
HAL Id: hal-02414815
https://hal.science/hal-02414815

Submitted on 16 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Usage-Based Learning in Human Interaction with an
Adaptive Virtual Assistant

Clément Delgrange, Jean-Michel Dussoux, Peter Dominey

To cite this version:
Clément Delgrange, Jean-Michel Dussoux, Peter Dominey. Usage-Based Learning in Human Interac-
tion with an Adaptive Virtual Assistant. IEEE Transactions on Cognitive and Developmental Systems,
2019. �hal-02414815�

https://hal.science/hal-02414815
https://hal.archives-ouvertes.fr

1

Usage-Based Learning in Human Interaction with
an Adaptive Virtual Assistant
Clément Delgrange, Jean-Michel Dussoux, Peter Ford Dominey

Abstract—Today users can interact with popular virtual as-
sistants such as Siri to accomplish their tasks on a digital
environment. In these systems, links between natural language
requests and their concrete realizations are specified at the con-
ception phase. A more adaptive approach would be to allow the
user to provide natural language instructions or demonstrations
when a task is unknown by the assistant. An adaptive solution
should allow the virtual assistant to operate a much larger
digital environment composed of multiple application domains
and providers and better match user needs. We have previ-
ously developed robotic systems, inspired by human language
developmental studies, that provide such a usage-based adaptive
capacity. Here we extend this approach to human interaction
with a virtual assistant that can first learn the mapping between
verbal commands and basic action semantics of a specific domain.
Then, it can learn higher level mapping by combining previously
learned procedural knowledge in interaction with the user. The
flexibility of the system is demonstrated as the virtual assistant
can learn actions in a new domains (Email, Wikipedia,...), and
can then learn how email and Wikipedia basic procedures can
be combined to form hybrid procedural knowledge.

Index Terms—human-system interfaces, intelligent assistant,
language, usage-based learning.

I. INTRODUCTION

NATURAL language is a concise and effective way to in-
teract with software and cloud services. Natural-language

interfaces have demonstrated their usefulness in areas such as
information extraction from databases [1], robot control [2]
or in the execution of daily tasks through companions like
Google Now, Siri or Cortana [3]. A limitation of these systems
is the inability to benefit from user’s knowledge when dealing
with unexpected situations. Such situations could be a speech
input requesting an action unknown to the system, an unknown
lexical unit or the inability to generate a valid course of ac-
tions. To overcome such limitations, a system should have the
opportunity to learn from its own experience and from external
sources by the means of natural language instructions and
perceptual demonstrations. We determined that this objective
can be achieved by taking advantage of concepts from usage-
based learning in human language acquisition.

Our objective is to provide a method that allows the user
maximum flexibility in teaching new behaviors to the assistant
using natural language by minimizing the need of specific
knowledge engineering of task domains or languages.

C. Delgrange and P.F. Dominey are INSERM UMR1093-CAPS, Université
Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000 Dijon,
France, and the Robot Cognition Laboratory, Institut Marey, INSERM, CNRS,
UBFC, Dijon, France.

J.M. Dussoux is with Cloud Temple, 215 Avenue Georges Clemenceau,
92000 Nanterre, France.

We first review related works in the domain of virtual
assistants that exhibit the need to design systems that are
adaptive to the evolution of the functionalities of a digital
environment, in term of application domain and tasks, and
to the changing user needs.

We then present robotic works inspired by developmental
studies on which our current work is grounded. Here, we do
not attempt to duplicate usage-based learning and generaliza-
tion of grammatical constructions as in the human, but rather,
we exploit three particular aspects of usage-based learning
of grammatical constructions, and we then apply this to an
intelligent assistant. First, we adopt the concept that language
is a collection of form-to-meaning mappings [4] where in
our case form is the natural language command from the
user and meaning is the demonstrated execution. Second, we
adopt the notion of abstraction over arguments, where a given
construction can be re-used over a set of different arguments.
Finally, perhaps most importantly, we adopt the generative
capacity for compositionality, where new constructions can be
composed of existing ones, inheriting their argument structure.

In order to evaluate our proof-of-concept system we provide
a set of use cases transcriptions and an analysis of the number
of interactions needed to complete a set of tasks.

We finally discuss how state-of-the-art machine learning
techniques could improve the generalization of natural lan-
guage user utterances to compete with actual virtual assistants
and lead, then, to a realistic user study.

A. Domain Adaptive Assistant

User tasks generally require the use of multiple applications,
for example to plan an evening out with friends that require
to interact with a messaging service, a calendar and a search
engine. One task the user would want to achieve is to send
the list of the nearest pubs to his friend and the virtual
assistant should so be able to interact with multiple application
providers and of different domains.

Sun et al. [5] investigate how a future agent could organize
activity across multiple applications (e.g. Yelp, OpenTable and
Messenger) in order to achieve a high level goal like “help me
plan an evening out with my friends”. Here, the association
between user intentions and the use of specific applications are
learned thanks to user traces on a smartphone. The value of
such an agent is that it can allow the user to build their own
virtual assistant based on their favorite applications without
the need for each provider to share a common semantic. The
long term goal of such agents is to operate a larger digital
environment composed of a larger number of possible tasks.

2

B. User-Task adaptive assistant

Another aspect of adaptation is to allow the user to define
the interpretation of a natural language order. This can be
done by building instructable agents where a user can teach
to the assistant how to accomplish a task by demonstrations
or instructions at runtime and relies on one shot learning
techniques.

1) PLOW: The PLOW system, developed by James
Allen [6], allows the user to teach new tasks to an assistant
based on GUIs demonstration. The range of problems covered
by PLOW is broader than procedural knowledge acquisition
and includes a set of modules allowing for example to emulate
deliberative dialogues. Language understanding is performed
by converting user natural language sentences into logical
forms [7] and relies on the TRIPS system for dialogue
management and task planning [8].

While the PLOW system can learn new task with the user,
a number of domain specific competences must be engineered
for the system to work. This makes the system difficult to
maintain as the number of applications increases.

2) LIA: LIA is another example of an instructable agent
that users can teach to perform new action sequences to
achieve new commands using solely natural language [9].
LIA is composed of two parts: a semantic parser which
assigns executable semantics to each learned natural language
command and a back-end which executes these commands.
The back-end contains a set of primitive functions for a
particular domain along with their corresponding logical form.
LIA use a Combinatory Categorial Grammar (CCG) to parse
natural language utterances. The parser must first be trained
to associate natural language lexicon with the set of primitive
functions. The system can then derive more complex logical
forms from user inputs.

While the LIA system has a lighter infrastructure than
PLOW, it requires the use of predefined high-level primitives,
like sendEmail. This prevents the user to use the same kinds
of one shot learning technique to accommodate the virtual
assistant to new domains or new applications (extending the
back-end in LIA).

II. USAGE-BASED LANGUAGE UNDERSTANDING

Here we consider how these limitations can be addressed
by taking inspiration from usage-based learning.

Usage-based learning is a social-pragmatic approach to lan-
guage acquisition in which children learn linguistic structures
through understanding intentions and finding patterns in their
discourse interactions with others [10]. From the outset of
life, children and adults interact in feeding, changing diapers,
getting ready for bed, etc. in repeating rituals that are accom-
panied by language from the adults [11]. This provides a rich
shared space where language can enrich meaning at multiple
levels [12]. In the usage-based concept of language acquisition,
the child’s first words allow reference to people and objects
that are of central prominence in everyday life [10], [11]. After
words, the first grammatical constructions are fixed around
specific verbs, and specific actions that tend to be repeated and
ritualized in the infants’ social environment [10], [13], [14].

Constructions then become more abstract and generalized as
the child’s world becomes enriched [4], [10].

This learning requires access to perceptual and motor
meaning via mechanisms that have been characterized in the
context of developmental robotics [15]. The essential idea
is that primitive innate perceptual and motor capabilities
can be composed into more complex percepts or behaviors,
and that these structured representations become associated
with language [16]. Lallee et al. have previously applied
this methodology of structuring perceptual-motor primitives
around language in the context of human-robot cooperative
interaction [17]–[21]. These works concentrate on three major
aspects:

1) The existence of symbolic primitives grounded in the
perceptual system.

2) Grounding the language in these primitives.
3) Learning the use of natural language by engaging the

robot into cooperative activities with a human.
Our objective is to extend this work into the domain of

cooperative interaction with a virtual assistant. Part of the
motivation is to allow the assistant to acquire human expertise
through cooperative interaction with humans.

A. Symbolic Primitives

1) Developmental Theory: In the context of language de-
velopment in human, a fundamental question is how the
symbolic structure of language is grounded into the perceptual
representation system.

Mandler established the existence of symbolic primitive
structures [22], called schema. Schemas are described as a
simplification of the information contained in the perceptual
system. They are learned early by the infant through a process,
called Perceptual Meaning Analysis (PMA), that redescribes
perceptual representation with a set of early developed struc-
tures such as PATH, MOTION or CONTAINMENT [23]. Inputs
to the PMA are temporal aspects of objects moving along
paths, “into or out of containers, objects going into or out
of sight, and contingencies between paths, such as one object
chasing another” [24]. The PMA generates representations that
are the interpretation or construal of the events that are being
observed. These image schemas can then be further enriched
by language, which can add additional structure that the PMA
cannot supply [24].

The use of perceptual primitives such as MOTION and CON-
TACT do not assume any form of innate predicate structure, but
instead, they are the base which allow a symbolic grounding
of language or images.

