
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Intrinsically Motivated Hierarchical Policy Learning
in Multi-objective Markov Decision Processes

Sherif Abdelfattah, Member, IEEE, Kathryn Merrick, Senior Member, IEEE, and Jiankun Hu, Senior Member, IEEE

Abstract—Multi-objective Markov decision processes are se-
quential decision-making problems that involve multiple conflict-
ing reward functions that cannot be optimized simultaneously
without a compromise. This type of problems cannot be solved by
a single optimal policy as in the conventional case. Alternatively,
multi-objective reinforcement learning methods evolve a coverage
set of optimal policies that can satisfy all possible preferences
in solving the problem. However, many of these methods
cannot generalize their coverage sets to work in non-stationary
environments. In these environments, the parameters of the state
transition and reward distribution vary over time. This limitation
results in significant performance degradation for the evolved
policies sets. In order to overcome this limitation, there is a need
to learn a generic skill set that can bootstrap the evolution of the
policy coverage set for each shift in the environment dynamics
therefore, it can facilitate a continuous learning process. In this
work, intrinsically motivated reinforcement learning has been
successfully deployed to evolve generic skill sets for learning
hierarchical policies to solve multi-objective Markov decision
processes. We propose a novel dual-phase intrinsically motivated
reinforcement learning method to address this limitation. In the
first phase, a generic set of skills is learned. While in the second
phase, this set is used to bootstrap policy coverage sets for each
shift in the environment dynamics. We show experimentally that
the proposed method significantly outperforms state-of-the-art
multi-objective reinforcement methods on a dynamic robotics
environment.

Index Terms—Markov Decision Process, Intrinsic Motivation,
Reinforcement Learning, Policy, Skill, Multi-objective, Hierarchi-
cal.

I. INTRODUCTION

Interactive learning is a vital human ability needed to
acquire new skills. This is achieved through direct interaction
with the environment that includes repetitive cycles of sense,
think, and act. Similarly, reinforcement learning (RL) is a
machine learning paradigm that aims at mimicking this human
interactive learning ability. In a RL scenario, the learning agent
evolves an optimal policy to achieve a specific objective by
sensing its current state, performing an action, and observing
a reward value (i.e., positive or negative) [28]. The reward
value is generated by a reward function that maps the state
and action pair into a quantitative value that reflects how good
or bad this pair is with respect to an objective. The objective
is meant to guide the learning process (e.g., maximize overall
score in a game) and it is coupled with a reward function.

Advances in deep learning techniques achieved over the last
decade [11] contributed to the enhancement of RL methods.
Recent RL methods achieved noticeable breakthroughs such
as playing Atari games with human-level performance [14] or
beating the world champion in the game of Go [26]. Many of
these RL advances follow a single objective problem in which

the agent learns guided by a single reward function. Albeit,
there is a type of sequential decision-making problem that does
not follow this assumption. In this type, there are multiple
objectives that are naturally in conflict with each other and
cannot be optimized simultaneously without a compromise.
Consider a scenario for a search and rescue robot that aims
at maximizing the number of rescued victims, minimizing
exposure to risk in the environment (i.e., fire or flood) to
prevent physical destruction, and minimizing the overall time to
finish the job. Another scenario can be a portfolio management
bot that aims to maximize the investment return over different
stock sectors (i.e., industrial, agricultural, education, etc.), each
of these sectors will have a dedicated objective and they cannot
be maximized simultaneously with limited funds. This type of
problems poses a significant challenge on single objective RL
methods as there is no single policy that can satisfy all the
preferences to solve the problem.

Alternatively, multi-objective reinforcement learning
(MORL) methods can deal with this type of problem by
targeting a coverage set of policies instead of a single policy
in the conventional RL case. Usually, this is achieved by
exploring the preference space over the defined objectives and
evolving an optimal policy for each legitimate preference [29].
After training, the learning agent can switch between policies
in the evolved coverage set to cope with different preferences.
The difference between RL and MORL lies in the reward
signal, which is a scalar value in the RL scenario and a vector
in the MORL scenario.

Despite the effectiveness of current MORL methods, the
majority of them assume that environment dynamics follow
a stationary distribution [24]. According to this assumption,
the dynamics such as state transition probability distribution
(i.e., types and order to entities in the environment) or reward
probability distribution (i.e. types and numbers of objectives)
are assumed to remain fixed between the training and the
operation processes of the learning agent. However, this is
not a realistic assumption in many real-world scenarios. For
example, assuming an unmanned ground vehicle (UGV) in a
playground (i.e., flat terrestrial surface) with obstacles, we may
have different entities introduced to this setup over time such
as entities of interest (i.e., treasures or victims) to detect or
danger entities (i.e., fire or enemy) to avoid. The introduction
of new or different entities will also impact the objective
space over the problem. If the learning method cannot cope
efficiently with such dynamic variations, it will result in
performance degradation and demand for re-initializing the
training process from scratch after each variation. With the
assumption that the agent’s setup (i.e., UGV build) and the

ar
X

iv
:2

30
8.

09
73

3v
1

 [
cs

.L
G

]
 1

8
A

ug
 2

02
3

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

basic environment’s characteristics (i.e., type of the terrestrial
surface and common entities such as obstacles) remain the
same between the dynamics variations, there is room for
enhancement if we can use knowledge about stationary parts
of the environment or the agent.

In a previous work [1], we proposed a novel MORL
method that can adapt effectively to non-stationary dynamics
in state transition distribution given fixed types of entities
and objectives in the problem. This was achieved through the
concept of policy bootstrapping in which the preference space
is decomposed into distinct regions and for each of them, we
evolve one steppingstone policy. Steppingstone policies are
used to bootstrap specialized policies in an online manner to
adapt to different changes in the state transition distribution.
In addition, we used an intrinsically motivated technique for
adaptive preference exploration. However, this method cannot
generalize to different types of entities and objectives without
a significant update to its policy coverage set.

In this paper, we propose a novel MORL method that can
effectively generalize to non-stationary dynamics in the state
transition distribution and reward distribution. This is achieved
over two learning phases. In the first phase, we evolve a generic
set of skills based on stationary aspects of the problem including
the learning agent’s build and the stationary characteristics of
the environment. While in the second phase, we use this skill
set to bootstrap the policy coverage set learning process to
deal with shifts in the non-stationary dynamics. During the
skill learning phase, we use a competency-based intrinsically
motivated reinforcement learning (IMRL) method [18] in order
to developmentally learn skills that match the current skill
level of the learning agent. Therefore, we can enhance the
performance of learned skills. During the policy coverage set
learning phase, we extend our previous work [1] to learn
hierarchical policies using the generic skill set. We show
experimentally the effectiveness of the proposed method in
generalizing over three different robotic scenarios compared
to state-of-the-art MORL methods.

