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Affective EEG-Based Person Identification Using
the Deep Learning Approach

Theerawit Wilaiprasitporn, Apiwat Ditthapron, Karis Matchaparn, Tanaboon Tongbuasirilai,
Nannapas Banluesombatkul and Ekapol Chuangsuwanich

Abstract—Electroencephalography (EEG) is another mode for
performing Person Identification (PI). Due to the nature of the
EEG signals, EEG-based PI is typically done while the person
is performing some kind of mental task, such as motor control.
However, few works have considered EEG-based PI while the
person is in different mental states (affective EEG). The aim
of this paper is to improve the performance of affective EEG-
based PI using a deep learning approach. We proposed a cascade
of deep learning using a combination of Convolutional Neural
Networks (CNNs) and Recurrent Neural Networks (RNNs). CNNs
are used to handle the spatial information from the EEG while
RNNs extract the temporal information. We evaluated two types
of RNNs, namely, Long Short-Term Memory (CNN-LSTM) and
Gated Recurrent Unit (CNN-GRU). The proposed method is
evaluated on the state-of-the-art affective dataset DEAP. The
results indicate that CNN-GRU and CNN-LSTM can perform PI
from different affective states and reach up to 99.90–100% mean
Correct Recognition Rate (CRR), significantly outperforming a
support vector machine (SVM) baseline system that uses power
spectral density (PSD) features. Notably, the 100% mean CRR
comes from only 40 subjects in DEAP dataset. To reduce the
number of EEG electrodes from thirty-two to five for more
practical applications, the frontal region gives the best results
reaching up to 99.17% CRR (from CNN-GRU). Amongst the two
deep learning models, we find CNN-GRU to slightly outperform
CNN-LSTM, while having faster training time. Furthermore,
CNN-GRU overcomes the influence of affective states in EEG-
Based PI reported in the previous works.

Index Terms—Electroencephalography, Personal identification,
Biometrics, Deep learning, Affective computing, Convolutional
neural networks, Long short-term memory, Recurrent neural
networks

I. INTRODUCTION

IN today's world of large and complex data-driven ap-
plications, research engineers are inspired to incorporate

multiple layers of artificial neural networks or deep learning
(DL) techniques into health informatic-related studies such as
bioinformatics, medical imaging, pervasive sensing, medical
informatics and public health [1]. Such studies also include

This work was supported by The Thailand Research Fund under Grant
MRG6180028.

T. Wilaiprasitporn and N. Banluesombatkul are with Bio-inspired Robotics
and Neural Engineering Lab, School of Information Science and Technology,
Vidyasirimedhi Institute of Science & Engineering, Rayong, Thailand (e-mail:
theerawit.w@vistec.ac.th).

A. Ditthapron is with the Computer Department, Worcester Polytechnic
Institute, Worcester, MA, USA.

K. Matchaparn is with the Computer Engineering Department, King
Mongkut’s University of Technology Thonburi, Bangkok, Thailand.

T. Tongbuasirilai is with Department of Science and Technology, Linköping
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those relating to frontier neural engineering research into
brain activity using the non-invasive measurement technique
called electroencephalography (EEG). The fundamental con-
cept of EEG involves measuring electrical activity (variation
of voltages) across the scalp. The EEG signal is one of
the most complex in health data and can benefit from DL
techniques in various applications such as insomnia diagnosis,
seizure detection, sleep studies, emotion recognition, and
Brain-Computer Interface (BCI) [2]–[7]. However, EEG-based
Person Identification (PI) research using DL is scarcely found
in literature. Thus, we are motivated to work in this direction.

EEG-based PI is a biometric PI system–fingerprints, iris,
and face for example. EEG signals are determined by a
person’s unique pattern and influenced by mood, stress, and
mental state [8]. EEG-based PI has the potential to protect
encrypted data under threat. Unlike other biometrics, EEG
signals are difficult to collect surreptitiously, since they are
concealed within the brain [9]. Besides the person’s unique
pattern, a passcode or pin can also be recognized from the
same signal, while having a low chance of being eavesdropped.
EEG signals also leave no heat signal or fingerprint behind
after use.

The PI process shares certain similarities with the person
verification process, but their purposes are different. Person
verification validates the biometrics to confirm a person’s
identity (one-to-one matching), while PI uses biometrics to
search for an identity match (one-to-many matching) on the
database [10]. EEG-based PI system development has dramat-
ically increased in recent years [11], [12]. Motor tasks (eye
closing [13], hands movement [14], etc.), visual stimulation
[15]–[17] and multiple mental tasks such as mathematical
calculation, writing text, and imagining movements ( [18])
are three major tasks in stimulating brain responses for EEG-
based PI [19]. To identify a person, it is very important to
investigate the stimulating tasks which can induce personal
brain response patterns. Moods, feelings, and attitudes are
usually related to personal mental states which react to the
environment. However, emotion-elicited EEG has been rarely
investigated to perform person identification. There are several
reports on affective EEG-based PI; one with a small affective
dataset [20], one reaching less than a 90% mean Correct
Recognition Rate (CRR) [21] and another using the same
dataset as our works with PSD-based feaures reached up
to 97.97% mean CRR. Thus, the aim of this paper is to
evaluate the usability of EEG from elicited emotions for
person identification applications. The study of affective EEG-
based PI can help us gain a greater understanding concerning
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the performance of personal identification among different
affective states. This study mainly focuses on the state-of-the-
art EEG dataset for emotion analysis named DEAP [22].

