese children relied
on a perceptual (extralinguistic) cue more than Japanese and
English children did to distinguish between nouns and verbs,
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because Chinese language does not contain any morphologies
to distinguish them.

Our model does not aim to explain the effect of the
extralinguistic cue, but rather an effect of a linguistic (mor-
phosyntactic) cue. Therefore, we used the result of Study 5
as the Chinese data. If possible, we should have used the
result of Study 6, where the same stimuli was employed as
in Study 5. However, only three-year-olds were examined in
Study 6, and not five-year-olds. For this reason, we consid-
ered the results of Studies 1 and 2. We note again that it was
confirmed that the results for three-year-old in Studies 1 and 2
did not significantly differ from those of Study 6. In general,
younger children tend to use the perceptual cue. Therefore, it
is speculated that there is not a significant difference between
the stimuli with and without the object-holding segment for
five-year-olds.

APPENDIX B

LEARNING METHODS

The model learns P(st|wt, s−t) and p(m|st) in (1). These
probabilities represent the induction of a syntactic category st

for a word wt, and the association of the semantic category
m with st, respectively. Although children are not obviously
taught grammatical knowledge, e.g., part-of-speech categories,
they can acquire syntax and lexicon knowledge from daily
verbal communications. Therefore, the model bootstraps these
probabilities from the semantic features in scenes and word
sequences that explain the scenes without any teaching sig-
nals. It is assumed that the semantic features and words are
segmented into discrete variables a priori.

A. Acquisition of Syntactic Categories

We apply an HMM to compute P(st|wt, s−t). This is an
unsupervised learning method, which determines a hidden
Markov chain structure from some time-series input. When
the input data items are given as sequential words (sentences),
the acquired hidden states consequently represent the part-of-
speech categories of the words, and the transition probabilities
between the categories are interpreted as simple syntactic
structures. HMMs are often employed as probabilistic models
for assigning part-of-speech tags to words. They are trained
using untagged text in natural language processing [10], [70].
The Bayesian HMM (BHMM) introduces Bayesian inference
to the HMM, in order to improve the accuracy of tagging,
especially in smaller learning corpora [34]. However, the basic
functionality of these models is identical.

This model assumes that each st in a sequential hid-
den state s = (s1, s2, . . . , st, . . .) stochastically generates
a word wt, which produces a time-series of words w =
(w1, w2, . . . , wt, . . .). In this paper, we considered a trigram
structure for s, i.e., a hidden state st depends on the previous
two states (st−2 and st−1). The semantic features o and f is
not used in the learning and inference of the hidden states
in the BHMM, although Fig. 1 in the main text illustrates
the probabilistic relations (P(o|wt) and P(o|m)P(m|st)) for
inferring o.

Under this model, Gibbs sampling [71] estimates the pos-
terior distributions of s and w. Please see [34] for the detailed
computation.

The corpus w used for the learning contained two dummy
words, beginning of sentence (BOS) and end of sentence
(EOS), to denote the beginning and the end of a sentence,
respectively. For example, w = (BOS, she, is, read, -ing, a,
book, EOS, BOS, the, chair, · · · , EOS). We assigned values of
1 and 2 to the hidden states of BOS and EOS, respectively, and
the probabilities of these states were not updated. The initial
values of hidden states other than the dummy words were ran-
domly allocated values between 3 and S. Note that in the main
text, S does not include the two dummy word states. Then,
we iteratively calculated the above probability 500 times, and
averaged the latter 80% of samplings to obtain P(st|w, s−t).
In all experiments, the hyper-parameters were empirically set
to α = 0.9 and β = 1.0.

B. Learning of Linguistic-Feature Associations

After the induction of the syntactic categories of each word,
the model learns to associate the linguistic categories (w and
s) with the semantic categories (f and m) from utterance-
scene pairs. The ith utterance (i = 1, 2, . . . , N) consists
of a time-series words w(i) = (wi

1, w(i)
2 , . . . , w(i)

t , . . . , w(i)
T(i) ),

and their syntactic categories are parameterized as s(i) =
(s(i)

1 , s(i)
2 , . . . , s(i)

t , . . . , s(i)
T(i) ). At the same time as the presence

of the utterance, the model observes a set of semantic features
f (i) in the ith scene. This set is not a time-series. The proba-
bility that a word wq is associated with a semantic feature fp
is simply calculated using their co-occurrence probability

P
(
o = fp|w = wq

) ≡ 1

Z

N∑

i

n(i)(wq, fp
)
.

Here, n(i)(wq, fp) denotes the number of times that wq and
fp appear simultaneously in the ith utterance-scene pair
(w(i), f (i)), and Z is a normalizing constant. We assume
that this probability can be applied to all word variables:
P(o|w(i)

t ) = P(o|w) (t = 1, 2, . . . , T(i) and i = 1, 2, . . . , N).
The probability of m under st, i.e., P(m|st), is subsequently

calculated. This probability is expected to indicate that an
action category, for example, tends to correspond to a verb
category. Such a mapping appears to be computed using the
co-occurrence, in the same manner as the above equation.
However, it is difficult to acquire meaningful mappings by cal-
culating the simple co-occurrence, because the probability of
m is practically a uniform distribution. Given the ith scene, the
model observes a set of many semantic features f (i) that consist
of objects and actions, resulting in an almost uniform distribu-
tion over the object and action categories in m. Therefore, the
model cannot significantly associate st with m. To avoid this,
we expand the semantic categories in the ith scene into a time-
series of semantic categories m(i) = (m(i)

