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Self-Supervised Vision-Based Detection of the
Active Speaker as Support for Socially
Aware Language Acquisition

Kalin Stefanov

Abstract—This paper presents a self-supervised method for
visual detection of the active speaker in a multiperson spoken
interaction scenario. Active speaker detection is a fundamen-
tal prerequisite for any artificial cognitive system attempting
to acquire language in social settings. The proposed method
is intended to complement the acoustic detection of the active
speaker, thus improving the system robustness in noisy con-
ditions. The method can detect an arbitrary number of pos-
sibly overlapping active speakers based exclusively on visual
information about their face. Furthermore, the method does
not rely on external annotations, thus complying with cogni-
tive development. Instead, the method uses information from the
auditory modality to support learning in the visual domain. This
paper reports an extensive evaluation of the proposed method
using a large multiperson face-to-face interaction data set. The
results show good performance in a speaker dependent setting.
However, in a speaker independent setting the proposed method
yields a significantly lower performance. We believe that the
proposed method represents an essential component of any arti-
ficial cognitive system or robotic platform engaging in social
interactions.

Index Terms—Active speaker detection and localization, cog-
nitive systems and development, language acquisition through
development, transfer learning.

I. INTRODUCTION

HE ABILITY to acquire and use language in a simi-

lar manner as humans may provide artificial cognitive
systems with a unique communication capability and the
means for referencing to objects, events, and relationships.
In turn, an artificial cognitive system with this capability will
be able to engage in natural and effective interactions with
humans. Furthermore, developing such systems can help us
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further understand the underlying processes in language acqui-
sition during the initial stages of the human life. As mentioned
in [1], modeling language acquisition is very complex and
should integrate different aspects of signal processing, statisti-
cal learning, visual processing, pattern discovery, and memory
access and organization.

According to many studies (e.g., [2]) there are two alterna-
tives to human language acquisition—individualistic learning
and social learning. In the case of individualistic learning,
the infant exploits the statistical regularities in the multimodal
sensory inputs to discover linguistic units, such as phonemes
and words and word-referent mappings. In the case of social
learning, the infant can determine the intentions of others by
exploiting different social cues. Therefore, in social learning,
the participants in the interaction with the infant play a crucial
role by constraining the interaction and providing feedback.

From a social learning perspective, the main prerequisite
for language acquisition is the ability to engage in social
interactions. For an artificial cognitive system to address this
challenge, it must at least: 1) be aware of the people in the
environment; 2) detect their state: speaking or not speaking;
and 3) infer possible objects the active speaker is focusing
attention on.

In this paper, we address the problem of detecting the
active speaker in a multiperson language learning scenario.
The auditory modality is fundamental for this task and much
research has been devoted to audio-based active speaker detec-
tion (Section II-B). In this paper, however, we propose to
take advantage of the temporal synchronization of the visual
and auditory modalities in order to improve the robustness
of audio-based active speaker detection. This paper proposes
and evaluates three self-supervised methods that use the audi-
tory input as reference in order to learn an active speaker
detector based on the visual input alone. The goal is not to
replace the auditory modality, but to complement it with visual
information whenever the auditory input is unreliable.

In order to impose as little constraints as possible on the
social interaction, we have two requirements for the proposed
methods. The first is that any particular method must operate in
real-time (possibly with a short lag), which in practice means
that the method should not require any future information.
The second requirement is that the methods should make as
few assumptions as possible about the environment in which
the artificial cognitive system will engage in social interac-
tions. Therefore, the methods should not assume noise-free
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environment, known number of participants in the interaction,
or known spatial configuration. The proposed methods address
the requirements for engagement in social interactions out-
lined above, by detecting the people in the environment and
detecting their state—speaking or not speaking. In turn, this
information is a prerequisite to hypothesizing the possible
objects a speaking person is focusing his/her attention on,
which has been shown to play an important role in language
acquisition (Section II-A).

