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Abstract—Rapid advancement of machine learning makes it

possible to consider large amounts of data to learn from.
Learning agents may get data ranging on real intervals directly
from the environment they interact with, in a process usually
time-expensive. To improve learning and manage these data,
approximated models and memory mechanisms are adopted. In
most of the implementations of reinforcement learning facing
this type of data, approximation is obtained by neural networks
and the process of drawing information from data is mediated
by a short-term memory that stores the previous experiences
for additional re-learning, to speed-up the learning process,
mimicking what is done by people.
In this work, we are proposing a novel computational approach
able to selectively filter the information, or cognitive load, for
the agent’s short-term memory, thus emulating the attention
mechanism characteristic of human perception. We devised an
evolutionary model of agent’s perception to adapt the attention
filter present in the proposed architecture to the actual environ-
ment faced by the agent, by selecting the experiences that most
likely influence in a positive way its learning characteristics. This
approach can evolve a filter able to provide an optimal cognitive
load of the experiences entering in the agent’s short-term memory
of a limited capacity. The evolved sampling dynamics can also
lead to the emergence of intrinsically motivated curiosity.

Index Terms—Machine Learning, Intelligent Agents, Cogni-
tion, Genetic Algorithms, Artificial Neural Networks, Attention,
Perception, Short-term memory.

I. INTRODUCTION

The evolutionary development of a human brain was fol-
lowed by its ability to perceive and elaborate an increasing
amount of external stimuli from its immediate environment.
However, no matter how much the brain processing power
increased, its ability to process the whole amount of incoming
sensory data is still limited. At the current stage of devel-
opment our brains receive through sensors millions of bits
of information each second, but we are able to consciously
process only about 126 bits over that time interval [1]. The
existence of this bottleneck brought to the development of
another mechanism, capable of focusing on the subset of
information actually useful for the cognitive process. This
cognitive filter that protects us from the sensory overload is
called attention [1], [2]. A major role in this filter is played
by a system named working memory, which acts as a buffer
between our perception and its conscious processing [3]. The
working memory consists of a temporary memory storage
along with specialized mechanisms for replaying its contents.
It also relies on the central, or executive, attention that is in
charge of regulating its active contents therefore providing a

specific memory-related context for the higher order cognitive
processing [4]. By now, a growing number of psychological
and neuro-scientific studies have confirmed that the working
memory is selective when it comes to storing stimuli: sensory
stimuli that are important to the goal show enhanced activity,
while the other, irrelevant stimuli are suppressed [5], [6], [7].
In contemporary machine learning, similarly, the ability to
process large continuous state spaces grew with the introduc-
tion of function approximators such as artificial neural net-
works [8]. Recent implementations, such as [9], [10], include
a memory buffer called replay memory that is functionally
similar to the human working memory: it selectively stores
the experiences, or transitions, in order to replay and re-learn
from them off-line, therefore reducing the amount of data that
should be acquired by expensive processes, and ensuring at
the same time a more stable training of the approximator
needed to manage continuous variables. Later approaches that
dealt with the mechanism of replay memory were interested
in improving the speed of learning by focusing the attention
on specific transitions that are more valuable to the learning
process, using criteria such as temporal difference error [11],
received reinforcement [12], and information potential of the
state [13].

Usually, in machine learning, the agent prefers unexpected
experiences as they are more likely to ”surprise” the predictor
and feed the learning process in order to further reduce the
uncertainty about the environment [14], [15]. The preference
for novel experiences is also found in the developing human
brain, as the babies not only prefer, but are driven to focus
attention on situations that include novelty and surprise [16],
[17], [18] in order to acquire much needed stimulation. These
discoveries have led to a concept called intrinsic motivation in
machine learning, which deals with the problems of motivating
novelty seeking for its own sake [19], [20], [21], [22].

