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Abstract—A common learning task for a spiking neuron is to
map a spatio–temporal input pattern to a target output spike
train. There is no prescribed method for selection of the target
output spike train. However, the precise spiking pattern of the
target output spike train (output encoding) can affect the learning
performance of the spiking neuron. Therefore, systematic meth-
ods of finding the optimum spiking pattern for a target output
spike train that can be learned by spiking neurons are needed.
Here, a method is proposed to adaptively adjust an initial sub-
optimal output encoding during different learning epochs to find
the optimal output encoding. A time varying value of a local event
called a spike trace is used to calculate the amount of a required
adjustment. The remote supervised method (ReSuMe) learning
algorithm is used to train the weights, and the proposed method
is used for finding optimized output encoding (optimized desired
spikes). Experimental results show that optimizing the output
encoding during the learning phase increases the accuracy. The
proposed method was applied to find optimized output encoding
in classification tasks and the results revealed improvements up
to 16.5% in accuracy compared to when using the non-adapted
method. It also increases the accuracy in a classification task
from 90% to 100%.

Index Terms—Encoding, learning, spatio–temporal patterns,
spike trace, spike train, spiking neural network (SNN).

I. INTRODUCTION

THE ABILITY of the brain to solve complex problems
has inspired researchers to study its processing functions

and learning procedures. Artificial neural networks (ANNs) are
powerful engineering tools in many domains, such as pattern
recognition, control, bioinformatics, and robotics. Despite the
fact that rate-based coding is commonly used in traditional

Manuscript received November 5, 2018; revised February 12, 2019
and March 21, 2019; accepted March 29, 2019. Date of publica-
tion April 11, 2019; date of current version September 9, 2020. This
work was supported by the Leverhulme Trust Research Project “Novel
Approaches for Constructing Optimised Multimodal Data Spaces” under
Grant RPG-2016-252. (Corresponding author: Aboozar Taherkhani.)

A. Taherkhani and G. Cosma are with the Computational Neuroscience
and Cognitive Robotics Research Group, Nottingham Trent University,
Nottingham NG11 8NS, U.K. (e-mail: aboozar.taherkhani@ntu.ac.uk;
georgina.cosma@ntu.ac.uk).

T. M. McGinnity is with the Computational Neuroscience and Cognitive
Robotics Research Group, Nottingham Trent University, Nottingham NG11
8NS, U.K., and also with the Intelligent Systems Research Centre, Ulster
University, Londonderry, U.K. (e-mail: martin.mcginnity@ntu.ac.uk).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCDS.2019.2909355

ANNs, it is unlikely that rate-based coding can convey all the
information related to a rapid processing task such as color,
odor, and sound processing [1], [2]. Spikes are an important
part of information transmission between neurons in the brain,
and there is biological evidence to show that information is
encoded in the precise timing of the spikes [3], [4].

SpikeProp [5] was one of the first learning algorithms for
spiking neural networks (SNNs). It is a gradient-based learn-
ing method and trains a neuron to fire a single desired output
spike. In SpikeProp [5] each class is labeled by a desired out-
put spike, i.e., each output neuron is fired at a desired time
when an input from the class related to the desired output
spike is applied to the network. The supervised multispike
learning algorithm [6] is another gradient-based learning algo-
rithm that can train an SNN to fire a desired output spike
train with non-adapted spike times corresponding to each class.
This method does not find the optimal desired spike times for
different classes. Remote supervised method (ReSuMe) [7]
is a biologically plausible learning algorithm that works
based on spike timing dependent plasticity (STDP) and anti-
STDP to train a neuron firing desired output spikes at non-
adapted times. QuickProp [8], RProp [9], Chronotron [10],
SPAN [11], EMPD [12], BPSL [13], EDL [14], and the super-
vised method proposed in [15] are other examples of learning
algorithms for training spiking neurons to fire at non-adapted
desired output times. The times of desired output spikes are
usually set randomly, and the random target spikes might not
be an appropriate choice for a classification task, which can
result in a reduction in learning efficiency. For example, a neu-
ron cannot learn to fire a target spike which is randomly set
at a time that there are no or an insufficient number of input
spikes in a time window around the target time.

Tempotron [16] is a biologically plausible supervised learn-
ing method that does not force a neuron to fire at non-adapted
predefined times. It can train a neuron to fire an output spike,
however, the spike time is not restricted. A dynamic evolv-
ing SNN (deSNN) was proposed by Kasabov et al. [17]
for classification tasks, and it is a semi-supervised learning
method to capture the temporal dynamics of input patterns.
deSNN does not set predefined constant times for firing
neurons. Yu et al. [18] designed a scheme to make deci-
sions on output spikes of a feedforward network. They used
N on/off neurons to encode the output of the network to
2N classes. In the scheme proposed by Yu et al. [18], if
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one neuron acts incorrectly, it completely changes the out-
put of the network. Pham et al. [19] proposed a learning
method for a self-organizing SNN for pattern clustering. In
this method, each spiking neuron acts as a coincident detec-
tor (CD). A Hebbian-based rule is applied to shift the synaptic
delays. The neuron threshold level is set to a small value at the
beginning of the learning phase and it is then increased dur-
ing different learning epochs. Similar to other methods such as
Tempotron [16], this method has no predefined constant times
for firing neurons.

The temporal spiking pattern of a desired output spike
train has a significant effect on the performance of a learn-
ing algorithm for SNNs. It is hypothesized that finding an
optimum desired output spike train encoding can improve
the performance of the learning algorithm, by making the
task of the learning algorithm easier. Mohemmed et al. [4]
have shown that the spiking patterns of desired output spike
trains, which are used for labeling different classes, affect the
performance of SNN learning algorithms. They used spatio–
temporal input patterns which were applied to a neuron with
200 input synapses. Spikes in the input pattern were generated
using a uniform random distribution in the interval [0, 200]
ms. They have shown that shifting the firing time of a desired
output spike from a very early time (at 33 ms) to a late time
(165 ms), can significantly improve classification performance.
In particular, classification accuracy increased from 51% to
99% when shifting the firing time of a spike to a later time [4].