The rest of this paper is organized as follows. First, we
examine previous research that forms the context for the cur-
rent study in Section II, and then we describe the proposed
methods in Section III. The experiments we conducted are
described in Section IV, and the results of these experiments
are presented in Section V. Discussion on the used evaluation
metric, together with the assumptions made, can be found in
Section VI. We conclude this paper in Section VII.

II. RELATED WORK

This section is divided in two parts. First, we intro-
duce research on language acquisition which supports our
motivation to build an active speaker detector for a lan-
guage learning artificial cognitive system. Second, we turn
our focus on research related to the problem of identify-
ing the active speaker through visual and auditory perceptual
inputs.

A. Language Acquisition

The literature on language acquisition offers several the-
ories of how infants learn their first words. One of the
main problems which researchers face in this field is the
referential ambiguity as discussed, for example, in [3]-[5].
Referential ambiguity stems from the idea that infants must
acquire language by linking heard words with perceived
visual scenes, in order to form word-referent mappings. In
everyday life however, these visual scenes are highly clut-
tered which results in many possible referents for any heard
word, within any learning event [6], [7]. Similarly, many
computational models of language acquisition are rooted in
finding statistical associations between verbal descriptions
and the visual scene [3], [8]-[10], or in more interactive
robotic manipulation experiments [11]. However, nearly all
of them assume a clutter-free visual scene, where objects
are observed in isolation on a simplified background (often
white table).

Different theories offer alternative mechanisms through
which infants reduce the uncertainty present in the learning
environment. One such mechanism is statistical aggregation
of word-referent co-occurrences across learning events. The
problem of referential ambiguity within a single learning event
has been addressed by Smith et al. [12], [13], suggesting
that infants can keep track of co-occurring words and poten-
tial referents across learning events and use this aggregated
information to statistically determine the most likely word-
referent mapping. However, the authors argued that this type
of statistical learning may be beyond the abilities of infants
when considering highly cluttered visual scenes. In order to

study the visual scene clutter from the infants’ perspective,
Pereira et al. [4] and Yurovsky et al. [5] performed experi-
ments in which the infants were equipped with a head-mounted
eye-tracker. The conclusion was that some learning events are
not ambiguous because there was only one dominant object
when considering the infants’ point of view. As a conse-
quence, the researchers argued that the input to language
learning must be understood from the infants’ perspective,
and only regularities that make contact with the infants’ sen-
sory system can affect their language learning. Although not
related to language acquisition, an attempt at modeling the
saliency of multimodal stimuli from the learner’s (robot’s)
perspective was proposed in [14]. This bottom up approach
is based exclusively on the statistical properties of the
sensory inputs.

Another mechanism to cope with the uncertainty in the
learning environment might be related to social cues to the
caregivers’ intent, as mentioned in the above studies. Although
a word is heard in the context of many objects, infants may
not treat the objects as equally likely referents. Instead, infants
can use social cues to rule out contenders to the named object.
Yu and Smith [15] used eye-tracking to record gaze data from
both caregivers and infants and found that when the caregiver
visually attended to the object to which infants’ attention was
directed, infants extended the duration of their visual attention
to that object, thus increasing the probability for successful
word-referent mapping.

Infants do not learn only from interactions they are directly
involved in, but also observe and attend to interactions between
their caregivers. Handl ez al. [16] and Meng et al. [17] per-
formed studies to examine how the body orientation can
influence the infants’ gaze shifts. These studies were inspired
by large body of research on gaze following which suggests
that infants’ use others’ gaze to guide their own attention, that
infants pay attention to conversations, and that joint atten-
tion has an effect on early learning. The main conclusion
was that static body orientation alone can function as a cue
for infants’ observations and guides their attention. Barton
and Tomasello [18] also reasoned that multiperson context is
important in language acquisition. In their triadic experiments,
joint attention was an important factor facilitating infants’ par-
ticipation in conversations; infants were more likely to take
a turn when they shared a joint attentional focus with the
speaker. Yu and Ballard [9] also proposed that speakers’ eye
movements and head movements among others, can reveal
their referential intentions in verbal utterances, which could
play a significant role in an automatic language acquisition
system.