2) Application in Robotic: Robots, by their physical at-
tributes, share the same space as humans and one task is to
convert information extracted from a camera into a meaning
structure linked to natural language.

Perceptual robotics is a research domain in which robots
are equipped with perceptual systems that can produce internal
representations of the physical world, sensory systems provide
a re-coding or representation of the world that can provide the
meaning component for this grounding. Thus, in Dominey and
Boucher [25], a computer vision system recognized coloured

3

objects and provided outputs that could be used to ground the
meaning of words in sentences. That is, the words could be
learned to refer to the outputs produced by the visual system.
Interestingly, this grounding applied to nouns and verbs.
Nouns, like “block”, “moon”, and “cylinder” were grounded in
the objects identified by the visual system. The visual system
also extracted dynamic properties of these objects, including
the direction and speed of motion (related to Mandler’s
MOTION), and whether objects were in contact (related to
Mandler’s CONTACT). Interestingly Dominey and Boucher
determined that actions like “push” and “give” could be
defined in terms of sequences of perceptual primitives related
to contact. We thus developed an event parser which could
detect GIVE(A,B,C), meaning “A gives B to C” as the follow-
ing sequence of primitive events: CONTACT(A,B), MOVE(A),
MOVE(B), CONTACT(B,C), MOVE(A), END-CONTACT(A,B).

In the same manner, Lallee et al. [26] developed a system
that learned to recognize actions including COVER, UNCOVER,
GIVE and TAKE, based on the perceptual primitives VISIBLE,
MOVE and CONTACT. These were encoded as <enabling state,
action, resulting state> triplets. This research thus provides a
demonstration of how basic meaning representation and higher
level actions can be extracted from the perceptual stream,
based on a initial set of simple perceptual primitives.

B. Grammatical Construction: Grounding Language in Sym-
bolic Primitives

1) Developmental Theory: In a constructionist approach,
very limited initial perceptual and motor abilities form the
primitives that are assembled and structured as part of the
process of usage-based language learning. In this context,
language is considered to consist of a structured inventory
of mappings between the surface forms of utterances and
meanings, referred to as grammatical constructions [4]. These
mappings vary along a continuum of complexity. At one end
are single words and fixed “holophrases” such as “Gimme
that” that are processed as unparsed “holistic” items [10]. At
the other extreme are complex abstract argument constructions
that allow the use of sentences like this one. In between are
the workhorses of everyday language, abstract argument con-
structions that allow the expression of spatiotemporal events
that are basic to human experience including active transitive
(e.g., John took the car) and ditransitive (e.g., Mary gave my
mom a new recipe) constructions [4].

The notion of constructions becoming more abstract is
a prevalent notion in language acquisition in the construc-
tion grammar framework. Tomasello extensively develops this
point in Chapter 5 – Abstract Syntactic Constructions, in
Constructing a Language: A Usage-Based Theory of Lan-
guage Acquisition [10]. The essential argument is that basic
argument structure constructions are directly associated with
dynamic, experientially grounded scene gestalts [27]. Then,
through processes of abstraction, and pattern finding, analogy
and distributional analysis, constructions become progressively
more abstract. Gaspers et al. [28] address how abstraction can
take place in a usage-based computational model of language
acquisition that is based on bootstrapping mechanisms that

Fig. 1. Grammatical construction grounding: The sentence “Put the block
on the left” is mapped on a predicate-argument structure which in turn is
grounded on perceptual primitive schemas.

relies on discovered regularities to segment speech into word-
like units. In the top-down aspects, based on this initial
segmentation, the model induces a construction grammar that
in turn acts as a top-down prior that guides the segmentation of
new sentences into words. Dominey proposed a model that first
learned idiomatic holophrases that mapped directly onto mean-
ing representations, then certain arguments became liberated
in verb island constructions, and finally all open class elements
become liberated in abstract argument constructions [29].

Figure 1 illustrates the nature of simple constructions as
mappings from sentence form to a predicate-argument mean-
ing representation grounded into primitive schemas, they are
the form of construction mainly used in robotics. We then
present more advanced tools for abstracting language.

2) Application in Robotics: A central issue in language
learning is grounding: establishing the link between a word
and its referent.

Dominey and Boucher initially studied these form-to-
meaning mappings in the domain of perceptual robotics [30]
using the perceptual capabilities described above in Sec-
tion II-A. There, a perceptual system learned to map perceived
event representations such as push(Moon1, Cylinder1) onto
sentences such as “The moon pushed the cylinder”, or “The
cylinder was pushed by the moon”. They then extended this
approach to include both the description of perceived events,
and the execution of spoken commands in the Cooperative
Human Robot Interaction System (CHRIS) architecture [19].

For new actions (that have not yet been defined in the
Knowledge Base) the system uses the set of observed prim-
itives from Temporal Segmentation to generate a generic
pattern of primitives to define the action. Thus, a new predicate
cover(x,y) is learned as a pattern of primitives: <moving(x),
contact(x, y), !visible(y), !moving(x)> which is generated by
the perceptual system. This then is the pattern onto which
“Cover y with x” can be associated [26]. These actions were
also associated with states. Thus, for example, after the action
cover(x,y), the resulting state is contact(x,y), visible(x), on(x,y).
By this same mechanism, Lallee et al. [26] demonstrated 4
other complex predicate-argument actions, including uncover,
take, give, and put. These actions could then be assembled into
higher level constructs that we called shared plans, allowing
the human and robot together to achieve a desired state. This
research thus provides a framework for demonstration of how
predicate-argument structure for high level actions like cover,
put, etc. can emerge.

In this context of grounding and language learning, Can-

4

gelosi and colleagues [31]–[33] have developed a number
of simulation and robotics experiments that demonstrate how
word meaning can be grounded in perception for language
learning. Their more recent work begins to look at grammatical
structure in the case of verb-noun pairs that link to object-
oriented action [32]. Indeed, it is likely that meaning is more
pertinent in the context of goal oriented action schemas or
frames [34]. The learning of grammatical constructions has
been approached both from a language evolution perspec-
tive [35], and from a developmental or learning perspec-
tive [25], [30], [36]. An important common point is that they
rely on some form of organization of meaning in terms of
pragmatic frames, or repetitive goal-oriented action schemas.

3) Models and Tools: Powerful algorithms for grammar
induction combine statistical processing for pattern extraction,
and rule-based structural generalization based on these discov-
ered patterns [37]. This results in unprecedented capabilities
for extracting grammatical structure, without addressing the
problem of how such structure maps onto meaning. In this
context of form to meaning mappings, Dominey et al. ini-
tially investigated neural networks that learned to associate
the pattern of closed class elements in a sentence with the
ordered mapping of open class (semantic) words onto their
respective thematic roles in the meaning [38]. Hinaut and
Dominey subsequently showed that with larger networks and
training corpora, such systems could actually generalize to new
constructions that were not used in the training data [39].

Gaspers and Cimiano [40] exploited cross situational statis-
tics that link words to their referents across multiple scenes,
in order to then build up progressively more elaborated
grammatical constructions. Gaspers et al. [28] then employ
a powerful method where bottom up and top down learning
mechanisms mutually reinforce each other in learning form
to meaning mappings. An initial lexicon is formed bottom up
from phonemic sequences that appear frequently enough to
establish initial form-meaning mappings. These initial words
can then be mapped into perceived sentences in order to
define alignments between words in the sentence and their
roles in predicate argument representations of meanings, which
allow identification of grammatical constructions. Once an
initial set of constructions is learned, they can be used in
a top down manner to identify the meanings of new words
in sentences that correspond to these learned constructions.
This allows for a synergistic interaction between bottom-up
and top-down learning. Dominey and Boucher [25], [30], [41]
exploited these two processes in where semantic bootstrapping
provides initial word meaning which allows the learning of the
mapping between lexical elements in the sentence and their
corresponding role in the predicate-argument structure of the
meaning. This results in learning of grammatical constructions
that can be exploited in top-down syntactic bootstrapping,
where novel words are more easily learned by using known
constructions that directly map them to their referent in the
meaning representation.

In the current research we exploit a direct mapping between
the user’s top down spoken language input, which forms a
pattern from the bottom-up demonstration to map onto. This
is in line with a recent perspective proposed by McCauley

and Christiansen [42]. They argue that in addition to distribu-
tional information, computational models of language learning
should take more account of meaning, in terms of the agents,
objects and actions that the language is referring to.

C. Learning and Using Language in Cooperative Plans

1) Developmental Theory: A crucial aspect in the develop-
ment of human cooperation is the ability for the child and adult
to engage in a triadic interaction where the two agents interact
around the third element – the object of their cooperative
interaction. By 12-14 months of age, the child engages in
these triadic interactions with the adult, and demonstrates
that they are motivated to share experience with others, and
importantly, to help them toward their goals [43]. Language
allows the developing child to align shared plans with the
adult, and to create new language-based representations that
persist over time. In development, language is thus a tool for
interacting minds, which allows the expansion of new spaces
for interaction and cooperation [44].

Following Tomasello we consider cooperation as the case
when two individuals establish a common goal, and develop
a shared plan to achieve that goal [43]. In such cooperative
scenarios, it is typically an adult “leader” that establishes the
shared plan as a turn-taking sequence of actions by the two
participants in order to achieve the shared goal.

