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Modelling the co-emergence of linguistic
constructions and action concepts: the case of

action verbs
Maximilian Panzner, Judith Gaspers and Philipp Cimiano

Abstract—In this paper, we are concerned with understanding
how linguistic and conceptual structures co-emerge, shaping and
influencing each other. Most theories and models of language
acquisition so far have adopted a ‘mapping’ paradigm according
to which novel words or constructions are ‘mapped’ onto existing,
priorly acquired or innate concepts. Departing from this mapping
approach, we present a computational model of the co-emergence
of linguistic and conceptual structures. We focus in particular on
the case of action verbs and develop a model by which a system
can learn the grounded meaning of a verbal construction without
assuming the prior existence of a corresponding sensomotorically
grounded action concept. Our model spells out how a learner
can distill the essence of the meaning of a verbal construction
as a process of incremental generalization of the meaning of
action verbs, starting from a meaning that is specific to a certain
situation in which the verb has been encountered. We understand
the meaning of verbs as evoking a grounded simulation rather
than a static concept and propose to capture the meaning of verbs
via generative statistical models that support simulation, in our
case Hidden Markov Models. Statistical models can represent
the essence of a verb’s meaning while modelling uncertainty
and thus variation at the surface level of (observed) action
performances. We show that by extending an existing framework
for construction learning, our approach can account for the co-
emergence of linguistic and conceptual structures. We provide
proof-of-concept for our model by experimentally evaluating it
on matching, choice and generation tasks, showing that our model
can not only understand but also produce language.

Index Terms—Incremental multi-modal learning, grounded
learning, qualitative models of action, QTC, model merging

I. INTRODUCTION

Linguistic and conceptual development are assumed to go
hand in hand [1]. For one, it has been argued that language
structures thought and shapes the concepts we acquire. This
is indeed the main claim behind the theory of linguistic
relativism, more widely known as the Sapir-Whorf hypothesis
[2]. For another, conceptual development is also a prerequisite
for language learning as linguistic constructions need to be
‘mapped‘ to some concept that “represents” the meaning of the
construction (see [3], [4]). This mapping paradigm underlies
most of the work on associational language learning involving
cross-situational analysis (see [5], [6], [7], [8]).

However, the detailed mechanisms that are involved in the
co-emergence of linguistic and conceptual structures have not
received prominent attention so far. Computational models can
contribute to enhance our understanding of such processes by
providing an implementable and thus explicit theory that can
account for the co-emergence of cross-modal representations.

Many computational models and theories of language ac-
quisition have so far assumed that concepts are available prior
to learning the meaning of a certain construction. This simpli-
fication has been described by Lila Gleitmann as follows:

‘This is a large simplification of the learning problem for
vocabulary, to be sure. It’s not likely that learning in this
regard is always and only a matter of mapping the words heard
onto a preset and immutable set of concepts priorly available
to the prelinguistic child. Rather, there is bound to be some
degree of interaction between the categories lexicalized in a
language and the child’s conceptual organization; moreover,
that conceptual organization is changing during the period
of vocabulary growth, to some degree affecting the nature of
lexical entries...’ [9].

In spite of being a simplification, most proposals for
computational models of language acquisition have factored
out the conceptual development dimension and focused on
models explaining how systems learn to map novel words onto
existing concepts. This is in fact the main assumption made in
models and theories relying on cross-situational associational
learning paradigms (e.g. [5], [6], [7], [8]). Exceptions exist
nevertheless. The work of Roy et al. [10] for instance has
proposed a model called CELL allowing a system to learn
cross-modal patterns on the basis of sensory input. The model
acquires a lexicon by finding consistent cross-modal patterns
between sound sequences and shapes observed in images using
a probabilistic model.

A crucial question that has not received prominent attention
is how a learner can acquire the (grounded) meaning of verbal
constructions, in particular capturing their dynamic meaning
aspects, in such a way that a learner can both understand
verbal constructions by simulating them but also generate
verbalizations when observing a certain action, closing the
loop between the different modalities.

In this paper, we propose a computational model and thus
an implemented theory that accounts for the co-emergence of
linguistic and conceptual structure for the case of action verbs
and the (grounded) action concepts they denote. We propose a
model by which a system can learn the grounded meaning of
a verbal construction without assuming the prior existence of
a corresponding concept. Our model spells out how a learner
can distill the essence of the meaning of a verbal construction
as a process of incremental generalization, starting from a
meaning that is specific to a certain context in which the verb
has been encountered. We understand the meaning of verbs as
evoking a simulation rather than a static concept and propose
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to capture the meaning of verbs via generative probabilistic
models, Hidden Markov Models in particular. The Hidden
Markov Models represent the essence of the verb’s meaning
and can capture variation at the surface level to account for
variation in action performance.

The model we propose is inspired by usage-based theories
of language acquisition that assume that language learning
proceeds from specific to general with specific constructions
being incrementally generalized and entrenched, leading to
different levels of generalization for different words [11].
This is empirically backed up by findings demonstrating
different levels of generalization in development within the
same part-of-speech, e.g. for verbs ([12]) or for determiners
[13]. The level of generalization is thus word-specific rather
than category-specific. We attempt to carry this idea over to the
conceptual domain to yield comparable principles describing
linguistic and conceptual development and how they interact
with each other.

We thus apply similar principles to the domain of action
in that our model also implements a usage-based approach
to learning actions in the sense that actions are incrementally
generalized. We build on Hidden Markov Models as repre-
sentation of actions that are incrementally merged to yield
more general models. We thus hypothesize that linguistic and
conceptual development might rely on akin principles, i.e. the
incremental merging of specific models to yield more general
models or concepts. This generalization is driven by the desire
of a learner to yield a compact description of these domains
while not loosing too much descriptional accuracy. The first
corresponds to Occam‘s razor principle and is implemented in
our model as a prior that prefers simpler models. The second is
implemented through a model merging procedure that merges
specific models guided by the desire to yield generalizable
models while at the same time maximizing the likelihood of
generating the observed linguistic and action sequences under
the generalized model in order to avoid over-generalization.

In our proposed model, language and concept acquisition
go hand in hand in the sense that these generalizations are
not applied only separately, but generalization at the linguistic
level triggers a learner to look for potential generalizations
of two actions observed in the context of the same (gener-
alized) sentence. Equivalent linguistic constructions are thus
expected to denote equivalent or unifiable grounded concepts.
Generalization at the conceptual level forces a learner to
induce near-synonym relations, that is to postulate relations be-
tween linguistic constructions that look different at the surface
level, but clearly have commonalities in their meanings. This
supports the acquisition of equivalence classes of linguistic
constructions for which the evoked action concepts can be
unified in one model.

In previous work, we have proposed a (computational)
model of language learning that explains the usage-based
incremental development of a construction grammar [14]. The
model assumed that concepts, in particular action concepts, are
already acquired. In this paper we extend the model towards
explaining how linguistic constructions and action concepts
are learned in interaction with each other.

To our knowledge, our model is the first model that explains

how linguistic verbal constructions and the action concepts
they represent co-emerge, following similar principles relying
on incremental generalization driven by the desire to yield
more compact models that maintain predictive accuracy. Our
model spells out these mechanisms in detail and thus provides
a detailed implemented theory explaining how linguistic and
conceptual development go hand in hand. Further, we provide
a model that can both be used to ‘understand’ but also to
‘generate’ language. Our model allows a learner both to “talk”
about observed actions, being able to categorize actions and
verbalize them, but also to “simulate” an action given an (in-
put) sentence that describes the action. In this sense our model
is one of the few (cognitive) models of language acquisition
bringing also comprehension and generation together in the
sense of Pickering and Garrod [15]. Further, it is the first
model that explains how synonyms emerge as a byproduct
of grouping similar action models.