The above studies do not consider how infants might know
which caregiver is actively speaking and therefore requires
attention. We believe that this is an important prerequisite
to modeling automatic language acquisition. The focus of
the study described in this paper is, therefore, to investi-
gate different methods for inferring the active speaker. We
are interested in methods that are plausible from a devel-
opmental cognitive system perspective. One of the main
implications is that the methods should not require manual
annotations.
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B. Active Speaker Detection

Identifying the active speaker is important for many appli-
cations. In each area, different constraints are imposed to
the methods. Generally, there are three different approaches:
1) audio-only; 2) audio-visual; and 3) approaches that use
other forms of inputs for detection.

Audio-only active speaker detection is the process of finding
segments in the input audio signal associated with differ-
ent speakers. This type of detection is known as speaker
diarization. Speaker diarization has been studied extensively.
Anguera et al. [19] offered a comprehensive review of
recent research in this field. In realistic situations, with far-
field microphones, or microphone arrays, the task of active
speaker detection from audio is far from trivial. Most methods
(e.g., [20] and [21]), use some form of model-based supervised
training. This is one of the motivation for this paper: First, we
believe that complementing the auditory modality with visual
information can be useful if not necessary for this task, espe-
cially in the more challenging acoustic conditions. Second,
we want to comply with a developmental approach, where the
learning system only uses the information available through
its senses in the interaction with humans. We therefore want
to avoid the need for careful annotations that are required by
the aforementioned supervised methods.

Audio-visual speaker detection combines information from
both the audio and the video signals. The application of audio-
visual synchronization to speaker detection in broadcast videos
was explored by Nock et al. [22]. Unsupervised audio-visual
detection of the speaker in meetings was proposed in [23].
Zhang et al. [24] presented a boosting-based multimodal
speaker detection algorithm applied to distributed meetings,
to give three examples. Mutual correlations to associate an
audio source with regions in the video signal was demonstrated
by Fisher et al. [25], and Slaney and Covell [26] showed
that audio-visual correlation can be used to find the tempo-
ral synchronization between audio signal and a speaking face.
An elegant solution was proposed in [27] where the mutual
information between the acoustic and visual signals is com-
puted by means of a joint multivariate Gaussian process, with
the assumption that only one audio and one video streams
were present and that locating the source corresponds to find-
ing the pixels in the image that correlate with acoustic activity.
In more recent studies, researchers have employed artificial
neural network architectures to build active speaker detec-
tors from audio-visual input. A multimodal long short-term
memory (LSTM) model that learns shared weights between
modalities was proposed in [28]. The model was applied to
speaker naming in TV shows. Hu ef al. [29] proposed a con-
volutional neural network (CNN) model that learns the fusion
function of face and audio information.

Other approaches for speaker detection include a gen-
eral pattern recognition framework used by Besson and
Kunt [30] applied to detection of the speaker in audio-visual
sequences. Visual activity (the amount of movement) and
focus of visual attention were used as inputs by Hung and
Ba [31] to determine the current speaker on real meetings.
Stefanov et al. [32] used action units as inputs to hidden

Fig. 1.

Example of an output of a visual active speaker detector.

Markov Models to determine the active speaker in multi-
party interactions and Vajaria et al. [33] demonstrated that
information for body movements can improve the detection
performance.

Most of the approaches cited in this section are either eval-
vated on small amounts of data, or have not been proved
to be usable in real-time settings. Furthermore, they usually
require manual annotations and the spatial configuration of
the interaction and the relative position of the input sensors
is known. The goal is usually an offline video/audio analysis
task, such as semantic indexing and retrieval of TV broad-
casts or meetings, or video/audio summarization. We believe
that the challenge of real-time detection of the active speaker
in dynamic and cluttered environments remains. In the con-
text of automatic language acquisition, we want to infer the
possible objects the active speaker is focusing attention on. In
this context, assumptions, such as known sensor arrangement
or participants’ position and number in the environment are
unrealistic, and should be avoided. Therefore, in this paper
we present methods which have several desirable character-
istics for such types of scenarios: 1) they work in real-time;
2) they do not assume specific spatial configuration (sensors
or participants); 3) the number of possible (simultaneously)
speaking participants is free to change during the interaction;
and 4) no externally produced labels are required, but rather
the acoustic inputs are used as reference to the visually based
learning.