2) Application in Robotics: The robotic CHRIS system
demonstrates how to integrate the core features that consist of
the ability to extract meaning from perception, to learn how
to compose new actions from primitive and learned actions,
and to cooperatively learn and execute shared plans or proce-
dures with a human via a spoken language interaction [19].
As described above, extracting meaning from perception is
performed using a set of primitives including MOTION and
CONTACT, which allow recognition of actions like TAKE and
GIVE in the perception module of the system. Then, in the
grounding of a sentence like “put the block1 on the block2” in
meaning, there is the transition from the sentence to a schema-
tized representation of the meaning put(block1, block2) in the
learned grammatical construction. This representation of the
put action is then decomposed into primitive motor commands
like GRASP, MOVE, RELEASE and into perceptual primitives
like OBJECT1, OBJECT2 that are encoded in the knowledge
base. The language processing and plan learning capabilities
are provided by a planning and supervision module and allow a
Human, either by natural language descriptions or by physical
demonstrations, to specify at runtime how to link a linguistic
unit such as “block1” to a perceptual element like OBJECT1
as well as the composition of put(Object1, Location1) into the
sequence GRASP(Object1), MOVE(Location1), RELEASE.

Lallee et al. and then Petit et al. have used this mapping
of sentences to robot action in order to allow the human user
to specify shared plans in cooperative human-robot interac-
tion [2], [19]. One of their experiment was the execution of
a shared plan to put a toy into a box. A human specified the
shared plan as “I reach the toy, then I reach the trash box then
you open the trash box then I put the toy in the trash box then
you close the trash box”. Then, the shared plan is executed

5

and each successive step is spread between the human and the
robot. In that work, the user is also able to teach the robot how
to do new actions, like opening and closing the trash box.

III. TRANSFER TO THE DIGITAL UNIVERSE

As the CHRIS architecture demonstrates, a robot can learn
how to speak about a perceptual entity like a human agent
picking up an object [26] and how to participate in a coop-
erative game like uncovering a toy [20]. In the same way, a
virtual assistant could learn how to recognize and speak about
an email and how to cooperatively send an email.

In the following, we show how to adapt the techniques
employed in the robotic domain to build a virtual assistant:

1) Primitives: We adapt the set of symbolic primitives
to a digital world so that the system can observes the
human actions on the GUI. We thus develop and exploit
perceptual primitives that correspond to filling fields,
clicking, highlighting, copying, pasting.

2) Grounding: We show how the language is linked to
these primitives to compose new actions thanks to user
demonstrations.

3) Language and Cooperation: We show how a user can
teach the system to interpret compositional sentences
using natural language instructions that refer to learned
construction and how the system can generalize a proce-
dure over a set of arguments.

A. Overall Functioning

The virtual assistant architecture, shown in Figure 2, is made
up of the following components:

1) The Environment which renders the digital services in a
model that the assistant can perceive and act upon. This
includes a chat window.

2) The SensorProcess which converts percepts to meaning-
ful representation thanks to the ConstructionMemory.

3) The InterpreterProcess which handles the interactions
with a user in order to cooperatively execute procedures
and to learn them. This uses the ContextMemory that
is a working memory for the current tasks and the
EpisodicMemory which stores event traces that occur
within the platform. This is used in the one-shot learning
to encode new constructions.

4) The MotorProcess which converts meaningful represen-
tations to executable actions in the environment.

In order to illustrate the information flow we first provide
a general description of a usage scenario. This will then be
explained in detail in the following sections:

A user requests to send an email in natural lan-
guage, “send an email to peter.dominey@inserm.fr
about the meeting and say that I will be early”. If
the virtual assistant does not know this action, a
learning behavior is activated. Then, the user can de-
scribe the steps that compose this action using either
(a) natural language (using language constructions
that have been previously learned), such as “create
a draft”, “set the subject”, “write the content”, etc.

or (b) by performing a demonstration on a graphical
user interface that the virtual assistant can observe.
The learning behavior stores all perceptual events
coming from the SensorProcess including user ut-
terances in the EpisodicMemory. At the end of the
learning, an algorithm consolidates this knowledge
from the EpisodicMemory and stores the resulting
new construction in the ConstructionMemory. The
new construction is a map from the language form
to the execution meaning. When the user again
requests the execution of this action “send an email
to clement.delgrange@inserm.fr about the software
and say that it functions perfectly”, the virtual as-
sistant will match the utterance with the learned
construction, extract the arguments contained in the
user utterance and instantiate the corresponding pro-
cedure. The procedural behavior is then activated.
It leads the interaction with the user, monitors the
SensorProcess and executes primitive actions thanks
to the MotorProcess in order to complete the proce-
dure. We describe in more details the SensorProcess
and the MotorProcess models, the meaning extrac-
tion algorithm and the one-shot procedural learning
algorithm in the next sections.

B. Shared Environment and Primitives

1) Principle: In robotics, the human and the robot share a
commons space where the grounding of meaning in the per-
ceptual and motor modalities relies on the physics of objects
in space. The perceptual model represents objects in the world
with attributes such as a position and an orientation while the
motor model defines the most primitive commands that the
effectors of a robot can implement such as to point, grasp,
move, or release [19]. These primitive commands have regular
consequences in the perceptual model in term of position and
orientation, helping for plan recognition, procedural learning
and finally, meaning extraction.

For the virtual assistant, the perceptual model should share
the same characteristics as in robotics, that is, it must be
domain independent, there must be a common space for the
user and the agent where this latter should be able to learn by
demonstration by observing the user actions, e.g. filling the
“subject” field in an email, and easily transfer its observations
to its own motor commands. Figure 3 illustrates the shared
environment between a virtual assistant and a user as a shared
environment representation and a shared observation area.

The shared environment representation is an abstraction of
a GUI based system interaction. We model the most primitive
interactions that a user performs with a GUI, which are the
ability to read and write textual information in a field, and to
trigger a system transition (i.e. to enter text into a field, and
click in a button). From the shared space, the virtual assistant is
able to monitor and act on this representation independently of
any natural language skills. We define the perceptual primitive
structures as being frames, data, fields and actions.
Frame A frame is used to structure the information pro-

vided by the system and gather related information. It

6

Fig. 2. Virtual Assistant Architecture Overview: During an interaction, the SensorProcess pops the state (e.g. user request “send an email”), and then searches
for a match of this pattern in the ConstructionMemory. If a match is found, the InterpreterProcess begins to select actions from the retrieved sequence of
actions, to execute via the MotorProcess. If no match is found for the user request, the system asks for a demonstration. Demonstrated events are stored in
the EpisodicMemory, and then when the demonstration is finished, the sequences of events is consolidated via one-shot learning, and stored as construction
that pairs the request (form) with the demonstration (meaning).

Fig. 3. Shared Environment: The interaction area allows the agent to perform
actions that can be observed by the agent during learning by demonstration,
and that can be performed by the agent and observed by the user.

is composed of a label and a set of the other elements:
frame, field, data and action. It could be viewed as a tree
structure of information and thus, each component has a
parent reference. E.g., all the paragraphs in a Wikipedia
article.

Data A data gives the current state of a resource. It is
composed of a label, a list of values which stands for
the current state and a parent frame. E.g., the content of
a paragraph in a Wikipedia article.

Field A field describes and holds textual information provided
by the user. It is composed of a label, a list of values
which hold the current information and a parent frame.
E.g., the search input box on the Wikipedia website.

Action An action defines a possible transition from the current
state. It is composed of a label and a parent frame. E.g.,
clicking on the search button on the Wikipedia website.

In complement to these perceptual structures, we define a
set of primitive motor commands:

Fill Used to fill in a field with a natural language text in the
environment.

Execute Used to trigger an action in the environment (clicking

on a button).
Speak Used to send utterance via the chat.

The shared observation area allows the virtual assistant
to observe the user actions. We developed a synchronization
tool which maintains the consistence between the Environment
module of the virtual assistant and a local or remote system
interface. In this manner, the virtual assistant can read and
act similarly on its own digital services and those that a user
connects to it. Our synchronization tool has been adapted on
top of a rich client application (RCA), web based applications,
and a Rest1 API.

Thus, we have a shared space where observations come
from and the perceptual and motor primitive structures that
correspond to a kind of Mandler’s primitive schemas on which
language is grounded. We will now define how the effective
observations are converted to these structures.

2) Interactions between the Environment and the Sensor-
Process modules: Concrete observations diverge depending
if the virtual assistant is interacting with a RCA, a web
application or a Rest API. In our current research, we employ
a direct mapping between these concrete types of observation
and our primitive structures model. We respectively relied on
a specific graphical library, HTML parsing methods and Json
resources description for these conversions. The Environment
module acts as an abstraction of these different types of
conversion and is represented as a queue of events which will
be popped by the SensorProcess. The events are the following:
NewUtterance This event is created each time a new natural

language message is transmitted to one of the actors.
It is composed of the message content and its source,
either the agent or the user. For example “user: search
for Boston”.

ExecuteEvent This event is generated each time an Action
element is triggered in the environment model. It is

1Representational State Transfer

7

Fig. 4. An example of the environment model that illustrates a Wikipedia
page loaded in a browser. The hierarchical structure forms label paths from
the root node to the leaf nodes. In the current case, when an article will be
fully loaded, an AddEvent will be dynamically generated and will contain a
new DataNode with the label path set to browser/wikipedia/articles/parag.

composed of the element and its source, either the agent
or the user. For example, when the user triggers the
“search” button in Wikipedia.