A recent critical survey on the usability of EEG-based
PI resulted in several major signal processing techniques to
help perform feature extraction and classification [12]. Power
Spectral Density (PSD) methods [23]–[26], the Autoregressive
Model (AR) [27]–[32], Wavelet Transform (WT) [33], [34]
and Hilbert-Huang Transform (HHT) [35], [36] are useful
for feature extraction. For feature classification, k-Nearest
Neighbour (k-NN) algorithms [37], [38], Linear Discriminant
Analysis (LDA) [39], [40], Artificial Neural Networks (ANNs)
with a single hidden layer [23], [41]–[43] and kernel methods
[44], [45] are popular techniques. In this study, we propose
a DL technique to perform both the feature extraction and
classification tasks. The proposed DL model is a cascade of the
CNN and GRU. CNN and GRU are supposed to capture spatial
and temporal information from EEG signals, respectively. A
similar cascade model based on CNN and LSTM has recently
been applied in a motor imagery EEG classification aiming
at BCI applications, however, they did not study GRUs to
perform this task [5].

The main contribution of this investigation can be summa-
rized as follows:

• We propose an effective EEG-based PI using a DL
approach, which has not been investigated previously to
any extent.

• The proposed approach overcomes the influence of affec-
tive states in using EEG for PI task.

• Using our proposed technique, we investigate whether
any EEG frequency bands outperform others to perform
affect EEG-based PI task.

• We performed extensive experimental studies using a
set of five EEG electrodes from different scalp areas.
Specifically, these studies reports the feasibility of the
proposed technique to handle real world scenarios.

• We provide the performance comparison of the proposed
cascade model (CNN-GRU) against a spatiotemporal DL
model (CNN-LSTM), and other systems proposed in
literature [21], [46].

In summary, the experimental results guarantee that the CNN-
GRU converges faster than CNN-LSTM while having a
slightly higher mean CRR, especially when using a small
amount of electrode. Furthermore, CNN-GRU overcomes the
influence of affective states in EEG-Based PI reported in the
previous works [46], [47].

The structure of this paper is as follows. Sections II and III
present the background and methodology, respectively. The
results are reported in Section IV. Section V discusses the
results from the experimental studies. Moreover, the beneficial
points are highlighted for comparison over previous works for
further investigation. Finally, the conclusion is presented in
Section VI.

II. THE DEEP LEARNING APPROACH TO EEG

There has been a surge of deep learning-related methods
for classification of EEG signals in recent years. Since EEG

signals are recordings of biopotentials across the scalp over
time, researchers tend to use DL architectures for capturing
both spatial and temporal information. A cascade of CNN,
followed by an RNN, often an LSTM, is typically used. These
cascade architectures work according to the nature of neural
networks, where the proceeding layers function as feature
extractors for the latter layers.

CNN are often used as the initial layers of deep learning
architectures in order to extract meaningful patterns or fea-
tures. The key element of CNN is the convolution operation
using small filter patches (kernels). These filters are able to
automatically learn local patterns which can be combined to-
gether to form more complex features when stacking multiple
CNN layers together. Within the stack of convolution layers,
pooling layers are often placed intermittently. The pooling
layers subsample the output of the convolution layers by
outputting only the maximum value for each small region. The
subsampling allows the convolution layer after the pooling
layer to work on a different scale than the layers before it.
These features learned from the CNN can be used as input to
other network structures to perform sophisticated tasks such
as object detection or semantic segmentation [48].

For EEG signals, it makes sense to feed the local structures
learned by the CNN to LSTMs, which can better handle
temporal information. Zhang et al. also tried a 3D CNN to
exploit the spatiotemporal information directly within a single
layer. However, the results were slightly behind a cascade of
the CNN-LSTM model [5]. This might be due to the fact
that LSTMs are often better at handling temporal information
since they can choose to remember and discard information
depending on the context.

Another type of recurrent neural network called the Gated
Recurrent Unit (GRU) has also been proposed as an alternative
to the LSTM [49]. The GRU can be considered as a simplified
version of the LSTM. GRUs have two gates (reset and update)
instead of three gates as in the LSTMs. GRUs directly output
the captured memory, while LSTMs can choose not to output
its content due to the output gate. Figure 1 (a) shows the
interconnections of a GRU unit. Just as a fully connected layer
is composed of multiple neurons, a GRU layer is composed
of multiple GRU units. Let xt be the input at time step t to
a GRU layer. The output of the GRU layer, ht, is a vector
composing the output of each individual unit hjt , where j is
the index of the GRU cell. The output activation is a linear
interpolation between the activation from the previous time
step and a candidate activation, ĥjt .