III. METHODS

The goal of the methods described in this section is to detect
in real-time the state (speaking or not speaking) of all visible
faces in a multiperson language learning scenario, using only
visual information (the RGB color data). An illustration of
the desired output of an active speaker detector can be seen
in Fig. 1.

We use a self-supervised learning approach to construct
an active speaker detector: the machine learning methods are
supervised, but the labels are obtained automatically from the
auditory modality to learn models in the visual modality. An
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Fig. 2.

Approaches to visual active speaker detection considered in the study. In the first row are the perceptual inputs automatically extracted from the

video and audio streams. These inputs are passed to the task specific learning (second row), transfer learning (third row) and temporal learning (forth row)

methods.

overview of the approaches considered in the study is given
in Fig. 2. The first row in the figure illustrates the percep-
tual inputs that are automatically extracted from the raw audio
and video streams. The visual input consists of RGB images
of each face extracted from the video stream with the Viola
and Jones’s face detector [34]. The auditory input consists of
labels extracted from the audio stream which correspond to
the voice activity. The used audio-only voice activity detec-
tor (VAD) [35] is based on two thresholds on the energy of
the signal, one to start a speech segment and one to end
it. These thresholds are adaptive and based on a histogram
method. The ability to extract face images and VAD labels
is given as a starting point to the system and is motivated
in Section VL.

The methods use a feature extractor based on a CNN,
followed by a classifier. Two types of classifiers are tested:
1) nontemporal (Perceptron) and 2) temporal (LSTM network).
Additionally, two techniques for training the models are con-
sidered: 1) transfer learning that employs a pretrained feature
extractor and only trains a classifier specifically for the task
and 2) task specific learning that trains a feature extractor and
a classifier simultaneously for the task.

Each method outputs a posterior probability distribution
over the two possible outcomes (speaking or not speaking).
Since the goal is a binary classification, the detection of the
active speaker happens when the corresponding probability
exceeds 0.5. The evaluation of each method is performed by
computing the accuracy of the predictions on frame-by-frame
basis (Section IV).

A. Task Specific Learning

An illustration of the task specific learning method is shown
in the second row of Fig. 2. This method trains a CNN feature
extractor in combination with a Perceptron classifier with the
goal of classifying each input image either as speaking or not
speaking. During the training phase both images and labels are
used by a gradient-based optimization procedure [36] to adjust
the weights of the CNN and Perceptron models. During the
prediction phase, only images are used by the trained models
to generate labels. The CNN and Perceptron models work on
a frame-by-frame basis and have no memory of past frames.

B. Transfer Learning

An illustration of this method can be seen in the third row of
Fig. 2. Similarly to the previous method, the transfer learning
method uses a CNN and a Perceptron model. In this method,
however, the CNN model is pretrained on an object recog-
nition task (i.e., VGG16 [37]). To adapt the VGG16 model
to the active speaker detection task, the object classification
layer is removed and the truncated VGG16 model is used as a
feature extractor. Then the method consists of training only a
Perceptron model to map the features generated by the VGG16
model to the speaker activity information. As for the task spe-
cific learning method, this method has no memory of past
frames.

Because the VGG 16 model was originally trained in a super-
vised manner to classify objects, this raises the question on
how suitable this model is in the context of developmental
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language acquisition. Support to the use of this model comes
from the literature on visual perception that demonstrates
the ability of infants to recognize objects very early in their
development [38], [39].

C. Temporal Learning

The temporal learning method is illustrated by the forth row
of Fig. 2. This method is based on the previously described
feature extractors, but introduces a model of the time evo-
Iution of the perceptual inputs. During the training phase a
custom (CNN) or pretrained (VGG16) feature extractor con-
structs a feature vector for each input image. Then the features
and labels are used by a gradient-based optimization proce-
dure [36] to adjust the weights of a LSTM model [40]. During
the prediction phase, images are converted into features with a
custom CNN or VGG16 model, which features are then used
by the trained detector (LSTM) to generate labels.