FillEvent This event is generated each time a Field element
is updated in the environment model. It is composed of
the element, its updated value and its source, either the
agent or the user. For example, when the user fills the
query field in Wikipedia.

FocusEvent This event is generated each time an element is
focused in the environment model. It is composed of the
focused element and its source, either the agent or the
user. We developed a special focus function that allows
the user to indicate a particular item of interest in a GUI,
e.g., a paragraph on a Wikipedia page. This will be of use
when the user needs to demonstrate to the assistant to do
something with the result of an action (e.g., to paste the
result of a Wikipedia search into an email).

AddEvent and DeleteEvent These events are generated each
time the structure of the environment model changes.
As previously described, the environment model can be
represented as a tree structure, those events are composed
respectively of the added leaf nodes or deleted leaf nodes
(Action, Data, Field) and a reference which is a label
path from the root node. Figure 4 shows an example of
the environment model structure when a Wikipedia page
is loaded in a browser.

The Environment module is made up of the digital services
and utterances produced by the user and the virtual assistant.
When the SensorProcess pops events, those coming from the
digital services will remain unchanged as they are already rep-
resented in term of our primitive structures however utterances
will have to be mapped on those structures as explained in the
next section.

C. Language grounding

1) Principle: As stated in Section II-B, language under-
standing is defined as a process of mapping elements from a
form space (e.g., natural language expressions) into a meaning
space (e.g., a sequence of actions). Three kinds of represen-
tation must be taken into account, one to model elements in
the form space (user utterances), one to model elements in the
meaning space (primitives functions) and one to model data
used by the process itself linking the form and meaning, called
constructions. This is based on the construction grammar
framework as characterized by Goldberg [4].

Meaning is extracted from goal directed utterances that
command the agent to perform an action, such as “send an
email to Peter”. The main learning capability of the virtual as-
sistant is to learn how to map such utterances to a sequence of
primitive functions that execute the intended goal. The struc-
tured sequence of primitives that results from this interaction
with the human in a goal directed activity is thus associated
with the surface form of a grammatical construction. This is
similar to the pragmatic frame characterization of language
learning developed by Rohlfing et al. [34]. This sequence
corresponds to a procedure in our meaning representation.

Mandler sought to define a level of representation for
the PMA that corresponds to the sensory capabilities of the
developing child. In the current research, we make an analogy
between the developing child in the physical world, and an
adaptive agent in a digital world of GUIs. In that world, we
identified a set of sensory-motor actions that we refer to as
primitives because they are the lowest level actions that a
user can perform on a GIU and they are independent of the
particular application. Thus, in a similar way, we define six
primitive functions that compose a procedure. Three of these
primitive functions are the primitive motor commands defined
in Section III-B1 (fill, execute, speak) and we define three
additional functions of a different nature:
Focus Used to highlight an element in the environment.
Retain Used to map an highlighted element with a natural

language expression.
End Used to trigger the one-shot learning algorithm.

These three later functions have been introduced for the
virtual assistant functioning only and further described in
the next sections. The Focus is used to direct attention, the
Retain is used to tell the assistant to memorize something,
together they can be used as a form of copy-past for passing
information between operations. The End is used to indicate
the end of a learning stage.

The first step is to ground language directly on these 6
primitives. As illustrated by Figure 5 where “Search Texas” is
mapped to a learned predicate-argument structure (a procedure
in our meaning representation) which in turn is grounded to
the primitives.

Then, Figure 6 illustrates how a complex procedures can be
composed from existing procedures in a hierarchical structure
that is finally grounded in the 6 primitive functions. Procedures
are always grounded in these six functions, but when a new
procedure is being learned, it can be defined in terms of
previously learned procedures and the primitives.

8

Fig. 5. Example of a learned grammatical construction grounded in the
primitive functions.

A procedure is thus an ordered sequence of primitives func-
tions with variables which are learned when a new construction
is learned. In that respect, variables are created at the time a
construction is learned and instantiated when a construction
is used. For example, in the learned construction of the
Figure 5, “Search Texas” is an instance of the form component
“Search VAR” where VAR is a variable set to “Texas”, and the
procedure, or the sequence of fill-exec actions, is the meaning
component. This procedure has one variable (VAR) which is
bound the Fill primitive function.

Variables are thus created when a construction is learned.
For example, the user says “Look up the definition of Boston”,
and the system determines that there is no known construction
for this, and asks the user to demonstrate. During the demon-
stration, the user says “Search Boston”, which corresponds to
a known construction. During processing, the system matches
“Boston” in this known construction, with “Boston” in the
initial construction that is being learned. This match of the
argument “Boston” across the two situations allows the system
to create a variable in the new learned construction “Look up
the definition of VAR”. This learning takes place with a single
example, in the one-shot learning mechanism that is described
in more detail below. In the subsequent executions, the value
of VAR will be passed to the previously learned procedure
“Search VAR”.

Then, variables are instantiated by extracting the arguments
from a user input utterance. For example, if a user says “Look
up the definition of Paris”, VAR will be instantiated with
“Paris”. This process is explained in the next section.

2) Interactions between the SensorProcess and the Con-
structionMemory modules: In a construction such as "Send
an email to peter@gmail.com about the meeting and say that
I will be ready as planned", the system learns a form of
complex item based construction "Send an email to VARX
about VARY and say that VARZ." In this case VARX, VARY
and VARZ correspond to the recipient, the subject and the
message content of an email.

The ConstructionMemory stores the constructions as form-
to-meaning mappings. It is a map of user utterance event
patterns to procedures. As just illustrated, the patterns contain
place holders for variables which are bound to the procedure
variables when the procedure is instantiated or invoked. This
notion of construction is borrowed from the domain of human
linguistics, where grammatical constructions are mappings
from sentence forms to meanings [4], [27]. In this context,
we have exploited the distinction between closed class words

(grammatical function words) used in the form characteriza-
tion of constructions, and open class words (nouns, verbs,
adjectives, etc.) that instantiate variables in the constructions
in learning grammatical constructions [38], [39].

The SensorProcess uses this form to meaning mapping to
find a match with the current user utterance event and the set of
mappings in the ConstructionMemory. For example, when the
user utterance is “send an email to clement@gmail.com about
the paper and say finish it”, the SensorProcess compares this
with the set of patterns in the ConstructionMemory. When
a match is found, the pattern variables are instantiated and
propagated to the procedure variables. The current utterance,
the instantiated pattern variables and the decontextualized
procedure constitutes the meaning which is forwarded to the
InterpreterProcess.

As in the action learning system of Lallee et al. [26], there
is no predefined predicate representation, they are learned in
interaction with the user. This process is explained in the next
section.

D. Using and Learning Language in Cooperative Procedure

The InterpreterProcess is responsible for maintaining the
state of the virtual assistant coherent with the scenario it is
engaged in with the user. This includes scenarios in which
the user can cooperatively execute a plan of actions with the
virtual assistant, and scenarios in which the virtual assistant
learns a new plan of actions. For this, the InterpreterProcess
has access to all the modules on which it can execute primitive
actions and retrieve the current state. This includes the Con-
structionMemory, the ContextMemory, the EpisodicMemory
and the MotorProcess.

1) Interaction with other modules:
a) ContextMemory: The InterpreterProcess, see Fig-

ure 2, works as a state transition system. States are charac-
terized by two variables in the ContextMemory. One holds the
current procedure instance being executed, and the other holds
the current phase of the virtual assistant which can be:

Available Indicates that the virtual assistant is not engaged in
a learning or executing scenario.

Learning Indicates that the virtual assistant is learning a new
plan of actions.

Executing Indicates that the virtual assistant is executing a
plan of actions.

The content of the ContextMemory and the meaning result
in inputs will determine the next transition to perform.

b) EpisodicMemory: As a new procedure is being
learned, the InterpreterProcess stores each executed primitive
action in the EpisodicMemory, as well as each transformation
of the environment model and the result of the focus and
the retain primitive actions. This information is used by the
learning algorithm to replay all the executed actions during
the learning phase, so that these actions can then constitute
the meaning component of the new learned construction. Note
that during learning, the user can invoke primitive functions,
and can also invoke learned procedures that are grounded in
primitive functions, as illustrated in Figure 6.

9

Fig. 6. Learned Procedure illustrating compositional meaning representation. At the lowest level, the procedure is grounded in the six primitive functions – fill,
execute, speak, focus, retain and end. Here we see two "exec" and one "fill" actions. At the highest level, a procedure is defined purely in terms of previously
learned procedures, which finally ground out in the six primitives. This illustrates the possibility for compositional structure in defining new procedures.

c) ConstructionMemory: The ConstructionMemory is
updated when the learning algorithm produces a new con-
struction. This employs a “one-shot” learning method, where
the demonstration that is encoded in the EpisodicMemory is
transformed into a procedure with variables that corresponds
to the meaning component of the form-to-meaning mapping.
Then the ConstructionMemory is also used by the SensorPro-
cess to determine if a current utterance produced by the user
matches with a learned construction. In this case, the learned
construction is instantiated and executed.

d) MotorProcess: The MotorProcess is used to execute
the primitive motor actions, during learning and execution of
a learned construction.

