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Ensemble Hierarchical Extreme Learning
Machine for Speech Dereverberation
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Abstract—Data-driven deep learning solutions with gradient-
based neural architecture, have proven useful in overcoming
some limitations of traditional signal processing techniques.
However, a large number of reverberant–anechoic training utter-
ance pairs covering as many environmental conditions as possible
is required to achieve robust dereverberation performance in
unseen testing conditions. In this article, we propose to address
the data requirement issue while preserving the advantages of
deep neural structures leveraging upon hierarchical extreme
learning machines (HELMs), which are not gradient-based neu-
ral architectures. In particular, an ensemble HELM learning
framework is established to effectively recover anechoic speech
from a reverberant one based on spectral mapping. In addi-
tion to the ensemble learning framework, we further derive two
novel HELM models, namely, highway HELM [HELM(Hwy)]
and residual HELM [HELM(Res)], both incorporating low-level
features to enrich the information for spectral mapping. We
evaluated the proposed ensemble learning framework using sim-
ulated and measured impulse responses by employing Texas
Instrument and Massachusetts Institute of Technology (TIMIT),
Mandarin hearing in noise test (MHINT), and reverberant voice
enhancement and recognition benchmark (REVERB) corpora.
The experimental results show that the proposed framework
outperforms both traditional methods and a recently proposed
integrated deep and ensemble learning algorithm in terms of
standardized objective and subjective evaluations under matched
and mismatched testing conditions for simulated and measured
impulse responses.

Index Terms—Ensemble learning, hierarchical extreme learn-
ing machines (HELMs), highway extreme learning machine,
residual extreme learning machine, speech dereverberation.
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I. INTRODUCTION

REVERBERATION refers to the collection of reflected
sounds from surfaces (e.g., walls and objects) in an

acoustic enclosure. It has been shown to severely deterio-
rate the quality and intelligibility of speech signals for both
human and machine listeners. Such deterioration can substan-
tially affect the performance of speech-related applications, for
instance, automatic speech recognition [1]–[3] and speaker iden-
tification systems [4]–[6]. It can also severely hamper speech
reception performance for both normal and hearing-impaired
listeners [7], [8]. In the last few decades, numerous approaches
have been proposed to solve the reverberation problem. The
conventional speech dereverberation techniques can be cate-
gorized into three main groups [9]. The first group, referred
to as source-model-based approaches, aims to separate the
speech and reverberation based on the prior information of
clean structures and room reverberation effects. Notable algo-
rithms belonging to this category include the linear prediction
(LP) methods [10]–[12], harmonic filtering techniques [13], and
probabilistic models [14], [15]. The second group of algorithms
is based on homomorphic transformation, in which the rever-
berated speech signals are analyzed in the cepstral or spectral
domain to simply subtract the reverberation from the signal.
Notable techniques include cepstral-based processing [16] and
spectral subtraction [17]. The third group of algorithms includes
channel inversion and employs inverse filtering to deconvolve
a speech convoluted with room impulse response (RIR) during
reverberation. Notable techniques include the minimum mean-
square error (MMSE) [18], least square, beamforming [19],
and matched filtering [20]. Recently, the nonlinear spectral
mapping approaches have been developed to address the rever-
beration problem. In these approaches, artificial neural networks
(ANNs) are generally used to “learn” the mapping function
of the reverberant and anechoic speech [21]. The universal
approximation capabilities of deeper structures have been exten-
sively studied. The outcome of these studies indicates that the
deeper structures of neural networks enable strong learning
capabilities, and the reverberation problem can be solved with
success. For example, deep denoising autoencoders (DDAEs)
have been adopted to reconstruct an anechoic speech signal
from a reverberant signal in [1] and [22]. In [23] and [24], long
short-term memory (LSTM)- and deep recurrent neural network
(DRNN)-based dereverberation systems have been proposed to
effectively reduce the reverberation effects. In [25]–[29], deep
neural network (DNN)-based solutions have been proposed to
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characterize the mapping from the reverberant speech sig-
nal to an anechoic one. Despite the superior performance
achieved by DNNs over conventional signal processing meth-
ods, these deep models have notable limitations: 1) performance
under mismatched training and test conditions can be severely
degraded, and 2) a large amount of training data is required to
obtain a satisfactory generalization performance [30], which
can limit the deployment of DNN frameworks in real-world
scenarios. Evidence has revealed that preparing a deep and uni-
versal model offline to handle diverse online testing conditions
is not ideal because unseen testing conditions always occur.
Such a mismatch in training and testing conditions generally
causes considerable performance degradation. On the other
hand, designing an algorithm that can train a model efficiently
with a small amount of training data and limited computational
resources is more favorable. As a result, “few shot learning,”
“deep learning on the edge,” “learning under low resource con-
ditions,” and “facilitating deep models to work in real-world
applications” have become emerging research topics.

In this article, we exploit the unique and effective charac-
teristics of the extreme learning machine (ELM) model [31]
to construct a speech dereverberation framework. Unlike the
traditional backpropagation (BP) algorithms, the parameters
of the ELM feature extraction layers are randomly specified
and need not be fine-tuned, thereby providing an extremely
fast training phase with good generalization performance
and a universal approximation capability [31]. Variants of
the ELM have contributed to the remarkable performance
in machine learning applications, such as pattern recogni-
tion [32], [33], traffic sign recognition [34], nonlinear time
series modeling [35], and speaker recognition [36]. Recent
studies have confirmed the great potential of connection-
ist models for speech dereverberation. As mentioned earlier,
deep learning-based models have been noted to suffer from
a domain mismatch problem when the testing environments
differ significantly from the training conditions. A huge par-
allel reverberant–anechoic speech corpus may be required to
train universal deep learning-based models to mitigate this
problem. In contrast, the proposed ELM-based solution has
the key advantage of avoiding the gradient-based training
issue; hence, the parameters of ELM can be optimized using
a small amount of training data, which has been confirmed
in previous studies [37]. Hussain et al. [37] and Odelowo
and Anderson [38] employed the ELM and the hierarchical
structure of the ELM (HELM) to demonstrate the effective-
ness of the ELM for speech enhancement. Motivated by the
promising performance attained by the HELM for speech
enhancement, we extend our research to HELM-based speech
dereverberation by incorporating ensemble learning for spec-
tral mapping from a reverberant to anechoic speech. The
purpose of employing an ensemble learning for a speech dere-
verberation task is to build a strong dereverberated model
by integrating multiple weak dereverberated models trained
for particular acoustic conditions. The preliminary study has
shown that ensemble learning has two aspects: a model trained
for particular acoustic conditions performs better than a ran-
dom sampling (RS) model; it exhibits strong diversity among
weak dereverberated models. Next, we propose two novel

frameworks, namely, the highway HELM [HELM(Hwy)] and
the residual HELM [HELM(Res)], to enhance the general-
ization performance of the HELM, and we put forth both
ensemble HELM(Hwy) and ensemble HELM(Res) frame-
works for speech dereverberation. To the best of our knowl-
edge, this is the first attempt that uses an ensemble learning
utilizing HELM for speech dereverberation. To evaluate the
proposed HELM structures, we conducted a series of exper-
iments on the Texas Instrument and Massachusetts Institute
of Technology (TIMIT) [39], Mandarin hearing in noise
test (MHINT) [40], and reverberant voice enhancement and
recognition benchmark (REVERB) [41] corpora. Our results
demonstrate the effectiveness of the proposed frameworks for
speech dereverberation when a relatively limited amount of
training data is available. The main contributions of this article
are as follows.

1) Two new HELM architectures, namely, HELM(Hwy)
and HELM(Res), are introduced for speech dere-
verberation. Both architectures incorporate low-level
information to facilitate better spectral mapping (regres-
sion) capability.

2) Ensemble HELM-, HELM(Hwy)-, and HELM(Res)-
based frameworks to handle unseen reverberant condi-
tions are deployed with success.