Our experiments are carried out on a dataset consisting of
action performances for four types of actions (jump on, jump
over, circle around and push) carried out by subjects when
prompted with sentences verbalizing the action in question.

To evaluate the performance of our model, we evaluate the
model under three conditions: i) a matching task consisting
of deciding whether a given sentence describes a given action
instance, ii) a selection task consisting in selecting one out of
three action instances that is described by a given sentence,
and iii) a generation task consisting in generating a sentence
describing a given action instance.

The paper is structured as follows: in the next Section II
we present our model that accounts for the co-emergence of
linguistic constructions and corresponding (action) concepts.
The model builds on a previous model for the acquisition of
constructions that was published before (see Gaspers et al.
[14]). We describe this model for the sake of completeness
and to make this paper self-contained. We then present the
approach we follow for modelling action concepts using
Hidden Markov Models (HMM) and the qualitative trajectory
calculus (QTC) [16]. We assume that a learner is able to extract
qualitative relations from the perceptual input and rely on QTC
to capture such qualitative relations. We then explain how
incremental generalization is performed via a model merging
approach that is guided by the desire to maximize likelihood
while minimizing model complexity. In Section IV we present
results of our model on the three tasks mentioned above.
Before concluding, we discuss implications of our work for
the larger field of language acquisition in Section V.

II. MODEL

In this section, we describe in detail our model for account-
ing for the co-emergence of linguistic constructions and the
action concepts they denote. In essence, the model consists of
two components. One component is based on a model that was
published before and that models the acquisition of syntactic
constructions using symbolic meaning representations (see
Gaspers et al. [14]) The second component is responsible for
inducing general action concepts from specific examples of
action performances following an incremental model merging
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Fig. 1. Overview over the joint model. The model consists of a component
to induce syntactic constructions and a component responsible for inducing
generalized action concepts. The components take sequences of words or
sequences of discrete qualitative relations between two objects as input. They
create a category most specific for that particular input (top) and generalize by
gradually merging specific categories into more general categories (bottom)
using similarity cues from both modalities. The resulting generalized models
consist of slot and frame constructions for language (bottom left) and action
representations in terms of Hidden Markov Models (bottom right).

approach based on generative probabilistic models, in our
case Hidden Markov Models, which were specifically chosen
because the underlying network is structurally similar to the
linguistic construction networks and can be learned incre-
mentally. The observation alphabet corresponds to a set of
qualitative relations that a learner is assumed to be able to
recognize in a visual context. In essence, both models take as
input sequences of words and qualitative relations describing
the relations between a trajector and some reference object, re-
spectively. Upon first occurrence of a certain sentence together
with an action sequence, both models create a category most
specific for that given sequence of words and action. Later,
these most specific categories are generalized as more and
more similar examples are observed, leading to entrenchment
and generalization. The overall model is depicted in Figure 1.
It shows two input sentences: ‘The green circle jumps over the
blue square.’ and ‘The blue triangle jumps over the red square’
as well as two corresponding action sequences. Our compo-
nent for learning generalized constructions from sequences of
words would generate the hypothesis that both sentences can
be merged into a more general construction ‘X jumps over Y’,
abstracting from the specific slot fillers of the corresponding
verbal construction. This mergeability of both sentences into a
more general sentence would trigger our second action concept
learning component to try to unify both action sequences into
a more generalized action sequence in terms of a probabilistic
model that still generates both sequences with high likelihood
while not being overly complex.

At the same time, the interaction between both components
can be reversed: when two actions are regarded as being suffi-
ciently compatible or similar to be merged into a single action
concept model, the system could infer that their corresponding
sentences or linguistic instructions might also be regarded as
equivalent. In this way, our model can also detect synonym
relations. In what follows we present the first part of our
model, the part responsible for inducing generalized linguistic
constructions in Section II-A. This section summarizes in a

nutshell the model presented in earlier work. We refer the
interested reader for details to the original model [14]. Extend-
ing this model to deal with non-symbolic representations, we
present our approach for representing action concepts using
Hidden Markov Models with an observation alphabet based
on the Qualitative Trajectory Calculus (QTC) in Section II-B.
We describe how our model induces such representations
in interaction with the component for learning generalized
linguistic constructions in Section II-C.

A. Learning syntactic constructions

The existing computational model for inducing general-
ized linguistic constructions acquires a lexicon and syntactic
constructions from examples comprised of input across two
different input channels: a language channel and a visual chan-
nel. The language channel presents sentences as sequences of
characters to the system while input from the visual channel
is represented as a symbolic description of the visual context.
The visual meaning representation (MR) is comprised of a set
of actions performed according to the description given in the
sentence. Each action mri ∈ MR is represented by means of
predicate logic formulas, comprising a predicate ξ along with
a set of arguments. The learning process and an example of a
verb-specific construction stored in the network are shown in
Figure 2.

The learned network consists of two interrelated subnet-
works, the lexical subnetwork and the syntactic subnetwork,
which is comprised of two sublayers, the slot and frame
layer (S&F) and the mapping layer. The lexical subnetwork
encodes simple phrases, i.e. (short sequences of) words along
with their associated semantic referents as nodes in the net-
work, i.e. the sequence “red triangle” and the corresponding

Fig. 2. Schematic overview showing an example construction learned from the
two examples of the “pushes” action given as paired input across the language
and visual channel. The figure shows the learned construction stored in the
network.
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semantic referent ‘red triangle’ in Fig 2. The S&F pattern
layer represents syntactic constructions as sequences of nodes
that together constitute a path. Paths can contain variable nodes
that represent slots in the syntactic pattern. These slots can be
filled with elements contained in specific groupings. This layer
also encodes the associated semantic frames. For instance,
in Fig. 2, a syntactic construction is represented as a path
p which expresses a pattern “X pushes Y ”, where X and Y
represent syntactic slots in the pattern, which can be filled with
groupings of elements such as “blue circle” and “red triangle”
in the case of X or “red circle” and “red rectangle” in the
case of Y . The semantic frame associated with the pattern
is push(trajector,landmark). The mapping layer contains net-
works representing construction-specific argument mappings
between syntactic patterns and semantic frames together with
mappings of the syntactic arguments to semantic arguments.
For example, in Fig. 2 an individual mapping network captures
the correspondences between X and the trajector role as
well as Y and the landmark role. Form-meaning mappings
as correspondences between linguistic and semantic entities,
are established by capturing their co-occurrence frequencies
across observed examples/situations in associative networks
[17] (see Gaspers et al. [14] for details).

Learning is organized in an online fashion where each input
example causes immediate changes in the network structure.
The learning process is roughly divided into two steps: i)
update of the lexical layer, where connections between lexical
units and semantic referents are established and reinforced, and
ii) update of the construction layer, where the model mainly
attempts to merge paths, and thus generalizes over specific
linguistic and action examples observed. For generalization,
the model exploits type variations at the linguistic level in
relation to semantic observations. More specifically, there are
two different generalization steps, both of which are applied to
each observed input example, i.e. i) a slot-driven generalization
step and ii) a syntactic generalization step. In the slot-driven
generalization step, the model searches for sentences and (par-
tially generalized) patterns for which linguistic variation in a
position yields corresponding semantic variation in a slot in an
associated semantic frame. In the syntactic generalization step,
the model searches for patterns which show linguistic variation
in a position but are associated with the same semantic frame.
Thus, syntactic generalization may yield groupings of lexical
units which are synonyms.
To illustrate the intuition behind the learning steps, consider
the following example: A learner observes “the blue circle
jumps” and “the red triangle jumps” in the visual context
jump(trajector:blue circle) and jump(trajector:red triangle),
respectively. To learn across situations, during updates of
the lexical layer, the model would use its knowledge that
the linguistic phrase “red triangle” refers to the semantic
entity red triangle and that the phrase “blue circle” refers
to the semantic entity blue circle. Such knowledge would,
in turn, be applied during updates of the construction layer
in the slot-driven generalization step to learn that the type
variation in the sentences’ first position (“blue circle” vs. “red
triangle”) reflects the meaning difference in the trajector role
of jump. The model would use its knowledge to acquire the

more general pattern shown in (1), where X = [blue circle
→ blue circle, red triangle → red triangle].