Legenstein et al. [20] constructed a desired output spike
train for a spatio–temporal input pattern, when synaptic
weights were chosen randomly. Xu et al. [6] have investi-
gated the effect of the number and the times of desired output
spikes on the performance of an SNN learning algorithm for
a pattern classification task. In the classification task, a desired
spike train is assigned to each class. A teacher signal is used
in each learning epoch to train a spiking neuron. The teacher
signal is called desired spike train and it contains a number
of desired spikes. Xu et al. [6] have shown that appropriate
selection of the time of a desired output spike can improve the
performance of the learning algorithm. They set the time of the
first desired output spike to an arbitrary value, then extracted
the time of the second desired output spike based on the dis-
tribution of actual output spikes after the first run of learning
on the first desired spike. Note that the term “actual output
spikes” describes those spikes generated by a spiking neuron
in response to an applied input spatio–temporal pattern. Then
the SNN was trained with the new desired output spike train
(composed of the first spike and the newly extracted desired
spike). The method proposed by Xu et al. [6] does not combine
the desired output spike extraction with the learning procedure
of an SNN, and it does not provide any mechanism to adjust
the time of the first desired output spike. In general, there is
a need for methods which can identify optimum output spike
patterns to encode outputs for training spatio–temporal input
patterns in spiking neurons, and hence to improve the learning
capabilities of SNNs [21].

Biological evidence shows that the firing times of a biolog-
ical neuron are dynamically changed, and irregular behavior
has been reported with respect to the firing activity of neurons
in in-vivo and in-vitro experiments [22]. Stochastic behavior

Fig. 1. Variable spike times in various trials with same time dependent input
stimulus (adapted from [22]).

of cortical neurons has been reported in many biological
experiments. These experiments show that spikes may shift
from trial to trial, even though the same trial is performed sev-
eral times [22]. In biological experiments, a time-dependent
current is injected into a neuron several times in a controlled
situation and typically results in output traces as shown in
Fig. 1 from repeated experimental runs. The firing times of the
biological neuron are not constant, even if exactly the same
input is applied, and there is a fluctuation around the time of
a spike from trial to trial. In the method proposed here, this
biological property was used to design a method to dynam-
ically change the times of desired output spikes to find an
appropriate spiking pattern for the desired spikes that mini-
mizes the challenge to the learning algorithm in learning the
spatio–temporal input.

More specifically, this paper proposes a method for finding
an optimal desired output spike train (optimal output encod-
ing) for a spiking neuron. An initial suboptimal desired spike
train composed of a number of spikes is generated randomly,
and then the suboptimal spikes are adjusted in time to create
an optimized set of spikes via controlled shifts in the ini-
tial spike times. The spiking neuron can be trained to map
the spatio–temporal input pattern to the shifted desired spikes
with high accuracy. In the proposed method, the times of initial
suboptimal desired output spikes evolve to reach a pattern of
spiking activity that the spiking neuron can learn with a high
accuracy. The method can be applied to different learning algo-
rithms for SNNs. Section II discusses the proposed method for
finding desired output spikes; Section III provides the exper-
iment results; and a discussion and conclusion are presented
in Sections IV and V, respectively.

II. PROPOSED METHOD FOR FINDING

DESIRED OUTPUT SPIKES

The aim of the learning task is to map a spatio–temporal
input pattern composed of a number of spike trains to a desired
spike train. This section proposes a method to find compatible
desired output spikes with the spatio–temporal input pattern.
In the proposed method, ReSuMe is used to adjust the learning
parameters (i.e., synaptic weights) of a spiking neuron to train
the neuron although any similar learning algorithm could be
employed. In addition, to utilizing the ReSuMe learning algo-
rithm to adjust the synaptic weights of a spiking neuron, a new
method is proposed to gradually shift the desired spikes toward
the nearest actual output spikes, thus easing the task of the
learning algorithm. The proposed mechanism gives flexibility
to the learning task to increase the accuracy of the learning
procedure.
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Fig. 2. Desired spike train and its corresponding actual output spike train
before learning.

For example, Fig. 2 shows an initial suboptimal desired
spike train, and the actual output spike train of a spiking neu-
ron before training. The initial desired spike train is far from
the actual output of the spiking neuron. There are three desired
spikes in the suboptimal desired spike train, and the proposed
method shifts each desired spike in the train to find an opti-
mum time for each spike in different learning epochs. For the
situation shown in Fig. 2 in addition to weight learning, we
propose to shift the desired output spikes toward the nearest
existing actual output spikes. The first and the second desired
spikes are shifted to the firing times of their nearest actual out-
put spikes. The shift directions of the two spikes are shown by
two arrows in Fig. 2. The third desired spike does not shift in
the current learning epoch because there are no output spikes
close enough for the third desired spike in the current learning
epoch. The shifting of the desired output spike can improve
the learning by removing the extra weight adjustment related
to weight enhancement at the time of the first and second
desired output spikes. The shifting of the desired spike can
also prevent the weight adjustment required for removing the
two nearest actual output spikes (as shown in Fig. 2) to the first
and the second desired spikes. In this case, the ReSuMe algo-
rithm adjusts the weights to remove only the eight extra spikes
instead of ten spikes.

Each desired output spike shifts according to a heuristic
rule proposed in Section II-A. In each learning epoch, each
suboptimal desired output spike is compared to its surrounding
actual output spikes, and it shifts right or left to reach the
nearest actual output spike. Fig. 3 shows a desired output spike
at t = 31.6 ms. There are two actual output spikes around
the desired output spike. The first actual output spike is at
t = 27.6 ms and the second one is at t = 40.2 ms. The desired
spike is close to the left actual output spike, and therefore, it
is shifted slightly to the left in the current learning epoch. The
shift is small. Additionally, the learning algorithm adjusts the
learning parameters of the neuron to generate an actual output
spike at the current desired spike. It takes a number of learning
epochs to fire output spikes at the desired time. During the
learning phase, weight learning occurs and this may change
the sequence of the actual output spikes and, consequently,
this may also change the direction of the shift of the desired
spike. If there is an actual output spike at a desired time, then
the desired spike shift is stopped.