1 , m(i)
2 , . . . , m(i)

t , . . .),
corresponding to the word series. The sequence of semantic
categories is obtained using the well-learned P(o|w)

P
(

m(i)
t |w(i)

t

)
=

∑

o

P
(

m(i)
t |o

)
P
(

o|w(i)
t

)
.
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TABLE I
VOCABULARY SIZES OF WORD CATEGORIES IN EACH CORPUS

Here, the first term on the RHS (mappings from features to
semantic categories) is known a priori, and the second term is
acquired using the previous equation. P(m|s) is then obtained
by enumerating the co-occurrence between m(i)

t and s(i)
t over

t and i

P
(
m = mq|s = sp

)

≡ 1

Z

N∑

i

T(i)
∑

t

P
(

m(i)
t = mq|w(i)

t

)
P
(

s(i)
t = sp|w(i)

t , s(i)
−t

)

where Z denotes a normalizing constant. This probability
is assumed to be applicable to all syntactic variables, i.e.,
P(m|s(i)

t ) = P(m|s) (t = 1, 2, . . . , T(i) and i = 1, 2, . . . , N).

APPENDIX C

LEARNING CORPORA

The model was trained using a simple artificial corpus in
English, Japanese, or Mandarin Chinese, consisting of nouns,
verbs, adjectives, and so on. Fig. 7 illustrates the transition
rules between word categories for sentence production for the
(a) English, (b) Japanese, and (c) Mandarin Chinese corpora.
Each circle in Fig. 7 indicates the word category from whose
vocabulary a word is randomly produced. We assume that each
word is unambiguously chosen from just one category. There
is a 50% chance that an adjective category is added before
a noun (the subject and object categories) in all of the cor-
pora, although Fig. 7 does not depict the categories. Table I
lists the size of the vocabulary for each word category. The
vocabularies of the subject and object categories consists of
the same nouns, but words in the nominative case are added
to the vocabulary of the English subject category. These rules
start at the BOS, and end at the EOS. The syntactic cate-
gories of these dummy words are allocated in advance, and
are not used in the inference of the target semantic feature. The
blue decimals above the arrows denote the transition probabil-
ities between word categories. The orange decimals above the
blue circles give the probabilities that the word categories are
dropped off. In a sentence including a verb, there are three pos-
sible tenses, i.e., present, past, and progressive forms, which
are selected with equal probability.

In the English rules [see Fig. 7(a)], a word from the article
category is placed before words from the categories of nouns
or adjectives. Although the nouns are only used in the sin-
gular, the verb suffixes “-s,” “-es,” or “-ies” are omitted in
the present tense. However, the verb suffixes “-ed” and “-ing”
can be arranged after verbs to represent the past and progres-
sive forms, respectively. In the Japanese rules [see Fig. 7(b)],
the verb suffixes (auxiliary) determine the tense. There are
three particles in Japanese. These indicate the semantic roles
(subject or object) of the nouns that precede and follow the

(a)

(b)

(c)

Fig. 7. Transition rules between word categories for the production of the cor-
pora. These figures show rules for generation of the (a) English, (b) Japanese,
and (c) Chinese utterances. The blue and orange decimals indicate the tran-
sition probabilities between word categories and the probabilities that a word
category is dropped off, respectively. There is a 50% chance that an adjective
category is placed before the subject and object categories in all corpora.

particles. Particle1 and particle3 denote the nominal particles
“ga” and “ha,” respectively, and their preceding nouns are
subject words. Particle2 is the accusative particle “wo,” indi-
cating that the preceding noun is an object word. We separate
the adjective suffix “i” from adjective stems, because most
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Fig. 8. Fitness between model performance and that of the children.

Japanese adjectives have this suffix. In the Mandarin rules
[see Fig. 7(c)], the adverb (“zhengzai” or “zai”) represents the
progressive form. The “shi” is used as a be-verb in copulas
(sentences in which the verb is some form of “to be”), although
it actually has additional grammatical roles. In this paper, the
particle “de” is only employed as the adjective suffix, which
is arranged following adjective stems.

The transition probabilities are determined such that certain
syntactic characteristics of the artificial corpora fit those of the
real corpora of child-directed utterances, i.e., English Belfast
Corpus [36], [72], Japanese MiiPro Nanami Corpus [37], [73],
and Chinese Beijing 2 Corpus [38], [74]. These corpora have
speech data of four, eight, and ten children, respectively.
Each of their total word length is approximately hundred
thousand. We calculated the percentages with which pred-
icate verbs, subjects, objects, single sentences consisting a
noun, and bare verb sentences occur in the real corpora. We
then ensured that these percentages were almost identical in
the artificial corpora with the real ones, by setting appro-
priate transition probabilities. In addition, the English corpus
has the same ratio of three construction types: 1) fragments
(sentences without subject and predicate); 2) copulas; and
3) sentences containing both a subject and a single predica-
tive intransitive, as in the real child-directed speech reported
by Cameron-Faulkner et al. [40].

APPENDIX D

FITNESS BETWEEN MODEL AND CHILDREN

We evaluated the absolute differences between the aver-
aged model performance and that of the children, i.e., the
differences between bars and dots in Fig. 4. Fig. 8 shows the
differences for different numbers of categories. In the case of
three-year-olds (the filled circles), the model with two hidden
states exhibited the best fitness for the children’s behavior in
all three languages. In the case of five-year-olds (the empty cir-
cles), the adequate numbers of hidden sates differed depending
on languages: six, five, and four states fitted behavioral data
of English, Japanese, and Chinese children, respectively.
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