(1)
Syntactic pattern X jumps
Semantic frame jump(trajector)
Mapping X → trajector

Now let’s assume that after observation of some more input
examples the model has also acquired the constructions shown
in (2), where again X = [red triangle → red triangle, blue
circle → blue circle].

(2)
Syntactic pattern X hops
Semantic frame jump(trajector)
Mapping X → trajector

Since the two syntactic patterns show linguistic variation
in one position (“jumps” vs. “hops”), but are associated with
the same semantic frame, the model would group these two
words and assume that both can be used interchangeably
(without yielding semantic change). The model would thus
use its knowledge to acquire the more general pattern shown
in (3), where X = [red triangle → red triangle, blue circle
→ blue circle] and SYN1 = [jumps, hops].

(3)
Syntactic pattern X SYN1

Semantic frame jump(trajector)
Mapping X → trajector

B. Action models

This section describes how action performances are rep-
resented as Hidden Markov Models (HMM) over sequences
of qualitative relations between a trajector and a landmark
expressed in the Qualitative Trajectory Calculus (QTC). We
focus on actions in which some trajector moves or is moved
relative to some landmark or ground. We assume that a system
is able to observe qualitative relations that describe the relation
between a moving trajector relative to a given landmark. Our
Hidden Markov Models in essence thus model the action
specific probability of a given sequence of qualitative relations
describing the relation between a trajector and a landmark over
time.

In order to describe the relative position and movement
between landmark and trajector, we build on the qualitative
trajectory calculus - double cross (QTCC1) [16] as a formal
foundation. In general, the QTC family of representations
describes the interaction between two moving point objects
k and l with respect to the reference line RL that connects
them at a specific point t in time. As we only have one
actively moved object in our experiments, we decided on
QTCC1 among the QTC family of representations to give
the best trade off between generalization and specificity of
the qualitative relations. The QTCC1 framework defines a
4-element state descriptor (C1, C2, C3, C4) where each Ci ∈
{−, 0,+} represents a so called constraint with the following
interpretation:
C1 Distance constraint: Movement of k with respect to l at

time t1:
- k is moving towards l
0 k is not moving relative to l
+ k is moving away from l

C2 Distance constraint: Movement of l with respect to k at
time t1: analogously to C1
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Fig. 3. This figure shows two moving objects k and l at two different time
points t1 and t2. In this example k is moving towards l at time t1 on the left
hand side of the reference line RL, l is moving away from k on the left hand
side of the reference line from l to k. The corresponding QTCC1 relation is
(−+−−). Reproduced from [16].

C3 Side constraint: Movement of k with respect to RL at
time t1:

- k is moving to the left-hand side of RL
0 k is moving along RL or not moving at all
+ k is moving to the right-hand side of RL

C4 Side constraint: Movement of l with respect to RL at
time t1: analogously to C3

According to the above definition, QTCC1 defines a total of
34 = 81 different basic relations. The framework provides
a rather coarse discretization of the relations between two
objects, leading to situations where the qualitative relation
between the two objects holds for a longer portion of the
trajectory. As these parts of the trajectory do not carry much
discriminative information, we apply logarithmic compression
of repetitive subsequences as described by Panzner et al. [18],
which allows to preserve information about the acceleration
along the trajectory, increasing the overall performance espe-
cially for very similar actions like “jumps over” and “jumps
upon”, while still allowing to generalize over high variations
in relative pace of the action performances. As an illustration
of our action representation consider Figure 4, which depicts a
rectangle circling once around a circle on an elliptic trajectory.
At the first marked position, P1, the square is moving on the
top left of the circle, corresponding to the QTC descriptor
(-,0,-,0). At P2, the square is on top of the circle and instead
of approaching the circle the rectangle veers away from the
circle now, resulting in the first constraint of the QTC relation
to change from − to + yielding (+,0,-,0) as the new relation.
In this very smooth trajectory the QTC relations would only
change at the positions P2, P4, P6 and remain unchanged in
between, leading to subsequences with many repeated QTC
relations in between which are subject to the logarithmic
compression. Trajectories from actions performed by humans
however are much more cluttered, so that the sequences of
QTC relation contain many additional transitions.

Fig. 4. Example sequence of a “circles around” action. The blue rectangle
circles around the green circle on a smooth elliptic trajectory. The QTC rela-
tions only change at the marked positions P2, P4, P6 and remain unchanged
in between.

C. Induction of action models

In our approach, induction of generalized action models is
performed by incrementally merging specific HMMs into more
general HMMs that have a higher entropy compared to the
very specific HMMs. At the same time, the generalized HMMs
should still assign substantial probability mass to the observed
example while minimizing model complexity. Our incremental
model merging approach follows the approach described by
Omohundro et al. [19] and is inspired by the observation that
when faced with new situations, humans and animals alike
drive their learning process by first storing individual examples
(memory based learning) where few data points are available
and gradually switching to a parametric learning scheme to
allow for better generalization as more and more data becomes
available [20]. Our approach mimics this behavior by starting
with simple models generating exactly one sequence which
evolve into more complex models as more data becomes
available. Eventually, our goal is to have one HMM for each
action type.

The process to evolve simple models into complex ones
relies on three basic operations. Data incorporation integrates
a new observation sequence into an existing (possibly empty)
model. State merging consolidates the resulting model in a
way which allows it to generalize to yet unseen trajectories by
merging paths corresponding to similar action performances.
Model evaluation approximates how well a given model fits
its constituting dataset.

This scheme allows our models to achieve good general-
ization performance when faced with new examples while
also being capable of one-shot learning after just one seen
example. Learning, as generalization over the concrete ob-
served examples, is driven by structure merging in the model
in a way that we trade model likelihood against a preference
or bias for models of lower complexity. This is well known
as the Occam’s Razor principle. This principle suggests that
among equally well predicting hypothesis one should choose
the simplest hypotheses requiring the fewest assumptions.

As graphical models, HMMs are particularly well suited for
a model merging approach because data incorporation, state
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merging and model evaluation are straightforward to apply in
this framework as basic graph manipulation operations:

Data incorporation: To integrate a new sequence into a
given model we first construct a unique path between the
initial and the final state of the model where each symbol
in the sequence corresponds to a state in the new path. Each
of these states emits its respective symbol in the underlying
sequence and simply transitions to the next state, yielding
a maximally specific sub path in the model which exactly
reproduces the corresponding sequence. After integrating the
new path, the probability distribution governing the outgoing
transitions from the start state is rebalanced according to the
relative frequencies of the pre-existing paths.

State merging: The conversion of the memory based
learning scheme with unique maximally specific sub-paths for
each sequence in the underlying dataset into a model which
is able to generalize to a variety of similar trajectories is
achieved by merging states which are similar according to
their emission and transition densities. Merging two states q1
and q2 means replacing these states with a new state q̂ whose
transition and emission densities are a weighted mixture of the
densities of the two underlying states. Transitions to q1 and
q2 are redirected to q̂ and their probabilities are recalculated
according to their empirical estimates in the generating data.
As we do not store the underlying samples explicitly, the
recalculation of probabilities is tackled by tracking transition
and emission statistics corresponding to nodes in the network.
Transitions emanating from one of the two old states are
simply accumulated and re-routed so that they start from q̂.
Consolidating the model through state merging abstracts from
the concrete examples in the underlying dataset and allows the
model to generalize to novel action performances.