A. Proposed Method for Finding the Direction and Amount
of Desired Spike Shift

The proposed method uses local variables, called spike
traces, to find the nearest actual output spike around a desired

Fig. 3. Desired spike and its neighbor actual output spikes. The desired spike
is close to the actual output spike on the left side.

spike, and to calculate the distance between the nearest actual
output spike and the desired spike. First, the time distance of
the nearest output spike after the desired spike and the nearest
output spike before the desired spike are found. Then these two
time intervals are compared to find the nearest actual output
spike to the desired spike. In this paper, a method is proposed
to calculate the time intervals in an online manner, i.e., this
method uses the momentary value of local variables (spike
traces) to calculate the time intervals and consequently the
nearest actual output spike to the desired spike. This method
does not save the previous spike times and it works based on
current events which are generated by the previous spiking
activities.

Similar to Morrison et al. [23], the proposed method uses
a saturation method to model the spike traces, and we adopted
a similar approach to that proposed in our previous work, DL-
ReSuMe [1], to calculate time intervals using spike traces.
xd(t) is defined as the trace of a desired spike train. Each
desired spike causes a jump to a constant value A and then it
decays exponentially according to

xd(t) =
{

Ae
−

(
t−tfd

)
/τ

, for tfd < t < tf +1
d

A, for t = t1d, . . . , tf −1
d , tfd, tf +1

d , . . .
(1)

where τ is the exponentially decay time constant, and ampli-
tude A is a constant value where the trace jumps at the time of
a desired spike. tfd is the time of the f th spike in the desired
spike train. Each actual output spike, after a desired spike,
resets the desired spike trace to zero [Fig. 4(b)]. The time of
the first actual output spike after a desired spike is of interest.
Similarly, xa(t) is defined as the trace of an actual output spike
train, as follows:

xa(t) =
{

Ae
−

(
t−tfa

)
/τ

, for tfa < t < tf +1
a

A, for t = t1a, . . . , tf −1
a , tfa, tf +1

a , . . .
(2)

where tfa is the firing time of the f th actual output spike
[Fig. 4(c)].

The time interval between the desired spike and the first
previous actual output spike, dtad, is calculated and compared
to dtda (the time interval between a desired spike and the first
actual output spike after the desired spike) to find the closest
actual output spike to the desired spike [as shown in Fig. 4(a)].
In the proposed method, calculations of dtad and dtda are per-
formed at the time of the first actual output spike after the
desired spike, ta in Fig. 4(d). In the first step, dtaa(ta), i.e.,
the time interval between the actual output spikes before and
after the desired spike, and dtda(ta) are calculated at time ta.
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Fig. 4. (a) Desired spike. (b) Trace of a desired spike, xd(t): there is a jump
to a constant value A = 2 × 10−6 at the time of a desired spike, then it
decays exponentially. The value of xd(t) is reset to zero at the time of an
actual output spike. (c) Trace of an actual output spike train, xa(t). (d) Actual
output spike train.

Then dtad(ta) is calculated by dtad(ta) = dtaa(ta) − dtda(ta).
This procedure can be performed for each desired spike in the
desired spike train.

The time interval of an actual output spike at time ta and
its previous desired spike, dtda(ta), can be calculated by the
value of the nearest previous desired spike trace, xd(ta), at
the time of the actual output spike, ta. The trace xd(t) starts
from the value of A at the time of the previous desired spike
and it decays exponentially by the time constant τ as shown
in (1). By considering (1), the time interval, dtda(ta), between
an actual output spike and its previous desired spike can be
calculated by

dtda(ta) = −τ ln

(
xd(ta)

A

)
(3)

where dtda(ta) is the time interval between an actual output
spike at time ta and its previous desired spike. In other words,
dtda(ta) is the time interval of the desired spike and the first
actual output spike after the desired spike. xd(ta) is the value
of the desired spike trace at the time of the actual output ta.
The time interval dtaa(ta) is calculated by

dtaa(ta) = −τ ln

(
xa

(
t−a

)
A

)
(4)

where xa(t−a ) is the momentary value of the actual output
trace at the time of ta just before jumping to the saturation
value A. Thus, dtad(ta), which is the time interval of the
nearest actual output spike before the desired spike, can be
calculated by

dtad(ta) = dtaa(ta) − dtda(ta)

= −τLn

(
xa

(
t−a

)
A

)
+ τLn

(
xd(ta)

A

)

= τLn
(
xd(ta)/xa

(
t−a

))
. (5)

At the time of the first spike after a desired spike, ta, first
dtda(ta), and dtad(ta) are calculated by (3) and (5), respec-
tively. Then they are compared and the nearest actual spike
time interval to the desired spike is determined as dtmin. If
the time interval is smaller than a maximum shift, dtM , the
desired spike is shifted toward the nearest actual output spike.
Therefore, the shift, dtshift(f ), applied to the f th desired spike
can be calculated by

dtshift(f ) =
{

dtmin(f ), dtmin(f ) ≤ dtM
0, dtmin(f ) > dtM

(6)

where dtmin(f ) is the time interval of the closest actual output
spike to the f th desired spike. If the nearest actual spike train
is far from the desired spike, i.e., its time distance from the
desired spike is larger than dtM , the desired spike does not
shift, and it waits for a weight learning procedure to generate
an actual output spike close to the desired spike.