D. Acoustic Noise

In order to test the effect of noise on the audio-only VAD,
stationary noise is added to the audio signal. The noise is sam-
pled from a Gaussian distribution with zero mean and variance
o2. For every recording, the active segments are first located
by means of the audio-only VAD. These are then used to esti-
mate the energy E, of the signal as the mean squares of the
samples. Then o2 is computed as the ratio between the energy
of the signal and the desired signal-to-noise ratio (SNR)

E
ot = (1)

1010
Finally, the noise is added to the signal, and the samples are
renormalized to fit in the 16 bit linear representation. The
audio-only VAD is used again on the noisy signal and its

accuracy is computed on the result.

IV. EXPERIMENTS

This section is divided in two parts. The first part describes
the data set used to build and evaluate the active speaker
detectors. The second part describes the general setup of the
conducted experiments.

A. Data Set

The methods presented in Section III are implemented and
evaluated using a multimodal multiparty interaction data set
described in [41]. The main purpose of the data set is to
explore patterns in the focus of visual attention of humans
under the following three different conditions: two humans
involved in task-based interaction with a robot; the same two
humans involved in task-based interaction where the robot
is replaced by a third human, and a free three-party human
interaction. The data set contains two parts: 1) six sessions
with duration of approximately 30 min each and 2) nine ses-
sions, each of which is with duration of approximately 40 min.
The data set is rich in modalities and recorded data streams. It
includes the streams generated from three Kinect v2 devices
(color, depth, infrared, body, and face data), three high-quality

A\ £/

Fig. 3. Spatial configuration of the sensors and participants in the data set.

Fig. 4. Example of a difficult visual input from the first and second condition
in the data set.

audio streams generated from close-talking microphones, three
high-resolution video streams generated from GoPro cameras,
touch-events stream for the task-based interactions generated
from an interactive surface, and the system state stream gen-
erated by the robot involved in the first condition. The second
part of the data set also includes the data streams generated
from 3 Tobii Pro Glasses 2 eye trackers. The interactions are in
English and all data streams are spatially and temporally syn-
chronized and aligned. The interactions occur around a round
interactive surface and all 24 unique participants are seated.
Fig. 3 illustrates the spatial configuration of the setup in the
data set.

As described previously, each interaction in the data set is
divided into three conditions, with the first and second condi-
tion being related to a collaborative task-based interaction in
which the participants play a game on a touch surface. During
this two conditions the participants interact mainly with the
touch surface and discuss with their partner how to solve the
given task. Therefore, the participants’ overall gaze direction
(head orientation) is toward the touch surface. This raises some
very challenging visual conditions for extracting speech activ-
ity information from the face. We show three examples in
Fig. 4. This observation motivated experiments using only the
data from the third condition of each interaction.

B. Experimental Setup

This section describes the general setup of the experi-
ments. In all experiments the video stream is generated by
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TABLE I
SPEAKER DEPENDENT RESULTS (TENFOLD CROSS-VALIDATION); MEAN ACCURACY AND STANDARD DEVIATION

Features \ Perceptron LSTM_15 LSTM_30 LSTM_150 LSTM_300
CNN 73.13 (7.81) 7292 (8.47) 73.13 (8.67) 72.61 (9.54) 72.46 (9.56)
VGG16 72.61 (8.27) 7290 (8.85) 73.27 (9.14) 72.46 (9.97) 72.55 (10.22)

the Kinect v2 device directed at the participant under consid-
eration and the audio stream is generated by the participant’s
close-talking microphone. The total amount of frames used in
the experiments is 690000 (~6.5 h).