Model evaluation: We evaluate the models resulting from
the merging process using a score composed of a structural
model prior P (M) and the data dependent model likelihood
P (X|M):

λP (M) + (1− λ)P (X|M) (4)

The parameter λ ∈ [0, 1] mediates between prior and like-
lihood (see [21] for a detailed analysis). The model prior
P (M) acts as a data independent bias. In our system we
employ an Occam’s Razor like prior favoring simpler models.
Giving precedence to simpler models with fewer states makes
this measure the primary driving force in the generalization
process:

P (M) = e|M |. (5)

The model size |M | corresponds to the number of states. The
complexity of the transition and emission distributions in each
state could also be involved in this calculation. However, in
this setting we found that the number of states alone produces
the best performing models. While the structural prior favors
simpler models, its antagonist, the model likelihood, has its
maximum at the initial model with the maximum likelihood
sub-paths. The exact model likelihood given the dataset X is
computed as:

P (X|M) =
∏
x∈X

P (x|M) (6)

Fig. 5. Sequence of models obtained by merging samples from an exemplary
language (ab)+, reproduced from [19]. Transitions without special annota-
tions and all emissions have the probability 1.0.

with

P (x|M) =
∑

q1...ql∈Ql

p(qI → q1)p(q1 ↑ x1)

. . . p(ql ↑ xl)p(ql → qF ).

(7)

where l is the length of the sample and qI , qF denote the initial
and final states of the model. As we do not want to store
the underlying samples explicitly, we use an approximation
which considers only the terms with the highest contribution,
the Viterbi path:

P (X|M) ≈
∏
q∈Q

(∏
q′∈Q

p(q → q′)c(q→q′)
∏
σ∈Σ

p(q ↑ σ)c(q↑σ)

)
(8)

where c(q → q′) and c(q ↑ σ) are the total counts of
transitions and emissions occurring along the Viterbi path
associated with the samples in the underlying dataset (see
[19] for details). All experiments were conducted using
λ = 0.1, giving the likelihood precedence over the bias for
models of lower complexity1.

The simplest model in our approach is a model which gen-
erates a single sequence and assigns the complete probability
mass to this unique sequence, equally distributed to each state.
We call such models ‘maximum likelihood models’ because
they produce their respective sequences with the highest pos-
sible probability. Starting from maximum likelihood models
over individual sequences we build more general HMMs by

1See [21] for details concerning model parameters and properties in the
model for learning action concepts.
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merging simpler ones and iteratively joining similar states
to intertwine sub-paths constructed from different sequences,
allowing them to generalize to different action performances.
These initial models can be seen as being obtained by ’un-
rolling’ the paths used in generating the samples in the target
model. By iteratively merging states we attempt to undo the
unrolling, searching the space of possible models back to the
generating model. Merging of two models M1,M2 is done by
first joining the start states of the models and re-balancing the
outgoing transitions afterwards. In the second step, the final
states of both models are merged and all transitions to the
former final states are consolidated and re-routed to the final
state of the joint model. When merging two maximum likeli-
hood models, the resulting model would simply represent the
underlying sequences. When generating from such a model,
the actual sequence which will be generated is determined
early by taking one of the possible paths emanating from the
start state. A model which only consists of sub-paths which
are themselves maximum likelihood models of an underlying
sequence is thus unable to generalize to any other sequence
not in its constituting dataset. An example illustrating the
mechanism for model merging is shown in Figure 5. The first
model (M0) in this example is constructed over two sequences
{ab, abab} and thus has two sub-paths originating from the
start state, each having a probability of 0.5. After taking
the first transition from the start state, the model completely
converges to generate either ab or abab. Only the transitions
from the start state display stochastic behavior, while the
individual sub-paths are completely deterministic.

In order to enable the model to also generate and understand
yet unknown sequences, we have to intertwine these paths
and their underlying characteristics. This is done trough state
merging (Alg. 1), where we first build a list of possible
merge candidates using a measure of similarity between state
emission and transition probability densities. In this approach
we use the symmetrized Kullback–Leibler divergence. Then
we greedily merge the best pair of states and re-evaluate the
model likelihood. We continue the merging process until we
reach a point where the likelihood of the resulting model
decreases to a level which cannot be compensated by the prior
rewarding simpler models.

Example: An example of this merging process can be seen
in Figure 5. The merging process starts with a model M0

constructed from two of the previously mentioned maximum
likelihood sequences, which were sampled from the regular
language (ab)+. The likelihood of this initial model is calcu-
lated according to equation 8 as log(0.5)+log(0.5) = −0.602.
As most transitions have a probability of 1.0, only the two
transitions emanating from the initial state contribute to the
result. To start the state merging process we select the first
two states to be merged according to their emission and
transition similarities. This similarity measure can be seen as
an approximation to the expected drop in likelihood of the
resulting model. In this example, we selected the highlighted
states. After merging, we get M1 as the resulting model. The
overall model likelihood does not change as we have again
only two paths contributing to this measure, both having a
probability of 0.5. After merging the next two candidates, we

Data: current model M
best model Mbest =M
best model score Sbest = P (X|M)
candidates: C ⊂ (NxN) \ {(s1, s2)|a1 = s2}
for c ∈ C do

M̂ ← new model with (s1, s2) merged
SM̂ = P (X|M̂)
if SM̂ ≤ Smax then

M̂ = lookahead(M̂ ); recurse for one merge
SM̂ = P (X|M̂)

end
if SM̂ > Smax then

Mbest := M̂ ; current best model
Sbest := P (X|M̂); current best score

end
end
return Mbest

Algorithm 1: State merging algorithm. Initialize the re-
sulting model (Mbest) with the current model and set the
score for Mbest to the score of the current model. Generate
a list of candidate state tuples (s1, s2) to merge according
to the similarity of their emission and transition densities.
Construct a new model M̂ from M with states (s1, s2)
merged and check if the resulting model scores higher
than the current best model according to Equation 4. If
the model scores higher it is remembered as the currently
best model, if not the algorithm tries one more merge as
lookahead.

yield model M2 again without a drop in model likelihood. The
next merge yields M3, leading to a first drop in likelihood,
but as we have a prior favoring less states, M3 is still more
preferable compared to M0. This model is now cyclic and
able to generate more sequences than the original sequences
ab, abab it was created from. In fact, being cyclic enables M3

now to generalize to the language (ab)+ which was used to
generate the constituting samples in the first place. The last
merge simplifies the model further to the most compact form
to generate the example language.

D. Grounding syntactic constructions in qualitative action
models

This section briefly explains how the component for induc-
ing generalized linguistic constructions is extended to incor-
porate the action models captured by the HMMs. In essence,
the symbolic predicates ‘observed’ in context are replaced by
observations of which object is moving relative to which other
object at which time stamp as follows:

(9)

NL sentence blue circle jumps over green rectangle.
Objects trajector: blue circle

landmark: green rectangle
Moves/positions move(1234,blue circle,[11:12]);

move(1277,blue circle,[12:13]);. . .
When observing such an example, both a specific construc-

tion ‘The blue circle jumps over the green rectangle‘ and a spe-
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cific HMM capturing that movement sequence are generated.
We assume here that a learning system can already recognize
particular objects, e.g. blue circle as well as green rectangle
as well as the role they play (e.g. trajector or landmark). Note
that we do not assume that the system knows already the
names for such objects.

The system has thus three tasks:
1) Learn the names for objects (through associational learn-

ing)
2) Induce generalized linguistic constructions abstracting

over specific slots (through postulation of slots and
associational learning)

3) Develop general action concepts abstracting from spe-
cific action instances (through model merging)

These three tasks are solved by the model inducing gen-
eralized syntactic constructions as described in Section II-A
together with the representation and induction approaches
described in Section II-B.