The desired spike train shift, dtshift(f ), is scaled to a small
value at the start of the learning and it grows during the
learning. At the beginning of the learning phase, because the
weights are not well trained, the actual output spike train
may be far from the desired spike train. Therefore, during the
early epochs of the learning phase the desired spike shift is
restricted to small values. The weight learning algorithm has
higher impact on learning than the desired spike shift, when
the desired spike shift is limited in the earlier epochs. The
weight adjustment trains the neuron to fire at the desired time
or a time close to the desired times. At the last epochs of the
learning some of the desired spikes are trained and it might
be difficult for the neuron to fire at the other desired times. In
this situation the limitation on the desired output spike shift
should be reduced to move the desired (target) spike toward
the existing actual output spikes. To achieve this aim after each
learning epoch and calculation of dtshift(f ), the shift is scaled
by the epoch number as shown in

dta(f , e) = dtshift(f ) × e

50
(7)

where e is the number of the current epoch, dta(f , e) is the
time shift that is, applied to the f th desired spike at epoch num-
ber e. The denominator of (7) is set to 50 because the learning
is continued until epoch 50. Equation (7) can be refined for
higher number of learning epochs by setting the denominator
of (7) with the new higher number of learning epochs. Thus,
in epoch 50 the exact calculated shift from (6), dtshift(f ), is
applied to the desired spikes.

The main strategy of learning in the proposed method is to
place the focus on weight learning during the beginning of the
training process. The effect of the desired spike shift increases
during the final epochs of the learning process when the weight
learning has stabilized. In the proposed method, first, learning
of spatio–temporal pattern is performed by weight adjustment
and the impact of a desired spike shift is gradually increased
as the number of epochs increases.

At the start of the learning process, when e = 1, the
applied shift, dta(f , e), has a small value which is one fifti-
eth of dtshift(f ), i.e., dta(f , e) = dtshift(f ) × (1/50) [see (7)].
When the epoch number, e, increases, the weights are updated,
and the neuron learns to spike closer to the desired spikes.
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In the last learning epoch, where e = 50, all weight learn-
ing is completed and there are no more learning epochs to
train the neuron weights to fire at that desired times. In this
stage, during the last epoch of the learning process, and after
the weight learning procedure, the learning is completed by
applying all the required desired spike shifts using (7), and
dta(f , e) = dtshift(f ) × (50/50) = dtshift(f ).

The neuron weights are adjusted according to the
ReSuMe [7] learning method as follows:

dwi(t)

dt
= [

sd̃(t) − so(t)
][

a + +∞∫
0

Tw(s)si(t − s)ds

]
(8)

where wi is the synaptic weight of the ith synapse, sd̃(t) is an
adapted desired spike train that is, updated after each learning
epoch (note that an adapted desired spike train is a shifted
version of the initial suboptimal desired spike), so(t) is actual
output desired spike train, the parameter a is the ReSuMe non-
Hebbian term and is a constant value, and si(t) is the ith input
spike train in the spatio–temporal input pattern. Tw(s) is the
ReSuMe learning window, and it is an exponential function as
shown in

Tw(s) =
{

Ae−s/τ , for s ≥ 0
0, for s < 0

(9)

where A is a constant parameter and is the amplitude of
the learning window. It has same value as the parameter
A used in (1) Tw(s), similar to STDP learning window has
an exponential function that decays with a time constant τ .

B. Correlation-Based Metric

The correlation-based metric (C) proposed in [24] is used to
evaluate the similarity between two spike trains to assess the
performance of the proposed method. The metric is used to
evaluate the similarity between the actual output of a neuron
and its desired spike train. Additionally, it is used in a classifi-
cation task. In the classification task a spiking neuron is trained
to map different input patterns to their corresponding desired
spike trains. Each spatio–temporal input pattern is assigned
to the class with the desired spike train that has the highest
correlation with the actual output of the neuron compared to
the other classes. Then the classification accuracy is calculated
based on the number of correct assignments.

The similarity coefficient C is equal to one for two identical
spike trains, and it is zero for two completely uncorrelated
spike trains. Therefore, the closer the value of C to one, the
greater the similarity between two spike trains. C is calculated
as follows:

C = vd · vo

|vd||vo| (10)

where vd and vo are two vectors and they are the convolution
of a desired spike train, sd(t), and an actual output spike train,
so(t), by a symmetric Gaussian filter, respectively. The spike
trains which consist of series of Dirac delta functions are con-
verted to continuous functions. “vd.vo,” the numerator of (10),
is the inner product of the two vectors, and |vd| and |vo|
represent the length of the vectors vd and vo, correspondingly.

TABLE I
HYPER-PARAMETERS OF THE PROPOSED

ADAPTED DESIRED SPIKE TRAIN

The symmetric Gaussian function which is convolved with
the spike trains is given by

f (t, δ) = e
−t2

2δ2 (11)

where the parameter δ is a constant value and determines the
width of the symmetric Gaussian function.

III. RESULTS

Experiments were performed to investigate the effect of
the proposed method for shifting desired spikes and optimiz-
ing the output encoding. ReSuMe is used to train synaptic
weights. Two learning tasks are considered. The first learn-
ing task is to map a random spatio–temporal input pattern to
a desired spike train. The spatio–temporal input pattern and
the desired spike train was produced by a random Poissonian
process. The spatio–temporal input pattern contains 200 spike
trains with 20 HZ (or 15 Hz where mentioned) mean spiking
frequency, and the frequency of the desired spike train is set to
100 Hz. The time duration of the spike trains is 650 ms. The
experiment results for the first learning task are described in
Sections III-A and III-B. For the first learning task, the corre-
lation between actual output of a trained neuron and its desired
spike train is calculated using (10) and reported to deter-
mine the accuracy of the proposed SNN. The second learning
task concerns the classification of spatio–temporal input pat-
terns, and the results of the classification task are described in
Section III-C. In the classification a spiking neuron is trained
to map different input patterns to their corresponding desired
spike trains. In this case, each spatio–temporal input pattern is
assigned to the class with the desired spike that has the highest
correlation with the actual output of the neuron compared to
the other classes. Then the classification accuracy is calculated
based on the number of correct assignments.