hjt = (1 − zjt )hjt−1 + zjt ĥ
j
t (1)

where an update gate, zjt , decides the interpolation weight.
The update gate is computed by

zjt = F j(Wzxt + Uzht−1) (2)

where Wz and Uz are trainable weight matrices for the update
gate, and F j() takes the j-th index and pass it through a non-
linear function (often a sigmoid). The candidate activation is
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also controlled by an additional reset gate, rt, and computed
as follows:

ĥjt = Gj(Wxt + U(rt � ht−1)) (3)

where � represents an element-wise multiplication, and Gj()
is often a tanh non-linearity. The reset gate is computed in a
similar manner as the update gate:

rjt = F j(Wrxt + Urht−1) (4)

On the other hand, LSTMs have three gates, input, output,
and forget gates which are denoted as ijt , ojt , f jt , respectively.
They also have an additional memory component for each
LSTM cell, cjt . A visualization of an LSTM unit is shown in
Figure 1 (b). The gates are calculated in a similar manner as
the GRU unit except for the additional term from the memory
component.

ijt = F j(Wixt + Uiht−1 + Vict−1) (5)

ojt = F j(Woxt + Uoht−1 + Voct) (6)

f jt = F j(Wfxt + Ufht−1 + Vjct−1) (7)

where Vi, Vo, and Vj are trainable diagonal matrices. This
keeps the memory components internal within each LSTM
unit.

The memory component is updated by forgetting the exist-
ing content and adding a new memory component ĉjt :

cjt = f jt c
j
t−1 + ijt ĉ

j
t (8)

where the new memory content can be computed by:

ĉjt = Gj(Wcxt + Ucht−1) (9)

Note how the updated equation for the memory component is
governed by the forget and input gates. Finally, the output of
the LSTM unit is computed from the memory modulated by
the output gate according to the following equation:

hjt = ojt tanh(cjt ) (10)

Previous works using deep learning with EEG signals have
explored the use of CNN-LSTM cascades [5]. However, GRUs
have been shown in many settings to often match or even beat
LSTMs [50]–[52]. GRUs have the ability to perform better
with a smaller amount of training data and are faster to train
than LSTMs. Thus, in this work, CNN-GRU cascades are
also explored and compared against the CNN-LSTM in both
accuracy and training speed.

III. METHODOLOGY

In this section, we first illustrate the DEAP affective EEG
dataset [22] that we used to conduct experimental studies and
also describe the pre-processing step of our solution. Since
DEAP was created for mental state classification purposes,
we describe our data partition methodology used to make it
more suitable to perform the PI task. Finally, we explain the
proposed DL approach and its implementation.
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Fig. 1. Comparison between GRU and LSTM structures and their operations

TABLE I
AFFECTIVE EEG DATA FORMAT WITH LABEL

Array Name Array Shape

data 32 x 40 x 32 x 8064
participant x video/trial x EEG x data

labels 32 x 40 x 2
participant x video/trial x (valence, arousal)

A. Affective EEG Dataset

In this study, we performed experiments using DEAP af-
fective EEG dataset which is considered as a standard dataset
to perform emotion or affective recognition tasks [53]. Thirty-
two healthy participants participated in the experiment. They
were asked to watch affective elicited music videos and score
subjective ratings (valence and arousal) for forty video clips
during the EEG measurement.

A summary of the dataset is given in Table I . The EEG
dataset was pre-processed using the following steps:

• The data was down-sampled to 128 Hz.
• EOG artifacts were removed using the blind source sep-

aration technique called independent component analysis
(ICA).

• A bandpass filter from 4.0–45.0 Hz was applied to
the original dataset. The signal was further filtered into
different bands as follows: Theta (4–8 Hz), Alpha (8–15
Hz), Beta (15–32 Hz), Gamma (32–40 Hz), and all bands
(4–40 Hz).

• The data was averaged to a common reference.
• The data was segmented into 60-second trials, and the

3-second pre-trial segments were removed.
Most researchers have been using this dataset to develop an
affective computing algorithm; however, we used this affective
dataset for studying EEG-based PI.

B. Subsampling and Cross Validation

Affective EEG is categorised by the standard subjective
measures of valence and arousal scores (1–9), with 5 as the
threshold for defining low (score < 5) and high (score ≥ 5)
levels for both valence and arousal. Thus, there were four
affective states in total, as stated in Table II. To simulate
practical PI applications, we randomly selected 5 EEG trials



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

TABLE II
NUMBER OF PARTICIPANTS IN EACH STATE AFTER SUBSAMPLING

Affective States Number of Participants
Low Valence, Low Arousal (LL) 26
Low Valence, High Arousal (LH) 24
High Valence, Low Arousal (HL) 23
High Valence, High Arousal (HH) 32

All States 32

per state per person (recorded EEG from 5 video clips) for
the experiments. Thus, new users can spend just 5 minutes
watching 5 videos for the first registration. Table II presents a
number of subjects in each affective state. The numbers were
different in each state because some subjects had less than 5
recorded EEG trials categorized into the state. Furthermore,
we aimed to identify a person from a short-length of EEG:
10-seconds. Each EEG trial in DEAP lasts long 60-seconds as
a stimulus video. Thus, we simply cut one EEG trial into 6
subsamples. Finally, we had 30 subsamples (6 subsamples ×
5 trials) from each participant in each of the affective states.