The main contribution of this paper can be summarized as
follows:

• We propose an effective technique to learn skill sets
in a developmental manner using intrinsic motivation
reinforcement learning.

• We propose a novel multi-objective reinforcement learning
method for evolving policy coverage sets using hierarchi-
cal policy learning.

• We experimentally evaluate the generalization over three
robotic scenarios and compare with state-of-the-art meth-
ods.

The remainder of the paper is organized as follows. Section
II introduces background concepts and defines the research
problem. Section III overviews related work. Section IV
presents the proposed methodology. Section V explains the
experimental design. Section VI shows and discusses the
experimental results. Finally, Section VII concludes the work
and indicates possible future extensions.

II. BACKGROUND

This section introduces the fundamental concepts and for-
mulates the research problem.

A. Markov Decision Processes (MDPs)

A Markov decision process (MDP) is a sequential plan-
ning problem in which the learning agent senses its
current state in the environment (st) at time t, per-
forms an action (at) which results in transition to a
new state (st+1) and receives a reward/penalty (rt+1)
for reaching this new state [19]. The MDP can be rep-
resented with a tuple ⟨S,A,Pss′ , R : st, at → rt+1, µ, γ⟩.
Where S is the state space, A is the action space,
Pss′= Pr(st+1 = s

′ |st = s, at = a; θs) is the state transition
probability distribution, R : st, at → rt+1 is the reward
function that maps a state and action pair into a reward value,
µ is the initial state probability distribution, and γ is the
discounting factor for balancing the bias between immediate
and future rewards. Usually the aim of the learning agent is
to find a policy π∗ : st → at that maximizes an aggregation
function over rewards, typically the discounted sum of rewards
over the time horizon T :

T∑
t=1

γtrt (1)

B. Multi-objective Markov Decision Processes (MOMDPs)

The multi-objective Markov decision process (MOMDP)
extends the MDP problem by allowing more than one reward
function to exist, each representing a unique objective. Accord-
ingly, the MOMDP problem can be represented by the tuple
⟨S,A,Pss′ , r⃗, µ, γ⟩, where r⃗ = [r1, r2, . . . , rN] is a vector of
rewards dedicated to N objectives. Multiple rewards can be
combined using a user’s preference P and a scalarization
function f†.

Definition II.1. Preference: A user’s preference P =
[w1, w2, . . . , wN]∀wn ∈ {0, 1} represents a specific priori-
tization across the observed reward vector R⃗. This preference
is constrained to have its element-wise sum equals to one∑N

n=1 w
n = 1.

Definition II.2. Scalarization Function: A scalarization func-
tion combines an observed vector of reward into a scalar reward
value given a user’s preferences.

f† : r⃗, P → r†

Definition II.3. Policy: A policy (π) is a mapping from a
state space S to an action space A that achieves a task-specific
objectives.

Definition II.4. Skill: A skill (η) is a mapping from a state
space S to an action space A that achieves a generic objective.

The aim of the learning agent is to find a policy coverage
set Π∗ that contains an optimal policy for any given user’s
preference P i such that argmaxπ∈Π(

∑T
t=1 γtr

†i
t) ∈ Π∗,

where Π is the policy search space.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

C. Problem Definition

The research problem in this work is two fold. First, we need
to learn a generic skill set independently from any specific task.
Given a goal generation function f : X

′
, S → x⃗t+k , that uses

the set of previously generated goals X
′
, and the state space

of the environment (including the internal state of the agent) S,
to generate a vector of goals x⃗t+k to be optimized in the time
period k. We need to find the skill set U that maximizes the
reward return of the learning agent over the set of all generated
goals G during the learning time horizon T and over E total
time steps assigned for learning each goal as follows:

max

T∑
t=0

X∑
g=1

E∑
e=0

γerxt+e+1 (2)

The second part of the problem is to deal with shifts in
the environment dynamics including the parameters of the
state transition probability distribution θS and the parameters
of the rewards prior distribution PR = Pr(rn; θr)∀rn ∈
{r1, r2, . . . , rN}. The aim is given the set of generic skills U ,
to find the optimum policy coverage set Π∗ that can satisfy any
user’s preference under the current dynamics parameterization.
The optimum policy coverage set Π∗ has to maximize the
scalarized reward return for any given set of preferences within
a T time horizon:

max Rw⃗i

t =

T∑
t=0

γtf† (r⃗t, P
i) (3)

s.t. P i ∈W ∀P i ∈ RM ,

M∑
m=1

wm = 1

where W is the set of all legitimate user’s preferences over
the defined objectives.

III. RELATED WORK

In this section, we review the related work in intrinsically
motivated skill learning and multi-objective reinforcement
learning literature in order to contrast the contribution of our
paper.

A. Intrinsically Motivated Skill Learning Methods

Learning skill sets through intrinsic motivation has been
explored previously in the literature for solving single objective
reinforcement learning tasks through hierarchical policy learn-
ing. A common theme around these methods is that they usually
include two key components that communicate with each other
in order to evolve the skill set. These two components can be
generally described as proposer and learner. The proposer is
meant to explore the goal space with the objective to sample
new goals that can enhance the current performance level of
the learner, while the learner will aim at responding to each
newly proposed goal with an optimum policy that reflects its
skill in performing this goal. Many examples of this theme
can be found in the literature. An adversarial game-play was
proposed by Schmidhuber [25] in which two predictive agents
compete with each other by proposing and accepting prediction
bets on state transitions. Similarly, a self-play strategy was

proposed by Sukhbaatar et al. [27] in which two minds (Alice
and Bob) were competing with each other to learn new skills.
Alice learns to propose goals that are not optimally covered
by Bob’s current skill set, while Bob aims at evolving optimal
policies to perform the proposed goals.

A different approach is to allow extrinsic reward signals to
guide the skill learning process. A coupled network architecture
with two levels was proposed by Kulkarni et al. [10] to learn
hierarchical policies. In the first level, there is a meta-controller
that samples goals to maximize an extrinsic scenario-specific
reward signal, while in the second level, there is a controller
that is guided by an intrinsic reward signal to reach the
sampled goals by sampling actions. Similarly, Dilokthanakul
et al. [6] proposed a two-level hierarchical policy learning
framework that includes a meta-controller and a controller,
with a difference of allowing the extrinsic reward signal to
propagate to the controller via a trade-off parameter that balance
the intrinsic and extrinsic reward effects. One limitation with
this approach is that the learned skill set is biased towards a
specific scenario as it uses the extrinsic reward during the skill
learning process. This will demand to retrain for adapting to
different scenarios.

Although this theme of learning skill sets through intrinsic
motivation proved its effectiveness in solving MDP scenarios, it
has not been explored yet in solving MOMDP scenarios to the
best of our knowledge. In this paper, we adopt a competitive
adversarial self-play theme in learning a generic skill set in
isolation from any scenario-specific extrinsic reward during
the skill learning phase, then we evolve hierarchical policies
to solve multi-objective scenarios using this generic skill set
in a later phase.