3) We demonstrate that for a relatively limited amount
of training data, the proposed ensemble frameworks
outperform the conventional BP-based neural networks
under both matched and mismatched testing conditions
in terms of standardized objective measures that include
perceptual evaluation of speech quality (PESQ), short-
time objective intelligibility (STOI), frequency-weighted
segmental signal-to-noise ratio (FwSSNR), speech-to-
reverberation modulation energy ratio (SRMR), cep-
strum (Cep) distance, and log likelihood ratio (LLR).

II. RELATED WORK

This section first presents the structures of the ELM
and HELM. The proposed ensemble learning framework for
speech dereverberation is then described.

A. Extreme Learning Machines

1) ELM Model: The ELM model was proposed by
Huang et al. [31] to train single-layer feedforward networks
(SLFNs) at extremely fast speeds. In the ELM model, the
hidden layer parameters are randomly initiated and do not
require fine-tuning compared with conventional SLFNs. The
only parameters that require training are the weights between
the last hidden layer and the output layer. The experimental
results from the previous studies have verified the effective-
ness of the ELM algorithm by accommodating extremely fast
training with good generalization performance, compared with
the traditional SLFNs [31]. The function of the ELM can be
written as

f (xi) =
L∑

l=1

β lσ(wl · xi + bl) (1)
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where xi = [xi1, xi2, . . . , xiN]T ∈ RN is the input vector, wl =
[wl1, wl2, . . . , wlN]T ∈ RN is the weight vector connecting the
lth hidden node and the input vector, bl is the bias of the lth
hidden node, β l = [βl1, βl2, . . . , βlM]T ∈ RM is the weight
vector from the lth hidden node to the output nodes, L is the
total number of neurons in the ELM hidden layer, and σ(·) is
the nonlinear activation function. The output function can be
formulated as

f (xi) =
L∑

l=1

β lhl(xi) = h(xi)B (2)

where B is the output weight matrix and h(xi) =
[h1(xi), . . . , hL(xi)] is the nonlinear feature mapping. The
relationship above can be compactly described as

HB = Y (3)

where H is the hidden layer output matrix and Y is the target
data matrix

H =
⎡

⎢⎣
σ(w1 · x1 + b1) · · · σ(wL · x1 + bL)

...
...

σ (w1 · xI + b1) · · · σ(wL · xI + bL)

⎤

⎥⎦

I×L

B =
⎡

⎢⎣
βT

1
...

βT
L

⎤

⎥⎦

L×M

, Y =
⎡

⎢⎣
yT

1
...

yT
I

⎤

⎥⎦

I×M

. (3a)

The output weight matrix B is computed as

B = H+Y (4)

where H+ is the Moore–Penrose (MP) pseudoinverse of H that
can be calculated using different methods, such as orthogo-
nal projection methods, Gaussian elimination, and single-value
decomposition (SVD) [42].

2) Hierarchical ELM: The universal approximation capa-
bility of the ELM proved to be suitable for a wide range of
applications, as described in the previous section. However, to
extract more abstract information in a multilayer structure, the
hierarchical ELM (HELM) was proposed by Tang et al. [33].
In contrast to the ELM, the HELM framework comprises two
stages: 1) the unsupervised feature extraction stage and 2) the
supervised classification or regression stage. In the unsuper-
vised stage, an ELM-based autoencoder (ELM-AE) is adopted
to map a function f (x) to approximate the input data such
that f(w,b)(x̂) ≈ x, where {w, b} are the weight and bias,
respectively. A sparse autoencoder is used to learn the rep-
resentation of sparse features to fully exploit the benefit of
universal approximation. In ELM-AE, random mapping is uti-
lized for feature representation, which improves the learning
accuracy and minimizes the reconstruction error. The input
data are transformed into an ELM feature space to effectively
utilize the information of the input data samples. The output
of the unsupervised stage is subsequently used as the input to
the supervised ELM classification or regression stage for the
final decision making.

Fig. 1. Residual block for DDAE.

B. Ensemble Learning for Speech Signal Processing

Recently, ensemble learning frameworks formed by DDAEs
have exhibited excellent performance for speech dereverbera-
tion and denoising [43], [44]. An ensemble learning system
comprises a set of component models and a fusion model.
Each component model precisely characterizes the spectral
mapping between a distorted speech and a clean one for a
particular acoustic environment. The fusion model combines
the multiple outputs of the component models to generate
the final output, with the aim to minimize the reconstruction
error between the dereverberated/denoised speech Ŷ and the
reference clean speech Y. During the online stage, the dere-
verberated/denoised magnitude and the phase spectrums of the
original signal are used to reconstruct the waveform. In [43], a
DDAE-based integrated deep and ensemble learning algorithm
(IDEA) was proposed to effectively reduce the reverberation
artifacts. In addition to DDAE-based ensemble models, Lee et
al. [43] utilized a highway strategy and proposed a highway-
DDAE [DDAE(Hwy)] framework to further improve the
speech dereverberation performance. In this article, we extend
the IDEA framework by replacing the HDDAE blocks with
more effective residual-DDAE [DDAE(Res)] blocks to prepare
the component models. Fig. 1 shows the proposed residual
block for the DDAE framework. Similar to the DDAE(Hwy)-
based speech dereverberation framework proposed in [43], the
output in the DDAE(Res) framework follows a skip connec-
tion from the shallower layer to a deeper layer. The resulting
output for the m hidden layer DDAE(Res) in the DDAE(Res)
model is

h1(xi) = σ (W1xi + b1)

...

hk(xi) = σ (Wkhk−1(xi) + bk)

...

hm−1(xi) = σ (Wm−1hm−2(xi) + bm−1)

hm(xi) = σ (Wmhm−1(xi) + bm) + hq(xi)

ŷi = Wm+1hm(xi) + bm+1 (5)

where xi is the input reverberant speech for i-th logarithm
amplitude vector, {Wm, bm} are the weight and bias matri-
ces, respectively, σ(·) is the non-linear activation function,
hm−1(xi) denotes the representation of the m−1 hidden layer,
hq(xi) denotes the representation of a previous hidden layer
q (in this study, we set q=1), and ŷi is the logarithm ampli-
tude vector of the estimated speech. More details about IDEA
framework is found in [43].
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Fig. 2. Overall speech dereverberation architecture using (a) conventional
HELM, (b) HELM(Hwy), and (c) HELM(Res).

III. HELM MODELS FOR SPEECH DEREVERBERATION

A. HELM-Based Speech Dereverberation System

Fig. 2 shows the speech dereverberation system with three
types of HELM models. Fig. 2(a) presents the speech dere-
verberation using the conventional HELM. The objective is to
learn the function of spectral mapping from the reverberant to
anechoic speech. During the offline stage, the speech signals
are first converted to a short-time Fourier transform (STFT)
domain to calculate the frequency and phase components. The
logarithmic power spectral (LPS) features are then extracted
for both reverberant and anechoic speech spectra to be used in
the HELM model. In the unsupervised stage, an ELM-AE is
employed to map a function f (̂x) to approximate the input data
such that f{w,b}(̂x) ≈ x, where {w, b} are the weights and bias,
respectively. The input reverberant LPS features are first pro-
jected to an ELM feature space to exploit hidden information
among training samples. High-level features are then extracted
using an ELM-AE by considering each layer to be indepen-
dent. The output of the unsupervised stage is subsequently
processed by the ELM-based supervised stage to generate the
dereverberated speech. In deep neural structures, the parame-
ters {w, b} are fine-tuned to obtain the minimum reconstruction
error. On the other hand, in ELM-AE, random mapping is uti-
lized for feature representation. For speech dereverberation,
the goal is to reconstruct the anechoic speech signal from the
reverberant speech by minimizing the following error:

E = ‖Y − Ŷ‖2
F (6)

where Y is the reference anechoic speech signal and Ŷ is the
estimated speech signal. For the i-th logarithmic amplitude
vector, the mapping function of the reverberant input and the
estimated speech can be written as

ŷi =
L∑

l=1

β lσ(wl · xi + bl) (7)

where xi = [xi1, xi2, . . . , xiN]T ∈ RN is the input training vec-
tor, wl = [wl1, wl2, . . . , wlN]T ∈ RN is the input weight vector
connecting the lth hidden node and the input vector, bl is the
bias of the lth hidden node, β l = [βl1, βl2, . . . , βlM]T ∈ RM

is the weight vector from the lth hidden node to the output
nodes, σ(·) is the nonlinear activation function to approximate
the target function to a compact subset, and ŷi and xi are the
i-th vectors of Ŷ and X, respectively. The relationship can be
compactly written as

HB = Ŷ (8)

where H is the hidden layer output matrix, B is the output
weight matrix, and Ŷ is the estimated speech signal matrix. In
the implementation, we incorporate a bias term in the weight
matrix B for affine transformation, which is realized by aug-
menting H with an all-one vector. The relationship in (6) can
be written as

E = ‖Y − HB‖2
F (9)

where

H =
⎡

⎢⎣
σ(w1 · x1 + b1) · · · σ(wL · x1 + bL)

...
...

σ (w1 · xI + b1) · · · σ(wL · xI + bL)

⎤

⎥⎦

I×L

B =
⎡

⎢⎣
βT

1
...

βT
L

⎤

⎥⎦

L×M

, Y =
⎡

⎢⎣
yT

1
...

yT
I

⎤

⎥⎦

I×M

(9a)

where L is the number of hidden neurons, I is the number of
speech frames, and M is the dimension of LPS features. The
output weight matrix B can be computed as

B̂ = H+Ŷ (10)

where H+, the pseudoinverse of H, can be calculated using the
orthogonal projection methods, such as H+ = (HᵀH)−1Hᵀ,
where HᵀH should be nonsingular, or H+ = Hᵀ(HHᵀ)−1,
where HHᵀ should be nonsingular; B̂ is the output weight
matrix; and Ŷ is the estimated speech signal. In practice, we
directly use the reference anechoic speech signal Y for Ŷ in
(6) along with H to compute B̂.

During the online stage, the reverberant utterance is first
processed into LPS and phase parts. The reverberant LPS fea-
tures are subsequently processed using (3) and (4) to generate
the dereverberated LPS features. Together with the phase of
the reverberant speech, we can then obtain the dereverber-
ated speech waveforms by performing overlap add and inverse
STFT operations.

B. Highway HELM

The concept of the highway architecture was proposed
in [45], where the highway or skip connections were used
in very deep neural structures to facilitate an effective and
efficient gradient-based training. In this article, we propose
to extend the conventional HELM model by using the high-
way architecture to incorporate low-level information into
the deeper layers. To the best of our knowledge, this is
the first time such a structure is proposed. The new HELM
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Fig. 3. Offline and online stages of the ensemble HELM (eHELM) dereverberation framework.

model is called HELM(Hwy). The experimental results indi-
cated that HELM(Hwy) improves the speech dereverbera-
tion performance in terms of several standardized evaluation
metrics, as will be discussed in Section IV. Fig. 2(b) illustrates
the proposed highway structure for the HELM framework.

In HELM, the output of each hidden layer is defined as

Hl = σ (Hl−1 · B) (11)

where Hl is the lth hidden layer output matrix, Hl−1 is the out-
put matrix of the (l − 1)th hidden layer, and B is the weight
matrix. HELM(Hwy), as shown in Fig. 2(b), adopts the high-
way architecture to enable the HELM to form an augmented
hidden layer as

Hl_Hwy = [Hq, σ (Hl−1 · B)] (12)

where Hq is the output of a previous hidden layer q, and
Hl_Hwy is the new output matrix after the integration.

C. Residual HELM

In addition to the highway architecture, we propose to incor-
porate a residual mechanism into the conventional HELM and
accordingly derive the residual HELM, termed HELM(Res).
The key idea of the residual architecture is to incorporate low-
level information into the deeper layers similar to highway
connections. In the conventional multilayer neural network
architectures, the information from lower to higher layers must
follow the traditional feedforward path. In residual architec-
tures, the low-level information is copied much further into the
neural network and incorporated linearly into the higher lay-
ers. Rather than follow the main path, the information in the
residual network can now follow a shortcut or skip connection
to go much deeper into the neural network. Fig. 2(c) shows
the basic residual block for HELM(Res). The formulation of
the HELM(Res) can be expressed as y = h(x) + x, where x
is the identity mapping of the unsupervised layer and h(x) is
the output from the previous layers (unsupervsied stage). The
updated Hl_Res of the HELM(Res) for the lth hidden layer can
be computed as

Hl_Res = (wᵀ Hᵀ
q )ᵀ + σ (Hl−1 · B) (13)

where w is the weight matrix (a random matrix in this study)
generated for the linear projection to match the dimensions,
Hq is the output of a previous hidden layer q, and Hl−1 is the
output matrix of the (l − 1)th hidden layer in the HELM(Res)
model.

D. Ensemble HELM Model for Speech Dereverberation

We now present the proposed ensemble HELM framework
for speech dereverberation. Fig. 3 shows both the offline and
online stages of the ensemble HELM framework. In the offline
stage, multiple HELM component models are trained individ-
ually and independently to learn the spectral mapping function
for each reverberation condition. Subsequently, a fusion model
is estimated to combine the outputs of these models to gener-
ate the final anechoic speech. In our case, four HELM-based
component models are trained corresponding to four spe-
cific reverberation conditions (i.e., RT60 ∈ {0.3, 0.6, 0.9,
1.2}), which are denoted as HELM0.3, HELM0.6, HELM0.9,
and HELM1.2, respectively. In Fig. 3, these four models are
presented with different colors and border styles in the offline
stage (and in the corresponding online stage). The outputs of
the four component models are denoted as Y0.3, Y0.6, Y0.9, and
Y1.2, respectively. We then combine these outputs to form an
integrated vector XI , such that XI = {Y0.3, Y0.6, Y0.9, Y1.2}.
The fusion model, HELMI , intends to compute a mapping
function to transform the integrated vector XI to the anechoic
speech vector Y.

In the online stage, the test utterances are first converted into
LPS features and phase parts. The reverberant LPS features
are processed through each component model. The outputs of
all the component models are later integrated and processed
through a fusion model, (HELM)I , to produce the anechoic
speech signal. The phase of the original reverberant utterances
is used along with the overlap add and ISTFT operations to
reconstruct the waveform of the dereverberated speech utter-
ances. In the following discussion, we will name the ensemble
framework using the HELM as eHELM. In addition to the
HELM, we also use HELM(Hwy) and HELM(Res), as shown
in Fig. 3, to form the ensemble frameworks, which are termed
eHELM(Hwy) and eHELM(Res), respectively.
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IV. EXPERIMENTS

A. Experimental Setup

1) TIMIT Corpus: The TIMIT [39] corpus was used to
evaluate the performance of the proposed HELM solutions. We
selected 300 utterances, as the training data and 100 testing
utterances as the testing data. We also made sure no over-
lap occurred between the speakers and the speech content of
the training and testing sentences. Four room conditions were
simulated to generate different acoustic characteristics: room 1
was of the size 12×4×6 m, room 2 was 14×10×8 m, room 3
was 18×14×8 m, and room 4 was 20×20×20 m. The micro-
phone positions for these four rooms were at 2 × 2 × 1.6 m,
2 × 2 × 1.8 m, 2 × 2 × 2 m, and 6 × 2 × 2.2 m, respec-
tively. We designed two training sets: 1) in training set 1, 300
training utterances were convolved with a single RIR (1RIR)
along with four RT60 (i.e., RT60 ∈ {0.3, 0.6, 0.9, 1.2})
to generate 300 × 4(RT60) × 1(RIR) = 1200 reverberant
training utterances (1.3 h of reverberant training data) and
2) in training set 2, we simulated more reverberant condi-
tions by considering three RIRs (3RIRs) for each RT60 to
generate 300×4(RT60)×3(RIRs) = 3600 reverberant training
utterances (4 h of reverberant training data).