In summary, labels in our experiments (personal identifica-
tion) are ID of participants. Data and labels that have been
used can be described as:

• Data: number of participants × 30 subsamples × 1280
EEG data points (10-seconds with 128 Hz sampling rate)

• Label: number of participants × 30 subsamples × 1(ID)
In all experiments, the training, validation, and testing sets
were obtained using stratified 10-fold cross-validation. As for
the subsamples, 80% of them were used as training data. As for
the validation and test sets, each of them contained 10% of the
subsamples. In each fold, we make sure that the subsamples
from each trial is not assigned to more than one set. That is,
it can be either in the training, validation or test set. Thus,
the subsamples in the training, the validation and the test sets
were totally independent.

C. Experiment I: Comparison of affective EEG-based PI
among different affective states

Since datasets contains EEG from five affective states as
also shown in Table II, an experiment was carried out to
evaluate which affective states would provide the highest CRR
in EEG based PI applications. To achieve this goal, two
approaches were implemented: deep learning and conventional
machine learning. EEG in the range of 4–40 Hz was used in
this experiment.

1) Deep Learning Approach: Figure 2 demonstrates the
preparation of the 10-second EEG data before feeding into
the DL model. In general, a single EEG channel is a one-
dimensional (1D) time series. However, multiple EEG chan-
nels can be mapped into time series of 2D mesh (similar to
a 2D image). For each time step of the input, the data point
from each EEG channel is arranged into one 2D mesh shape
of 9×9. 2D mesh size is empirically selected according to
the international standard of an electrode placements (10-20
system) with covering all 32 EEG channels. The mesh point
(similar to the pixel) which is not allocated for EEG channel
is assigned to zeros value throughout the sequences. The

mean and variance for each mesh (32 channels) is normalised
individually. In this study, a non-overlapping sliding window
is used to separate the data into one-second chunks. Since the
sampling rate of input data is 128 Hz, the window size is 128
points. Thus, for each 10-second EEG data, a 10×9×9×128-
dimensional tensor is obtained.

The deep learning model starts with three layers of 2D-
CNN (applied to the mesh structure). Each mesh frame from
the 128 windows is considered individually in the 2D-CNN.
Since this is also a time series, the 2D-CNN is applied to
each sliding window, one window at a time, but with shared
parameters. This structure is called a TimeDistributed 2DCNN
layer. After the TimeDistributed 2DCNN layers, a TimeDis-
tributed Fully Connected (FC) layer is used for subsampling
and feature transformation. To capture the temporal structure,
two recurrent layers (GRU or LSTM layers) are then applied
along the dimension of the sliding windows. Finally, a FC
layer is applied to the recurrent output at the final time step
with a softmax function for person identification.

The following specific model parameters are used in Exper-
iments I–III. Three layers of TimeDistributed 2DCNNs with
3×3 kernels. We set the number of filters to 128, 64 and 32 for
the first, second and third layer respectively. ReLu nonlinearity
is used. Batch normalization and dropout are applied after
every convolutional layer. For the recurrent layers, we used 2
layers with 32 and 16 recurrent units, respectively. Recurrent
dropout was also applied. The dropout rates in each part of the
model were fixed at 0.3. We used RMSprop optimizer with a
learning rate of 0.003 and a batch size of 256. Although these
parameters are held fixed, these settings were found to be good
enough for our purposes. The effect of parameter tuning for
DL models will be further explored in Experiment IV.

2) Conventional Machine Learning Approach using Sup-
port Vector Machine (SVM): The algorithm aims to locate
the optimal decision boundaries for maximising the margin
between two classes in the feature space [54]. This can be
done by minimizing the loss:

1

2
wtw + C

n∑
i=1

ξi, (11)

under the constraint

yi(w
tφ(xi) + b) ≥ 1 − ξi and ξi ≥ 0, i = 1, ..., n. (12)

C is the capacity constant, w is the vector of coefficients, b
is a bias offset, and yi represents the label of the i-th training
example from the set of N training examples. The larger
the C value, the more the error is penalized. The C value
is optimized to avoid overfitting using the validation dataset
described earlier.

In the study of person identification, the class label repre-
sents the identity number of the participant, considered as a
multi-class classification problem. Numerous SVM algorithms
can be used such as the “one-against-one” approach, “one-vs-
the-rest” approach [54], or k-class SVM [55]. To illustrate
a strong baseline, the “one-against-one” approach, which re-
quires higher computation, is chosen for its robustness towards



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

10 seconds

.  .  . 

.  .  . 

Mapping

scalp 2D mesh (shape = 9 x 9)

Fp1

Fp2

AF3

Oz

O2

.  .  . 

.  .  . 

O
ut

pu
t (

pe
rs

on
)

32
 c

ha
nn

el
s

1st 
second

2nd

second

3rd 
second

10th 
second

1st 2nd 3rd 10th

.  .  . 

shape = 9x9x128
time distributed

2D-CNN

Mapping
input shape = 10x9x9x128

FC stacks of GRU/
LSTM

FC SoftMax

 . . 
. . 

 . . 
. . 

 . . 
. . 

 . . 
. . 