In this work, we introduce a computational model of attention
that includes a mechanism for selectively storing experiences
from the agent’s perceptive stream into its replay memory,
therefore providing a goal-related context buffer from which
the past experiences can be sampled for re-learning. Further-
more, we explore how it is possible for an artificial agent
to evolve this attention mechanism over generations so to
make it learning more efficiently by selectively focusing on
experiences more valuable than others in a given environment.
After multiple trials over 100 generations, we have found that
the focusing mechanism can learn to be more selective; this
is consistent with the concept of attention, and the replay
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memory contents get permeated with transitions that are high
in the values of curiosity indicative parameter informational
gain [14]. Evolutionary motivated, higher level goals su-
perseded the primary reinforcement-based ones, making the
agent to adopt a new long-term strategy of intrinsic curiosity,
while exhibiting a behavioral change of being more brave
or aggressive towards acquiring new sources of stimuli in
the given environment. However, this attitude may be more
or less effective, depending on the characteristics of the
specific environment, thus calling for a mechanism to adapt
curiosity to them. We are proposing an evolutionary approach
implementing such a mechanism.

II. APPROXIMATION

When facing high dimensional state spaces it is highly
impractical for a reinforcement learning system to keep the
estimates of the ) (quality) value for each combination of
state and action, and it is even impossible if we are dealing
with continuous state representations. In this case, the best
option is to approximate the estimation of the optimal value,
Q*(s,a) using a function approximator such as an artificial
neural network, or ANN. A function approximation makes it
possible to predict a @ value for each of the possible actions
available to the agent by providing an agent’s current state
in input to the ANN. After each time step we can compute
the expected Q value using Bellman equation and compare
it to the estimate that the function approximator provides as
its output Q(s¢,ar;©) ~ Q*(s¢,a;) by providing any state
s¢ in input. The difference between the previous estimate of
the approximator and the expectation is the TD error, and it
is possible to back propagate it through the ANN in order to
update the current approximation of Q*(s, a).

The backpropagation is performed by updating the weights of
the ANN approximator © by performing a gradient descent
on the loss L;(0;) according to Equation I:

v@iLi(Gi) = (yi - Q(Sva’;@i)) V@iQ(Saa; @i)v (1

where y; = r+vymaxy Q(s',a’;©,_1) is actually the Bellman
equation defining the target value.

III. RELATED WORK

Probably the earliest successful use of the past experiences

to support the direct update reinforcement learning algorithms
such as Q-learning can be seen in Dyna-Q [23].
The Dyna-Q algorithm re-uses direct experiences in order
to build and constantly update a model of the environment
which predictions are then used to generate simulated virtual
experiences. Using Dyna-Q an agent is able to learn not only
from direct experiences, but also from virtually generated ones.
This allows an agent to be more effective in updating its value
functions with a limited amount of actual experience.

A. Intrinsic Motivation

In more recent developments we can see the use of a
competence-based, intrinsic motivation in supporting the gen-
eration and selection of agent’s goals. Active goal exploration

SAGG-RIAC strategy [24] is able to use intrinsic motivation
in order to select at each time step a goal that maximizes
the progress of competence in reaching the goal in previous
experiences. GRAIL framework [25] takes a step further and
makes use of intrinsic motivation in order to also generate a set
of goals that an agent is able to focus on while learning. This
process relies on the perceived differences between the current
and previous sensed state, which is similar to the concept of
informational gain /G used by the approach we are proposing
to represent agent’s intrinsic curiosity. Florensa et. al [26]
recently presented an improvement over SAGG-RIAC that is
able to explore the agent’s goal space more efficiently along
with a novel goal generation mechanism. In this approach a
Generative Adversarial Network or GAN is able to produce
goals within an optimal dynamic difficulty given the agent’s
current progress.

B. Artificial attention as a behavior inducing mechanism

The idea that a selective focusing of the memories that enter
in the short-term memory analogue of replay memory can be-
haviorally influence the artificial learning agents was explored
in [27], by considering biases that may come from personality
traits or attitudes of the agents towards exploration. In this
approach, a computational model of main personality trait axis
including introversion-extroversion dichotomy was developed.
The model was based only on changing the dynamics of the
attention span of the replay memory, which was different
between introverted and extroverted individuals, as the latter
exhibited a broader attention span [4]. The two types of agents
were tested in different configurations of the environment
characterized by different amount of reinforcement. Normal
environment provided an equal distribution of positive and
negative reinforcement and represented the baseline for the
experiment. Hostile environment provided more negative re-
inforcement, while the benevolent one provided more positive
reinforcement. Curiosity-driven, extroverted agents performed
better in a benevolent type of environment while the cautious,
introverted ones managed to learn better in the hostile envi-
ronment.