The aforementioned 100 testing utterances were used to
prepare two different evaluation sets: 1) matched condition
and 2) mismatched condition. In the matched condition, four
rooms were simulated with the same RT60, i.e., RT60 ∈ {0.3,
0.6, 0.9, 1.2}, as that used in the training set but with differ-
ent room dimensions. The rooms were of sizes 10 × 4 × 6,
12 × 14 × 6, 16 × 16 × 8, and 22 × 20 × 12 m, respectively.
The microphone positions were also different from that of the
training set; the positions were 2×2×1.6, 3×2×2, 4×3×2.2,
and 5 × 2 × 2.5 m, respectively. In the mismatched condition
scenario, three rooms of dimensions 10 × 4 × 6, 14 × 14 × 6,
and 18×16×8 m, respectively, were simulated with RT60 of
0.4, 0.8, and 1.0 s, respectively. The microphone for the mis-
matched test reverberant data was placed at the same position
as of the matched testing data, namely, 2 × 2 × 1.6, 3 × 2 × 2,
and 4 × 3 × 2.2 m, respectively.

2) Evaluation Metrics: We evaluated our approach
using four standardized objective metrics: 1) PESQ [46];
2) STOI [47]; 3) FwSSNR [48]; and 4) SRMR [49]. The
PESQ score was used to measure the speech quality of the
dereverberated speech that ranges between −0.5 and 4.5. In
effect, the higher the PESQ score, the better the speech qual-
ity. The STOI computes the speech intelligibility based on the
correlation between the temporal envelopes of the derever-
berated and anechoic speech over short-time segments. The
STOI score ranges between 0 and 1, a higher score indicat-
ing better speech intelligibility. The FwSSNR measures the
ratio of the dereverberated and anechoic speech with con-
sideration of the articulation index weight. The SRMR is
a nonintrusive quality measurement of the reverberant and
dereverberated speech. Higher FwSSNR and SRMR scores
denote that the dereverberated speech is closer to the ane-
choic speech. In addition, two objective measures, the Cep
distance and LLR [48] are also measured to estimate the qual-
ity of the dereverberated speech signal. Cep estimates the

spectral distance between the enhanced and clean reference
speech signals whilst LLR computes the ratio of the discrep-
ancy between them. Smaller values of Cep and LLR score
denote less distortion with better speech quality. The SRMR,
Cep, and LLR metrics are provided by the REVERB chal-
lenge designed specifically for the dereverberation task [41].
All the evaluation metrics (except SRMR) are obtained by
comparing the estimated speech with the corresponding refer-
ence speech. The SRMR is obtained by computing the SRMR
of the estimated speech signal directly.

In this article, speech signals were processed using a moving
window with a frame size of 16 ms and a frame shift of 8 ms.
Subsequently, 129-D LPS features were calculated for each
speech frame.

B. Experimental Results

We first assessed the performance of the proposed frame-
works using training set 1, namely, 1200 reverberant anechoic
utterance pairs (the training set obtained from using only
a single RIR). Subsequently, we extended the experiments
by considering a relatively large training set (training set
2), where 3600 reverberant–anechoic utterance pairs were
employed to train the proposed models (training data generated
with three RIRs).

1) HELM(Hwy) and HELM(Res): We first intend to
compare the performance of HELM, HELM(Hwy), and
HELM(Res) against reverberant speech signals (denoted as
Reverb). For an impartial comparison, all HELM models
were trained using the entire training data covering all rever-
beration conditions (i.e., RT60 ∈ {0.3, 0.6, 0.9, 1.2}), i.e.,
1200 reverberant–anechoic utterance pairs, and tested using
the matched testing set. In this set of experiments, we
used the same regularization parameters of the HELM as
reported in [37]. Table I lists the PESQ results of the con-
ventional HELM, and for the proposed HELM(Hwy) and
HELM(Res) approaches. All HELM configurations comprised
three hidden nonlinear layer containing 1000, 1000, and
4000 neurons ([1000 1000 4000]). The sigmoidal activa-
tion function was employed for the three HELM methods.
Furthermore, no contextual information was used, that is,
the current speech frame was only fed at the HELM input
layer, and neighbor frames were not taken into account during
training or testing—this is equivalent to setting the con-
text input window size (ws) to zero. The last column in
Table I shows the average PESQ scores over all reverber-
ation conditions. The highest PESQ score for each partic-
ular reverberation condition has been highlighted in bold-
face. The experimental results in Table I demonstrate that
the conventional HELM notably outperforms Reverb (rever-
berant speech signals). The improvement was higher for
RT60 ≥ 0.6 s, indicating more severe reverberation con-
ditions. Furthermore, HELM(Hwy) and HELM(Res) mod-
els achieved slightly better average PESQ results com-
pared with the conventional HELM, confirming the effective-
ness of incorporating low-level information into the spectral
mapping stage.

2) Context Analysis: In this section, we intend to investi-
gate the correlation of the dereverberation performance and
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TABLE I
AVERAGE PESQ SCORES OF HELM, HELM(HWY), HELM(RES), AND

REVERB SPEECH UNDER SPECIFIC REVERBERANT CONDITIONS

TABLE II
AVERAGE PESQ SCORES OF HELM, HELM(HWY), AND HELM(RES)

WITH DIFFERENT CONTEXT INFORMATION

the context information (= 2 × ws + 1) by varying the con-
text (ws) from 1 (ws = 0) to 11 (ws = 5). Table II presents
the PESQ scores delivered by HELM, HELM(Hwy), and
HELM(Res) with different ws values. The same architectures,
i.e., [1000 1000 4000], were used for these three HELM
models. From Table II, we first note that under mild rever-
berant conditions (i.e., RT60 = 0.3 and 0.6 s), less context
information can yield more effective dereverberation results
for all three HELM models. On the other hand, under more
severe reverberant conditions (i.e., RT60 = 0.9 and 1.2 s),
more context information provides higher PESQ scores. The
results further show that HELM(Res) consistently outper-
forms HELM and HELM(Hwy) in terms of average PESQ
for every ws value, demonstrating that HELM(Res) can
achieve a more effective dereverberation performance as both
approaches [HELM(Hwy) and HELM(Res)] share the same
underpinnings, i.e., training very deep neural architectures by
incorporating the low-level information to higher levels. To
quantify the statistical significance of the proposed frame-
works, we employed a two-sample t-significance test for each
test reverberation condition (i.e., RT60 ∈ {0.3, 0.6, 0.9, 1.2})
using ws = 0 and ws = 3, for which we obtained the best aver-
age performance. The significance test was applied to examine
whether the improvement in performance was due to some ran-
dom effect. For the null hypothesis, we assumed that the means
of the two frameworks (i.e., μHELM(Hwy) and μHELM(Res))
were significantly different from that of the original HELM
(μHELM). The significance value (p-value) for ws = 0 indicated

that only the HELM(Res) for the RT60 ∈ 0.3 s condition failed
to reject the null hypothesis—p-value = 0.02 (≤0.05) for the
HELM-HELM(Res). Nonetheless, HELM(Res) was demon-
strated as being significantly better than HELM for RT60 ∈
{0.3, 0.6, 0.9, 1.2} reverberation condition by providing a very
small p-value for ws = 3, also characterizing better capabil-
ities when compared with HELM(Hwy). Residual networks
reformulate the desired transformation with respect to a refer-
ence input layer as identity shortcuts that are parameter-free,
facilitating better learning capabilities; whereas the highway
networks have parameters [50] that may cause overfitting for
small amounts of training data, resulting in poor performance
compared to HELM(Res). We observed the same findings as
reported in [50] by obtaining significant performance improve-
ment for residual networks compared to highway networks.
We can also note that among all of the context information
ws = 3 achieved the best average PESQ results consistently
over the three HELM models. Therefore, we report the results
of using ws = 3 in the following discussion.