 . . 
. . 

 . . 
. . 

 . . 
. . 

 . . 
. . 

Fig. 2. Implementation of the cascade CNN-GRU/LSTM model according to EEG data. Meshing is the first step in converting multi-channel EEG signals
into sequences of 2D images. The 2D mesh time series is passed through the cascade of CNN and recurrent layers for training, validation, and testing.

imbalanced classes and small amounts of data. The “one-
against-one” SVM solves multi-class classification by building
classifiers for all possible pairs of classes resulting in N(N−1)

2
classifiers. The predicted class label is the one most yielded
from all classifiers.

In this work, the Welch’s method is employed as the feature
extraction method for the SVM. It is a well-known PSD
estimation method, for reducing the variance in periodogram
estimation by breaking the data into overlapped segments. Be-
fore feeding into the SVM, a normalization step is performed.
For normalization, Z-score scaling is adopted, because, exper-
imentally, it performs better than other normalization methods
such as min-max and unity normalization in EEG signal
processing.

xnormalized =
x− x̄train
strain

(13)

Normalization parameters, sample mean(x̄train) and sample
standard deviation(strain), are computed over the training set.
The validation set is used to determine the best parameter C
chosen from 0.01, 0.1, 1, 10.100 for each experiment.

Note: according to the results from Experiment I (EX I),
DL approaches perform perfectly even when using a mixture
of affective state (all states). The affective states do not affect
PI performance for DL models. Therefore, the affective EEG

states were not considered, and the all states setting is used
in the remaining experiments.

D. Experiment II: Comparison of affective EEG-based PI
among EEGs from different frequency bands

EEG is conventionally used to measure variations in elec-
trical activity across the human scalp. The electrical activity
occurs from the oscillation of billions of neural cells inside
the human brain. Most researchers usually divided EEG into
frequency bands for analysis. Here, we defined Theta (4–8 Hz),
Alpha (8–15 Hz), Beta (15–32 Hz), Gamma (32–40 Hz) and
all bands (4–40 Hz). Typical Butterworth bandpass filter had
incorporated to extract EEGs from different frequency bands.
In this study, we question whether or not frequency bands
affect PI performance. To answer the question, we incorporate
CNN-LSTM (stratified 10-fold cross-validation), CNN-GRU,
and SVM (as performed in EX I) for CRR comparison.

Note: according to the results of Experiment II, all bands
(4–40 Hz) provided the best CRR and we continued to use all
bands for the remainder of the study.
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Fig. 3. Experimental Study III evaluates the CRR of the EEG-based PI in
different sets of sparse EEG electrodes. Five EEG electrode channels from
each part of the scalp were grouped into five different configurations (a-e)

TABLE III
VARIATION IN THE NUMBER OF FILTERS FOR EACH CNN LAYERS WHILE

FIXING THE NUMBER OF GRU/LSTM UNITS

CNN GRU/LSTM
128 32. 16

128, 64 32, 16
128, 64, 32 32, 16

E. Experiment III: Comparison of affective EEG-based PI
among EEGs from sets of sparse EEG electrodes

In this experiment, we hypothesized whether or not the
number of electrodes could be reduced from thirty-two chan-
nels to five while maintaining an acceptable CRR. The lower
the number of electrodes required, the more user-friendly
and practical the system. To investigate this question, we
defined sets of five EEG electrodes as shown in Figure 3,
including Frontal (F) Figure 3(a), Central and Parietal (CP)
Figure 3(b), Temporal (T) Figure 3(c), Occipital and Parietal
(OP) Figure 3(d), and Frontal and Parietal (FP) Figure 3(e).
According to EX I and II, the DL approach significantly
outperforms the traditional SVM in PI applications. Thus,
we incorporated only CNN-GRU and CNN-LSTM in this
investigation.

TABLE IV
VARIATION IN THE NUMBER OF GRU/LSTM UNITS WHILE FIXING THE

CNN LAYERS

CNN GRU/LSTM
128, 64, 32 16, 8
128, 64, 32 32, 16
128, 64, 32 64, 32

F. Experiment IV: Comparison of proposed CNN-GRU against
CNN-LSTM and other relevant approaches towards affective
EEG-based PI application

First, we evaluated our proposed CNN-GRU against a spa-
tiotemporal DL model, namely which CNN-LSTM [5]. Both
approaches have been previously described in detail in Section
III and Figure 2. In this study, we measured the performance
in terms of the mean CRR and the convergence speed as we
tuned the size of the models by varying the number of CNN
layers and the number of GRU/LSTM units. We also compared
our best models against other conventional machine learning
methods and relevant works, such as Mahalanobis distance-
based classifiers, using either PSD or spectral coherence
(COH) as features (reproduced from [25]) and DNN/SVM as
proposed in [21].

1) Deep Learning Approach: To find suitable CNN layers
for cascading with either GRU or LSTM, the numbers of CNN
layers were varied as presented in Table III. The selected CNN
layers were then cascaded to GRU/LSTM and the numbers of
GRU and LSTM units varied, as can be seen in Table IV.