Attention-based working memory approach was used also
in [13], which proposed a selective focusing of the experiences
based on their information potential or Shannon entropy of
the perceived state space. Although the aim of this approach
was primarily to increase the learning performance of the
agents, compared to an uniform sampling baseline the entropy-
based sampling also seemed to have induced an intrinsically
motivated exploration that became an important part of their
tactics to increase the overall performance.

Persiani et al. [28] introduces an approach that also uses
the replay memory structure in order to improve cognition.
The algorithm is able to actively learn to select the most
appropriate chunks of the agent’s experience to be stored in
the replay memory buffer based on maximizing the expected
future reward.

C. Evolutionary Adaptive Approaches

In [29] basic emotions such as fear were evolved as motiva-
tional drives involved in adaptation of learning agents to their
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immediate environment. At each generation, a new population
of virtual agents was tested, each of them evolving a neural
network that mapped its input, which included time, good and
bad sensation neurons, and visual perception, to its output that
was used to focus on the visual stimuli and select the agent’s
actions. Over time, the selection of agents based on elitism
w.r.t. the ability to adapt to the environment gave rise to a
specific drive of being cautious or fearful as a survival strategy.
Another evolutionary perspective is presented in [30] in which
the reward functions of the agents are evolved by taking
in consideration their fitness. This forms an idea of optimal
reward function that builds upon the basic reward function
in order to maximize the expected fitness over distribution of
environments. The presented experiments support the notion
of emergence of intrinsic reward for specific actions such as
playing and manipulating objects in their immediate environ-
ment that are not meeting any primary need of the agent. [31]
introduced a combination of evolution and machine learning
allowing the agents to intrinsically evolve a basic reinforcer for
atomic building-block skills in the childhood learning phase,
which are later used in the adulthood phase.

IV. MODEL ARCHITECTURE AND LEARNING ALGORITHM

In this section, the structure of the learning model we are
proposing is presented as its two main parts: evaluation and
evolution.

The first part, shown in Figure 1, represents the main eval-
uation reinforcement model, where the proposed attention
focus block or AFB plays a primary role. AFB is a filtering
mechanism which receives in input a raw stream of the
experiences that are perceived by the agent, and selects the
ones that will be stored in the replay memory for re-learning
purposes. It does so using its main component: ANN function
approximator (f), which receives in input the characterizing
parameters of the transition between states and produces as
output a crisp decision about whether to sample the transition
into the replay memory, or to discard it.

The architecture of the AFB neural network approximator (f)
consists of three layers: three input nodes connected to a fully
connected hidden layer of four nodes, in turn connected to two
softmax nodes to produce the final classification. This ANN
is able to approximate the three parameters of the experience,
respectively given in input as TD error, entropy of the starting
state s;, and informational gain, to a probability of belonging
to a class ”sample” or ”do not sample”.

The main part of the learning algorithm is the learning loop,
represented as the (b) section in Figure 1, where the agent
actually takes an action a that brings it from state s; to the next
state s;41, which is also providing an immediate reinforcement
r¢. The actual learning part of the loop is supported by a main
function approximator ANN shown in (d) block of Figure 1,
which performs a backpropagation update at each learning step
in order to provide a better approximation of the Q) values of
the state-action pairs. This ANN takes a multi-dimensional
state on its input and provides the estimated () values for
each possible action available for the agent as its output layer.
Since the target value for Q(s,a) is given by the Bellman

equation, it is possible to calculate it, taking into account
the immediate reinforcement and the discounted () value of
the next state, and to compare it with the current estimate
of the function approximator ANN in order to figure out
how wrong it was with respect to what obtained by the last
transition. This difference, also known as TD error provides
enough information to update the new estimation of Q(s, a).
A backpropagation is performed on the approximator with the
state s; on the input layer and the gradient on the a; output is
set to TD error while all other gradients on the action outputs
are set to 0. After the update, the transition is actuated so that
s¢ becomes s;41 and the loop restarts.

The learning loop process provides the raw sequential ex-
perience stream (marked as (c¢) in Figure 1 from which it
is possible to sample some of the experiences into a buffer
structure called replay memory (a), which stores the experi-
ence transitions from which the agent can selectively learn. In
this proposal, this process is mediated by the attention focus
block, including another ANN function approximator (f) able
to predict whether or not it is the case to sample the specific
transition in the replay memory, depending on its properties
provided in input. The properties forwarded through the ANN
encompass the predictive power, given by its TD error, along
with its information potential factors such as the Shannon’s
entropy of the state s; and the information gain potential of
the transition given by Kullback-Leibler difference between
state s;41 and sq.