B. Multi-objective Reinforcement Learning Methods
Mainly there are two broad categories of MORL methods:

single policy category; and multiple policy category [24]. The
former category assumes that the user’s preference is defined
beforehand solving the MOMDP problem and uses either a
scalarization function to convert the problem into a conventional
MDP scenario [5], [13], [15], [16], [21], or a constrained
representation of the problem in which one reward function
will be optimized while considering the other functions as
constraints for the optimization [2], [7]. One major limitation of
this category is the difficulty of satisfying its main assumption
of having a predefined user’s preference in many real-world
scenarios. The latter category addresses this limitation by
evolving a policy coverage set that can satisfy any user’s
preference in solving the MOMDP problem. Basically, this
is achieved through two main components: the preference
explorer; and the policy optimizer. The former component is
responsible for sampling preferences from the user’s preference
space in order to evolve a diverse policy coverage set. While
the latter component aims at evolving optimal policies that
can effectively satisfy the sampled preferences. Methods in
this category differ in the preference exploration mechanism
such as evolutionary exploration [4], threshold lexicographic
ordering (TLO) [8], or optimistic linear support (OLS) [23].

It can be noticed that the multiple policy approaches are
symmetric to the self-play theme in intrinsically motivated

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

TABLE I: Design configuration of the skill sampler’s predictive
model as a feed-forward neural network

Configuration Value

Layers Linear(10),ReLU(32),ReLU(16),tanh(8),Linear(1)
α 0.085

Dropout 0.35

Cost Function cross entropy
Optimizer ADAM

methods, which we previously exploited to propose a novel
intrinsically motivated method to evolve the policy coverage
set [1]. In this paper, we extend this method to generalize over
different scenarios through hierarchical policy learning.

IV. METHODOLOGY

The working mechanism of the proposed methodology has
two separate stages. First, we start with the generic skill
learning stage in which we learn a set of generic skills that can
be used with different task scenarios given the learning agent’s
build and the stationary characteristics of the environment. The
main assumption behind this stage is that such generic skill
set can be reused to evolve specialized policies for different
task scenarios (i.e., objectives and environment layout). As our
aim is to learn hierarchical policy coverage sets in MOMDPs
based on generic skill sets, we assume that the target set of
generic skills is already defined in the environment.

The top section in Figure 1 depicts a block diagram for
learning the generic skill set. There are two main building
blocks in this design: the skill sampler, and the skill optimizer.
The former aims at sampling skills from the predefined skill
set that matches the current performance level of the optimizer
(i.e., not too easy or too hard). This is achieved through
IMRL. We used a competency-based IMRL design [17] for
the skill sampler component, which has been followed in the
state-of-the-art skill learning methods [6], [27]. In this IMRL
paradigm, a predictive model (implemented as a deep feed-
forward neural network) tries to predict the average reward
value for the sampled skill achieved by the skill optimizer.
While a reinforcement learning algorithm learns which skill to
sample given a state representing the current performance level
of the predictive model in terms of prediction accuracy (ρt)
and an intrinsically generated reward signal formulated as the
performance progress of the predictive model before and after
sampling the latest skill (∆(ρt, ρt+j)). Table I lists the neural
network design configuration of the predictive model. We used
the Q-learning [30] reinforcement learning algorithm for the
IMRL component. For the skill optimizer, we use the same
actor-critic architecture design of the original deep deterministic
policy gradient (DDPG) algorithm [12], while changing the
state representation layers to cope with our learning agent’s
build.

After finishing the first stage, the agent starts the second stage
which builds over the learned skill set to evolve a coverage
set of policies that can solve the MOMDP problem. We reuse
our previously proposed intrinsically motivated multi-objective
reinforcement learning IM-MORL method [1] for evolving
robust policy coverage set in MOMDP problems. The IM-
MORL method works through two main components that learn

G
e

n
e

ri
c
 S

k
il

l
L
e

a
rn

in
g

H

ie
ra

rc
h

ic
a

l
P

o
li

c
y
 L

e
a

rn
in

g

ENVIRONMENT

PREDICTIVE

MODEL (DNN)

DDPG

MEMORY

IMRL (Q-learning)

��

��

�����

∆
�� , ����� → ��

����

���� ��

�� → ��

∆
������, ������

�� , �� , ������ , ����

Skill SamplerSkill Sampler

Actor-Net

��
��

�� Critic-Net

Skill-Net

�� , ���
�

���
�

Skill Loader

������

���
������

�

���
�

���
���

���
���

���
�

���
�

��

IMRL Preference

Explorer

RFPB Alg.

IM-MORLIM-MORL

ENVIRONMENT

Fig. 1: A block diagram for the design of the proposed model.
The generic skill learning stage is shown in the top section,
while the hierarchical policy learning stage is presented in the
bottom section.

in an adversarial manner. The first component is the preference
explorer component which includes an IMRL algorithm to
sample preference that the current policy coverage set Π∗ is
not performing well on them. This is achieved by maximizing
the enhancement in the prediction performance of a neural
network that targets predicting the performance of Π∗ for the
sampled preference. Therefore, the IMRL tends to sample
preferences that are challenging to predict due to instability in
the Π∗ performance. While the second component is the robust
fuzzy policy bootstrapping (RFPB) algorithm (see Algorithm
1), which is a MORL algorithm that takes preference proposed
by the former component to evolve the policy coverage set
Π∗. The RFPB algorithm evolves robust policy coverage sets
through the concept of policy bootstrapping [1].

The RFPB algorithm follows a policy bootstrapping strategy
that divides the user’s preference space over the defined
objectives into a finite number of regions using a fuzzy
representation of preferences. Thus, a preference region gi

is a unique combination of fuzzy values for the weight
components (e.g., the combination [low, high] in a two
objective space scenario). The fuzzy membership (referred
to as FuzzyMembership in Algorithm 1) is calculated through
the triangular fuzzy membership function [20]. For each region,
the RFPB algorithm evolves an optimal steppingstone policy (p)
that can bootstrap policies for different preferences that fall in
that region. Following this strategy, the algorithm can reduce the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

search space for optimum policies and adapt more robustly in an
online manner to dynamics in the environment. The evaluation
of steppingstone policies is based on a robustness metric (β)
that represents a trade-off between a policy’s performance
and its robustness to dynamics in the environment [1]. When
the current preference region changes (i.e., the new user’s
preferences falls into another region), the RFPB algorithm
saves the parameters of the current steppingstone policy into
the policy coverage set Π and loads the parameters of the
dedicated policy of the new region if it is exists, otherwise, it
initializes it from the best policy of adjacent regions. Finally,
it passes the parameters (θ′) of the policy to the policy
optimization algorithm (i.e., reinforcement learning algorithm)
to optimize it given the new user’s preference. Following this
generic workflow, the RFPB algorithm can adopt any policy
optimization algorithm that suits the characteristics of the
problem.