The two components for inducing generalized syntactic
constructions as well as action concept induction interact
bidirectionally as follows:
• When the component for inducing generalized construc-

tions encounters two specific constructions that can be
merged into a generalized slot-and-frame pattern by ab-
stracting from parts of the sentence by introducing slots, it
performs this generalization only if the HMMs associated
to the specific constructions are mergeable. Mergeability
means here that the similarity 0 ≤ sim(M1,M2) ≤ 1
between the action models is above a given threshold
(0.86) which was optimized independently using ran-
domized grid search. The similarity was derived from
a distance metric between HMMs that is similar to the
Kullback-Leibler distance between distributions. We let
both HMMs generate sequences and for each of these
sequences accumulate the difference between the likeli-
hood of that sequence given the generating model and
the likelihood given the other model. This procedure is
similar to the one proposed by Juang et al. [22]. If the
models are mergeable, then both HMMs are merged into a
new HMM that represents a more general action concept
in the sense of accounting for more variability in action
performance.

• In case the component for inducing generalized actions
detects that two HMMs associated with different syntactic
constructions are extremely similar in the sense that they
very likely represent the same action, then it is inferred
that both constructions are synonyms of each other.

• In case two sentences are exactly the same, the two
HMMs are directly merged.

III. LEARNING SCENARIO AND INPUT DATA

We consider a learning scenario in which the system learns
from written sentences, describing different actions coupled
with example 2D trajectories corresponding to these actions.
We considered four actions, i.e. jump onto, jump over, revolve
around (once), and pushes. These actions were chosen because
they can be performed easily in a 2D-scenario regardless of

Fig. 6. Simple game with two geometric objects which can be freely moved
on the gamefield. In this screen test subjects are asked to revolve the blue
rectangle around the green triangle (instruction in the lower part of the screen).

the types of objects involved and because they also provide
some challenges regarding discriminability, e.g. instances of
jump onto and jump over may have rather similar trajectories.
In previous work [23] we already collected suitable data which
is also used for the experiments presented in this paper.
To collect the data, we implemented a simple game in which
users could slide geometric objects on a screen (see Fig. 6 for
an example screen-shot). Participants were asked to play 100
game rounds, each corresponding to a unique combination of
action and objects to perform the action with.

In each trial, a sentence expressing an action, e.g. “the
blue rectangle circles once around the green triangle”, was
displayed on the screen along with two objects named in
the sentence. Subjects were asked to perform the action
described by the displayed sentence accordingly by sliding
the corresponding object(s). Each displayed sentence described
one out of the four different actions. For each action a single
syntactic pattern was used to generate sentences describing the
action, with different combinations of the objects appearing in
the syntactic slots of the pattern. In previous work [23], we
used the following four patterns that differ in their verbs or
prepositions:
• trajector pushes landmark from left to right
• trajector jumps onto landmark
• trajector jumps over landmark
• trajector revolves once around landmark

We considered 9 objects for trajector and landmark, i.e. 3
geometric forms (rectangle, triangle, circle) × 3 colors (red,
blue, green), and 25 different sentences (i.e. instantiations
of the pattern) were generated for each action, for example
“the red circle pushes the green triangle from left to right”.
Trajectories were determined by sampling the positions of both
objects at a fixed rate. We collected data from 12 subjects (9
male, 3 female, mean age = 29,4 years), yielding 1200 input
examples altogether.
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Extending our previous experiments, in this article we also
attempt to merge HMMs and corresponding sentences/patterns
based on similarity between HMMs. Thus, it is also our goal
to identify synonyms, i.e. words expressing the same action. In
order to measure system performance regarding this issue, we
modified the collected data set in that we used two different
verbs for each of the four actions. More specifically, for each
action performance in an input example we randomly choose
one out of two possible sentences as the descriptions; we used
the following patterns to generate descriptions:
• trajector [pushes|shoves] landmark from left to right
• trajector [jumps|hops] onto landmark
• trajector [jumps|hops] over landmark
• trajector [revolves|circles] once around landmark
Notice that the patterns were chosen such that similarity

between action models, i.e. HMMs, is indeed an important
criterion in order to determine synonyms correctly. For in-
stance, taking solely linguistic variation into account could
also yield an incorrect merging of patterns “trajector jumps
onto landmark” and “trajector jumps over landmark” into
“trajector jumps [onto|over] landmark”.

IV. EXPERIMENTAL EVALUATION

Since we explore grounded language learning, we are in-
terested in the system’s generalization abilities both at the
linguistic and conceptual level. That is, the main goals of the
system are to i) understand and generate novel sentences, and
ii) abstract over concrete trajectories of actions, in particular
to also recognize actions performed by novel subjects. Thus,
we consider two evaluation scenarios:

1) novel-performer: 12-fold cross-validation over all sub-
jects, i.e. training on data collected for 11 subjects and
testing on the data of the 12-th subject.

2) novel-sentence: 25-fold cross-validation in which all
sentences observed during testing are novel, i.e. none of
them has been observed during training and thus cannot
be understood or generated by performing rote-learning.
Folds are generated by first collapsing data from all 12
subjects and then partitioning into 25 folds so that in
each fold we have the same number of examples for
each of the 4 action categories and 4 sentences which
are not contained in any other fold.

The developed system is evaluated in two different experi-
mental settings: one concerning the understanding and one
concerning the generation abilities. To measure the system’s
performance we compute precision, recall and f-measure (the
harmonic mean of precision and recall). Recall is computed
as the percentage of testing examples for which the system
generates the correct result and precision as the percentage of
correctly generated results of the number of testing examples
for which the system actually generates a result (i.e. the system
may choose that it cannot determine the result, for instance,
because it has not been able to determine a suitable syntactic
pattern and/or action model). In order to estimate to what
extent the system is able to detect synonyms for actions,
we present a (mainly qualitative) analysis of the learned
grammars.

In the following, we will first focus on language understanding
abilities using a matching and a choosing test, and subse-
quently explore a language generation experiment. Afterwards,
we put our results into context.

A. Matching test

In the first experiment, we evaluate the system’s understand-
ing abilities in a matching task. The test is depicted in the
figure above. The system receives as input pairs of sentences
and action performances, presented as QTC sequences. The
system has then to decide whether the sentence describes the
action. These testing data are generated such that the action
corresponds to the sentences in about 50% of the examples.
More specifically, we keep the appropriate action for half of
the testing examples and shuffle the action sequences for the
other half such that the action does not correspond to the
sentence. Any system has thus a 50% chance level of providing
the correct response.

The matching test is implemented using our model as
follows: given an input sentence, the systems retrieves a
generalized syntactic construction from the construction net-
work that matches the input sentence. It then retrieves the
associated HMM. If this HMM is the model that has the
highest likelihood of generating the specific QTC sequence,
then the system determines that the sentence matches the
action.

B. Choosing test

This task is schematically depicted in the figure above.
When presented with a sentence paired with three action
instances represented as QTC relations, the system has to
decide which of the three actions the sentence refers to.
Hereby, it is guaranteed that the sentence refers to exactly
one action. The other two actions are confounder actions that
depict an unrelated action type as well as an action of the same
type as described by the sentence but with other objects. Given

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TCDS.2019.2900418

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



10

the sentence ‘The blue circle jumps over the red rectangle’,
one example would indeed encode a blue circle jumping over
a red rectangle, while the others would encode, e.g., a blue
triangle jumping over a red rectangle as well as a blue circle
jumping *on* a red rectangle.

C. Language generation test

To evaluate the system’s language generation abilities we
first generate sentences for given testing actions. The sentences
are generated by extracting all learned knowledge from the
construction network – i.e. syntactic patterns, lexical units and
groupings of elements – along with their associated HMMs
and subsequently reversing the associations. For example,
we might extract a pattern “X pushes Y ” associated with
a meaning comprising an HMM and the information what
lexical units can occur in positions X and Y along with their
corresponding role in the meaning (such as trajector). Given a
testing action, the system first determines the HMM that has
the highest likelihood of generating the sequence. Based on
the grammar, it can then retrieve the corresponding syntactic
pattern along with the information about lexical units and their
roles. The generated sentence is considered correct only if it is
identical with the example’s actual sentence or the alternative
sentence describing the same action.