2) InterpreterProcess Operation Modes: The virtual assis-
tant can be engaged in two main modalities: one when it
executes a procedure and one when it learns a new one.

a) Execution Mode:

Executing a learned procedure The simplest situation is
when the virtual assistant executes a procedure and
the user provides all the context in one utterance. For
Example: “search texas on Wikipedia.” In this situation,
the InterpreterProcess will execute the learned procedure
that was retrieved when the utterance was matched in the
ConstructionMemory. At this stage, the virtual assistant
will be in an “available” state. The system will instantiate
the procedure in the retrieved meaning, and propagate
the variables. That is, all the primitive actions will be
grounded. The virtual assistant will execute the procedure
and report when it is finished. Execution of the procedure
will correspond to the following events:

• Fill(“browser/wikipedia/searchInput”, “texas”)
• Execute(“browser/wikipedia/search”)
• Speak(“Ok, It’s done”) [At this stage, the GUI is

showing the article].
Executing a learned procedure with missing information

A second situation is when the user does not provide
all the context in the utterance, such as “Search the
definition of a term.” The result meaning will be retrieved
as a procedure for searching on Wikipedia, similar to
the previous example, except that the term of the search
is missing. This will leave the variable of the Fill
primitive unbound in the retrieved procedure. In such
a case, where an unbound variable is encountered, the
InterpreterProcess will generate a Speak primitive action
in order to request the missing variable such as: “What
is the query?” The next user utterance will interpreted
as the value of the missing variable. This leads to the
third situation, when the virtual assistant does know yet
how to request the missing variable.

b) Learning Mode:

Learning how to request information In order to generate
the utterance, the virtual assistant must learn the mapping
between the environment model element and the natural
language pattern. For this, the InterpreterProcess will
first ask the user to explain an element of its inter-
face either by natural language such as “What is that:
/browser/wikipedia/searchbox/searchInput?” or by GUI
pointing. The response from the user will be bound to the
element reference in the ConstructionMemory and will be
reused for a next iteration as in the second scenario just

10

illustrated in Section III-D2a.
Learning a new procedure with a one-shot algorithm

Learning scenarios are triggered when the meaning result
does not contain a procedural meaning representation
and the current state is available. In such case, if the user
produces an utterance like “Search Texas on Wikipedia”,
the system will invite the user to either explain what
the system has to do or to provide a GUI demonstration
and mark in the EpisodicMemory the beginning of the
learning phase.
During learning, the meaning representations are of the
same format for procedures evoked by natural language
utterances and for environment model events demon-
strated on the GUI. Thus, the InterpreterProcess will
handle these representation in the same way, except that
for procedures evoked by language, the virtual assistant
will execute the primitive action, whereas for GUI user
demonstrations it is the user. Note that the use of exist-
ing procedures to define new procedures is a powerful
mechanism for compositionality [45]. The virtual assis-
tant logs all events occurring in the environment in the
EpisodicMemory, including those from executing learned
procedures during the teaching.
When the procedure is completed, the user must trigger
the one-shot learning algorithm with a sentence indicating
the end of the learning step. This sentence will be bound
to the primitive function End. As just described, during
learning, the virtual agent stores all events corresponding
to the execution of primitive motor functions and percep-
tual updates. At the end of the learning, the algorithm
creates the new construction as illustrated in Figure 7.
The algorithm will generalize by creating variables in
the construction. During the learning of a new procedure,
when the user is explaining, if he/she repeats a string
that is present in the original request, then that string
is interpreted as a variable. For example, if the user
says “Search Texas”, the system asks “What do you
mean?”, and the user shows that you open Wikipedia,
and then type “Texas” in to the search window, “Texas”
is identified as a string that is actually a variable in the
learned construction “Search VARX”.

3) Motor process: The role of the MotorProcess is to trans-
form primitive motor function representations into execution
units in the environment. As for the sensory event repre-
sentation, these representations are considered to be innate
primitives, and are specified at the conception phase and must
be kept stable along the life-cycle of the virtual agent, as all
the learned procedures rely on them. The transformations are
simple algorithms that apply the function representation into
the environment. This will in turn generate observable events
that will be processed by the SensorProcess.

For example the Execute primitive function will be apply to
an Action element in the environment model, this will generate
an ExecuteEvent that will be processed by the virtual assistant
as well as other event generated by the environment itself.
Concretely, this corresponds, for example, to clicking on the
search button after filling in the search target in Wikipedia.

Fig. 7. One-shot Learning Algorithm applies on the example “Search Texas”.

Fig. 8. A procedure illustrating the compositional meaning of two distinct
sub procedures.

E. Compositionality

The previous sections explained how each module of the
architecture interact to learn new procedures. In this section
we show in more detail how the system can learn to interpret
a compositional sentence.

As explained, the InterpreterProcess allows the combination
of multiple learned procedure into a new one. In order to
compose these sub procedures, the Focus and Retain primitive
functions can be used to temporarily save the evaluation of one
procedure into a variable and to reuse it in another sub pro-
cedure. This allows to learn how to interpret such utterances
as: “Send the definition of Texas to peter.dominey@inserm.fr”
where “the definition of Texas” must be evaluated and ap-
plied to “send x to peter.dominey@inserm.fr” as shown in
Figure 8. In this example the user can combine the previously
learned procedures “Search Texas” and “Send an email to
peter.dominey@inserm.fr”.

In this case variables are created internally during learning
of a new procedure that involves the Retain function. For
example, after the user told the assistant to search the definition

11

of Texas, the user will ask “retain the first paragraph”. What
this means to the system is that a variable called “the first
paragraph” is created, and it is associated with the function
of the Retain. The Retain is a function that is associated with
the Focus, where the user focuses attention on some object in
the page with a green icon that can be moved on the page.
In this case, the user focuses attention on the first paragraph
of the resulting Wikipedia definition. The “retain the first
paragraph” command thus associates the contents of the focus
(the first paragraph of the Wikipedia page) with the variable
called “the first paragraph”. Later in the scenario, when the
assistant asks “What is the message?” and the user replies “the
first paragraph”, the utterance will be evaluated as pointing to
a variable and the contents of the variable named “the first
paragraph” is pasted into the message frame of the mail. In this
manner, the variable called “the first paragraph” will always
be associated with the contents of the first paragraph of the
Wikipedia page that is opened during the execution of the
“Send the definition of X to Y” construction.

IV. CURRENT PERFORMANCE

The main objective of this paper is the design of the
representations, the algorithms and the architecture for an
adaptive assistant that exploits certain functionality of usage-
based learning of constructions. To evaluate this objective,
we concentrate on a functional/behavioral evaluation. We thus
explain in detail several use cases that illustrate the usage-
based functionality of the system. We also provide a quantita-
tive analysis of the potential savings in user intervention that
idealized performance of such a system could provide.

A. Use Cases

In this section we provide examples of typical relevant use
case scenarios that a user can achieve with our implementation
based on the Wikipedia and the Gmail website. We present 4
scenarios in chronological order. The scenarios begin when
the user connects for the first time with its virtual assistant,
and in the final scenario the system can interpret the utterance
“Could you send an email to user@domain.com and write him
something about Texas”.

a) Scenario 1: The user will teach two basic Gmail
actions to its virtual assistant: how to create a new draft and
how to set the subject. In this situation, the user is connected
with its virtual assistant with an opened chat box and is already
connected to its Gmail inbox.
User Create a draft
Assistant What do you mean?
User The user creates a draft on the Gmail GUI. (The

system perceives the event primitives, generated by
the user’s actions in the GUI, and stores them in
the EpisodicMemory).

Assistant Ok (the virtual assistant has received events from
the GUI)

User End (the user indicates the end of the learning
procedure)

At this point, when the user says “End”, a new construction
is created in the ConstructionMemory with “Create a draft” as

the form component, and the sequences of events stored in the
EpisodicMemory as the meaning component.
User Set the subject
Assistant What do you mean?
User The user fills the subject field on the Gmail GUI
Assistant Ok
User End

Again, when the user says “End”, a new construction is
created in the ConstructionMemory with “Set the subject” as
the form component, and the sequences of events stored in
the EpisodicMemory as the meaning component. Similarly, the
user can teach other basic actions on Gmail such as opening
its inbox, sending a draft, setting the recipients as well as for
other services such as searching a term on Wikipedia. A video
illustrating these examples is available online 2.

b) Scenario 2: When the virtual assistant needs to know
how to speak about an element in the environment it can ask
for this element. In this scenario, the user teaches how to
request the subject of a message so that the next time the
user will not have to interact with its GUI to set the subject of
a message. A full video of this example is available online 3.
User Set the subject (this matches with a previously

learned procedure, from scenario 1, where the user
filled the subject field.)

Assistant What does “/browser/Inbox/Subject” mean? (In the
current execution, the “subject” field in the GUI is
not yet set, and this leads to an unbound variable
corresponding to the subject input box in the Gmail
GUI that can also be highlighted)

User The subject of the message (the user specifies that
this field is the subject of the message)

Assistant What is the subject of the message? (this is still
an unbound variable, so the assistant asks for the
content)

User Meeting schedule
Assistant Ok, It’s done.

c) Scenario 3: After some learning, the virtual assistant
is able to perform basic actions on both the Wikipedia and
the Gmail web sites. In this scenario we show how a user
can teach a new procedure that combines previously learned
procedures on different task domain as illustrated in an online
video 4.
User Send the definition of Boston to

cl***ge@gmail.com
Assistant What do you mean?
User Go to Wikipedia
Assistant Ok, It’s done
User Search for Boston
Assistant Ok, It’s done
User retain the first paragraph
User The user uses the focus to point the element to

retain in its GUI interface.