For the policy optimization algorithm, we propose a variant
of the deep deterministic policy gradient algorithm (DDPG)
[12] that can evolve hierarchical policies (i.e., policies over
skills instead of atomic actions). We name this algorithm
as hierarchical deep deterministic policy gradient (HDDPG).
Algorithm 2 presents the working steps of the HDDPG
algorithm.

Algorithm 1 Robust Fuzzy Policy Bootstrapping (RFPB) [1]

Input: Preferences at times t and t− 1 (Pt, Pt−1).
1: Get the fuzzy region of the new preference

FuzzyMembership(Pt)→ gi

2: if π(gi) ̸= ∅ then
3: π

′
:= π(gi)

4: else if π(gi−1) ̸= ∅ and π(gi+1) ̸= ∅ then
5: π

′
:= argmaxπ∈{π(gi−1), π(gi+1)} β(π)

6: else if π(gi−1) = ∅ and π(gi+1) = ∅ then
7: π

′
:= ϕ

8: else
9: π

′
:= argπ∈{π(gi−1), π(gi+1)} π ̸= ϕ

10: Get the fuzzy region of the old preference
FuzzyMembership(Pt−1)→ gj

11: if π(gj) ̸= ∅ then
12: π(gj) := argmaxπ∈{π(gj), πPt−1} β(π)
13: else
14: π(gj) := πPt−1

15: Store π(gj) in Π
16: if π

′
= ∅ then

17: θ
′
:= ϕ

18: else
19: θ

′
:= θ(π

′
)

20: Follow the hierarchical deterministic deep policy gradient
algorithm, HDDPG(Pt, θ

′)

For further illustration of the design of this stage, the bottom
section in Figure 1 presents a block diagram that explains the
underlying working mechanism. The RFPB algorithm takes care
of bootstrapping the parameter configuration (i.e., parameters
for actor and critic networks) of the HDDPG algorithm. The
HDDPG algorithm consists of four components. First, the critic
network (Critic-Net) which approximates the Q-value of the

Algorithm 2 Hierarchical Deterministic Deep Policy Gradient
(HDDPG)

Input: User’s preference Pt and parameter set θ′ = {θQ, θµ}.
1: if θ′ = ϕ then
2: Randomly initialize critic Q(s, η | θQ) and actor

µ(s | θµ) networks with parameters θQ and θµ

3: else
4: Initialize critic Q(s, η | θQ) and actor µ(s | θµ) net-

works with parameters from θ′

5: Initialize target networks Q′ and µ′ with parameters θQ
′ ←

θQ and θµ
′ ← θµ

6: Initialize reply buffer R
7: for episode = 1, M do
8: Initialize an Ornstein-Uhlenbeck process N for skill

exploration.
9: Observe initial state s1.

10: for t = 1, T do
11: Select skill ηt = µ(st | θµ) +Nt

12: Retrieve parameters θηt of ηt from skill set U
13: Execute the skill network µηt(s | θηt)
14: Observer scalarized reward r†t = Pt · r⃗t
15: Observe new state st+1

16: Save transition (st, ηt, r
†
t , st+1) into R

17: Sample a random batch of V transitions
18: (si, ηi, r

†
i , si+1) from R

19: Set yi = r†i + γ Q′(si+1, µ
′(si+1|θµ

′
)|θQ′

)
20: Update critic by minimizing the loss: L =

1
V

∑V
i=1(yi −Q(si, ηi|θQ))2

21: Update the actor policy using
the sampled policy gradient ∇θµJ ≈
1
V

∑V
i=1∇ηQ(s, η |θQ) |s=si,η=µ(si)∇θµµ(s |θµ) |si

22: Update the target networks:
23: θQ

′←τθQ + (1− τ)θQ
′

24: θµ
′ ← τθµ + (1− τ)θµ

′

25: endfor
26: endfor

current state-skill pairs guided by the temporal difference error
(δ), see Equation 5. The actor network (Actor-Net) learns
to pick the right skill (η) for the current state using the
policy gradient function (∇θµJ in Algorithm 2) provided the
generated temporal difference error (δ) from the Critic-Net. The
actions exploration is performed using the Ornstein–Uhlenbeck
stochastic process, that can produce temporally correlated
exploration noise for smooth transitions across action values.
This process is calculated as per Equation 4. After identifying
the skill to be executed by the Actor-Net, the skill loader
component retrieves the parameters (θη) of the skill’s learned
policy in the previous stage from memory and assigned it to
the action execution network (Skill-Net) to perform it. The
Skill-Net works as an architecture template that is loaded with
the previously learned parameters without any learning in this
stage. The memory component in Figure 1 mainly represents
the policy coverage set Π and the skill set U .

dat = θ(µ− at)dt+ σdWt (4)

where θ,σ, and µ are parameters and Wt represents the Wiener

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

process, which is a stochastic process that is initialized as
W0 = 0 and at each following time step it is incremented by a
Gaussian random value (Wt−Ws) ∼ N (0, t− s)∀ 0 ≤ s < t.

δt = r†t+1 + γmax
η′

Q (st+1, η
′
)−Q (st, ηt) (5)

It has to be noted that the transition between the first
stage and the second stage of the proposed framework is
done manually (i.e., the second stage is activated manually
by the designer in each new scenario). However, it would
be an interesting enhancement to add a component that can
automatically detect a shift in the running scenario and activates
the second stage.

V. EXPERIMENTAL DESIGN

In this section, we describe our experimental design for
evaluating different aspects of the proposed method. The first
experiment ascertains that the skill-sampling method we have
used from the literature [6], [27] is working as intended. This
is done by comparing to random skill-sampling. The second
experiment compares our end-to-end system with two state-of-
the-art methods from the MORL literature.