The proposed learning algorithm has four hyper-parameters
that should be set before learning. The four hyper-parameters
are shown in Table I. The second column in Table I shows the
equations that use the hyper-parameters. In this paper, the sim-
ulation time step is 0.1 ms, dt = 1 ms. The other variables in
the equations are automatically generated during usual activ-
ity of the spiking neuron when it fires actual output spikes in
response to an applied spatio–temporal input pattern and they
also depend on the desired spike train. Note that the hyper-
parameter A is dimensionless, and it shows the ratio of two
weight adjustment. This section discusses the results of three
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Fig. 5. Comparison of the performance of ReSuMe during various learning
epochs when non-adapted desired spike and adapted desired spike are used
(T = 650; Fin = 20 Hz, Fo = 100 Hz, and dtM = 10 ms).

sets of experiments. In the first experiment, the effect of the
shifting of the desired spikes on the accuracy of the learning
method is investigated for the first learning task, i.e., mapping
a spatio–temporal input pattern to a desired spike train. Then
the effect of the maximum allowable shift, dtM , is presented.
Finally, the classification accuracy of the proposed method for
the second learning task is reported.

A. Effect of the Proposed Spike Shifting Method on the
Learning Efficiency of SNNs

In this section, the proposed method is used for mapping
a spatio–temporal input pattern to a desired spike train. Two
experiments were carried out to determine the effect of the
proposed spike shifting method on the accuracy of SNNs. In
the first experiment, a neuron was trained, as a benchmark
comparison, with a non-adapted desired spike train. In the
second experiment, the suboptimal desired spikes are shifted
during the learning process such that each spike in the desired
spike train is shifted toward the nearest actual output spike
using the proposed method.

The experimental results are shown in Fig. 5. In the plot
presented in Fig. 5, the y-axis shows the correlations between
the neuron’s actual output spike trains and the desired spike
trains for the first learning task. The desired spike shift causes
the performance of ReSuMe to reach a correlation level of
0.99 at epoch 50. However, the correlation is 0.84 at epoch
50 when a non-adapted desired spike train is used. The non-
adapted method cannot reach the correlation level of the
adapted method for a comparatively high number of training
epochs. In the experiments, the non-adapted method reached
its maximum correlation level of 0.86 at 500 learning epochs,
whereas the adapted method reached a correlation value close
to 1.00 in only 50 learning epochs. The experimental results
show that the adapted desired spike method increases the
performance of the learning and changes the pattern of the
desired spike train. Fig. 6 illustrates the desired spike trains
before and after 15 learning epochs. The similarity between
these two spike trains (the initial suboptimal desired spike train
and the shifted desired spike train) can be calculated by the
correlation-based metric method, C. The calculated C is 0.80.

Fig. 7 shows the similarity between the adapted desired
spike and the initial suboptimal desired spike train

Fig. 6. Desired spike train before and after 15 learning epochs. C value that
shows the similarity between the two spike trains is 0.80414.

Fig. 7. Actual-Adapted: the correlation between the actual output spike train
and the adapted desired spike train during various learning epochs. Adapted-
Initial: the correlation between adapted desired spike train and the initial
suboptimal desired spike train during various learning epochs.

(Adapted-Initial) during various learning epochs. The experi-
ment is run 20 times and the mean values are reported. At the
start of learning, similarity is 1.00 (i.e., the adapted desired
spike train is the same as the initial suboptimal desired spike
train), and at each learning epoch the spikes in the adapted
desired spike train are shifted. During the shift, the similarity
between the adapted desired spike train and the initial subop-
timal desired spike train changes. Additionally, Fig. 7 shows
the similarity between the neuron actual output spike train and
the adapted desired spike train during various epochs.

B. Effect of the Maximum Allowable Shift

In the next experiment, the maximum allowable shift for the
desired spikes, dtM , is reduced from 10 to 1 ms. The result
is shown in Fig. 8. The correlation between the actual output
and the adapted desired spike train, which is shown by the
legend [Adapted (1 ms)] in Fig. 8, is reduced compared to
the correlation value which is shown in Fig. 5 where dtM was
10 ms. The reduction of dtM prevents the high modification of
desired spike times. When dtM = 1 ms, the weight adjustment
has more contribution in the generation of actual output spikes
at the desired times, compared to the previous situation where
dtM was 10 ms. The low dtM is closer to the situation that
the desired spike train is non-adapted and the generation of
actual output spikes relies more on weight adjustment, and
similarly it has lower accuracy. The maximum allowable shift
controlled by dtM gives a freedom to the neuron to stop its
weight adjustment and consequently the learning is stabilized,
and it prevents the learning algorithm to make more weight
adjustment which consequently increases the accuracy of the
method. The adapted desired spikes stay close to the initial
suboptimal desired spike train when dtM is reduced to 1 ms.
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Fig. 8. Adapted-Initial: the correlation between the adapted desired spike
train and initial suboptimal desired spike train when the desired spike train
evolves in various learning epochs. Adapted (1 m): The correlation metric, C,
between the adapted desired spike train and the neuron actual output spike
train across various learning epochs when the maximum allowable shift for
the desired spike is reduced to 1 ms. Non-adapted: is the C value of the
neuron actual output when non-adapted desired spike train is used. (T = 650;
Fin = 20 Hz, Fo = 100 Hz, and dtM = 1 ms.)

Fig. 9. Correlation between the actual output and adapted desired spike
trains for different values of dtM .

In Fig. 8, the curve with the Adapted-Initial legend shows
that the correlation between the learned adapted spike train
and the initial suboptimal desired spike train is higher than
the situation that dtM = 10 ms (Fig. 7). Therefore, there is
a smaller change in the learned desired spike compared to the
initial suboptimal desired spike train.