The CNN models comprise three convolutional layers of
width 32, 32, and 64 with receptive fields of 3 x 3 and rectifier
activations, interleaved by max pooling layers with window
size of 2 x 2. The output of the last max pooling layer is used
by a densely connected layer of size 64 with rectifier activation
functions and finally by a perceptron layer with logistic sig-
moid activations. The LSTM models include one LSTM layer
of size 128 with hyperbolic tangent activations, followed by
a densely connected and a perceptron layer similarly to the
CNN models.

During the training phase the models use Adam optimizer
with default parameters (¢« = 0.001, g1 = 0.9, B> = 0.999,
and € = 107%) and binary crossentropy loss function. Each
nontemporal model (CNN and Perceptron) is trained for 50
epochs and each temporal model (LSTM) is trained for 100
epochs. The LSTM models are trained with 15, 30, 150, and
300 frame (500 ms, 1 s, 5 s, and 10 s) long segments with-
out overlaps. The models corresponding to the best validation
performance are selected for evaluation on the test set. The
models are implemented in Keras [42] with TensorFlow [43]
backend. During the prediction phase only the RGB color
images extracted with the face detector are used as input.
As described previously, each of the considered methods out-
puts a posterior probability distribution over the two possible
outcomes—speaking or not speaking. Therefore, when evalu-
ating the models’ performance, 0.5 is used as a threshold for
assigning a class to each frame-level prediction. The results
are reported in terms of frame-by-frame weighted accuracy
which is calculated with

_P_ 4t
tp-+fn fp+tn

5 2)
where tp, fp, tn, and fn are the number of true positives, false
positives, true negatives, and false negatives, respectively. As
a consequence, regardless of the actual class distribution in
the test set (which is in general different for each partici-
pant), the baseline chance performance using this metric is
always 50%. Although this metric allows an easy comparison
of results between different participants and methods, it is a
very conservative measure of performance (Section VI-A).

This paper presents three experiments with the proposed
methods: 1) speaker dependent; 2) multispeaker dependent;
and 3) speaker independent. The speaker dependent exper-
iment builds a model for each participant and tests it on
independent data from the same participant. This process is
repeated ten times per participant with splits generated through
a tenfold cross-validation procedure. The multispeaker depen-
dent experiment uses the splits generated in speaker dependent

wacc = 100 x

experiment. This experiment, however, builds a model with
the data for all participants and tests it on the independent
data from all participants. This experiment tests the scalabil-
ity of the proposed methods to more than one participant. The
speaker independent experiment uses a leave-one-out cross-
validation procedure to build and evaluate the models. This
experiment tests the transferability of the proposed methods
to unseen participants.

Finally, as described in Section III-D, the effect of noise is
tested on the audio-only VAD. The proposed video-only active
speaker detectors are compared with audio-only VAD where
the SNR varies from 0 to 30 in increments of 5.

V. RESULTS

This section presents the numerical results obtained from
the experiments.

A. Speaker Dependent

The mean accuracy and standard deviation per method
obtained in the speaker dependent experiment are provided in
Table I. The highest mean result in this experiment is 73.13%
for the LSTM_30 models when using custom CNN feature
extractors and 73.27% for the LSTM_30 models when using
pretrained VGG16 feature extractors. The complete results are
illustrated in Fig. 5. The figure shows that the accuracy varies
significantly between participants. Also the variability between
participants is higher than the difference obtained with differ-
ent methods per participant. A comparison between the best
performing video-only method and an audio-only VAD is illus-
trated in the left plot of Fig. 6. The two methods give similar
results for a range of SNRs around 12. The video-only method
outperforms the audio-only VAD for more noisy conditions,
whereas the opposite is true if the SNR is greater than 20.

B. Multispeaker Dependent

The summarized results of the multispeaker dependent
experiment are provided in Table II. The highest mean result
in this experiment is 75.76% for the LSTM_150 models when
using custom CNN feature extractors. A comparison between
the best performing video-only method and an audio-only
VAD is illustrated in the center plot of Fig. 6. Similarly to the
speaker dependent case, the two methods give similar results
for a range of SNRs around 12. However, in this case the
spread around the mean is much reduced because every fold
includes a large collection of samples from all participants.