A. Experimental Environment

In order to simulate real-world dynamic environments that
demand a continuous learning process, we designed a complex
robotics environment that consists of a static setup including
the physical agent’s build, the characteristics of the terrestrial
surface, and the presence of obstacle objects. Additionally,
dynamic setups can be introduced to the environment through
three different scenarios that add new states to the state space
and new reward functions. The static setup simulates the
basic operation scenario in which the agent can learn a set of
generic skills. While each dynamic scenario represents new
characteristics that can arise over time in the environment
demanding more advanced skills from the learning agent.
Therefore, we can experimentally evaluate the continuous
learning ability of the proposed method in such complex and
dynamic environments. The environment was implemented
using the V-REP1 robotics simulation environment [22]. The
learning agent is simulated using the Pioneer 3-DX2 robot
model defined in the V-REP environment. This robot has 16
proximity sensors mounted around it in addition to a camera
sensor mounted in the front. Accordingly, the state space is
S =

{
b1, b2, . . . , b16, Cam

}
, where

{
b1, b2, . . . , b16

}
is the

set of state features representing proximity sensors readings,
and {Cam} is the camera sensor reading represented by
64 × 64 frame flattened into a 4096 array. The action space
A =

{
F left, F right, Dleft, Dright

}
which includes the force

on the left wheel motor, the force on the right wheel motor,
rotation direction of the left wheel, and rotation direction of
the right wheel. The state and action representations are the
same among the three scenarios as we use the same learning
agent. Figure 2 shows the layout of the robotic scenarios. These

1http://www.coppeliarobotics.com/
2https://robots.ros.org/pioneer-3-dx/

dynamic scenarios are based on well-established benchmarks
in MORL literature [1], [29] that were originally introduced
as grid-worlds. In this paper, we introduce continuous variants
of them that are more representative for real-world robotic
scenarios. We provide the V-REP scene source code for these
scenarios for possible future use3.

Search and Rescue (SAR) Scenario
In this scenario, the agent gets a vector of three rewards

r⃗ =
[
rvictim , rfire ,

]
, r⃗ ∈ R2 . The victim reward function

rvictim is +3 for each detected victim and 0 elsewhere, the fire
penalty function rfire is −5 for each exposure and 0 elsewhere.
The added stochastic state transition is defined as random death
probability of each human victim ξi, i ∈ {1, 2, 3, . . . , N} for
N victims.

Treasure Search (TS) Scenario
In this scenario, multiple treasures can be found, each with

a different reward value. There are two objectives. First, to
minimize needed time to find the treasure. Second, to maximize
the treasure’s value. Accordingly, the reward vector has two
rewards −→r =

[
r time , r treasure

]
, r̃ ∈ R2 , where rtime is a

time penalty of −1 on all turns and rtreasure is the captured
treasure reward which depends on the treasure’s value.

Resources Gathering (RG) Scenario
This scenario simulates a task to collect resources (gold

and gems) and return home while avoiding attacks from
enemy objects. The enemy attack may occur with a 10%
probability if the learning agent is within the enemy’s area. If
an attack happens, the agent loses any resources currently
being carried and is returned to the home location. The
objectives are to maximize the resources gathered while
minimizing enemy attacks. The rewards vector is defined
as −→r = [r resources , r enemy] , r̃ ∈ R2 , with rresources is 1 for
each resource collected and renemy is −1 for each attack.

B. Experiments

1) Evaluating the Evolution of Generic Skill Sets in
MOMDPs:

Objective: The objective of this experiment is to confirm
the capability of the IMRL skill sampling method [6], [27] in
learning skills in the static part of the environment.

Assumption: Intrinsically motivated skill sampling can
focus the learning process on skills that match the current
performance level of the learning agent, therefore, it can achieve
better skill coverage and overall performance.

Comparison Algorithms: We compare the IMRL sampler
with a random sampler which uniformly samples skills from
the predefined skill set. Thus, we can ensure the effectiveness
of the IMRL sampling method. We refer to the used IMRL
sampler as generic intrinsically motivated exploration (GIME)
when reporting the results.

Method: We designed a generic set of useful goals (defined
by reward functions) relevant to the learning agent’s physical
structure and the static characteristics of the environment
common to all three scenarios. There are ten defined goals.
The move forward skill is rewarded when the agent moves

3https://figshare.com/collections/V-REP_MORL_Environments/4657700

http://www.coppeliarobotics.com/
https://robots.ros.org/pioneer-3-dx/
https://figshare.com/collections/V-REP_MORL_Environments/4657700

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

(a) (b) (c)

Fig. 2: Layouts of different scenarios representing non-stationary dynamics in the environment. (a) The search and rescue
(SAR) scenario. Human oracles represent victims, walls represent obstacles, while red cubes represent fire danger. (b) The
treasure Search (TS) Scenario. Different colored cubes represent different treasure values and walls represent obstacles. (c)
The resource gathering (RG) scenario. Spider-like robots represent enemies, blue cubes represent gym resources, yellow cubes
represent gold resources, walls represent obstacles, and the tree object represents the home location.

Backward

Forward

Right

Left

Bounce Back
Turn Around

Fig. 3: Visual illustration of the predefined skill set for the
static environment setup.

the wheel forward in a stable manner, while its quick version
rewards it proportionally with the achieved revolutions per
minute (rpm) of the wheels in the forward direction. The move
backward and its quick version are exact opposite of the move
forward skills. The turn right skill is rewarded when the agent
puts more force on the right wheel, while its quick version
rewards it proportionally with the rpm to encourage faster
movement. The turn left skills are exact opposite of the turn
right skills. The bounce back skill is penalized when the agent
has an object within τ distance on the proximity sensor. Finally,
the turn-around skill is rewarded when the agent perceives a
wall in a different part of its camera view over successive
time-steps.

Table II summarizes the predefined skill set. Figure 3 depicts
a visual illustration for each skill in the static environment setup.
Each method will sample from this predefined set during the
evaluation. We conduct 15 independent runs. Each run includes
100 learning cycles. Each cycle includes 2500 episodes. We
use a time-bounded episode configuration of 150 time-steps.

Evaluation Criteria: We use two performance metrics in
this experiment. First, is the average success rate for each skill
over the last 10 learning cycles. Second, is the average skill
exploration rate. We show the average and standard deviation
for each of these metrics over the 15 conducted runs.

2) Assessing the Impact of Hierarchical Policy Learning in
MOMDPs:

Objective: In this experiment, we aim at assessing the impact
of learning hierarchical policies using the evolved generic skill
set to generalize over different shifts in the environment’s
dynamics (i.e. scenarios).

Assumption: Our assumption is that bootstrapping the
learning process with a generic set of skills can enhance the
learning of specialized policies in each different scenario.

Comparison Algorithms: We compare our proposed method
with three other algorithms. The first two are widely considered
state-of-the-art algorithms in MORL literature [24] including
the optimistic linear support (OLS) algorithm [23], and the
threshold lexicographic ordering (TLO) algorithm [9]. While
the third is our previously proposed intrinsically motivated
MORL method named IM-MORL during the comparison [1].
The IM-MORL method uses intrinsic motivation for preference
exploration in evolving robust policy coverage sets that can
solve the MOMDP problem. However, this method does not
have a generic skill learning stage and it directly learns
the policy coverage sets for a specific scenario, therefore,
it is limited in generalizing to different scenarios. Finally,
the proposed methodology in this paper is referred to as
generic intrinsically motivated MORL (GIM-MORL) during
the comparison.