Fig. 9 shows the correlation between the actual output
and adapted desired spike trains for different values of dtM
in [1, 10] interval. The figure shows that the correlation is
increased until dtM = 5 ms. Any further increase to dtM than
5 ms reduces the correlation between the neuron actual output
and the adapted desired spike trains. Because a high value for
dtM causes a high desired spike shift and consequently reduces
the correlation between the adapted desired spike train and
the initial suboptimal desired spike train. The high shift in the
desired spike requires new weight values which are different
from the previously learned weights, and it reduces the corre-
lation. Fig. 9 also shows the correlation between the adapted
desired spike train and the initial suboptimal desired spike
(Adapted-Initial) for different values of dtM . The correlation
is reduced when dtM is increased.

The histogram of the initial synaptic weights before learn-
ing is shown in Fig. 10(a), the initial weights are normal
random number with the mean value and standard deviation
of 1.2 × 10−5. Fig. 10(a) shows that a lower portion of the
weights are negative (inhibitory inputs) and a higher portion
of weights are positive (excitatory input). Fig. 10(b) shows the
histogram of the synaptic weights after training when dtM is
set to 5 ms. Fig. 10(b) shows that the weights after training

Fig. 10. Histogram of the initial synaptic weights when dtM is set
5 ms. (a) Before learning. (b) After learning.

Fig. 11. Evolution of 200 synaptic weights during different learning epochs
when dtM = 5 ms.

are distributed around the initial weigh values as demonstrated
in Fig. 10(a). Fig. 11 shows the evolution of weights dur-
ing 50 learning epochs. Fig. 11 shows that almost all the
weights are trained after about 45 learning epochs, and hence
the weights stabilized at 45 epochs. In order to investigate the
effect of dtM on weight learning, the histogram of weights
before and after learning when the desired spikes are non-
adapted, i.e., dtM = 0, are shown in Fig. 12. The weights after
learning are in the range [−3.88 × 10−5, 6.99 × 10−5] when
dtM = 0, whereas the weights are in the range [−3.22 × 10−5,
3.57 × 10−5] when dtM = 5ms. These results revealed that the
weights are in a wider interval when dtM = 0, when the desired
spikes are non-adapted. However, the weights during training
of an optimal desired spike train obtained by dtM = 5 ms
needs less weight adjustment. Fig. 13 shows the evolution
of weights during different learning epochs when the desired
spikes are non-adapted, i.e., dtM = 0. The figure shows that
quite a number of the weights keep adapting even after the
50th epoch.

Fig. 14 illustrates the correlation between the actual output
spike train of the trained neuron and the initial suboptimal
desired spike train (Actual-Initial) during various learning
epochs when the adapted desired spike method is used.
Fig. 14 also shows the correlation between the actual output
spike train and the initial suboptimal desired spike train when
non-adapted desired spike train is used. The experimental
result shows that when dtM is set to 1 ms, the adapted desired
spike increases the performance of ReSuMe, to learn initial
suboptimal desired spike train. It increases the correlation met-
ric from C = 0.84 to C = 0.88. The output spike optimization
method brings a desired spike to the time of an actual output
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Fig. 12. Histogram of the initial synaptic weights when non-adapted desired
spikes are used, i.e., dtM = 0. (a) Before learning. (b) After learning.

Fig. 13. Evolution of 200 synaptic weights during different learning epochs
when the non-adapted desired spikes are used, i.e., dtM = 0.

Fig. 14. Actual-Initial: correlation, C, between actual output spike train and
initial suboptimal desired spike train when ReSuMe uses the adapted desired
spike train method. Non-adapted: correlation, C, between actual output spike
train and the non-adapted desired spike train when ReSuMe is used to train
a neuron by the non-adapted desired spike train.

spike which is close to the desired spike. This prevents the
weight adjustment related to generation an output spike at the
time of the desired spike through weight learning, and it pre-
vents the weight adjustment related to the cancelation of the
nearby actual output spike. Consequently, the desired spike
shift settles the weight adjustment and prevents extra adjust-
ment of weights that may interfere in the learning of the other
desired spikes, at the cost of acceptance of a small error.

C. Classification of Spatio–Temporal Input Patterns

In this section, the performance of the proposed method is
investigated within a classification task. In the classification

Fig. 15. Raster plot of a spatio–temporal input pattern from the first
class. There are 200 spike trains in the spatio–temporal pattern generated
by 200 input neurons.

task, two sets of synthetic spatio–temporal spiking input
patterns are used. Each spatio–temporal input pattern com-
posed of several spike trains. The two sets of spatio–temporal
patterns belong to two different classes. The two sets of
spatio–temporal input patterns are generated by Poissonian
process with two different spike rates. The spatio–temporal
input patterns of the first class has the same property of the
spatio–temporal input patterns which are used in the previous
experiment described in the beginning of Section III-A ran-
dom Poissonian process with the mean spike rate of 20 Hz
is used to generate the spatio–temporal input patterns of the
first class. The input patterns of the second class are ran-
dom patterns with the rate of 15 Hz. Fig. 15 shows the raster
plot of a spatio–temporal input pattern from the second class.
The spatio–temporal input pattern is composed of 200 spike
trains. The spike trains are generated by 200 input neurons.
Additionally, two random desired spike trains are assigned as
the label of the two classes of spatio–temporal input patterns.
A spiking neuron is trained to assign each input pattern to its
corresponding desired spike train.

In the experiments, described in this section, classifica-
tion performance was initially evaluated when the neuron was
trained on non-adapted desired spike trains. Then the neuron
was trained on the proposed adapted desired spike trains. The
proposed method is used to shift desired spikes for the differ-
ent classes to find optimum times for the desired spikes for
the two classes, and classification performance is compared
when using the proposed adapted desired spikes versus the
non-adapted desired spikes.