2) Baseline Approach: As previously mentioned, the Ma-
halanobis distance-based classifier with either PSD or COH as
features was used as a baseline. This approach was reported
to provide the highest CRR among multiple approaches in a
recent critical review paper on EEG-based PI [12]. However,
it has never been applied on the DEAP affective datasets.

To obtain the PSD and COH features, the same parameters
were used as reported in [25], except that the number of FFT
points was set to 128. Each PSD feature has NPSD = 32
elements (electrodes) and each COH feature has NCOH =
496 elements (pairs). Classification was then performed on the
transformed features. Fisher’s Z transformation was applied
to the COH features and a logarithmic function to the PSD
features. After the transformed PSD and COH features for
each element were obtained, the Mahalanobis distances, dm,n,
were then computed as shown in Equation 14.

dm,n = (Om − µn)Σ−1(Om − µn)T (14)

where Om is the observed feature vector, µn is the mean
feature vector of class n, and Σ−1 is the inverse pooled co-
variance matrix. The pooled covariance matrix is the averaged-
unbiased covariance matrix of all class distributions. For each
sample, the Mahalanobis distances were computed between the
observed sample m and the class distribution n, thus a distance
vector of size N where N = 32, representing the number of
classes (participants) in the dataset.

Two different schemes were used in [25]. The first scheme
was a single-element classification to perform the identifi-
cation of each electrode separately. The other scheme was
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TABLE V
COMPARISON OF THE MEAN CORRECT RECOGNITION RATE OR CRR (WITH

STANDARD ERROR BAR) AMONG DIFFERENT AFFECTIVE STATES AND
DIFFERENT RECOGNISED APPROACHES. CNN-GRU AND CNN-LSTM
SIGNIFICANTLY OUTPERFORMED THE TRADITIONAL SVM IN EVERY

AFFECTIVE STATE (INCLUDING ALL STATES), * NOTES p<0.01. EEG IN
THE RANGE OF 4–40 HZ HAS BEEN USED IN THIS EXPERIMENT.

Mean CRR [%]
States CNN-GRU CNN-LSTM SVM

LL 99.90 ± 0.10* 99.79 ± 0.14* 33.02 ± 1.58
LH 99.71 ± 0.19* 100.0* 36.38 ± 1.71
HL 99.86 ± 0.14* 99.86 ± 0.14* 36.25 ± 2.45
HH 99.87 ± 0.12* 99.74 ± 0.26* 33.59 ± 1.65

All States 100.0* 99.79 ± 0.14* 33.02 ± 1.58

the all-element classification, combining the best subset of
electrodes using match score fusion. We chose the all-element
classification scheme which yielded better performance. We
modified the scheme to be compatible to this work by selecting
all electrodes instead of choosing just a subset. Stratified 10-
fold cross-validation was also performed on the all-element
classification to obtain the mean CRR.

IV. RESULTS

Experimental results are reported separately in each study.
Then all of them are summarized at the end of the section.

A. Results I: comparison of affective EEG-based PI among
different affective states

The comparison of the mean correct recognition rate or
CRR (with standard error bar) among different affective states
and different recognized approaches had been shown in Ta-
ble V. Statistical testing named one way repeated measures
ANOVA (no violation on Sphericity Assumed) with Bon-
ferroni pairwise comparison (post-hoc comparison) had been
implemented for comparison of mean CRR (stratified 10-fold
cross-validation).

In the comparison of CRR among different affective states,
the statistical results demonstrate that the EEG (4–40 Hz)
from different affective states does not affect the perfor-
mance of affective EEG-based PI in all recognised approaches
(F(4)=0.805, p=0.530, F(4)=0.762, p=0.557 and F(4)=0.930,
p=0.457 for CNN-GRU, CNN-LSTM, and SVM, respec-
tively).

Moreover, in comparison of CRR among different ap-
proaches, the statistical results show a significant difference
in the mean CRR among CNN-GRU, CNN-LSTM, and SVM
approaches. In pairwise comparison, CNN-GRU and CNN-
LSTM significantly outperformed the traditional SVM in every
affective state (including all states), p<0.01. Both CNN-GRU
(in all states) and CNN-LSTM (in LH) reached up to 100% in
mean CRR. Further reports on comparative studies of CNN-
GRU and CNN-LSTM for EEG-based PI against previous
works can be seen in Results IV.

B. Results II: comparison of affective EEG-based PI among
EEGs from different frequency bands

Here, we report the comparison of the mean correct recog-
nition rate or CRR among different EEG frequency bands and

TABLE VI
COMPARISON OF THE MEAN CORRECT RECOGNITION RATE OR CRR

(WITH STANDARD ERROR BAR) AMONG DIFFERENT EEG FREQUENCY
BANDS AND DIFFERENT RECOGNISED APPROACHES, NO DIFFERENCES IN
CNN-GRU, CNN-LSTM, AND SVM WERE FOUND IN LOW FREQUENCY

BANDS (THETA (4–8 HZ) AND ALPHA (8–15 HZ)). HOWEVER, THEY
SIGNIFICANTLY OUTPERFORMED THE SVM IN BETA (15–32 HZ),

GAMMA (32–40 HZ), AND ALL BANDS (4–40 HZ), * NOTES p<0.01.