We compare our results against a baseline that was estab-
lished by choosing a sentence from the training data that
has been observed with a similar meaning representation.
Similarity is rated on both the involved objects (referents)
and the action sequences. For the action sequences we im-
plemented a simple matching score based on the Levenshtein
distance between the compressed QTCc sequences. For all
pairs of trajectories t1, t2 we calculate a matching score
as the Levenshtein distance normalized with respect to its
theoretical upper bound lev(t1, t2)/max(|t1|, |t2|). Because
the distances are calculated over the compressed sequences it
can also be considered an instance of Dynamic Time Warping.
This baseline can however only yield matches in the novel-
performer condition; in the novel-sentence condition none of
the testing sentences has been observed during training and
thus cannot be found by simply taking a sentence observed
with a similar meaning.

D. Results

Results for all three tests along with their corresponding
baseline values are presented in Table I. The results reveal

TABLE I
RESULTS FOR THE MATCHING (LANGUAGE UNDERSTANDING), THE

CHOOSING (LANGUAGE UNDERSTANDING) AND THE LANGUAGE
GENERATION TEST IN THE NOVEL-PERFORMER AND NOVEL-SENTENCE

CONDITIONS WITH AND WITHOUT SYNONYM DETECTION.

Matching test

Setting Synonym Detection F1 Precision Recall

Baseline 50% chance

novel-performer No 75,42 75,42 75,42
novel-performer Yes 99,08 99,08 99,08
novel-sentence No 47,32 90,11 32,08
novel-sentence Yes 86,50 88,69 84,42

Choosing test

Setting Synonym Detection F1 Precision Recall

Baseline ∼33% chance

novel-performer No 67,70 100,00 51,17
novel-performer Yes 99,33 100,00 98,76
novel-sentence No 55,86 88,00 40,92
novel-sentence Yes 80,62 92,00 71,75

Language generation test

Setting Synonym Detection F1 Precision Recall

Baseline 89% Levenshtein Distance

novel-performer No 68,67 68,67 68,67
novel-performer Yes 74,00 74,00 74,00
novel-sentence No 54,82 79,49 41,83
novel-sentence Yes 64,09 67,63 61,08

that the system achieves a large increase in performance over
the random baseline, i.e. performing well above chance level,
in both language understanding tests when synonym detection
is active.

For the matching test in the novel-performer condition, F1,
precision and recall are alike, since the system answers yes if
the HMM retrieved for the sentence has the highest likelihood
of generating the observed action sequence, otherwise the sys-
tem answers with ‘no match’, thus yielding an answer for each
testing example. Since most sentences were parsed correctly
(as indicated by high values for precision and recall), the
system appears to have induced suitable grammar and action
models in most cases, i.e. for most folds. The learned action
models appear to generalize well to a novel performer for most
human subjects. For the novel-sentences condition values are
slightly lower, especially when the synonym detection is not
used, which likely results from an insufficient determination
of syntactic patterns, i.e. syntactic patterns may not have been
learned before testing. When faced with sentences which are
instances of unknown syntactic patterns the system would not
generate an answer, resulting in the low recall of 32% in
the condition without synonym detection. But even in this
condition, 90% of the actually generated answers were correct.
With synonym detection the system is mostly able to respond
even to unknown sentences, resulting in a F1 score of 84%,
which is clearly above the baseline of 50%. Taken together, the
results are promising, showing a large increase in performance
over the baseline. It is remarkable that in both the novel-
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performer as well as the novel-sentence case, performance
increases substantially when the synonym detection condition
is active, by 25% as well as by almost 40% F-Measure. The
reason for the impact of the synonym detection is clearly due
to the way the dataset has been constructed, replacing 50% of
the sentences by synonym sentences. Nevertheless, the results
on the novel-sentence condition show that the component for
inducing synonyms is indeed working very well.

On the choosing test, the system outperforms the baseline
condition by large (67,70% and 55,86% vs. 33% on the novel-
performer and novel-sentence conditions without synonym
detection). Especially in the novel-perfomer condition the
precision is 100%, indicating that if the system is given
several potential meanings for a sentence and cannot determine
the correct match it does not confuse the sentence with
distractor meanings, even if these are also somewhat similar to
the observed sentence, i.e. corresponding to the same action
or involving the same objects. The impact of the synonym
detection is also very large with increases in terms of F-
Measure by over 30% (from 67,70% to 99,33%) for the novel
performer setting and close to 25% (from 55,86% to 80,62%)
for the novel-sentence setting. Thus, taking the results for both
tests together, the learned models appear to be suitable to
yield generalized linguistic constructions and action models
that generalize to unseen sequences as well as a reasonable
discrimination ability between different actions.

In the language generation test, the system performs only
slightly below the baseline in the novel-performer condition,
showing that by merging observed action trajectories for sev-
eral subjects into generalized action models the discriminative
power is mostly retained. However, the learned grammar and
models yield the additional benefit that the system is able
to also generate sentences not observed during training. In
particular, in the novel-sentence condition the system is still
able to generate several sentences correctly, even though it has
never observed them or their corresponding meanings before,
which corroborates the generalization abilities of our model.

V. DISCUSSION

We have presented a model that accounts for the co-emerge
of linguistic constructions as well as corresponding (grounded)
action concepts, mutually influencing each other to fit the
observed reality. At both levels, representation learning is
performed in a bottom-up incremental fashion, unifying and
merging specific instances into generalized representations
that capture the essential characteristics of linguistic struc-
tures and action concepts, being ‘generative’ in the sense of
being able to produce different surface forms. The mutual
influence of emerging representations across both modalities
is bidirectional in our model. On the one hand, recognition
of equivalent or mergeable linguistic structures drives the
model towards merging/unifying action representations into
equivalence classes, that is, into one generative model. This
allows learning of the essence of action concepts denoted by
action verbs. On the other hand, similarity in action models
leads our system to the inference that two verbal constructions
might indeed be synonymous, e.g. as in the case of ‘X jumps

over Y’ and ‘X hops over Y’.Neues In what follows we discuss
the implications of our work with respect to work on i)
grounded cognition and in particular computational models
of cognitive grammar, as well as, ii) linguistic relativity and
the role of language in cognitive development, thinking and
category/concept formation. We also discuss the relation of our
work to current theories and models of language acquisition.

Grounded Cognition and Cognitive Grammar: Our work
is related to work that postulates that conceptual knowledge
is grounded in modality-specific systems ([24], [25]). As a
special case of conceptual knowledge, language is also re-
garded as being grounded in perception and modality-specific
systems [26]. In fact, our generative models are able to
generate modality-specific simulations of perception and are
thus inherently modal.

As learning proceeds, our system develops a grounded
representation of the action denoted by the verb in form of a
generative model, a Hidden Markov Model in our case. These
Markov Models can be seen as intensional - vs. extensional -
meaning representations that are grounded in perception and
allow to perceptually ‘simulate’ the action denoted by the
verb in question. Our HMMs can to some extent be seen as
a specific implementation of the perceptual symbol systems
proposed by Barsalou [27].