C. Speaker Independent

The summarized results of the speaker independent experi-
ment are provided in Table III. The highest mean result in this
experiment is 57.11% for the LSTM_30 models when using
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TABLE 11
MULTISPEAKER DEPENDENT RESULTS (TENFOLD CROSS-VALIDATION); MEAN ACCURACY AND STANDARD DEVIATION

Features \ Perceptron LSTM_15 LSTM_30 LSTM_150 LSTM_300
CNN | 74.80 (1.63) 7491 (1.54) 75.11 (1.57) 75.76 (1.65) 75.26 (1.46)
TABLE III

SPEAKER INDEPENDENT RESULTS (LEAVE-ONE-OUT CROSS-VALIDATION); MEAN ACCURACY AND STANDARD DEVIATION

LSTM_15
56.33 (6.56)

LSTM_30
57.11 (6.44)

LSTM_150
56.96 (6.50)

LSTM_300
57.55 (7.02)

Features \ Perceptron
CNN | 5539 (5.74)

custom CNN feature extractors. A comparison between the
best performing video-only method and an audio-only VAD
is illustrated in the right plot of Fig. 6. As can be observed,
the results from the video-only method are only slightly above
chance level, hence falling far behind the audio-based VAD.

VI. DISCUSSION

In order to interpret the results presented in Section V we
need to make a number of considerations about the evaluation
method. We will also consider the advantages and limitations

of the metric used and detail the assumptions made in the
methods and the main contributions of this paper.

The proposed methods estimate the probability of speak-
ing independently for each face. This has the advantage of
being able to detect several speakers that are active at the
same time, but for many applications it might be sufficient to
select the active speaker among the detected faces. Doing this
would allow us to combine the single predictions into a joint
probability, thus increasing the performance.

It is important to note that the conditions in the experi-
ment that compared audio-only and video-only methods were
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favorable to the audio-only method due to the use of station-
ary noise. The VAD employed for the audio-based detection
uses adaptive thresholds that are specifically suitable for sta-
tionary noise. Therefore, we would expect a larger advantage
for the video-based speaker detection in low to medium SNRs
in the presence of nonstationary noises often present in natural
communication environments.

A. Metric

Evaluating the proposed methods on a frame-by-frame basis
gives a detailed measure of performance. However, one might
argue that frame-level (33 ms) accuracy is not necessary for
artificial cognitive systems employing the proposed methods in
the context of automatic language acquisition. Evaluating the
methods on a fixed-length sliding time window (e.g., 200 ms)
might be sufficient for this application.

Furthermore, the definition of the weighted accuracy ampli-
fies short mistakes. For example, if in 100 frames, 98 belong
to the active class and 2 to the inactive class, a method that
classifies all frames as active will have wacc = (100/2) x
[98/(98 +0) + 0/(2 + 0)] = 50%. If we consider a case of
continuous talking, where the speaker takes short pauses to
recollect a memory or structure the argument, then a per-
fect audio-only method will detect silence of certain length
(at least 200 ms) in the acoustic signal and label the corre-
sponding video frames as not speaking. However, from the
interaction point of view the speaker might be still active,
resulting also in visual activity. A video-only method that
misses these short pauses would be strongly penalized by the
used metric, achieving as low as 50% accuracy when all other
frames are classified correctly. Similar situation occurs when
a person is listening and gives short acoustic feedbacks which
are missed by the video-only methods.

The advantage of the weighted accuracy metric, however,
is that it enables us to seamlessly compare the performance
between participants and methods. This is because, the differ-
ent underlying class distributions due to each particular data
set, are accounted for by the metric and the resulting baseline
is 50% for all considered experimental configurations.