Method: We conduct this experiment in two scenario groups:
stationary scenarios; and non-stationary scenarios. In the former,
the distribution of objects is stationary in each run. In the latter,
the distribution of objects is non-stationary, as 25% of them
change their locations randomly every 100 episodes. For each
group, we execute 15 runs that differ in the initial distribution
of objects. Each run is divided into a training phase and a
testing phase, each of 2500 episodes. The training phase allows
each method to evolve its policy coverage set. While in the
testing phase, we sample ten user preferences uniformly (see
Table III), and every 250 episodes the preference changes to
evaluate the performance of the evolved policy coverage set
for each method. For the parameter configuration of the OLS,

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

TABLE II: Generic skill set and dedicated reward functions

Skill Description Reward Function

Move Forward Advance in the forward direction r =

{
1 F right ≃ F left &Dright = Dleft = +1

0 Otherwise

Move Backward Advance in the backward direction r =

{
1 F right ≃ F left &Dright = Dleft = −1

0 Otherwise

Turn Right Turning to the right r =

{
1 F right > F left &Dright = Dleft = +1

0 Otherwise

Turn Left Turning to the left r =

{
1 F right < F left &Dright = Dleft = +1

0 Otherwise

Quick Forward Quick advance in the forward direction r =

{
rpm F right ≃ F left &Dright = Dleft = +1

0 Otherwise

Quick Backward Quick advance in the backward direction r =

{
rpm F right ≃ F left &Dright = Dleft = −1

0 Otherwise

Quick Turn Right Quick turning to the right r =

{
rpm F right > F left &Dright = Dleft = +1

0 Otherwise

Quick Turn Left Quick turning to the left r =

{
rpm F right < F left &Dright = Dleft = +1

0 Otherwise

Bounce Back Move away from an obstacle r =

{
−1 Any(b) < τ

0 Otherwise

Turn Around Get to the opposite side of an obstacle r =

{
1 obstacle in other direction of Camview

0 Otherwise

TLO, and RFPB algorithms we follow the same configuration
in [23], [9], and [1], respectively.

Evaluation Criteria: We evaluate the three comparative
methods over two main metrics. First, the sum of median
rewards metric, which is calculated by taking the median reward
value for each preference, sum them for each run, then taking
the average of this sum over the 15 runs. This metric reflects
the overall performance of the evolved policy coverage set for
each algorithm over the 15 independent runs executed. For
visualizing this evaluation, we show the average median value
with standard deviation for each sampled preference. Second,
the hypervolume, which represents the volume of the space
dominated by policy points from the policy coverage set in the
reward space given a reference point. This metric measures the
quality of the evolved policy coverage set by a multi-objective
optimization algorithm [3]. Figure 4 shows an example of the
hypervolume in a two dimensional reward space. The higher
the value of this metric the better the policy coverage set. We
followed the algorithm described in [3] to calculate the value
of this metric. This algorithm works in an iterative manner to
approximate the hypervolume area as the sum of rectangular
areas bounded by the reference point and each policy point in
the policy coverage set.

VI. RESULTS AND DISCUSSION

In this section, we present and discuss the results of the
conducted experiments.

A. Evolving Generic Skill Sets

Results for the average skill success ratio metric in the
static environment’s setup are depicted in Figure 5 through
boxplots for each skill. It can be noticed that GIME significantly
outperformed the random exploration method in all skills and

Fig. 4: An example for a graphical representation of the
hypervolume metric in a two dimensional reward space. In
this example, the metric is represented by the area of the
shaded shape bounded by the policies in the policy coverage
set and the reference point.

this performance margin is magnified in the bounce back and
turn around skills. The reason for this finding lies in the ability
of GIME to target skills that have unpredictable performance
(i.e., unstable policy), therefore it facilitates focusing the
learning process on those skills that need enhancements. This
ability is further confirmed in the performance results of the
bounce back and turn around skills which are the most difficult
ones in comparison to the rest. While the random exploration
method does not have any clue on the current performance
level of the learning agent with respect to each skill as it
samples goals uniformly from the predefined skill set.

The second evaluation metric helps to further understand the
behavior of each goal exploration method. The skill exploration

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

TABLE III: The set of uniformly sampled user preferences used in the experimental design.

Preference P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

w1 0.66 0.33 0.28 0.54 0.68 0.44 0.88 0.65 0.48 0.71
w2 0.34 0.67 0.72 0.46 0.32 0.56 0.12 0.35 0.52 0.29

M
_F

or
w

ar
d

M
_B

ac
kw

ar
d

T_
Ri

gh
t

T_
Le

ft

Qu
ic

k_
Fo

rw
ar

d

Qu
ic

k_
Ba

ck
w

ar
d

Qu
ic

k_
Ri

gh
t

Qu
ic

k_
Le

ft

Bo
un

ce

Tu
rn

 A
ro

un
d

Skills

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

an
d

ST
D

of
 S

uc
ce

ss
 R

at
e

Random GIME

Fig. 5: Boxplots for skill success ratio for each method over
15 runs in the static environment setup.

ratio measures the number of times a specific skill was proposed
to the learning agent out of the total number of learning
cycles. Figure 6 presents the average skill exploration ratio
through boxplots for each method in the environment. It can be
noticed that the random exploration method has a consistent and
closely equal exploration ratio overall skills, which confirms
its working mechanism of uniformly sampling skills from
the predefined set. The results for GIME are heavily skewed
around the ‘bounce back’ and ‘turn around’ skills, as these
skills are the most challenging ones in comparison to the rest in
the predefined set. Therefore, the GIME method increases the
exploration rate for these skills in order to reach stable policies
which have predictable performance. This finding confirms the
adaptability of the exploration behavior of the IMRL method
in comparison to the fixed behavior of the random exploration
method.

B. Evolving Policy Coverage Sets for MOMDP Tasks

In this section, we present the comparison results between
the proposed method (GIM-MORL) and the three other
comparative methods over both stationary and non-stationary
scenarios.

1) Performance Comparison in Stationary Scenarios:
Recalling from our experimental design, the stationary scenario
experiment targets evaluating the performance of the methods
with the assumption of stationary state space dynamics. Under
this assumption, the parameters of the state transition distribu-
tion (T : S ×A× S′ → [0, 1]) are the same between training
and testing sessions for each method. Figure 7 shows the results
of the average median reward metric with standard deviation
bars over the 15 independent runs conducted.

M
_F

or
w

ar
d

M
_B

ac
kw

ar
d

T_
Ri

gh
t

T_
Le

ft

Qu
ic

k_
Fo

rw
ar

d

Qu
ic

k_
Ba

ck
w

ar
d

Qu
ic

k_
Ri

gh
t

Qu
ic

k_
Le

ft

Bo
un

ce

Tu
rn

 A
ro

un
d

Skills

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

an
d

ST
D

of
 E

xp
lo

ra
tio

n
Ra

te

Random GIME

Fig. 6: Boxplots for skill exploration ratio for each method
over 15 runs in the static environment setup.