2Usage-based Learning Virtual Assistant [Part 1: Learning basic actions]
https://www.youtube.com/watch?v=Lj_CW0OIU88&list=PLKnvrLyZkzbaNzpcz_ql3HS-mLvyOu1mB&index=2

3Usage-based Learning Virtual Assistant [Part 2: Learning GUI elements]
https://www.youtube.com/watch?v=TthKpUKlrck&list=PLKnvrLyZkzbaNzpcz_ql3HS-mLvyOu1mB&index=3

4Usage-based Learning Virtual Assistant [Part 4: Learning complex tasks]
https://www.youtube.com/watch?v=Kxeke7tQ7ik&index=5&list=PLKnvrLyZkzbaNzpcz_ql3HS-mLvyOu1mB

https://www.youtube.com/watch?v=Lj_CW0OIU88&list=PLKnvrLyZkzbaNzpcz_ql3HS-mLvyOu1mB&index=2
https://www.youtube.com/watch?v=TthKpUKlrck&list=PLKnvrLyZkzbaNzpcz_ql3HS-mLvyOu1mB&index=3
https://www.youtube.com/watch?v=Kxeke7tQ7ik&index=5&list=PLKnvrLyZkzbaNzpcz_ql3HS-mLvyOu1mB

12

Fig. 9. (A) User makes a request in the chat window “send the definition
of texas to peter.dominey@inserm.fr”. (B) The system recognizes this con-
struction, and executes the learned procedure: opens Wikipedia, writes “texas”
into the search input. (C) Once the definition is loaded, copy-pastes the first
paragraph of the definition into the body of the email. (D) Asks the user for
the subject and then sends the message.

Assistant Ok, It’s done (The system binds the indicated para-
graph to the variable “the first paragraph”)

User Close Wikipedia
Assistant Ok, It’s done
User Send an email to ce***ge@gmail.com
Assistant What is the subject of the message? (Note that here

the assistant asks a question in order to establish
the binding for this variable)

User Boston’s definition
Assistant What is the message?
User The first paragraph
Assistant Ok, It’s done. (The contents of the variable “the

first paragraph” is set as the contents of the mes-
sage as described in III-E)

User End

Figure 9 provides a view of the GUI interface during the
unfolding of this execution of the virtual assistant.

The result of this command generates a mail which ef-
fectively contains the Wikipedia definition of Boston. This
learning scenario demonstrates how a new construction can
be learned, with a rather complex sentence as the form
component, and a structured set of primitive commands as the
meaning component. Importantly, when the user explains what
this sentence means, she can re-use existing learned procedures
by evoking them with natural language, as well as using more
primitive actions on the GUI. This illustrates the ability of the
system to learn compositional structures. It is worth noting
that the system immediately generalizes to use of the same
construction with different arguments. Thus, the user can now
say “Send the definition of Texas to john@gmail.com” and
the system will execute the learned procedure appropriately.

d) Scenario 4: The virtual assistant can learn how to
interpret more elaborated sentence in the same manner it learns
procedures. That is, we can say a different sentence that has
the same meaning as a previously learned procedure, and then
when the system asks “What do you mean” we state the
meaning as in the learned formulation. This way a previously
learned procedure can be reformulated. Here we show the final
result and an online video highlights this feature in a context
of text only interactions on a smartphone 5:
User Could you send an email to

cl***ge@protonmail.com and write him something
about Texas

Assistant What is the subject of the message?
User Texas definition
Assistant Ok, It’s done

These scenarios illustrate how a complex set of primitive
commands can become associated with a high level invoking
command, in the form of a grammatical construction encoded
in the ConstructionMemory.

B. Idealized Performance

We show in this Section how the system can be effective
by reducing the number of interventions of the user. Figure 10
illustrates how learning, and reuse of learned procedures in
new procedures, reduces the number of interventions by the
user. We compare 3 strategies the user can take:
No Agent The No Agent strategy is when the user does not

use the agent and has to perform all the actions on its
GUI.

All-in-one The All-in-one strategy is when the user minimizes
natural language interactions during the learning, that is,
learning by demonstration is always preferred and there is
no reuse of previously learned procedures when learning
a new compound task.

Reuse The Reuse strategy is when the user maximizes natural
language interactions during the learning, that is, learning
by explanation is always preferred and the user tries to
maximize the reuse of the previously learned procedures
by structuring the learning from the most fine grain tasks
to the most compound tasks.

To evaluate these 3 strategies, we first count the number
of interactions (acting on a GUI or speaking to the agent
count both for one interaction) to complete a set of 3 tasks
(search on wikipedia, send an email and send the definition
of something to someone). Panel A represents the number of
interactions needed to complete the 3 tasks 3 times which is
the maximum number of times after which the agent has totally
learned a procedure and where then no interaction linked to
the learning step is needed. Panel B represents a projection of
the number of interactions needed to complete the two first
tasks 100 times and then 100 times 100 different versions of
the third task. So the panel B simulates a user who extensively
uses what he teaches to his agent and who extensively teaches
new compound tasks.

5Usage-based Learning Virtual Assistant [Part 6: Use learned skills on a
smartphone]
https://www.youtube.com/watch?v=2m0YUBIetKc&index=7&list=PLKnvrLyZkzbaNzpcz_ql3HS-mLvyOu1mB

https://www.youtube.com/watch?v=2m0YUBIetKc&index=7&list=PLKnvrLyZkzbaNzpcz_ql3HS-mLvyOu1mB
https://www.youtube.com/watch?v=2m0YUBIetKc&index=7&list=PLKnvrLyZkzbaNzpcz_ql3HS-mLvyOu1mB

13

Fig. 10. System evaluation: Number of actions taken by the user and the
agent to execute learned actions. We compare 3 strategies, when the user
do not use the agent, when he does not reuse learned procedures to learn
new procedures and when he does reuse previously learned procedures. A.
Represents the number of user and agent interactions during the process where
the user teaches the agent three tasks. B. Represents the number of user and
agent interactions after the activity in A, when the user teaches the agent 100
new tasks based on reuse of previously learned tasks.

When first teaching the agent how to do things, there is no
advantage to the user (panel A) compared to doing the same
actions without the agent. When learned actions are repeatedly
used and when we simulate the learning of 100 additional
tasks (panel B), then, we respectively see a reduction in
the user actions with the agent and the benefit from reuse
of previously learned procedures. This does not constitute
a proper user study, but allows a quantitative view of the
potential effectiveness of the system. A noteworthy point is
that this paradigm of reuse of learned material in learning new
material generates progression in efficiency that increases as
learning more potentially reusable material proceeds.

V. DISCUSSION

In this paper, we present a usage-based system where an
end-user is able to teach to a virtual assistant how to operate
a set of arbitrary digital services using natural language. The
virtual assistant thus uses the inherent structure in the user’s
natural language commands to organize primitive perceptual
elements into procedures. This allows the assistant to adapt to
different services and to variability in users’ choices on their
use of language. The learning was initially employed to learn
how to ground natural language utterances into domain inde-
pendent perceptual and motor commands in order to execute
basic service actions (e.g., to open Gmail, create a draft mail,
set the subject, etc.). Based on such learned utterance-action
constructions, the virtual assistant then learned how to perform
more complex tasks, characterized by the composition of
these previously learned constructions and the corresponding
procedures, with argument passing between them (e.g., the
search term from Gmail being passed to Wikipedia, and the
resulting definition being passed back to Gmail). Thus, learned
procedures are demonstrated to be used in a recursive or
compositional definition of a new procedure like “send an
email to pfdominey@gmail.com about programming with the
definition of python”, that the user can explain in natural lan-
guage by decomposing into the “send an email” procedure, and
another learned procedure that gets definitions from Wikipedia.
The ability to ground commands in user demonstrated actions
on the GUI, and then the ability to compose these learned
commands purely by language illustrates how simple recursive

mechanisms for creating labeled structures provides a powerful
compositional mechanism for specifying complex interactions
with the world [45].

We show that by taking a developmental perspective
based on grammatical constructions as form-to-meaning map-
pings [10], [11], [27], while the developed infrastructure is
lite, the virtual assistant is able to jointly learn natural language
structures together with procedural semantics in realistic usage
scenarios. The ability to learn these procedures and to label
them is minimalist in terms of its simplicity but it is quite
powerful. Indeed, this conception avoids the need for inherent
language-specific and domain-specific knowledge engineering,
while still providing a substantial learning capability. As we
illustrated, in our system, this capability allows the user to
progressively create successive levels of hierarchical structure,
resulting in powerful and compact linear strings that represent
and re-enact a complex hierarchical structure. Additionally,
we introduce the capability for variables and the passage of
variable bindings across these different levels of the hier-
archical structure. This provides a concrete implementation
which illustrates the power of the merge and label capability
in human cognition [45].

The ability for a user to teach an assistant with natural lan-
guage brings several advantages: the user can adapt the assis-
tant to its own needs by teaching new procedural knowledge,
and the system is more resilient to faults such as unrecognized
words in the lexicon. Perhaps most importantly, with this
learning, extending the system in term of functionalities can
be done at runtime by the end-user instead of preprogramming
commands at the conception phase. At the same time, the end-
user experience remains intuitive by keeping the teaching stage
as transparent as possible regarding the user’s demonstrations.
This transparency is enhanced by eliminating the need for the
user to learn pre-specified language commands, and shielding
users from the virtual assistant’s internal organization so as
not to distract them from their tasks.