3) Ensemble HELM: In this section, we present our
results concerning the ensemble HELM frameworks. Training
set 1, namely, 1200 reverberant–anechoic utterance pairs, was
employed in this set of experiments. In the offline stage, we
built component models based on acoustic knowledge [thus
denoted as knowledge-based approach (KB)] to split the entire
dataset into subsets. Each subset of data was used to train one
dereverberation model to characterize the mapping function
from a specific reverberant condition to the clean condition as
described in Section III-D. Here, four component models were
trained corresponding to four reverberation conditions (i.e.,
RT60 ∈ {0.3, 0.6, 0.9, 1.2}). Subsequently, a fusion model
was trained to combine the outputs of the four component
models and generate the final dereverberated speech signal
that matches the reference anechoic one. In the online stage,
the input speech was independently processed by each of the
four component models. The fusion model then integrated the
outputs of the four models to obtain the dereverberated speech.

To confirm the effectiveness of the KB scheme, we designed
another comparative data clustering scheme that divided the
training data into subsets in an random-sampling (RS) man-
ner, where no knowledge of environment characteristics was
involved for data clustering. Based on the RS scheme, four
subsets of training data were prepared, and each subset con-
tained 300 reverberant–anechoic utterance pairs by randomly
sampling from the entire set of 1200 reverberant anechoic
utterance pairs. Each subset was used to prepare a derever-
beration model. Once the four models were trained, a fusion
model was estimated. In the online stage, the incoming test
utterance was processed by the four component models, and
the fusion model integrated the outputs of these four models
to generate the final dereverberated speech.

We used the original HELM, HELM(Hwy), and
HELM(Res) to build the componet and fusion models;
the corresponding component frameworks were termed
eHELM, eHELM(Hwy), and eHELM(Res), respectively.
For all of these ensemble HELM models, we employed
the same number of hidden layers and neurons for a fair
comparison. Table III presents the average PESQ score for



HUSSAIN et al.: ENSEMBLE HELM FOR SPEECH DEREVERBERATION 751

TABLE III
AVERAGE PESQ SCORES OF THREE HELM FRAMEWORKS

WITH THE RS AND KB SCHEMES

the three ensemble HELM frameworks with both RS and
KB clustering schemes. From Table III, we first note that
all of the ensemble HELM frameworks with either KB or
RS clustering schemes outperformed the Reverb speech with
notable margins except for the RT60 = 0.3-s condition,
where the Reverb had a better PESQ score than the three
ensemble HELM frameworks with the RS clustering. Next,
we observe that eHELM performed the worst by exhibiting a
lower PESQ score at each RT60 (RT60 ∈ {0.3, 0.6, 0.9, 1.2})
among the three ensemble HELM frameworks. Moreover,
in relatively mild reverberation conditions, such as RT60 ∈
{0.3, 0.6}, all ensemble HELM frameworks with the KB
clustering scheme achieved better performance than those
with the RS clustering. On the other hand, in relatively
severe reverberation conditions, i.e., RT60 ∈ {0.9, 1.2},
all ensemble HELM frameworks with the RS clustering
scheme outperformed that of the KB counterparts. For RS
and KB clustering schemes, eHELM(Res) illustrated better
performance by yielding consistent improvements at each
RT60 compared to all other frameworks. In terms of average
PESQ scores, the KB clustering scheme yielded higher PESQ
scores as compared with the RS clustering scheme. Therefore,
in the following discussion, we only report the results of
the ensemble HELM frameworks adopting the KB clustering
scheme.

4) Ensemble HELM Versus Existing Approaches: In this
section, we compare the proposed ensemble HELM frame-
works with conventional dereverberation approaches. In this
set of experiments, we employed training set 2 (3600 reverber-
ant anechoic utterance pairs, as described in Section IV-A1) to
train the three ensemble HELM frameworks, namely, eHELM,
eHELM(Hwy), and eHELM(Res). Two conventional derever-
beration approaches were carried out for comparison. The first
is called the Wu–Wang [51] approach, which is a two-stage
speech dereverberation system that adopts inverse filtering and
spectral subtraction to handle early and late reverberations.
The second approach is a recently proposed coherent-to-
diffuse power ratio (CDR) estimation [52] method. For this
approach, the CDRs between two omnidirectional micro-
phones are estimated for dereverberation using several known
CDR estimators. In our sets of experiments, the estimator with
the unknown direction of arrival (DOA), and unknown noise
coherence was adopted for comparison. In addition to conven-
tional approaches, we compared the learning performance of
the ensemble frameworks against a recently proposed learning-
based IDEA [43], which uses DDAE models as the component
models and a CNN as the fusion model. For comparison with

TABLE IV
AVERAGE PESQ SCORES OF ENSEMBLE HELM AND IDEA

FRAMEWORKS IN THE MATCHED TESTING CONDITIONS

the HELM(Hwy) and HELM(Res), we adopted the highway
DDAE and residual DDAE as component models, while using
CNN as the fusion model; these systems are termed IDEA,
IDEA(Hwy), and IDEA(Res), respectively. For the three IDEA
systems, we followed the same model architectures as that
used in [43] because the total number of training samples in
the experiment was comparable to that in [43]. Moreover, the
preliminary experiments confirmed that the IDEA architec-
tures achieved very good performance for the TIMIT dataset.
Therefore, we decided to use the best architecture of IDEA
in [43] as a comparative dereverberation system. Each DDAE
model in the above-mentioned IDEA systems consisted of
three hidden layers, with each layer having 2048 hidden neu-
rons; the CNN fusion model consisted of three hidden layers,
i.e., two convolutional layers with each layer containing 32
channels, and a fully connected layer with 2048 nodes. The
learning rate for the ensemble learning models was set to
0.0002, the same as that used in [53], with a mini-batch size
of 128. The number of epochs was set to 100. The results of
the Reverb, Wu–Wang system, three IDEA systems, and three
ensemble HELM systems are reported in Table IV.

From Table IV, the proposed ensemble HELM frameworks,
i.e., eHELM, eHELM(Hwy), and eHELM(Res), notably out-
performed both Reverb and Wu–Wang approaches. Among
the three eHELM systems, eHELM(Res) yielded the best
performance, confirming the effectiveness of the resid-
ual architecture. eHELM(Res) also outperformed all of
the IDEA systems consistently over different reverberant
conditions.

5) Ensemble HELMs With More Complex Architectures:
By comparing the results in Tables III and IV, we note that
the three ensemble HELM frameworks consistently improved
when we increased the training utterance pairs from 1200 to
3600. That motivated us to increase the complexity of the
component models in the ensemble HELM frameworks and
verify whether further improvements could be attained. For
all of the HELM models, a relatively more complex architec-
ture of [1000 1000 10 000] was used because such a setup
gave better results in our previous speech enhancement exper-
iments [41]; the corresponding ensemble HELM models were
termed eHELMD, eHELMD(Hwy), and eHELMD(Res). For
comparison, we also considered DDAE models with deeper
structures in the IDEA framework as those used in [43]: each
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TABLE V
AVERAGE PESQ SCORES OF ENSEMBLE HELM AND IDEA

FRAMEWORKS WITH COMPLEX STRUCTURES

IN THE MATCHED TESTING CONDITIONS

Fig. 4. Average STOI, SRMR, FwSSNR, Cep, and LLR scores of Reverb,
Wu–Wang, CDR, IDEAD(Res), and eHELMD(Res) in the matched testing
conditions.