1) Experiment Results on Two Random Spatio–Temporal
Input Patterns Per Class: In the first experiment, each class
has a set of spatio–temporal input patterns composed of two
spiking patterns. An SNN is trained to assign each pattern
to its corresponding desired spike train. The results achieved
by the non-adapted desired spike train and the proposed
adapted desired spike train method are shown in Table II. The
results show that the proposed adapted desired spike method
can shift the initial suboptimal desired spikes to appropriate
desired times with higher accuracy than the method using
non-adapted desired spike trains, and consequently it increases
classification accuracy by 10%.

2) Experimental Results on Spatio–Temporal Input Patterns
Generated by Time Jitters: A similar method used in [25]
is used to generate a higher number of training and testing
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TABLE II
COMPARISON OF THE PROPOSED ADAPTED DESIRED SPIKE METHOD

AGAINST THE METHOD WHICH USES A NON-ADAPTED

DESIRED SPIKE TRAINA

TABLE III
TRAINING AND TESTING CLASSIFICATION ACCURACY ON THE

DATA THAT IS GENERATED BY ADDING NOISY JITTERS

TO THE BASE PATTERNS

samples. The four spatio–temporal input patterns generated
by the random Poissonian process with frequencies of 20 and
15 Hz in Section III-C1 are considered as base patterns. Then
a number of testing and training spatio–temporal patterns are
generated by adding random jitters to the spike times of the
base patterns. Each spike in a base spatio–temporal input pat-
tern is moved by a random time jitter extracted from a uniform
distribution on [−2, 2] ms interval. In total the resulted train-
ing set contains 20 spatio–temporal input patterns, composed
of the 4 base patterns and 16 noisy patterns. The test set
is composed of other 20 noisy spatio–temporal patterns that
have been generated by adding random jitter to the four base
patterns. The task concerns training a spiking neuron to gen-
erate desired spikes corresponding to the class of an applied
spatio–temporal input pattern. The simulation is continued for
50 learning epochs on the training dataset. The results are
reported in Table III. The results reveal that the proposed
method can improve the testing accuracy more than 12.25%.

3) Experimental Results on Different Numbers of Random
Spatio–Temporal Input Patterns: In this set of experiments,
more challenging tasks are considered. Instead of generating
training and testing data by adding a noisy jitter to the base
patterns, a number of training and testing patterns are directly
generated by the Poissonian process with the firing rate of
15 and 20 Hz for the two different classes. Fig. 16 shows
the mean value of classification accuracy when the number
of spatio–temporal input patterns is increased from 4 to 20.
Each classification task is repeated for 20 different runs and
the mean values are reported in Fig. 16. The vertical error
bars in Fig. 16 shows standard errors of the mean values. The
results show that the proposed method has higher accuracy
for the different numbers of spatio–temporal input patterns.
When the number of the patterns increases, the difficulty of
the learning task also increases. Consequently, the accuracy of
the two methods shown in Fig. 16 is reduced when the number
of spatio–temporal patterns increases. The improvement of the
proposed method can reach more than 16% when the number

Fig. 16. Classification accuracy of the SNN when it uses the proposed
method for finding the optimum desired spikes is higher than when it uses
non-adapted desired spikes.

TABLE IV
NUMBER OF INPUT PATTERNS VERSUS IMPROVEMENT IN ACCURACY

of the spatio–temporal patterns reaches 10 (see Table IV). The
proposed method shifts the initial suboptimal desired spikes to
appropriate times when different patterns are trained. At the
end, the desired spikes can reach optimum times for all the
trained input patterns depending on the distribution of spikes
in the input patterns. The optimum times for desired spikes
reduced required weight adjustment and consequently prevents
distortion in the learning of previously trained patterns and
increases the overall classification accuracy (see Fig. 16).

IV. DISCUSSION

The discontinuous nature of the activity of spiking neurons
makes it difficult (or impossible) to use classical methods,
such as the backpropagation learning algorithm, to train spik-
ing neurons. One challenge in training a spiking neuron is that
a spiking neuron cannot generate every possible encoding of
desired output spike trains in response to a specific spatio–
temporal input pattern. A spiking neuron can be trained to
produce output spikes that are compatible with the distribu-
tion of its input spatio–temporal spikes. An SNN generates
output spikes at specific times in response to an input pat-
tern, provided the input spikes occur within a suitable time
window. The input spikes in that time window cause a high
level of post synaptic potential (PSP) and force the neuron to
fire, ideally at the desired times. Training involves adjustment
of the network parameters so as to ensure the output spikes
occur at the correct times in response to such an input spike
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train. However, if there are not enough input spikes in the rel-
evant time window, the learning method has difficulties and
the network parameter adjustment is increased without reach-
ing the training aim. Comparison of Figs. 11 and 13 reveal that
the weight adjustment stabilizes when the proposed method is
used to find appropriate desired spikes. However, the neuron
finds it difficult to learn the non-adapted desired spike train
and the weights do not stabilize during all the training epochs
(see Fig. 13). Additionally, the weight adjustments are con-
strained to be within a shorter interval when an appropriate
desired spike is used to train the spiking neuron.

A learning algorithm for a spiking neuron adjusts learning
parameters and forces the neuron to fire actual output spikes
at desired times. On the other hand, training a neuron to fire in
some specific times when there are no input spikes in the time
windows around the desired times can reduce the performance
of a learning algorithm. For instance, consider the situation
where there is a large number of spikes in the input spatio–
temporal pattern within a short time interval. If there are no
desired output spikes corresponding to that time interval, an
undesired output spike may be generated. If the learning algo-
rithm adjusts the learning parameters to remove such an unde-
sired spike, it may adversely interfere with learning of other
desired output spikes. Fig. 13 shows that weights with negative
value are continuously increased when the number of learning
epochs is increased. This negative growth of the weights is
the learning method’s reaction to removing the undesired out-
put spikes which are generated because of the high number of
input spikes in the undesired time interval. Additionally, a neu-
ron may have difficulty producing a desired output spike where
there are not enough input spikes shortly before the desired
spike. A very low number of input spikes leads to a low level
of PSP at the desired time, which consequently causes diffi-
culty in the generation of an actual output spike at the desired
time. Fig. 13 shows that ReSuMe learning method continu-
ously increases the weights to generate desired spikes that do
not have input spike close to desired times without reach-
ing the learning goal. Therefore, an inappropriate selection of
a desired (target) output spike train (i.e., output encoding) for
a spatio–temporal input pattern might lead to low performance
or convergence problems for the SNN learning algorithm.