B. Assumptions

The proposed methods make the following assumptions.
1) The system is able to detect faces.
2) The system is able to detect speech for a single speaker.
3) There are situations in which the system only interacts
with one speaker, and can therefore use the audio-only
VAD to train the video-only active speaker detector.
In order to motivate the plausibility of these assumptions in the
context of a computational method for language acquisition,
we consider research in developmental psychology. According
to studies reported in [44] and [45] infants can discriminate
between several facial expressions which suggests that they
are capable of detecting human faces. The assumption that the
system can detect speech seems to be supported by research on
recognition of mother’s voice in infants (e.g., [46]). However,
whereas infants can detect the voice at a certain distance from
the speaker, here we make the simplifying assumption that

we can record and detect speech activity from close-talking
microphones for each speaker. It remains to be verified if we
can obtain similar performance from the audio-only VAD in
case we use far-field microphones or microphone arrays, or in
noisy acoustic conditions. The final assumption is reasonable
considering that infants interact with small number of speakers
in their first months, and in many cases only one parent is
available as caregiver at any specific time.

C. Contributions

This paper extends our previous work [47] on vision-based
methods for detection of the active speaker in multiparty
human-robot interactions. We will summarize the main dif-
ferences between this paper and [47] in this section. The first
difference is the use of a better performing pretrained CNN
model for feature extraction (i.e., VGG16 [37]) compared
to the previously used AlexNet [48]. We also significantly
extended the set of experiments to evaluate and compare
the proposed methods. In this paper, we evaluated the effect
of using temporal models by comparing the performance of
LSTM models similar to the ones evaluated in [47], to non-
temporal Perceptron models. Furthermore, we compared the
performance of transfer learning models, with models that are
built specifically for the current application and trained exclu-
sively on the task specific data. Finally, we reported results
for multispeaker and speaker independent experiments.

One of our findings is that, given that we optimize the clas-
sifier to the task (Perceptron or LSTM), it is not necessary to
optimize the feature extractor (the custom CNNs perform simi-
larly to the pretrained VGG16). This suggests that a pretrained
feature extractor, such as VGG16 works well independently
of the speaker and can be used to extend the results beyond
the participants in the present data set. Also, the result of the
multispeaker dependent experiment shows that the proposed
methods can scale beyond a single speaker without decrease
in performance. Combining this observation with the obser-
vation for the applicability of transfer learning suggests that
a mixture of the proposed methods can be indeed an useful
component of a real life artificial cognitive system.

Finally, the speaker independent experiment yields sig-
nificantly lower performance compared to the other two
experiments. We should mention, however, that, from a cog-
nitive system’s perspective, this might be an unnecessarily
challenging condition. We can in fact expect infants to be
familiar with a number of caregivers, thus justifying a condi-
tion more similar to the settings in the multispeaker dependent
experiment.

VII. CONCLUSION

In this paper, we proposed and evaluated three methods
for automatic detection of the active speaker-based solely on
visual input. The proposed methods are intended to com-
plement acoustic methods, especially in noisy conditions,
and could assist an artificial cognitive system to engage in
social interactions which has been shown to be beneficial for
language acquisition.
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We tried to reduce the assumptions about the language
learning environment to a minimum. Therefore, the proposed
methods allow different speakers to speak simultaneously as
well as to be all silent; the methods do not assume a spe-
cific number of speakers, and the probability of speaking is
estimated independently for each speakers, thus allowing the
number of speakers to change during the social interaction.

We evaluated the proposed methods on a large multiperson
data set. The methods perform well on a speaker dependent
and multispeaker dependent fashion, reaching accuracy of over
75% (baseline 50%) on a weighted frame-based evaluation
metric. The combined results obtained from the transfer learn-
ing and multispeaker learning experiments are promising and
suggest that the proposed methods can generalize to unseen
perceptual inputs by incorporating a model adaptation step for
each new face.

We should acknowledge the general difficulty of the
problem addressed in this paper. Humans generally produce
many facial configurations when they are not speaking that
might be highly overlapping to the configurations associated
with when they are speaking.

The methods proposed in this paper are in support to
socially aware language acquisition and they can be seen
as mechanisms for constraining the visual input thus provid-
ing higher quality and more appropriate data for a statistical
learning of word-referent mappings. Therefore, the main pur-
pose of the methods is to help bringing an artificial cognitive
system one step closer to resolving the referential ambiguity
in cluttered, dynamic, and noisy environments.
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