The evolution of the proposed attention focus block is
obtained by a genetic algorithm, where the members of the
population encode the information about the weights of the
ANN approximator (f), used to control the sampling dynamics
of the attention focus block structure. The starting point for
the algorithm is a random population, and each configuration
of parameters for an attention focus block dives learning for
an agent operating in the environment. Each agent performs a
learning process mediated by its genetically altered attention
in an environment that provides both positive and negative
reinforcement. Over a given number of learning steps, we may
observe that agents learn to gravitate towards positive and to
avoid negative reinforcement sources. The total reward col-
lected at the end of a trial represents the agent’s score, which
is indicative of its adaptability to the specific environment.
After the evaluation phase, the agents are ranked by the total
reinforcement they received, which is taken as their respective
fitness. The mating phase starts by selecting the individuals
with the higher fitness that are going to be the base for the
next population. The selected genotypes undergo the genetic
operations of crossover and mutation. In crossover, two parent
genotypes randomly combine their genetic information to
produce an offspring. Then, mutation randomly modifies the
genetic material. The resulting genotypes produced by these
two operations join to form a new evolved generation from
which the process of evaluation can start again.

V. EXPERIMENTAL SETUP

The proposed approach was tested in different environ-
ments. Here are presented the results obtained in two envi-
ronments, derived from some of the environments used in
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Fig. 1. General learning model architecture including attention focus block: (a) Replay memory; (b) Main learning loop; (d) A block implementing main
Q-value function approximator neural network ; (¢) Raw stream of the experiences; (f) ANN function approximator as a part of artention focus block

literature, namely Waterworld [32], and LunarLander-v2 from
OpenAl Gym framework [33]. In both cases we have a complex
and continuous state spaces which can support their diversity.

A. Waterworld Environment

In the Waterworld environment the agents operate in an
environment inspired by the Waterworld setting showcased
in [32]. It consists of moving food pieces that are instantiated
with random speed and direction and are capable of bouncing
off the walls surrounding a closed space. The food pieces
come in two dispositions: good, which provides a positive
reinforcement of 41, and bad, which results in a negative
reinforcement of —1, upon contact with an agent. The envi-
ronment always contains an equal amount of good and bad
food: once the food has been consumed, a new food source is
randomly generated in order to keep the distribution constant.
The agent’s goal consists of maximizing its expected reward
in the long run, so it has to learn to consume as much of
good food pieces while avoiding the bad ones. The agent is
able to move while accumulating momentum or stay still by
taking five possible actions: leftright,up,down and stay. Its
perception of the environment is implemented as 30 equally
distributed directional sensors, each capable of perceiving five
continuous variables: distances to the perceived object, being

it good food, bad food or walls along with additional two
variables for velocity components of the detected object in
x and y. This, along with the perception of two additional
variables for the agent’s own velocity (z and y components),
gives a quite high dimensional state-space consisting of 152
continuous variables.

The @ value function approximator ANN (marked as (d)
in Figure 1 is implemented as three layers: the input layer
consists of 152 nodes fully connected to an inner layer of
100 nodes, that is in turn connected with an output layer of 5
nodes (the possible actions) and trained using a learning rate
a = 0.005. It is able to approximate the 152 dimensions of
state on the input to the () values of 5 actions available to
the agent. In the genetic algorithm adapting the approximator
ANN, the genes were modified with a heuristically determined
probability of 0.25 and the modification was implemented
as the addition of a number between —0.1 and 0.1 to the
respective parameter value.

The evaluation trial lasted 160,000 steps. Reinforcement
learning expectation is computed with a discount rate v = 0.9,
and e—greedy policy is used with the starting e = 0.2, then
adjusted to 0.1 at the mid-point of the trial, after 80.000 steps
for a better convergence towards the end. Replay memory
buffer capacity was set to 3000 experience transitions. A
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population of 4 agents was evolved and after each evaluation
the best performing two were selected for crossover and
mutation. The new population was made from a multiple
mating of the two best performing agents.