DDAE model had six hidden layers, with each layer having
2048 hidden neurons; a CNN model consisting of three hidden
layers—two convolutional layers with each layer containing
32 channels; and a fully connected layer with 2048 nodes.
The corresponding ensemble IDEA frameworks were termed
IDEAD, IDEAD(Hwy), and IDEAD(Res). We first presented
the results of these models tested on matched conditions
(namely, the testing conditions consisted of RT60 ∈ 0.3, 0.6,
0.9, 1.2). Table V displays the PESQ performance of the IDEA
and the ensemble HELM frameworks. Comparing Tables IV
and V, we can first note that by using more complex structures,
both IDEA and ensemble HELM frameworks demonstrated
better performance. Moreover, from Table V, IDEAD(Res)
and eHELMD(Res) performed the best among the IDEA and
ensemble HELM frameworks, respectively, which is consis-
tent with the results reported in Table II, again confirming the
effectiveness of the residual structure.

In addition to the PESQ scores, we reported the average
STOI, SRMR, FwSSNR, Cep, and LLR results in Fig. 4.
Here, we only show IDEAD(Res) and eHELMD(Res) results,
as these models achieved better performance for the IDEA
and ensemble HELM frameworks, respectively, as shown in
Table V. The results of the Reverb, Wu–Wang, and CDR
approaches were also listed for comparison. The average
results presented in Fig. 4 were scaled scores to 0 and 1. From
Fig. 4, we observe that eHELMD(Res) outperformed the other
approaches by providing better speech intelligibility (higher
STOI scores) with an average score of 0.7288 compared
with Reverb (0.6326), Wu–Wang (0.6081), CDR (0.6968),
and IDEAD(Res) (0.7035) for matched testing conditions.
Similarly, the proposed eHELMD(Res) framework maintained
a better reverberation suppression by contributing a high

TABLE VI
AVERAGE PESQ SCORES OF ENSEMBLE HELM AND IDEA

FRAMEWORKS WITH COMPLEX STRUCTURES IN THE

MISMATCHED TESTING CONDITIONS

Fig. 5. Average STOI, SRMR, FwSSNR, Cep, and LLR scores of Reverb,
Wu–Wang, CDR, IDEAD(Res), and eHELMD(Res) in the mismatched testing
conditions.

FwSSNR score and low Cep and LLR scores. The figure
demonstrates that the conventional approaches, i.e., Wu–Wang
and CDR, could attain higher SRMR scores, but they revealed
to demonstrate the worst performance on Cep and LLR met-
rics, which are highly correlated with the quality of the
dereverberated speech signals and indicate an overestima-
tion of the reverberation. The overestimation is caused by a
suppression due to incompatibilities between the exponential
decay and impulse responses [52].

We then evaluated the same frameworks using the mis-
matched testing conditions, i.e., RT60 ∈ {0.4, 0.8, 1.0}.
Table VI presents the PESQ results for the three ensem-
ble HELM frameworks, namely, eHELMD, eHELMD(Hwy),
and eHELMD(Res), and the three IDEA frameworks, namely,
IDEAD, IDEAD(Hwy), and IDEAD(Res) on the mismatched
testing conditions. From Table VI, we first note that both
ensemble HELM and IDEA frameworks outperformed the
Reverb and Wu–Wang approaches. Moreover, eHELMD(Res)
and IDEAD(Res) provided the highest PESQ scores among the
ensemble HELM and IDEA frameworks under the mismatched
conditions, confirming the benefit of the residual architecture.

In addition to the PESQ scores, Fig. 5 presents the aver-
age STOI, SRMR, FwSSNR, Cep, and LLR scores yielded
by IDEAD(Res) and eHELMD(Res) under the mismatched
testing conditions. From the scores reported in Fig. 5, we
can note that the eHELMD(Res) demonstrated a superior
performance under the mismatched testing conditions, out-
performing Reverb, Wu–Wang, CDR, and IDEAD(Res) in
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TABLE VII
AVERAGE PESQ SCORES OF THE RTA SYSTEM AND THE EHELMD(RES)

IN THE MATCHED AND MISMATCHED TESTING CONDITIONS

terms of all the evaluation metrics except for SRMR, where
the Wu–Wang and CDR approaches exhibited better scores,
again indicating an overestimation of the reverberation due to
incompatibilities between the exponential decay and impulse
responses.

6) Ensemble HELM Versus Reverberation Time-Aware
HELM: Next, we intend to study whether better dereverbera-
tion results can be achieved when the reverberation conditions
are accessible. To this end, we built a reverberation time-
aware (RTA) system on top of the ensemble HELM frame-
work. In the RTA system, four dereverberation models were
prepared according to specific reverberation conditions (i.e.,
RT60 ∈ {0.3, 0.6, 0.9, 1.2}), denoted as HELMD(0.3)(Res),
HELMD(0.6)(Res), HELMD(0.9)(Res), and HELMD(1.2)(Res),
respectively. In the online stage, we assumed that the reverber-
ation times (RT60s) of the testing conditions were accessible
beforehand, and thus the model that matches the testing
RT60s can be perfectly selected to perform dereverberation.
In Table VII, we list the PESQ results of the training–testing
matched conditions (diagonal values) and the training–testing
mismatched conditions provided in the nondiagonal entries for
comparison. From Table VII, we can confirm that using the
matched models yielded better dereverberation performance
when compared with the mismatched conditions, demonstrat-
ing that we can obtain better dereverberation performance
if the reverberation times are known in advance. However,
the reverberation times are usually not accessible in real-
world scenarios, and thus the diagonal values presented in
Table VII present the best PESQ results when only one model
was selected to perform dereverberation. In Table VII, we
also listed the results of eHELMD(Res), which are the same
as the ones reported in Table V. From this table, we can
note that the average PESQ performance of eHELMD(Res)
outperforms all of the four models [i.e., HELMD(0.3)(Res),
HELMD(0.6)(Res), HELMD(0.9)(Res), and HELMD(1.2)(Res)],
for the 0.6 and 0.9 RT60 conditions. When compared with the
RTA system, which produces an average PESQ score of 2.2395
[=(3.1771+2.0533+1.8766+1.8511)/4] over the diagonal val-
ues, eHELMD(Res) achieved a higher average PESQ score of
2.3204. The results show that although we assumed RTA as an
ideal approach, the proposed ensemble HELM can yield higher
PESQ scores. Potential reasons for this result could be: 1) the
utterance is chosen as a whole, which may not be optimal for
frame-based processing and 2) in eHELMD(Res), the fusion
model also operates as a post-filtering process, which further
improves the performance of the overall system.

TABLE VIII
AVERAGE PESQ SCORES OF ENSEMBLE HELM AND IDEA

FRAMEWORKS WITH COMPLEX STRUCTURES IN THE MATCHED TESTING

CONDITIONS FOR THE MHINT CORPUS

TABLE IX
AVERAGE PESQ SCORES OF ENSEMBLE HELM AND IDEA

FRAMEWORKS WITH COMPLEX STRUCTURES IN THE MISMATCHED

TESTING CONDITIONS FOR THE MHINT CORPUS

7) Evaluation on MHINT and REVERB Challenge Data
Sets: The previous sections demonstrate the applicability
and effectiveness of the proposed ensemble framework on a
TIMIT-based dereverberation task using synthetically gener-
ated RIRs. In the following sections, we aim to evaluate the
proposed systems on more challenging tasks using different
sets of synthetically generated and real (measured) impulse
responses (e.g., various RIRs and RT60s). We employed two
datasets to conduct different sets of experiments.