By enabling a reduced set of primitives, we have provided
a closed set of elements to ground language on. In our study,
we thus defined a set of “motor” primitives (Fill, Execute,
...) and “cognitive” primitives (Focus, Retain, End). While
conceptually inspired from human studies, these primitives
were primarily identified based on analysis of how users
interact with GUIs (motor primitives) and how they manipulate
information on GUIs (cognitive primitives), and so, they are
tailored to our application case. Future research could address
how such primitives could be identified in a more generic
way and if they can help for the interoperability of cognitive
modules or AI techniques. Well defined, they could be at the
interface of many tools such as image recognition, natural
language parsing, a simulator or a knowledge base.

The major limitation of this system is its rigidity in matching
the fixed component of input sentence with learned construc-
tions. Thus if the system knows the meaning of “send an email
to X about Y and say that Z”, and the user says “send a mail
to X about Y and say that Z”, the system will not match
the pattern, despite the similarity to the original sentence. We
are currently developing a method to address this limitation,
based on machine learning work in the area of semantic

14

relatedness [46]. The system will compare the user’s input
with existing sentences in the ConstructionMemory in order to
determine if the request is a variant of a known construction,
or if it is a new construction to be learned. This work will
be a key point to make the virtual assistant more resilient
to natural language variability, which includes the ability to
generalize over synonymy, recurrent dialog parts of speech,
different grammatical forms, and to allow user studies which
are used to this level of language adaptability. Another related
limitation is the rigidity in learning to ask questions. For
example when the agent needs to know how to request the
subject of a message, it learns from the user’s response “the
subject” by prefixing it with the fixed pattern “What is”, to
generate the question “What is the subject”. This has been
introduced as a simplification.

Further improvements will be made. First, the capability to
generate narrative constructions that allow the virtual assistant
to learn how to understand and narrate a sequence of events
based on the causal and dependency relations between the
constituent events will be adapted from our related work
in robotics [47]. Indeed, the ability of narrative to impose
additional structure on representations of human experience
is crucial in the human ability to represent a reality shared
with others [48], [49], and will play an important role in the
future development of adaptive assistants.

Another possible extension of the system is to learn the
meanings of words based on their situation within a construc-
tion. In the construction "Send an email to X about Y and say
that Z", the system has access to the information that items
which instantiate X are email addresses. While we currently
do not exploit this, such syntactic bootstrapping (i.e. inferring
a referent meaning based on its grammatical configuration)
can be used to accelerate learning as we demonstrated in
Dominey [41].

VI. CONCLUSION

We set out to develop an intelligent assistant that can learn
from human demonstration in novel web contexts. A major
challenge in this area is to allow the system to adapt to new
web tools without pre-engineering the interface. To address
this we borrowed ideas from developmental psychology where
it has been suggested that infants have perceptual primitives
that can be used to understand actions and events in new
contexts (Mandler). We thus developed perceptual and mo-
tor primitives that correspond to filling fields and clicking,
copying and pasting in web GUI interfaces. This allows the
system to observe and repeat actions performed by the user.
We borrowed a second concept from cognitive linguistics,
the grammatical construction, as a mapping from sentence to
meaning. Here the meaning is characterized in our perceptual-
motor primitives. Our learning mechanism thus allows gram-
matical constructions to be learned from demonstration, and
then further constructions to be learned based on previously
learned constructions in a recursive hierarchical manner. We
illustrated how this compositional learning could ease the work
of the teacher as the learned procedures become increasingly
complex.

REFERENCES

[1] M. Korpusik, Z. Collins, and J. Glass, “Semantic mapping of natural
language input to database entries via convolutional neural networks,”
in Acoustics, Speech and Signal Processing (ICASSP), 2017 IEEE
International Conference on. IEEE, 2017, pp. 5685–5689.

[2] M. Petit, S. Lallée, J.-D. Boucher, G. Pointeau, P. Cheminade,
D. Ognibene, E. Chinellato, U. Pattacini, I. Gori, U. Martinez-
Hernandez, and others, “The coordinating role of language in
real-time multimodal learning of cooperative tasks,” Autonomous
Mental Development, IEEE Transactions on, vol. 5, no. 1, pp.
3–17, 2013. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs_all.
jsp?arnumber=6249732

[3] N. G. Canbek and M. E. Mutlu, “On the track of Artificial Intelligence:
Learning with intelligent personal assistants,” Journal of Human Sci-
ences, vol. 13, no. 1, pp. 592–601, 2016.

[4] A. E. Goldberg, Constructions: A construction grammar approach to
argument structure. University of Chicago Press, 1995.

[5] M. Sun, Y.-N. Chen, and A. I. Rudnicky, “An intelligent assistant for
high-level task understanding,” in Proceedings of the 21st International
Conference on Intelligent User Interfaces. ACM, 2016, pp. 169–174.

[6] J. Allen, N. Chambers, G. Ferguson, L. Galescu, H. Jung,
M. Swift, and W. Taysom, “PLOW: A collaborative task learning
agent,” in Proceedings of the National Conference on Artificial
Intelligence, vol. 22. Menlo Park, CA; Cambridge, MA; London;
AAAI Press; MIT Press; 1999, 2007, p. 1514. [Online]. Available:
http://www.aaai.org/Papers/AAAI/2007/AAAI07-240.pdf

[7] C. H. Hwang and L. K. Schubert, “Episodic logic: A situational
logic for natural language processing,” Situation Theory and its
Applications, vol. 3, pp. 303–338, 1993. [Online]. Available:
http://books.google.fr/books?hl=fr&lr=&id=wlfBUzFzJ8gC&oi=fnd&
pg=PA303&dq=Episodic+Logic+expressiveness&ots=vKc3iXc8EI&
sig=Hk3XN87GAJwFxeSNs6I_tYu8W8A

[8] G. Ferguson, J. F. Allen, and others, “TRIPS: An integrated intelligent
problem-solving assistant,” in AAAI/IAAI, 1998, pp. 567–572. [Online].
Available: http://www.aaai.org/Papers/AAAI/1998/AAAI98-080.pdf

[9] A. Azaria, J. Krishnamurthy, and T. Mitchell, “Instructable Intelligent
Personal Agent,” in AAAI, 2016, pp. 2681–2689.

[10] M. Tomasello, “Constructing A Language: A Usage Based Theory of
Language Acquisition,” vol. 8, Jan. 2003.

[11] E. V. Clark, First language acquisition. Cambridge University Press,
2003.

[12] I. Nomikou, M. Schilling, V. Heller, and K. J. Rohlfing, “Language-at
all times,” Interaction Studies, vol. 17, no. 1, pp. 120–145, 2016.

[13] M. Tomasello, “The item-based nature of children’s early syntactic
development,” Trends in cognitive sciences, vol. 4, no. 4, pp. 156–163,
2000.

[14] E. Lieven, H. Behrens, J. Speares, and M. Tomasello, “Early syntactic
creativity: A usage-based approach,” Journal of child language, vol. 30,
no. 2, pp. 333–370, 2003.

[15] M. Asada, K. Hosoda, Y. Kuniyoshi, H. Ishiguro, T. Inui, Y. Yoshikawa,
M. Ogino, and C. Yoshida, “Cognitive developmental robotics: A
survey,” IEEE transactions on autonomous mental development, vol. 1,
no. 1, pp. 12–34, 2009.

[16] J. M. Mandler, “How to build a baby: III. Image schemas and the
transition to verbal thought,” From perception to meaning: Image
schemas in cognitive linguistics, pp. 137–163, 2005.

[17] S. Lallée, S. Lemaignan, A. Lenz, C. Melhuish, L. Natale, S. Skachek,
T. van Der Zant, F. Warneken, and P. F. Dominey, “Towards a
platform-independent cooperative human-robot interaction system: I.
perception,” in Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ
International Conference on. IEEE, 2010, pp. 4444–4451. [Online].
Available: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5652697

[18] S. Lallée, U. Pattacini, J. D. Boucher, S. Lemaignan, A. Lenz, C. Mel-
huish, L. Natale, S. Skachek, K. Hamann, and J. Steinwender, “Towards
a platform-independent cooperative human-robot interaction system:
Ii. perception, execution and imitation of goal directed actions,” in
Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International
Conference on. IEEE, 2011, pp. 2895–2902.

[19] S. Lallée, U. Pattacini, S. Lemaignan, A. Lenz, C. Melhuish, L. Natale,
S. Skachek, K. Hamann, J. Steinwender, and E. A. Sisbot, “Towards
a platform-independent cooperative human robot interaction system: III
an architecture for learning and executing actions and shared plans,”
IEEE Transactions on Autonomous Mental Development, vol. 4, no. 3,
pp. 239–253, 2012.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6249732
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6249732
http://www.aaai.org/Papers/AAAI/2007/AAAI07-240.pdf
http://books.google.fr/books?hl=fr&lr=&id=wlfBUzFzJ8gC&oi=fnd&pg=PA303&dq=Episodic+Logic+expressiveness&ots=vKc3iXc8EI&sig=Hk3XN87GAJwFxeSNs6I_tYu8W8A
http://books.google.fr/books?hl=fr&lr=&id=wlfBUzFzJ8gC&oi=fnd&pg=PA303&dq=Episodic+Logic+expressiveness&ots=vKc3iXc8EI&sig=Hk3XN87GAJwFxeSNs6I_tYu8W8A
http://books.google.fr/books?hl=fr&lr=&id=wlfBUzFzJ8gC&oi=fnd&pg=PA303&dq=Episodic+Logic+expressiveness&ots=vKc3iXc8EI&sig=Hk3XN87GAJwFxeSNs6I_tYu8W8A
http://www.aaai.org/Papers/AAAI/1998/AAAI98-080.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5652697

15

[20] S. Lallée, K. Hamann, J. Steinwender, F. Warneken, U. Martienz,
H. Barron-Gonzales, U. Pattacini, I. Gori, M. Petit, and G. Metta,
“Cooperative human robot interaction systems: IV. Communication of
shared plans with Naïve humans using gaze and speech,” in Intelligent
Robots and Systems (IROS), 2013 IEEE/RSJ International Conference
on. IEEE, 2013, pp. 129–136.