B. Lunar Lander Envrionment

The second set of experiments was performed in a more
realistic setup, such as LunarLander-v2 from OpenAl Gym
framework [33]. The goal is to land a craft in a designated
landing place indicated by two flags while countering the grav-
ity pull using three thrusters: main, left and right orientations.
While Waterworld is representative of tasks with continuous
variables and sparse, random reinforcement, Lunar Lander
is representative of rocket trajectory optimization which is
a classic topic in area of optimal control featuring a more
dispersed and constant reinforcement feedback. An episode
concludes when a lander crashes or comes to a rest, in which
case it receives additional -100 or +100 of reinforcement
respectively. Additional reinforcement is provided, inversely
proportional to the craft distance from the landing area and
deviation from zero speed; it comes in the range of +100 to
+140. Firing main thruster results in a -0.3 reinforcement while
each leg contact with a ground is rewarded by +10. The craft
has an unlimited amount of fuel at its disposal and can also
land outside the designated area.

State space is 8-dimensional and consists of 4 continuous
variables sensing the z position of the craft, its y position
relative to the land area, craft’s angle and its angular velocity
along with 2 boolean variables indicating a land contact for
each of the craft’s leg. Four discrete actions are available to the
craft: do nothing, fire main engine, fire left orientation engine,
fire right orientation engine.

Reinforcement learning parameters were set to be the same as
in previous batch of experiments along with an adjustment
of e. Elitism was implemented allowing two best scoring
agents to propagate their genotypes unchanged into the next
generation while the other 8 phenotypes of the next generation
were generated by crossover of genotypes selected with a
probability proportional to their respective scores. Mutation
rate was also 0.25 and again performed by adding a number
between —0.1 and +0.1 to the parameter value and attention
filter block ANN architecture is the same as in previous
batches with an exception of a hidden layer containing 6
neurons which slightly increased the variety of genotypes.

VI. EXPERIMENTAL RESULTS

The experiments performed on both environments, Water-
world and Lunar Lander, were compared using three set-
tings. A genetic algorithm evolutionary implementation of the
proposed attention focus block sampling, or GA-AFBS, was
compared with a non-evolutionary case R-AFBS of generations
consisting of randomly selected weight parameters, and a
baseline NO-AFBS in which agents used no AFBS filtering and
sampled every experienced transition into the replay memory
buffer.
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Fig. 2. Average total sampling percentage in the Waterworld environment of
the genetic algorithm supported evolution of the attention focus block (GA-
AFBS) compared with a non-evolutionary sampling implemented as a random
attention filter neural network (R-AFBS) and a baseline approach without any
cognitive filter (NO-AFBS), over the first 100 generations of 6 trials (solid
lines) and the respective variance (gray areas).
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Fig. 3. Average fitness (total reinforcement) received in Waterworld environ-
ment by the proposed genetic algorithm supported evolution of the attention
focus block GA-AFBS sampling, compared with a non-evolutionary sampling
implemented as random attention filter neural network R-AFBS, and a baseline
approach without any cognitive filter NO-AFBS over first 100 generations of
6 trials.

A. Waterworld Environment

A total of 6 trials were performed in the Waterworld envi-

ronment, each of them evolved a 100 generations of attention
focus block phenotypes evaluated by reinforcement learning
phases for 160,000 learning steps.
In Figure 2 we can observe the evolution of the number of
experiences sampled by the attention focus block over 100
generations. Experimental data show that the attention focus
block evolved in the direction of being more selective about
the sampled experiences, from inefficiently taking almost
88% of the raw experience stream in the replay memory at
the beginning, to a much more selective selection of 12%
experiences at the 100th generation, which represents a great
difference with respect to the random R-AFBS percentage
which was constantly kept around 40%.

Figure 3 shows how the evolutionary model influenced the
performance of the agents given by their total score, or total
reinforcement received over the evaluation phase. An approach
that used evolving phenotypes of attention focus block (GA-
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Fig. 4. Average values of informational gain parameter of experiences con-
tained in working memory at the end of evaluation in Waterworld environment
for the proposed genetic algorithm supported evolution of attention focus block
GA-AFBS sampling, compared with a non-evolutionary sampling implemented
as random attention filter neural network R-AFBS and a baseline approach
without any cognitive filter NO-AFBS over first 100 generations of 6 trials.