For the MHINT [40] corpus, we convolved 250 clean utter-
ances with a single RIR and three RT60s (i.e., RT60 ∈ {0.3,
0.6, 0.9}) to generate 250×3(RT60)×1(RIR) = 750 reverber-
ated training utterances (0.75 h of reverberant training data).
The learning capability of the proposed ensemble framework
was assessed by considering both matched and mismatch test-
ing conditions. In the matched case, 120 clean test utterances
were convolved with a single RIR and three RT60s (i.e.,
RT60 ∈ {0.3, 0.6, 0.9}) to generate 120×3(RT60)×1(RIR)
= 360 reverberant testing utterances. In the mismatched
case, the same number of reverberant utterances were gen-
erated by convolving clean test utterances with a single
RIR and mismatched RT60s (i.e., RT60 ∈ {0.4, 0.7, 1.0}).
Tables VIII and IX summarize the average PESQ performance
scores for each RT60 of the MHINT corpus given by the
IDEAD(Res) and eHELMD(Res) frameworks under matched
and mismatched test conditions, respectively. The results of
the Wu–Wang, CDR, and Reverb are also listed for compari-
son. These results clearly demonstrate that the eHELMD(Res)
framework yields better performance across different RT60s.
Similar to PESQ, Figs. 6 and 7 display the average results
for the MHINT corpus with other evaluation metrics under
matched and mismatched testing conditions, respectively. In
these experiments, the results attained by the Wu–Wang
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Fig. 6. Average STOI, SRMR, FwSSNR, Cep, and LLR scores of Reverb,
Wu–Wang, CDR, IDEAD(Res), and eHELMD(Res) under the matched testing
conditions for the MHINT.

Fig. 7. Average STOI, SRMR, FwSSNR, Cep, and LLR scores of Reverb,
Wu–Wang, CDR, IDEAD(Res), and eHELMD(Res) under the mismatched
testing conditions for the MHINT.

and CDR yielded higher average SRMR scores in compar-
ison with the IDEAD(Res) and eHELMD(Res) frameworks.
However, they failed to provide stable performance for the
other evaluation metrics (STOI, FwSSNR, Cep, and LLR).
The eHELMD(Res) proved to be effective by maintaining
stable performance for MHINT corpus under matched and
mismatched testing conditions.

To further assess the behavior of the proposed frameworks,
we prepared an additional set of simulated and measured RIRs
to verify their effectiveness and robustness. For this purpose,
a more complex and comparatively large REVERB challenge
corpus was used to evaluate the proposed frameworks. The
REVERB challenge corpus is based on Wall Street Journal
database (WSJ0) [54] and consists of a training set, a devel-
opment set, and an evaluation test set. The training set includes
7861 training utterances recorded by 92 speakers containing
17.5 h of noisy data. The evaluation test set was divided into
simulation data (SimData) and real data (RealData), containing
2176 and 372 utterances, respectively. For the training data,
clean utterances from the WSJ0 training set were convolved
with the impulse responses of the three rooms (small, medium,
and large) provided by the REVERB challenge to generate
multiconditioned reverberant data. The data were subsequently
contaminated with 20-dB background noise to generate multi-
conditioned noisy reverberant training data. The SimData from
the evaluation test set were artificially produced by convolving
the clean utterances with measured impulse responses of the
three rooms (small, medium, and large) having volumes differ-
ent from the training set and RT60 = 0.25, 0.5, and 0.7 s; the
convolved data were subsequently contaminated with a 20-dB

TABLE X
AVERAGE PERFORMANCE COMPARISON BETWEEN DIFFERENT METRIC

SCORES OF THE WU–WANG, CDR, IDEA, AND THE ENSEMBLE HELM
SYSTEMS FOR THE SIMDATA

background noise to generate reverberant noisy SimData. The
RIR of each room was measured using an eight-channel circu-
lar array having a diameter of 20 cm. The distances between
the source and the microphone array for each room of SimData
were 50 cm (= near) and 200 cm (= far).

To provide more insights on the speech dereverberation
capabilities of our ensemble framework, we compared it with
a bidirectional LSTM (BLSTM) recurrent neural network
(RNN)-based enhancement architecture, which delivered state-
of-the-art results in the reverb challenge competition [24].
We adopted the setup used in [24], where two BLSTM lay-
ers, each consisting of 128 units, were used followed by a
fully connected output layer and trained with RMSprop [55].
Averaged results of all evaluation metrics for eight-channel
systems across the three rooms of SimData are presented in
Table X. The Wu–Wang, CDR, and IDEAD(Res) frameworks
demonstrated unsatisfactory performance in comparison with
the unprocessed signals (Reverb). However, the CDR approach
yielded superior performance for SRMR among all frame-
works. Table X clearly demonstrates that BLSTM and eHELM
obtained comparable performance, where BLSTM attained
better performance in terms of Cep, LLR, and FwSSNR,
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TABLE XI
REVERBERATION TIMES (RT60S) AND DISTANCE BETWEEN THE

LOUDSPEAKER AND THE MICROPHONE FOR EACH ROOM

TABLE XII
AVERAGE PERFORMANCE COMPARISON BETWEEN DIFFERENT METRIC

SCORES OF THE WU–WANG, CDR, IDEA, AND THE ENSEMBLE HELM
SYSTEMS FOR REALDATA

while eHELMD(Res) attained better PESQ, STOI, and SRMR
scores.

The robustness of the proposed ensemble framework was
further examined under realistic reverberation conditions
where we employed a set of measured RIRs for different
rooms provided by the Aachen impulse responses (AIR) [56]
database. These RIRs are real recordings made in reverberant
rooms and are different from the ones used for SimData. In this
article, we considered the RIRs of the following four rooms: 1)
lecture; 2) meeting; 3) office; and 4) stairways. Table XI shows
the room acoustic parameters, i.e., RT60 (in seconds) and the
distance (in meters) between the loudspeaker and the micro-
phone (dLM), for each room. For RealData, clean utterances
from the WSJ1 corpus [57] were selected and convolved with
the measured RIRs of the rooms shown in Table XI, followed
by the 20-dB noise contamination. Table XII summarizes the
average performance of all the frameworks across different
evaluation metrics for all rooms. The IDEA and eHELM in
Table XII represent the deeper ensemble models of IDEA and
eHELM frameworks, i.e., IDEAD(Res) and eHELMD(Res),
respectively. Table XII evidently demonstrates that BLSTM
and eHELMD(Res) achieved a significantly better performance

for Cep, LLR, FwSSNR, PESQ, and STOI across all the rooms
of RealData except for SRMR where CDR exhibited better
SRMR performance compared with the other four methods.
For the office room, the Wu–Wang approach exhibited superior
SRMR performance compared with the CDR, IDEAD(Res),
BLSTM, and eHELMD(Res) frameworks. By comparing the
results in Tables X and XII, we also observe that both
BLSTM and eHELMD(Res) attained superior performance
compared with the other three paradigms evaluated in this arti-
cle. Generally speaking, the BLSTM framework had a superior
performance in terms of signal-level analysis metrics (Cep
and LLR). However, eHELMD(Res) yielded better perception-
based metrics (PESQ and STOI). These trends were consistent
for both simulated and measured RIR tasks and suggest that
eHELMD(Res) is the most suitable one among the compet-
ing approaches when the goal is to optimize the quality and
intelligibility.