Our work is also related to attempts to provide a simulation-
based and embodied semantics for natural language. Feldman
et al. have proposed X-Schemas as a way to capture the (em-
bodied) meaning of a certain linguistic construction. The work
by Feldman et al. on Embodied Construction Grammar (ECG)
([28], [29]) is very related to our approach. However, the X-
Schemas by which the meaning of linguistic constructions
are represented are very symbolic compared to our qualitative
models. Our qualitative models are still far away from a full
grounding in the sensoric and actuator systems of an embodied
system, but clearly go one step further than the X-Schemas
used in Embodied Construction Grammar (ECG). The closest
related work is the one of van Trijp et al. [30], who have
developed approaches by which robots can learn linguistic
knowledge in the framework of Fluid Construction Grammar
(FCG). However, as far as we know, they have not developed
any approach that can actually induce these X-Schemas from
observation. Further, the work of Feldman and colleagues has
neither considered how synonym relations could be inferred
by a system on the basis of detecting similarity between X-
Schemas. This would indeed presuppose a notion of similarity
between X-Schemas. Such a notion of similarity is inherent
in our model, operationalized as ‘unifiability’ of two models.
In general, there are to our knowledge no models that make
detailed predictions about how synonyms or near-synonyms
are acquired.

Our work is related both to approaches to grounded ac-
quisition of language in robots and cognitive systems, but
also to approaches to the representation and acquisition of
actions. With respect to approaches to grounded acquisition
of language, there has been a lot of work on developing
models which can acquire single words and their meanings
(e.g. [31], [5]). In some approaches, this meaning is grounded
in perception, but is typically limited to objects ([10], [32]).
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Other approaches (e.g. [33], [34]) deal with the acquisition of
syntactic constructions as we do, but typically do not ground
these constructions in qualitative action models. With respect
to the representation and acquisition of actions, different
approaches based on prototypes [35], markov models with
referential representations [36] or representations based on
QTC [37] and neural networks [38] have been proposed.

Many authors have emphasized the cognitive interaction
between action and language ([39], [40], [41], [42]). We have
attempted to provide a detailed model that explains how action
and language structures emerge in interaction, influencing each
other.

Linguistic Relativity and Language as Enhancer of
Cognitive Abilities: Our proposal is further in line with the
paradigm of linguistic relativity, corresponding to the claim
that the language one speaks or hears influences one’s own
conceptualization and the categories one forms. While the
strong claim that language determines thought has been largely
abandoned [43], there is increasing empirical evidence show-
ing that language influences thought. Wolff and Holmes [43]
have described four ways in which language could influence
thought, or more accurately, an emerging conceptualization,
distinguishing the functions of i) Language as Meddler, ii)
Language as Augmenter, iii) Language as Spotlight, and iv)
Language as Inducer.

The understanding of language as a tool that enhances the
computational and cognitive abilities of humans has lucidly
been spelled out by Clark [44]. In our account, language acts
both as a spotlight as well as as an inducer of a schematic
representation of experience. In fact, as suggested by Waxman
and Markow [45], language might serve as an invitation to
form a new category. In our case, observing a sentence for the
first time leads to induce a category specific for that sentence.
Generalization of several sentences leads to recognizing a
pattern and to induce a cognitive schema that represents the
essence of the action category denoted by the generalized
verbal construction. Language is thus playing the role of
triggering the search for a schematic category, in our case
an HMM, that supports conceptualizing experience. There is
indeed a lot of empirical evidence showing that language can
facilitate category formation in the above sense. Xu [46] found
that the presence of distinct labels facilitated object individu-
ation. Xu concludes that language may play an important role
in the acquisition of sortal/object kind concepts in infancy and
that words may play as ‘essence placeholders’. This is exactly
what is happening in our model. On encountering a sentence
the first time, our system creates a placeholder for the essence
of this sentence. This early ‘essence’ is very specific for the
given situation in which the sentence was heard and lacks
any generalization. Later, when observing similar sentences,
the corresponding essences are generalized by merging them
into more general essences. Other researchers have shown
that language can help to acquire the distinction between
approachable and non-approachable creatures [47]. Gentner
and Boroditsky have suggested two processes that are active
in learning the concepts that are denoted by words. They refer
to cognitive dominance when concepts emerge from cognitive-
perceptual processes and later the name for these categories

is acquired. They refer to linguistic dominance when ‘the
world presents perceptual bits whose clumping is not pre-
defined and language has a say how the bits get conflated into
concepts’. Clearly, as argued by Gentner and Boroditsky [48],
this is not a dichotomy, but a continuum that spans a space in
which the acquisition of a certain concept for a name can be
located. According to Gentner and Borodtiksy, the acquisition
of categories denoted by proper names or concrete nouns
rather lies on the cognitive dominance side of the continuum.
While kinship terms and verbs lie somewhere in the middle of
the continuum, prepositions, conjunctions and determiners are
rather positioned at the right side of the continuum. Our model
explains the acquisition of categories towards the right end of
continuum. The formation of such categories is triggered by
the fact that learners are confronted with a new construction or
name. It is certainly an open question where on the dominance
continuum our specific actions such as pushing, jumping on,
circling around are positioned at. This could be certainly
determined experimentally. For the sake of providing a proof-
of-concept for our model, we have assumed that the categories
are not available previous to encountering the corresponding
verbal constructions. While this is a mere assumption, our
model is certainly not depending on that.

Emergence of meaning as a mapping: Some researchers
have criticized the ‘mapping metaphor’, that is the idea
that language needs to be mapped to some priorly existing
‘concept’. As mentioned in the introduction, Lila Gleitmann
has emphasized that the assumption that language acquisition
consists in the acquisition of (new) names for existing concepts
is clearly an over-simplification. Overcoming this simplifying
assumption has been one of the goals of our approach.
Tomasello [3] has criticized the ‘mapping metaphor’ on the
grounds that it neglects that learning the meaning of words
is actually a process of contextual inference in which the
intentional structure of an action is considered to infer what
the speaker is actually referring to. Rohlfing and colleagues
[4] have recently criticized the mapping metaphor on other
grounds arguing that children would not necessarily remember
the connection between the word and the referent unless it is
framed pragmatically, that is, it is introduced in the context of
a recurring interactional pattern with the purpose of achieving
a joint goal between tutor and learner. While presented as an
alternative to the mapping paradigm, they rather hypothesize
that a communicative pragmatic frame facilitates to learn
which concept a certain word evokes. The work of Rohlfing et
al. and the proposal of pragmatic frames can be regarded as an
elaboration of the general theory of Tomasello claiming that
recognition of intention, shared attention and goals as well as
the ability to simulate others as intentional agents are crucial
ingredients by which children infer the meaning of a certain
word or expression in context.

Part of the above mentioned criticisms on the mapping
approach stem from the fact that the term ‘mapping’ is not
clearly defined. As lucidly highlighted by McMurray et al. [6],
there are two notions of meaning: the referential meaning of a
sentence or expression in a given situation and the intensional
meaning of an expression. The referential meaning is inferred
in a particular situation on the basis of an understanding
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of the situation. The intensional meaning corresponds to the
situation-independent meaning of a linguistic expression, that
is to its ‘essence’.

Neither the theory of Tomasello nor the work of Rohlfing
et al. make any predictions about how the intensional aspects
of the meaning are learned over time and across situations as
a byproduct of experiencing the word in different contexts.
In a standard formal semantics paradigm, the intensional or
situation-independent meaning aspects of a sentence can be
captured using a truth-conditional approach, capturing the
logical constraints that need to be fulfilled for the sentence
to be true in a given world or situation. In this sense, our
model tries to capture the essential meaning of a linguistic
expression as it appears in our data, albeit not using a standard
truth-conditional semantics approach. In contrast, in our model
intensional meaning is captured via probabilistic models that,
instead of modelling logical conditions on the worlds in which
the sentence is true, models the distribution or likelihood of
observing a certain action sequence in a world or situation
described by a verbal construction that is associated with the
given HMM.

Most works dealing with the question how systems can
learn the intensional meaning of a word have investigated
how systems distill the meaning of a word by cross-situational
learning, that is contrasting the different situations in which
a word has been heard (see [7], [6]). First, as argued above,
referential and intensional meaning is often confounded. Sec-
ond, according to our understanding of the notion of mapping,
it does not imply that the corresponding concept pre-exists
independently. In particular, our understanding of the term
“mapping” does not necessarily imply that the category to
which a word is mapped to exists already. In our approach,
upon first encounter of a construction, it is ‘mapped’ to a
maximally specific novel category that is created in the very
moment in which the sentence and action are observed.