Considering Fig. 15, the total time length of the spatio–
temporal spiking pattern is 650 ms, and the spatio–temporal
input pattern has 200 spike trains. The distribution of spikes in
the spatio–temporal input pattern shows that the concentration
of the spikes is high in some parts and sparse in other parts.
This distribution changes depending on the class to which the
pattern belongs and can be considered as characteristic of the
class. In other words, each class can be identified according to
the distribution of spikes in its spatio–temporal input patterns.
The critical point is that, based on the distribution of spikes
in the spatio–temporal input pattern, the learning ability of
a neuron is different for different desired output spike trains,
i.e., how the output is encoded in spike times.

Spike times are the most crucial part of information
transmission in SNNs. The proposed method optimizes the
performance of an SNN through improving the learning
process. The experimental results show that the original

learning algorithm, ReSuMe, used for training the suboptimal
desired spike train, could not learn all the desired spikes in
the suboptimal desired spike train precisely. This was because
weight adjustment could not be stabilized as less relevancy
existed between the input and the suboptimal desired output
spikes; which caused continuous weight change and conse-
quently reduced the correlation of the actual output spikes
of the trained neuron with the initial suboptimal desired spike
train. However, the shift of the desired spikes around the times
of the original desired spikes stabilizes the learning process of
the neuron, and the shift prevents continuous changes of learn-
ing parameters, i.e., weights, and consequently increased the
correlation between the actual output and the original desired
spikes. Fig. 14 shows that the correlation between the actual
output of the neuron with the initial desired spike train when
the proposed method is used to shift the desired spikes is
higher than when the proposed method is not used.

In the proposed method, the desired spike can be adjusted
around the original desired spike train, and this shift provides
flexibility to stabilize the learning and consequently to increase
the accuracy. Multispike Tempotron [26] also provides flexi-
bility by permitting a neuron to fire at any time in a specified
window to enable fast conversion.

The proposed spike shift method does not rely on any spe-
cific weight learning algorithm, but instead has its separate
procedure which performs in parallel with the weight learn-
ing method. In each learning epoch, a desired spike train is
considered as a fixed desired spike train for the weight learn-
ing method, and therefore the learning method can work as
usual. At the end of each learning epoch, updates are made
for the desired spikes, then they become fixed for the next
learning epoch for the weight learning algorithm. Therefore,
any other learning rules like SPAN [11], or the linear alge-
braic method [27] which perform weight learning in different
epochs are compatible with the proposed method.

Noisy spike patterns are common in SNNs. A time jitter
can be added to a base spike pattern to generate noisy spike
patterns. In Section III-C2, a time jitter has been added to gen-
erate noisy testing data which was used to test the performance
of the proposed method on noisy data. Table III shows that
the proposed method can achieve higher accuracy for noisy
data compared to the non-adapted desired spike train method.

V. CONCLUSION

In this paper, a method is proposed to adaptively adjust
a desired spike train. The experimental results show that
a spiking neuron can learn adjusted desired spikes with sig-
nificantly high accuracy. For instance, it can increase the
correlation level from 0.84 to 0.99. A biologically plausi-
ble local variable called spike trace is used to calculate the
required shift for desired spikes in different epochs for dif-
ferent spikes. The desired spike trace and actual output spike
trace are used to find the appropriate shift for each desired
spike. The proposed method calculates the time interval of the
nearest actual output spike before and after a desired spike and
compares these time intervals and finds the nearest actual spike
to a desired spike using time varying spike trace. Selection of
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a low value for the maximum allowable shift for desired spikes
improves the performance of the algorithm for learning of not
only adapted desired spike train but also the initial subopti-
mal desired spike train. For instance, the proposed method
can increase the accuracy of ReSuMe on a suboptimal desired
spike train by 4%. Small shifts in the desired spike train help
the neuron weight adjustment to settle and prevent unneces-
sary weight adjustment and distraction of previously trained
weights. In this paper, the adapted desired spike train learn-
ing method is applied to the ReSuMe weight learning method,
however, the proposed method can be applied to other learning
methods for SNNs.

The higher performance of the adapted desired spike train
method can be used to improve the classification ability of
SNNs. For instance, in a classification task, output spike train
encodings act as labels for different classes. The proposed
method can be used to find the optimum output spiking pat-
tern for different classes and to increase the performance of
classification tasks. SNNs can learn optimal desired spike
trains which are compatible with its spatio–temporal input
patterns. The network can learn each spatio–temporal input
pattern with less weight adjustment and it can achieve a higher
accuracy with the proposed desired spike shift method. In
a classification task there are not many restrictions because the
encoding can be arbitrary provided the classes can be distinctly
segregated.

This paper proposes a method to find appropriate desired
spike trains based on a classification problem. Although
finding appropriate desired spike trains for different classes
increases the classification accuracy, it has not been inves-
tigated significantly in previous studies, with the result that
arbitrary spikes at precise times or uniformly spaced spike
trains are usually used in classification tasks which reduces
their accuracy. The arbitrary or uniformly spaced spikes may
not be compatible with the input spike trains, and it is not
possible for a neuron to generate them. The proposed method
adds a degree of flexibility to the desired spike times and it
leads to faster convergence and improvement of the accuracy
of the learning algorithm. The proposed method can be used
to improve classification accuracies of different SNNs such as
the SNNs proposed in [28]–[30].
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