While the OLS and TLO methods achieved the highest
results, the IM-MORL and GIM-MORL methods achieved
comparable results. This difference in result is due to target-
ing specialized results by the former comprehensive search
methods in contrast to the latter methods which target robust
steppingstone policies instead. Moreover, it can be noticed
that the proposed method (GIM-MORL) outperformed our
previously proposed method (IM-MORL) due to the use of the
learned generic skill set in the previous stage, which proved
to enhance the performance of the resultant policies.

For the results on the second evaluation metric, Figure 8
presents boxplots for normalized hypervolume values for each
algorithm over the 15 independent runs conducted. These results
confirm the finding from the previous evaluation metric as
the OLS and the TLO methods achieved the higher results
followed by the GIM-MORL and the IM-MORL methods. In
addition, the normalized hypervolume metric better reflects
the comparable quality of the resultant policy coverage sets
by the latter methods, which was close to those of the former
methods on average.

It has to be noted that the proposed GIM-MORL method
was able to achieve these results on three different scenarios by
utilizing the same generic skill set learned in the previous stage
of the methodology. Based on these findings, it is noticeable
that learning a generic skill set can help in enhancing the
performance of the MORL method and gives it the ability to
generalize on different scenarios.

2) Performance Comparison in Non-Stationary Scenarios:
We present the method comparison results in non-stationary
scenarios. In such environments, the parameters of the state
transition distribution (T : S×A×S′ → [0, 1]) can vary over

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
User Preference

10

11

12

13

14

15

16

Av
er

ag
e o

f M
ed

ian
 R

ew
ar

d V
alu

e (
SA

R)

OLS TLO IM-MORL GIM-MORL

(a)

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
User Preference

50

52

54

56

58

60

Av
er

ag
e o

f M
ed

ian
 R

ew
ar

d V
alu

e (
TS

)

OLS TLO IM-MORL GIM-MORL

(b)

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
User Preference

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

Av
er

ag
e o

f M
ed

ian
 R

ew
ar

d V
alu

e (
RG

)

OLS TLO IM-MORL GIM-MORL

(c)

Fig. 7: Results for the median reward metric in stationary
scenarios experiment averaged over 15 independent runs with
standard deviation bars. (a) The search and rescue (SAR)
scenario. (b) The treasure search (TS) scenario. (c) The resource
gathering (RG) scenario.

SAR TS RG
Environments

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 H
yp

er
vo

lu
m

e

GIM-MORL IM-MORL OLS TLO

Fig. 8: Boxplots for the normalized hypervolume metric in
stationary environments averaged over 15 independent runs for
each algorithm. Results are grouped by each environment.

SAR TS RG
Environments

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
N

or
m

al
iz

ed
 H

yp
er

vo
lu

m
e

GIM-MORL IM-MORL OLS TLO

Fig. 9: Boxplots for the normalized hypervolume metric in non-
stationary environments averaged over 15 independent runs for
each algorithm. Results are grouped by each environment.

time (i.e. entities in the environment are allowed to change
their location over time). Such scenarios are more common in
real-world applications, therefore, we target in this part of the
experimental design to analyze the impact of such scenarios
on the performance of each method.

Figure 10 depicts the results for the average median reward
value with standard deviation bars over the 15 independent
runs executed. It is observable that the OLS and TLO methods
have significant degradation in their results in comparison to
the stationary scenarios experiment. Mainly, this is due to their
assumption of a stationary state transition distribution and the
targeting greedy specialized policies that were tailored for a
specific environment setup that went outdated with the ongoing
dynamics in the state space. In contrast, the IM-MORL and
GIM-MORL methods did not suffer from such significant
performance degradation due to their ability to adaptively
revisit the affected preference regions after drifts in the state
space dynamics and targeting robust steppingstone policies that

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

are optimized for performance stability over wider preference
intervals. Moreover, the proposed GIM-MORL significantly
(p-value < 0.05) outperformed the other methods over the three
scenarios on this evaluation metric with average percentages
of 57%, 30%, and 65% for SAR, TS, and RG, respectively.

The normalized hypervolume results presented in Figure 9
confirmed the previous finding as the quality of the resultant
policy coverage sets for the OLS and TLO methods significantly
degraded in comparison to the stationary scenarios experiment.
While the quality of the sets generated by IM-MORL and
GIM-MORL methods was not significantly impacted in a
similar manner. The proposed GIM-MORL method significantly
outperformed (p-value < 0.05) the other methods with an
average percentage of 50% over the three scenarios on this
metric. This emphasizes the performance gain achieved through
learning generic skills and utilizing them to generalize on
different scenarios.

VII. CONCLUSION

In this paper, we proposed a novel intrinsically motivated
multi-objective reinforcement learning method that can learn
hierarchical policy coverage sets to better generalize to different
shifts in the environment’s dynamics including time-varying
changes in the parameters of the state transition probability
distribution and in the parameters of the reward functions prior
distribution. We experimentally evaluated the performance of
the generic skill learning and the evolution of hierarchical
policy coverage sets for a complex robotics environment
with non-stationary dynamics in the state and reward spaces.
We compared our method with three state-of-the-art multi-
objective reinforcement learning methods. Results showed
that our proposed method generalized better to different
scenarios, which enabled it to significantly outperform the
other comparatives on the evaluation metrics.

In future work, we are going to explore techniques for
automatically generating possible goals in a given scenario
through intrinsic motivation exploration. In addition, we will
investigate ways to prioritize and schedule skill learning based
on relevancy aspects such as similar actions or goals, therefore
we can speed up the learning process. Also, we are going to
look for concept drift detection methods that can identify state
space shifts across scenarios and automatically activates the
second stage of the proposed GIM-MORL framework.

REFERENCES

[1] Sherif Abdelfattah, Kathryn Kasmarik, and Jiankun Hu. Evolving robust
policy coverage sets in multi-objective markov decision processes through
intrinsically motivated self-play. Frontiers in Neurorobotics, 12:65, 2018.

[2] Eitan Altman. Constrained Markov decision processes, volume 7. CRC
Press, 1999.

[3] N. Beume, C. M. Fonseca, M. Lopez-Ibanez, L. Paquete, and J. Vahren-
hold. On the complexity of computing the hypervolume indicator. IEEE
Transactions on Evolutionary Computation, 13(5):1075–1082, Oct 2009.

[4] Róbert Busa-Fekete, Balázs Szörényi, Paul Weng, Weiwei Cheng, and
Eyke Hüllermeier. Preference-based reinforcement learning: evolutionary
direct policy search using a preference-based racing algorithm. Machine
Learning, 97(3):327–351, Dec 2014.