AFBS) greatly outperformed the no filter one (NO-AFBS) by
over 400% and a random parametrization (R-AFBS) by more
than 200%, and came to a stable point in about 75 generations.
Figure 4 shows the sampling preference of the approaches
in terms of types of transitions as determined by average
informational gain values of the sampled experiences in the
replay memory. We can see that the genetically supported
evolution of GA-AFBS evolved a high tendency to sample
the experiences with positive values of the informational
gain property in contrast with the no filter NO-AFBS, whose
average accumulated to O as it preferred the experiences with
both positive and negative values in the same proportion. The
evolutionary approach settled to a 0.1 average informational
gain which gave rise to a more curious agents than a random
R-AFBS one, which was rather consistent with an average of
0.25 throughout the generations.

B. Lunar Lander Environment

Evaluation phase in Lunar Lander environment in GA-
AFBS consisted of a generation of 10 agents competing with
each other based on the average reward received over 60
consecutive learning episodes.

Changes in sampling preferences can be seen from Figure 5,
where the proposed evolutionary approach GA-AFBS evolved
again to be more restrictive to select experiences for replay
memory. Although not as selective as Waterworld, in the
Lunar Lander environment GA-AFBS resulted in a more
conservative 25% sampling percentage which is a significant
change compared to the expected 50% average sampling of
the random network R-AFBS.

Figure 6 shows the amount of improvement that GA-AFBS
brought to the more realistic Lunar Lander environment. We
can see that GA-AFBS took about 12 generations to outperform
the baseline NO-AFBS by 150% and provide a 125% increase
over the random R-AFBS.

We can also notice that GA-AFBS evolved a preference for
sampling experiences that manifest a higher value of the
starting state entropy H (s;) outlined by the Figure 7 and a

high preference for experiences with lower informational gain
level IG which can be seen from Figure 8.
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Fig. 5. Average total sampling percentage in Lunar Lander environment for
the proposed genetic algorithm supported evolution of attention focus block
GA-AFBS sampling, compared with a non-evolutionary sampling implemented
as random attention filter neural network R-AFBS and a baseline approach
without any cognitive filter NO-AFBS over first 100 generations of 6 trials.
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Fig. 6. Average fitness or total reinforcement received in Lunar Lander envi-
ronment for the proposed genetic algorithm supported evolution of attention
focus block GA-AFBS sampling, compared with a non-evolutionary sampling
implemented as random attention filter neural network R-AFBS and a baseline
approach without any cognitive filter NO-AFBS over first 100 generations of
6 trials.

VII. DISCUSSION
A. Informational Gain parameter as a measure of Curiosity

Informational gain or IG parameter is defined as Kullback-
Leibler difference or relative entropy between posterior state
s¢y+1 and anterior one s;, as summarized in Equation 2. It
is especially important for a discussion about the emergence
of intrinsically motivated evolved behavioral traits of agents
in the GA-AFBS sampling method. It can provide an insight
about the agent preference to move towards a state of higher
informational content, which is indicative of intrinsic curiosity
if it is positive, while, on the other end of the spectrum,
negative values are indicating a more cautious move in which
the agent is moving away from the state of high informational
potential.

IG=H (5t+1) -

H(s) 2
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Fig. 7. Average values of starting state entropy parameter of experiences
contained in working memory at the end of evaluation in Lunar Lander envi-
ronment for the proposed genetic algorithm supported evolution of attention
focus block GA-AFBS sampling, compared with a non-evolutionary sampling
implemented as random attention filter neural network R-AFBS and a baseline
approach without any cognitive filter NO-AFBS over first 100 generations of
6 trials.
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Average Informational Gain of Sampled Transitions
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"
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Generation
Fig. 8. Average values of informational gain parameter of experiences

contained in working memory at the end of evaluation in Lunar Lander envi-
ronment for the proposed genetic algorithm supported evolution of attention
focus block GA-AFBS sampling, compared with a non-evolutionary sampling
implemented as random attention filter neural network R-AFBS and a baseline
approach without any cognitive filter NO-AFBS over first 100 generations of
6 trials.

This behavioral characteristics can be seen in Figure 9 and
Figure 10, which compare the transitions with respectively low
and high levels of informational gain parameter by showcasing
the velocity vectors of both agent and food in a specific
transition in the Waterworld environment. From Figure 9 we
can see that the experiences that are low in /G tend to transition
the agent to a “safer zone” by moving it away from the food,
making it safer w.r.t. the risk of collecting bad food, but also
making it less likely to consume good food. On the other
end, a more curious agent will prefer the transitions that are
shown in Figure 10, and that tend to push the agent to a
more “interesting” state, where it is expected to collect new
experience, as given by the positive value of the IG parameter.