Mean CRR [%]
CNN-GRU CNN-LSTM SVM

4-8 Hz 99.69 ± 0.22 99.69 ± 0.22 98.54 ± 0.35
8-15 Hz 99.58 ± 0.23 99.69 ± 0.22 98.75 ± 0.34
15-32 Hz 99.90 ± 0.10* 99.86 ± 0.16* 87.50 ± 0.64
32-40 Hz 100.0* 99.74 ± 0.14* 33.54 ± 1.57
all bands 100.0* 99.79 ± 0.14* 33.02 ± 1.58

different recognized approaches (shown in Table VI) using the
same statistical testing as same as in Section IV A).

In the comparison of CRR among different frequency bands,
the statistical results demonstrate that EEG from different
frequency bands does not affect the performance of affective
EEG-based PI in CNN-GRU and CNN-LSTM approaches
(F(4)=2.168, p=0.092 and F(4)=0.144, p=0.964 for CNN-
GRU and CNN-LSTM, respectively). However, the SVM
approach shows that Theta (4–8 Hz) and Alpha (8–15 Hz) pro-
vide significantly higher CRR than Beta (15–32 Hz), Gamma
(32–40 Hz), and all bands (4–40 Hz) (F(4)=1309.747, p<0.01
in ANOVA testing and p<0.01 in all pairwise comparisons).

Furthermore, in the comparison of CRR among different
approaches, there were no differences in CNN-GRU, CNN-
LSTM, and SVM for low frequency bands (Theta (4–8 Hz)
and Alpha (8–15 Hz)). However, CNN-GRU and CNN-LSTM
significantly outperformed the SVM in Beta (15–32 Hz),
Gamma (32–40 Hz), and all bands (4–40 Hz), p<0.01. CNN-
GRU and CNN-LSTM reached up to 100% and 99.79%,
respectively, in all bands.

C. Results III: Comparison of affective EEG-based PI among
EEGs from sets of sparse EEG electrodes

According to Figure 4, one-way repeated measures ANOVA
with Bonferroni pairwise comparison (post-hoc) reported that
five electrodes in the F set provided a significantly higher
mean CRR than the other sets in both CNN-GRU and CNN-
LSTM p<0.05. CNN-GRU and CNN-LSTM reached up to
(99.17 ± 0.34%) and (98.23 ± 0.52%) mean CRR, respectively
(stratified 10-fold cross-validation). To reduce the number of
EEG electrodes from thirty-two to five for more practical
application, F3, F4, Fz , F7 and F8 were the best five electrodes
for application in similar scenarios to this experiment.

D. Results IV: Comparison of proposed CNN-GRU against
CNN-LSTM and the other relevant approaches towards affec-
tive EEG-based PI application

Table VII and Table VIII present mean CRR (stratified 10-
fold cross-validation) from the proposed CNN-GRU against
the conventional spatiotemporal DL model, namely CNN-
LSTM, in various parameter settings (number of CNN layers
and GRU/LSTM units). Mean CRRs from CNN-GRU were
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Fig. 4. Comparison of CRR among five sets of electrodes. The frontal part
(F) provided significantly higher CRR compared to the others p<0.05. On
the other hand, occipital and parietal (OP) provided significantly lower CRR
compared to the others p<0.05.

TABLE VII
COMPARISON OF MEAN CRR RESULTS BETWEEN DIFFERENT CNN LAYERS

WITH 32 EEG ELECTRODES

Mean CRR [%]CNN GRU/LSTM GRU LSTM
128 32, 16 100 ± 0.00 99.69 ± 0.16

128, 64 32, 16 99.90 ± 0.10 99.69 ± 0.16
128, 64, 32 32, 16 99.90 ± 0.10 99.90 ± 0.10

higher or equal compared to those from CNN-LSTM in all
settings. The standard t-test indicated that the mean CRR from
CNN-GRU was significantly higher (p<0.01) than that of the
CNN-LSTM in 3 CNN layers with 128, 64, and 32 filters and 2
layers of GRU/LSTM with 16 and 8 units. In the comparison
of training speed between the two approaches, CNN layers
were fixed with 128, 64, 32 filters because the mean CRR was
equal as shown in Table VII. Figure 5 and Figure 6 present a
training speed comparison (in terms of training loss by epoch)
from CNN-GRU and CNN-LSTM on 2 layers of GRU/LSTM
with 16, 8 and 32, 16 units, respectively. It was obvious
that training loss from CNN-GRU was decreasing faster than
from CNN-LSTM. These results were also consistent with
GRU/LSTM for 64, 32 units.