[5] A Castelletti, F Pianosi, and M Restelli. A multiobjective reinforcement
learning approach to water resources systems operation: Pareto frontier
approximation in a single run. Water Resources Research, 49(6):3476–
3486, 2013.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
User Preference

2

4

6

8

10

12

14

Av
er

ag
e o

f M
ed

ian
 R

ew
ar

d V
alu

e (
SA

R)

OLS TLO IM-MORL GIM-MORL

(a)

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
User Preference

30

35

40

45

50

55

Av
er

ag
e o

f M
ed

ian
 R

ew
ar

d V
alu

e (
TS

)

OLS TLO IM-MORL GIM-MORL

(b)

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
User Preference

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

Av
er

ag
e o

f M
ed

ian
 R

ew
ar

d
Va

lu
e (

RG
)

OLS TLO IM-MORL GIM-MORL

(c)

Fig. 10: Results for the median reward metric in non-stationary
scenarios experiment averaged over 15 independent runs with
standard deviation bars. (a) The search and rescue (SAR)
scenario. (b) The treasure search (TS) scenario. (c) The resource
gathering (RG) scenario.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

[6] Nat Dilokthanakul, Christos Kaplanis, Nick Pawlowski, and Murray
Shanahan. Feature control as intrinsic motivation for hierarchical
reinforcement learning. CoRR, abs/1705.06769, 2017.

[7] Eugene A. Feinberg and Adam Shwartz. Constrained markov decision
models with weighted discounted rewards. Mathematics of Operations
Research, 20(2):302–320, 1995.

[8] Zoltán Gábor, Zsolt Kalmár, and Csaba Szepesvári. Multi-criteria
reinforcement learning. In ICML, volume 98, pages 197–205, 1998.

[9] Peter Geibel. Reinforcement learning for mdps with constraints. In
ECML, volume 4212, pages 646–653. Springer, 2006.

[10] Tejas D Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Josh
Tenenbaum. Hierarchical deep reinforcement learning: Integrating
temporal abstraction and intrinsic motivation. In D. D. Lee, M. Sugiyama,
U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural
Information Processing Systems 29, pages 3675–3683. Curran Associates,
Inc., 2016.

[11] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning.
nature, 521(7553):436, 2015.

[12] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess,
Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous
control with deep reinforcement learning. In International Conference
on Learning Representations (ICLR), 2016.

[13] Daniel J Lizotte, Michael H Bowling, and Susan A Murphy. Efficient
reinforcement learning with multiple reward functions for randomized
controlled trial analysis. In Proceedings of the 27th International
Conference on Machine Learning (ICML), pages 695–702, 2010.

[14] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel
Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K
Fidjeland, Georg Ostrovski, et al. Human-level control through deep
reinforcement learning. Nature, 518(7540):529–533, 2015.

[15] K. Van Moffaert, M. M. Drugan, and A. Nowé. Scalarized multi-objective
reinforcement learning: Novel design techniques. In IEEE Symposium on
Adaptive Dynamic Programming and Reinforcement Learning (ADPRL),
pages 191–199, April 2013.

[16] Wlodzimierz Ogryczak, Patrice Perny, and Paul Weng. On minimizing
ordered weighted regrets in multiobjective markov decision processes.
In Ronen I. Brafman, Fred S. Roberts, and Alexis Tsoukiàs, editors,
Algorithmic Decision Theory, pages 190–204, Berlin, Heidelberg, 2011.
Springer Berlin Heidelberg.

[17] P. Y. Oudeyer, F. Kaplan, and V. V. Hafner. Intrinsic motivation systems
for autonomous mental development. IEEE Transactions on Evolutionary
Computation, 11(2):265–286, April 2007.

[18] Pierre-Yves Oudeyer and Frederic Kaplan. What is intrinsic motivation?
a typology of computational approaches. Frontiers in Neurorobotics, 1:6,
2009.

[19] Christos H. Papadimitriou and John N. Tsitsiklis. The complexity
of markov decision processes. Mathematics of Operations Research,
12(3):441–450, 1987.

[20] Witold Pedrycz. Why triangular membership functions? Fuzzy Sets and
Systems, 64(1):21 – 30, 1994.

[21] Patrice Perny and Paul Weng. On finding compromise solutions
in multiobjective markov decision processes. In Proceedings of the
Conference on ECAI: 19th European Conference on Artificial Intelligence,
pages 969–970, Amsterdam, The Netherlands, 2010. IOS Press.

[22] E. Rohmer, S. P. N. Singh, and M. Freese. V-REP: A versatile and scalable
robot simulation framework. In IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 1321–1326, Nov 2013.

[23] Diederik M. Roijers, Shimon Whiteson, and Frans A. Oliehoek. Linear
support for multi-objective coordination graphs. In Proceedings of the
International Conference on Autonomous Agents and Multi-agent Systems,
AAMAS, pages 1297–1304, Richland, SC, 2014. International Foundation
for Autonomous Agents and Multiagent Systems.

[24] Diederik Marijn Roijers, Peter Vamplew, Shimon Whiteson, and Richard
Dazeley. A survey of multi-objective sequential decision-making. Journal
of Artificial Intelligence Research, 2013.

[25] Jürgen Schmidhuber. Exploring the Predictable, pages 579–612. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2003.

[26] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre,
George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou,
Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of Go
with deep neural networks and tree search. Nature, 529(7587):484–489,
2016.

[27] Sainbayar Sukhbaatar, Ilya Kostrikov, Arthur Szlam, and Rob Fergus.
Intrinsic motivation and automatic curricula via asymmetric self-play.
CoRR, abs/1703.05407, 2017.

[28] Richard S Sutton and Andrew G Barto. Reinforcement learning: An
introduction, volume 1. MIT press Cambridge, 1998.

[29] Peter Vamplew, Richard Dazeley, Adam Berry, Rustam Issabekov,
and Evan Dekker. Empirical evaluation methods for multiobjective
reinforcement learning algorithms. Machine Learning, 84(1):51–80,
2011.

[30] Christopher J. C. H. Watkins and Peter Dayan. Q-learning. Machine
Learning, 8(3):279–292, 1992.

	Introduction
	Background
	Markov Decision Processes (MDPs)
	Multi-objective Markov Decision Processes (MOMDPs)
	Problem Definition

	Related Work
	Intrinsically Motivated Skill Learning Methods
	Multi-objective Reinforcement Learning Methods

	Methodology
	Experimental Design
	Experimental Environment
	Experiments
	Evaluating the Evolution of Generic Skill Sets in MOMDPs
	Assessing the Impact of Hierarchical Policy Learning in MOMDPs

	Results and Discussion
	Evolving Generic Skill Sets
	Evolving Policy Coverage Sets for MOMDP Tasks
	Performance Comparison in Stationary Scenarios
	Performance Comparison in Non-Stationary Scenarios

	Conclusion
	References