B. Implications

From Figure 2 and Figure 5, we can conclude that the evo-
lutionary approach of GA-AFBS can reduce the cognitive load
on the agent induced by a highly saturated, high-dimensional

"o *
! %o,

e INS 2

(a) IG=—0,1528 (b) IG =—0,2083

Fig. 9. Transitions with low Informational Gain values in the Waterworld
environment.

0= O

5

(a) IG=0,2872 (b)

d ©

IG =0,3064

Fig. 10. Transitions with high Informational Gain values in the Waterworld
environment.

state space, by selecting more interesting experiences that are
stored for learning in the replay memory. Besides evolving an
optimal cognitive load for each of the considered environments
of 12% for the Waterworld and 25% for the more realistic
Lunar Lander, this approach also improved the selection of
experiences that are more valuable for machine learning as
evident from Figure 3 and Figure 6, which show a signifi-
cant improvement of the total reinforcement received in both
environments. The fact that the different optimal sampling
percentages were evolved in adaptation to the environments
bring us to a conclusion that the different environments present
a varying level of cognitive load for the learning agent. The
more chaotic nature of the Waterworld gave rise to more
interesting, information saturated transitions, which resulted in
a more selective perception compared to the not so saturated
one in Lunar Lander environment.

Some behavioral characteristics such as curiosity were in-
trinsically evolved to better adapt to the specific dynamics
of the environment. From Figure 4 we can see that in the
Waterworld environment curiosity or positive /G was evolved
as an adaptation trait that arose from the need of an agent
to be more engaged in the environment with a scarce reward
and more focused in finding transitions that lead to situations
expected to provide positive reinforcement.

Contrary to the scarce reinforcement feedback of the Water-
world environment, Lunar Lander provided a totally different
and more dynamic reward mechanism which included constant
adjustment of the reinforcement function based on the agent’s
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state. Confronted with the dynamics of the Lunar Lander
environment, GA-AFBS evolved a trait of being cautious given
its preference for the transitions with negative /G as shown in
Figure 8. Also interesting to note is that the evolved perception
mechanism in Lunar Lander displayed a preference for the
transitions that have a higher entropy of the starting state,
as can be see in Figure 7, which possibly contained more
informational potential for learning, but at the same time
cautiously preferred low entropy of the next state s;;; given
by the negative /G displayed in Figure 8.

From displayed results it is possible to notice that an evolved
artificial perception using the proposed GA-AFBS algorithm
was able to alter the behavioural characteristics of the agents
by producing agents with specific traits or tactics that provide
a better adaptation to a specific environment without the need
to alter the reinforcement function.

VIII. CONCLUSION

As machine learning mechanisms evolve, we are now aware

that along the advancement of the learning algorithms focused
on how to learn from data received from the environment in
a most efficient way, we also need to be concerned about the
way those data are perceived in the first place. In spite of
being still vastly unexplored, a good source of inspiration for
new computational and evolutionary approaches of perception
is a computational organ that is a product of a million of years
of evolution: the human brain.
In this work we tried to exploit the insights received by the
areas of psychology and neuroscience, which describe the
higher order complex functions that our brain is using in order
to make its perception more efficient. Since these functions
were developed in humans by an evolutionary process of
natural selection, it seemed that a similar process in a compu-
tational sense would also do the job. Although oversimplified
compared to the human brain, the proposed approach could
develop a filtering mechanism able to reduce the cognitive
load and to induce an effective intrinsic behavior, therefore
simulating the arising of the process of perception just by
changing the dynamics of experience sampling. Furthermore,
the genetically evolved perception mechanism was able to
improve the learning performance by optimizing the way the
agent collects and makes use of the information potentially
provided by its environment. This brings us to the notion that
the perception modeling in reinforcement learning can be seen
as a more than a rigid, one-time, feature design, but can be
implemented by a dynamic and state responsive mechanism
that be, by itself, capable of eliciting behavioral adaptations
to the environment characteristics during the learning process.
In the future work, we will explore how to learn the best
parameters for the attention focus block in order to further
improve its selection capabilities.
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