Table IX demonstrates EEG-based PI performance using
the proposed approach (CNN-GRU) against conventional DL
(CNN-LSTM) and the baseline approach. The baseline ap-
proaches are reproducing Mahalanobis distance-based classi-
fier using PSD/COH as features and typical non-linear clas-
sifiers (DNN or ANN or SVM) from previous works [21],
[46], with the same datasets. CNN-GRU/LSTM (constructed
using CNN layers with 128, 64, 32 filters and 2 layers of
GRU/LSTM with 32 and 16 units) produced a higher mean
CRR than the others. Furthermore, the CNN-GRU was better
than CNN-LSTM both in terms of training speed (as shown
Figure 5) and mean CRR with a small number of electrodes
(five from the frontal area).
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Fig. 5. Comparison of training loss by epoch between CNN-GRU and CNN-
LSTM. The configuration consists of 3 CNN layers with 128, 64, 32 filters
and 2 layers of GRU/LSTM with 16 and 8 units.
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Fig. 6. Comparison of training loss by epoch between CNN-GRU and CNN-
LSTM. The configuration consists of 3 CNN layers with 128, 64, 32 filters
and 2 layers of GRU/LSTM with 32 and 16 units.

V. DISCUSSION

From the experimental results, we will focus on two kinds
of issues, namely physical and algorithmic issues for affective
EEG-based PI applications. The physical issues refer to the
EEG capturing such as the different affective states, the
frequency bands, and the electrode positions on the scalp.
The algorithmic issues were about how to use the proposed
approach (CNN-GRU) on EEG in an effective way for PI
applications and the advantages of CNN-GRU over the other

TABLE VIII
COMPARISON OF MEAN CRR RESULTS BETWEEN DIFFERENT GRU/LSTM
UNITS WITH 32 EEG ELECTRODES. * DENOTES THAT THE MEAN CRR IS

SIGNIFICANTLY HIGHER, p<0.01.

Mean CRR [%]CNN GRU/LSTM GRU LSTM
128, 64, 32 16, 8 97.29 ± 0.75 * 89.58 ± 1.81
128, 64, 32 32, 16 99.90 ± 0.10 99.90 ± 0.10
128, 64, 32 64, 32 99.90 ± 0.10 99.79 ± 0.25
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TABLE IX
COMPARISON OF MEAN CRR WITH PROPOSED DL APPROACH
(CNN-GRU), CONVENTIONAL DL APPROACH CNN-LSTM,

CONVENTIONAL MACHINE LEARNING AND PREVIOUS WORKS ON THE
SAME DATASETS.

Approach Numbers of Electrodes Mean CRR [%]
CNN-GRU 32 99.90 ± 0.11
CNN-GRU 5 99.10 ± 0.34

CNN-LSTM 32 99.90 ± 0.11
CNN-LSTM 5 98.23 ± 0.52

Mahalanobis-PSD 32 47.09 ± 2.34
Mahalanobis-COH 32 47.81 ± 3.29

DNN [21] 8 85.0 ± 4.0
SVM [21] 8 88.0 ± 4.0

SVM or ANN-PSD [46] 32 97.97

relevant approaches.
Regarding the physical issues, the experimental results

indicate that DL approaches (CNN-GRU and CNN-LSTM)
can deal with EEG (4–40 Hz) from different affective states
(valence and arousal levels), reaching up to 100% mean CRR.
On the other hand, a traditional machine learning approach
such as SVM using PSD as features did not reach 50% mean
CRR. However, the SVM approach was found to improve
considerably when focusing on specific EEG frequency bands,
namely Theta (4–8 Hz) and Alpha (8–15 Hz). The SVM
reached up to 98% mean CRR with either Theta or Alpha EEG.
As for CNN-GRU and CNN-LSTM, EEG frequency bands
had little to no effect because that the DL approaches can
capture various hidden features (including non-frequency re-
lated features). Thus the hidden features can still maintain high
percentages of CRR To reduce the number of EEG electrodes
from thirty-two to five for more practical applications, F3, F4,
Fz , F7 and F8 were the best five electrodes. CNN-GRU and
CNN-LSTM reached up to 99.17% and 98.23% mean CRR,
respectively. The results show that EEG electrodes from the
frontal scalp provided higher mean CRR than other positions
on the scalp, which is consistent with previous work on EEG-
based PI [25].

Concerning the algorithmic issue, the proposed CNN-GRU
and conventional spatiotemporal DL models (CNN-LSTM)
for EEG-based PI outperformed the state-of-the-art and rel-
evant algorithms (Mahalanobis distance-based classifier using
PSD/COH as features, DNN, and SVM [25] [21]) on the same
dataset. In the comparison between CNN-GRU and CNN-
LSTM, CNN-GRU was obviously better in terms of training
speed while having a slightly higher mean CRR, especially in
when using a small amount of electrode. Furthermore, CNN-
GRU overcomes the influence of affective states in EEG-Based
PI reported in the previous works [46], [47].

VI. CONCLUSION

In conclusion, we explored the feasibility of using affective
EEG for person identification. We proposed a DL approach
called CNN-GRU, as the classification algorithm. EEG-based
PI using CNN-GRU reached up to 99.90–100% mean CRR
with 32 electrodes, and 99.17% with 5 electrodes. CNN-GRU
significantly outperformed the state-of-the-art and relevant al-
gorithms in our experiments. In the comparison between CNN-
GRU and the conventional DL cascade model (CNN-LSTM),

CNN-GRU was obviously better in terms of training speed.
The mean CRR from CNN-GRU was slightly higher than
from CNN-LSTM, especially when using only five electrodes.
Furthermore, CNN-GRU overcomes the influence of affective
states in EEG-Based PI reported in the previous works.
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