8) Subjective Evaluation of MHINT and REVERB Corpus:
In addition to the objective evaluation metrics, which exhibit
strong correlation with the speech quality and intelligibility of
the estimated signal, listening experiments were conducted on
MHINT and REVERB corpora by human subjects to demon-
strate the subjective assessments of the perceived quality of
dereverberated speech. We employed the multiple stimuli with
hidden reference and anchor (MUSHRA) evaluation frame-
work [58] to assess the overall quality and degree of the
perceived reverberation of the dereverberated speech. The
overall speech quality of the dereverberated speech can be
graded on a scale from “bad” to “excellent” (i.e., bad, poor,
fair, good, and excellent). Similarly, the degree of perceived
reverberation in a dereverberated speech can be graded on a
scale from “very large” to “very small” (i.e., very large, large,
mid, small, and very small). Ten dereverberated utterances
were selected randomly, each from the three reverberation con-
ditions (RT60 = 0.6, 0.7, and 1.0) of the MHINT corpus.
Each test utterance was scored by ten human subjects (eight
native Taiwanese and two non-native Taiwanese) for evalua-
tion. Likewise, the same number of utterances were selected
randomly from the REVERB SimData for the following two
conditions: 1) SimData Room 3 near and 2) SimData Room 3
far for the eight-channel systems, and ten utterances each
from the four rooms of RealData, as discussed in the previous
section. Fig. 8 displays the average MUSHRA scores of ten
utterances of the MHINT corpus for RT60 = 0.6, 0.7, and 1.0.
All the results were plotted with error bars indicating standard
deviations. Fig. 8 shows that the CDR approach maintained
comparable (RT60 = {0.6 s, 1.0 s}) or even better overall
speech quality (RT60 = 0.7 s) under different testing condi-
tions than the IDEAD(Res) framework. However, the CDR
approach did not achieve acceptable reverberation suppres-
sion, and residual reverberation signals could still be perceived
explicitly for strong reverberation conditions (RT60 = 0.7
and 1.0 s). In contract to the CDR and IDEAD(Res) approach,
eHELMD(Res) yielded better perception and less reverbera-
tion distortion by contributing a minor degree of reverberation
in the dereverberated signal.

Fig. 9 demonstrates the averaged subjective listening scores
of eight-channel systems using ten utterances of the REVERB
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Fig. 8. Average subjective listening scores of Wu–Wang, CDR, IDEAD(Res),
and eHELMD(Res) for RT60 = 0.6, 0.7, and 1.0 s of MHINT.

Fig. 9. Average subjective listening scores of Wu–Wang, CDR, IDEAD(Res),
and eHELMD(Res) for large room (RT60 = 0.7 s) of SimData with distance ∈
{Near, Far}, and for the four rooms of RealData (= Lecture, Meeting, Office,
and Stairways) of REVERB challenge corpus.

corpus for a large room (RT60 = 0.7 s) of SimData
with distance ∈ {Near, Far}. Moreover, subjective listen-
ing scores for measured impulse responses of four different
rooms (RealData) are listed in Fig. 9. The results show that
eHELMD(Res) yielded better speech quality by presenting
a small degree of reverberation in SimData utterances (per-
ceived degree of reverberation score for SimData near and
far = 76.2 and 70.5, respectively) and a very minor degree
of reverberation for RealData utterances (average perceived
degree of reverberation score for lecture, meeting, office, and
stairways = 81.7, 84.4, 86.6, and 80.7, respectively).

V. CONCLUSION

In this article, we have discussed the HELM-based ensem-
ble learning approach for speech dereverberation. The study
has threefold contributions: 1) to the best of our knowledge,
this is the first attempt that uses HELM for speech dereverber-
ation; 2) two novel HELM frameworks, namely, HELM(Hwy)
and HELM(Res) are proposed to improve the generaliza-
tion capability of conventional HELM; and 3) we proposed
a novel ensemble HELM framework for speech dereverber-
ation. Several experiments were performed on the TIMIT
corpus using a limited amount of training data to evaluate the
effectiveness of the proposed HELM(Hwy) and HELM(Res)

frameworks by utilizing acoustic contextual information adopt-
ing various window sizes. Our results demonstrated that higher
contextual information facilitates better speech quality of the
dereverberated signal. The stability of the proposed ensem-
ble framework was analyzed by employing the diverse sets
of simulated reverberation conditions (i.e., RIRs and RT60s)
for the TIMIT, MHINT, and REVERB corpora. Next, a set
of experiments was performed to evaluate the speech qual-
ity and the degree of perceived reverberation of the proposed
systems using test data with measured RIRs and RT60s. The
proposed ensemble framework performed very well, demon-
strating a good generalization performance by suppressing the
reverberation effects for both simulated and real conditions.
Finally, the efficiency of the proposed eHELM framework was
subjectively assessed using the perceived degree of reverbera-
tion and the overall speech quality through extensive listening
experiments on both MHINT and REVERB corpora. The
subjective evaluations further demonstrated the applicability
of the proposed ensemble framework for the dereverberation
task. From the experimental results, it was observed that the
proposed HELM-based ensemble learning frameworks pro-
vided better speech quality and higher intelligibility compared
with the two conventional approaches under both matched and
mismatched test conditions. Moreover, the residual architec-
ture was confirmed to be effective by incorporating low-level
information during the spectral mapping process. Notably, the
HELM models do not adjust parameters in the feature extrac-
tion layers but only estimate the transformation matrix based
on the training data; these are highly suitable for application
in embedded and mobile devices.

Deep learning approaches have shown outstanding
performance and proved to be more effective for both dere-
verberation and denoising when a large amount of data is
available. The focus of this article was to confirm the effec-
tiveness of HELM when a relatively limited amount of training
data is available. In future research, we will focus on scenar-
ios where more training data is available. Moreover, we will
investigate the capability of the proposed ensemble HELM to
handle additive and convolutive noises simultaneously.
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Enna, Italy, where he is currently an Associate Professor with the University
of Enna. He is affiliated with the Georgia Institute of Technology. His main
research interests include speech processing, in particular automatic speech
and speaker recognition, and language identification.

Prof. Siniscalchi is currently an Associate Editor of the IEEE/ACM
TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING.

Hsiao-Lan Sharon Wang received the B.S.
degree in occupational therapy from Chang Gung
University, Guishan, Taiwan, in 2003, the M.Ed.
degree from Harvard University, Cambridge, MA,
USA, in 2006, and the Ph.D. degree in psychology
from the University of Cambridge, Cambridge, U.K.,
in 2011.

She is currently an Assistant Professor with
National Taiwan Normal University, Taipei, Taiwan.
Her research focuses upon Chinese reading difficul-
ties and the application of neuroscientific techniques

to the study of learning disabilities. Her recent work mainly uses behavioral
and experimental tools to study the identification of reading difficulties in
Chinese Mandarin.

Yu Tsao (M’09) received the B.S. and M.S.
degrees in electrical engineering from National
Taiwan University, Taipei, Taiwan, in 1999 and
2001, respectively, and the Ph.D. degree in electrical
and computer engineering from the Georgia Institute
of Technology, Atlanta, GA, USA, in 2008.

From 2009 to 2011, he was a Researcher
with the National Institute of Information and
Communications Technology, Tokyo, Japan, where
he engaged in research and product development
in automatic speech recognition for multilingual

speech-to-speech translation. He is currently an Associate Research Fellow
with the Research Center for Information Technology Innovation, Academia
Sinica, Taipei, Taiwan. His research interests include speech and speaker
recognition, acoustic and language modeling, audio coding, and bio-signal
processing.

Dr. Tsao received the Academia Sinica Career Development Award in 2017
and the National Innovation Awards in 2018 and 2019. He is currently an
Associate Editor of the IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH,
AND LANGUAGE PROCESSING.

Valerio Mario Salerno received the bachelor’s
degree in telematic engineering from the University
of Catania, Catania, Italy, and the master’s degree
(cum laude) in telematic engineering and the Ph.D.
degree from Kore University of Enna, Enna, Italy.

He is a Researcher with the Faculty of
Engineering and Architecture, Kore University of
Enna. His research interests include artificial neural
networks and automatic speech recognition.

Wen-Hung Liao received the M.S. and Ph.D.
degrees from the Department of Electrical and
Computer Engineering, University of Texas at
Austin, Austin, TX, USA, in 1991 and 1996,
respectively.

He has been with National Chengchi University,
Taipei, Taiwan, since 2000, where he is currently
an Associate Professor and the Chairperson of
the Computer Science Department. His research
interests include computer vision, pattern recogni-
tion, human–computer interaction, and multimedia
signal processing.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