Nevertheless, the term mapping is not only problematic for
the above reasons, but for the fact that it suggests that the
meaning of words can be ‘mapped’ to a static symbol or
handle. In contrast, we prefer to talk about ‘evocation’ of a
situation-independent meaning following the theory of Frame
Semantics [49] that postulates that words evoke more than just
a static referent or handle, but more complex semantic frames,
cognitive schemas or, in our case, grounded representations of
the essence of the word’s meaning that can be used to simulate.
This is compliant with the view of Taylor and Zwaan [50],
who argue that: ‘when a person hears or reads text involving
action, there is activation of the motor systems in his or her
brain’, which corresponds to the referential semantic content
of the description’.

Regarding how a learner infers the meaning of a novel
verb in context, Gleitman (see above) has proposed the syn-
tactic bootstrapping theory according to which a syntactic
construction (e.g. a transitive construction) can give cues about
the potential meaning of a transitively used verb in context.
However, for bootstrapping mechanisms to work, a learner
needs to have learned a generic transitive construction and the
general concept of an agent that does something to another
agent. In earlier work we have provided an account for how

such abstract constructions and categories might emerge [51].
They presuppose that thematic roles such as agent, patient, etc.
are already acquired. In previous work, we have also proposed
a learning architecture that combines top-down and bottom-up
processing to learn constructions starting from sequences of
phonemes [52].

Surely, syntactic knowledge as well as inference about the
intentions of others plays an important role in inferring the
meaning of unknown words in context. The recognition of
intentions and of the teleology of actions emerges very early
in childhood [53]. So far, our model is limited in that it neither
models how pre-existing linguistic knowledge nor reasoning
about the intentions of others or of the purposes of actions
are factored in into the task of figuring out the meaning of
a new verbal constructions. In fact, our model so far only
considers the spatio-temporal structure of action concepts. The
incorporation of these factors into our model is an obvious
avenue for future work, albeit a very challenging one.

Analogy making: Hofstädter and Sanders [54] have
recently argued that analogy making is a fundamental process
in cognitive processing. According to their theory, category
formation and language learning is driven by analogy-making,
that is by fitting previously acquired categories to a given
observation and then extending the category to the new
observation, leading to generalization, which can be possibly
perceived as an over-generalization for mature systems the
language of which is heavily influenced by conventions.
Take the example of the sentence ‘I undressed the banana’,
which for mature speakers is an overt over-generalization,
while from a cognitive perspective it makes a lot of sense.
In some sense, this is what our model is making: it is
constantly making analogies. It induces very specific action
categories for a very specific sentence and then, when
observing a similar sentence, it attempts to extend both
the linguistic construction and the category to cover the
new observation as well. In doing this, it is guided by the
desire to minimize the complexity of the model, that is the
number of bits needed to store the action model, while not
loosing predictive power, that is not over-generalizing. This
mechanism could be regarded as a direct implementation of
the theory of Hofstädter and Sanders. We have provided the
proof-of-concept in simulated experiments that this principle
works for the case of simple verbal constructions denoting
actions in which some object (an agent) moves with respect
to some reference object. Whether our principles could be
extended to other constructions and more complex cognitive
models and simulations is an open question. However, there
seems to be no principled reason why our approach would
not be extensible to other categories. Arguably, HMMs
would not be able to model all kind of representations. But
we stress that our proposal is not specific to HMMs. Our
proposal requires that there is some (probabilistic) generative
model that represents some (induced) category. For dynamic
categories such as (action) verbs that involve a spatio-temporal
signature (what linguistically is called often ’path’) surely
a sequential model will be needed, while for other static
categories (e.g. objects denoted by nouns) a static prototype
as simulation might be sufficient. Most likely, however, even
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object representations have a non-static meaning component
representing the potential to act on the object, corresponding
to so called ‘affordances’ [55]. In terms of the theory of
Hofstädter and Sanders, our generative models capture the
‘essences’ of concepts of which we see a specific realization
or ‘surface’ in the real world.

VI. CONCLUSION

We have presented a computational model of language
acquisition that models the joint emergence of linguistic
constructions and the conceptual categories they evoke. In line
with ‘slow mapping’ approaches that claim that the acquisition
of the meaning of a word is a long-term process that starts
with the first encounter ([56], [6]), we have provided an
account of language learning in which, upon the first encounter
of a linguistic construction or expression, a learner induces
an ad-hoc category that is specific for the given sentence
and context. From many encounters of similar sentences,
learners distill the essence of the category evoked by the word
through incremental generalization, guided by the desire to
produce compact models while not reducing the accuracy of
the predictions made by the model on sequences observed
so far. Concepts in our approach are ‘essences’ evoked by
the linguistic constructions and are generative models that can
generate various ‘surfaces’. The goal of a learner is to distill
these essences from the many encounters with a given word
or linguistic construction. In doing this, they incrementally
stretch and extend the meaning of early categories to subsume
other early categories by a process that could be understood as
one of constant analogy making and extension of categories.
Our proposal is thus very much in line with the understanding
of cognition as analogy making.

We have looked in particular at the case of verbal construc-
tions and corresponding actions in which a trajector moves
with respect to some reference object along a characteristic
spatio-temporal path. As actions are temporal sequences, the
models evoked by verbs denoting actions have to be, at
the very least, sequential models capturing the likelihood of
sequences generated by the model. We have decided to capture
the embodied meaning of verbs via Hidden Markov Models
that can be used also to anticipate the completion of actions
(see Panzner et al. [21]). Capturing concepts of both modalities
in a model that is graphical in principle allows not only to
interrelate concepts across modalities but also to unify both
models in a single joint representation in future work. The
choice for graphical models, in contrast to e.g. neural models,
is also substantiated by the hypothesis that cognitive processes
could be partially explained and conceptualized by a cognitive
architecture that is based on graphical models (Danks 2014
[57]).

Our approach models the first encounter of a word as
the start of the acquisition of a category and thus is in
line with the theory of linguistic relativism in the sense that
language triggers the induction of a category. It follows from
our approach that if cultures use different constructions, their

speakers will as a corollary induce different categories. Future
work should look at the predictions of our model and design
experiments that can test whether categories belong to the
linguistic or more to the cognitive domain.

Our model so far has concentrated only on modelling the
spatio-temporal essence of actions in which some trajector
is moved relatively to some reference object. This is a very
restricted subset of actions. To account for other verbs, the
teleological structure of actions would need to be modeled.
A richer modelling of actions will also require representing
thematic roles such as patient and agent in a developmentally
appropriate and grounded fashion. Our model has assumed
that a system can recognize such relations from the input
and model them symbolically. In terms of the abilities of
a developing language learner, our system assumes that the
following abilities are already acquired or inborn: the ability
to segment and track objects, the ability to segment and
identify words, the ability to recognize and conceptualize basic
scenes as well as the ability to jointly attend to a tutor that
demonstrates actions. All these are in itself complex abilities
the emergence of which needs to be explained. However, this is
out of the scope of the current paper. Finally, while our pro-
posed computational theory for modelling the co-emergence
of linguistic and action representations has been shown to be
effective in our experiments, it is still a very ‘mechanistic’
theory, assuming that a system can represent construction
networks and HMMs explicitly, perform statistical inference
and merging operations on these representations, etc. It is
indeed an open question if learning systems can encode and
manipulate such representations on a neural substrate. In future
work, we will seek to find architectures that show a similar
behaviour but do not postulate the existence of data structures
such as proposed in this paper but instead rely on deep learning
and representational learning to explain the co-emergence of
representations across modalities.

Our work also paves the path for developing the founda-
tions for a physically grounded simulation-based semantics of
natural language.
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