[21] S. Lallée, V. Vouloutsi, S. Wierenga, U. Pattacini, and P. Verschure,
“EFAA: a companion emerges from integrating a layered cognitive
architecture,” in Proceedings of the 2014 ACM/IEEE international
conference on Human-robot interaction. ACM, 2014, pp. 105–105.

[22] J. M. Mandler, “How to build a baby: On the development of an
accessible representational system,” Cognitive Development, vol. 3,
no. 2, pp. 113–136, 1988.

[23] ——, “How to build a baby: II. Conceptual primitives.” Psychological
review, vol. 99, no. 4, p. 587, 1992.

[24] ——, “On the spatial foundations of the conceptual system and its
enrichment,” Cognitive science, vol. 36, no. 3, pp. 421–451, 2012.

[25] P. F. Dominey and J.-D. Boucher, “Learning to talk about events
from narrated video in a construction grammar framework,” Artificial
Intelligence, vol. 167, no. 1-2, pp. 31–61, 2005.

[26] S. Lallée, C. Madden, M. Hoen, and P. F. Dominey, “Linking language
with embodied and teleological representations of action for humanoid
cognition,” Frontiers in neurorobotics, vol. 4, 2010. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2889716/

[27] A. E. Goldberg, “Constructions: a new theoretical approach to language,”
Trends in cognitive sciences, vol. 7, no. 5, pp. 219–224, 2003.

[28] J. Gaspers, P. Cimiano, K. Rohlfing, and B. Wrede, “Constructing
a Language From Scratch: Combining Bottom–Up and Top–Down
Learning Processes in a Computational Model of Language Acquisition,”
IEEE Transactions on Cognitive and Developmental Systems, vol. 9,
no. 2, pp. 183–196, 2017.

[29] P. Dominey, “From holophrases to abstract grammatical constructions:
insights from simulation studies,” Constructions in Acquisition, E. Clark
and B. Kelly, Eds. Stanford: CSLI Publications, pp. 137–162, 2006.

[30] P. F. Dominey and J.-D. Boucher, “Developmental stages of perception
and language acquisition in a perceptually grounded robot,” Cognitive
Systems Research, vol. 6, no. 3, pp. 243–259, 2005. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1389041704000762

[31] A. Cangelosi and T. Riga, “An embodied model for sensorimotor
grounding and grounding transfer: Experiments with epigenetic robots,”
Cognitive science, vol. 30, no. 4, pp. 673–689, 2006.

[32] F. Stramandinoli, D. Marocco, and A. Cangelosi, “Making sense of
words: a robotic model for language abstraction,” Autonomous Robots,
vol. 41, no. 2, pp. 367–383, 2017.

[33] V. Tikhanoff, A. Cangelosi, and G. Metta, “Integration of speech
and action in humanoid robots: iCub simulation experiments,” IEEE
Transactions on Autonomous Mental Development, vol. 3, no. 1, pp.
17–29, 2011.

[34] K. J. Rohlfing, B. Wrede, A.-L. Vollmer, and P.-Y. Oudeyer, “An
alternative to mapping a word onto a concept in language acquisition:
pragmatic frames,” Frontiers in psychology, vol. 7, p. 470, 2016.

[35] L. Steels, “The emergence and evolution of linguistic structure: from
lexical to grammatical communication systems,” Connection science,
vol. 17, no. 3-4, pp. 213–230, 2005.

[36] B. Bergen, N. Chang, and S. Narayan, “Simulated action in an embodied
construction grammar,” in Proceedings of the Annual Meeting of the
Cognitive Science Society, vol. 26, 2004.

[37] Z. Solan, D. Horn, E. Ruppin, and S. Edelman, “Unsupervised learning
of natural languages,” Proceedings of the National Academy of Sciences,
vol. 102, no. 33, pp. 11 629–11 634, 2005.

[38] P. F. Dominey, M. Hoen, J.-M. Blanc, and T. Lelekov-Boissard, “Neu-
rological basis of language and sequential cognition: evidence from
simulation, aphasia, and ERP studies,” Brain and language, vol. 86,
no. 2, pp. 207–225, 2003.

[39] X. Hinaut and P. F. Dominey, “Real-time parallel processing of gram-
matical structure in the fronto-striatal system: A recurrent network
simulation study using reservoir computing,” PloS one, vol. 8, no. 2,
p. e52946, 2013.

[40] J. Gaspers and P. Cimiano, “A Computational Model for the Item-Based
Induction of Construction Networks,” Cognitive science, vol. 38, no. 3,
pp. 439–488, 2014.

[41] P. F. Dominey, “Conceptual grounding in simulation studies of language
acquisition,” Evolution of Communication, vol. 4, no. 1, pp. 57–85,
2002. [Online]. Available: http://www.ingentaconnect.com/content/jbp/
evco/2000/00000004/00000001/art00004

[42] S. M. McCauley and M. H. Christiansen, “Prospects for usage-based
computational models of grammatical development: argument structure

and semantic roles,” Wiley Interdisciplinary Reviews: Cognitive Science,
vol. 5, no. 4, pp. 489–499, 2014.

[43] M. Tomasello, M. Carpenter, J. Call, T. Behne, and H. Moll,
“Understanding and sharing intentions: The origins of cultural
cognition,” Behavioral and Brain Sciences, vol. 28, no. 5,
pp. 675–691, Oct. 2005. [Online]. Available: https://www.
cambridge.org/core/journals/behavioral-and-brain-sciences/article/
understanding-and-sharing-intentions-the-origins-of-cultural-cognition/
F9C40BF73A68B30B8EB713F2F947F7E2

[44] K. Tylén, E. Weed, M. Wallentin, A. Roepstorff, and C. D. Frith,
“Language as a tool for interacting minds,” Mind & Language, vol. 25,
no. 1, pp. 3–29, 2010.

[45] T. Goucha, E. Zaccarella, and A. D. Friederici, “A revival of the Homo
loquens as a builder of labeled structures: neurocognitive considera-
tions,” Neuroscience & Biobehavioral Reviews, 2017.

[46] E. Agirre, “Semantic Textual Similarity,” 2018. [Online]. Available:
http://ixa2.si.ehu.es/stswiki/index.php/Main_Page

[47] A.-L. Mealier, G. Pointeau, S. Mirliaz, K. Ogawa, M. Finlayson, and
P. F. Dominey, “Narrative Constructions for the Organization of Self
Experience: Proof of Concept via Embodied Robotics,” Frontiers in
psychology, vol. 8, p. 1331, 2017.

[48] J. S. Bruner, Acts of meaning. Harvard University Press, 1990, vol. 3.
[49] J. Bruner, “The narrative construction of reality,” Critical inquiry,

vol. 18, no. 1, pp. 1–21, 1991.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2889716/
http://www.sciencedirect.com/science/article/pii/S1389041704000762
http://www.ingentaconnect.com/content/jbp/evco/2000/00000004/00000001/art00004
http://www.ingentaconnect.com/content/jbp/evco/2000/00000004/00000001/art00004
https://www.cambridge.org/core/journals/behavioral-and-brain-sciences/article/understanding-and-sharing-intentions-the-origins-of-cultural-cognition/F9C40BF73A68B30B8EB713F2F947F7E2
https://www.cambridge.org/core/journals/behavioral-and-brain-sciences/article/understanding-and-sharing-intentions-the-origins-of-cultural-cognition/F9C40BF73A68B30B8EB713F2F947F7E2
https://www.cambridge.org/core/journals/behavioral-and-brain-sciences/article/understanding-and-sharing-intentions-the-origins-of-cultural-cognition/F9C40BF73A68B30B8EB713F2F947F7E2
https://www.cambridge.org/core/journals/behavioral-and-brain-sciences/article/understanding-and-sharing-intentions-the-origins-of-cultural-cognition/F9C40BF73A68B30B8EB713F2F947F7E2
http://ixa2.si.ehu.es/stswiki/index.php/Main_Page

	Introduction
	Domain Adaptive Assistant
	User-Task adaptive assistant
	PLOW
	LIA

	Usage-Based Language Understanding
	Symbolic Primitives
	Developmental Theory
	Application in Robotic

	Grammatical Construction: Grounding Language in Symbolic Primitives
	Developmental Theory
	Application in Robotics
	Models and Tools

	Learning and Using Language in Cooperative Plans
	Developmental Theory
	Application in Robotics

	Transfer to the Digital Universe
	Overall Functioning
	Shared Environment and Primitives
	Principle
	Interactions between the Environment and the SensorProcess modules

	Language grounding
	Principle
	Interactions between the SensorProcess and the ConstructionMemory modules

	Using and Learning Language in Cooperative Procedure
	Interaction with other modules
	InterpreterProcess Operation Modes
	Motor process

	Compositionality

	Current Performance
	Use Cases
	Idealized Performance

	Discussion
	Conclusion
	References

