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Abstract—A prediction error negativity (PEN) can be observed in 

the human electroencephalogram when there is a mismatch 

between the predicted and the perceived changes in the 

environment. Our previous study using a virtual object selection 

task demonstrated an impact of the level of avatar realism on the 

PEN, reflecting a mismatch between visual and proprioceptive 

feedback about the object selection. To investigate the role of 

temporal integration of different sensory information on the PEN, 

this study investigated the impact of task completion times on the 

PEN amplitude, using the same virtual object selection task. Trials 

from each participant were divided into slow trials and fast trials 

based on the task completion time, and their associated PEN 

amplitudes were separately aggregated and analyzed. The result 

shows that PEN amplitudes are significantly more pronounced in 

slow trials than in fast trials. This finding suggests that task 

completion times modulate the PEN amplitude - a long task 

completion time allowed for a better integration of information 

from both visual and proprioceptive systems as the basis to detect 

a mismatch between the expected hand trajectory during a 

reaching motion and the perceived visual feedback in the virtual 

environment. 

 

Index Terms— Virtual Reality, EEG, Cognitive Conflict, PEN, 

Pe, completion time 

I. INTRODUCTION 

OGNITIVE conflict occurs when a person makes or 

perceives an error, which can be detected with the help of 

electroencephalogram (EEG) as an error-related potential 

[1-3]. It was first studied by Gehring et al [4] and Falkenstein 

et al [5] in a task known as bimanual choice reaction tasks, 

where the authors found two components of the event-related 

potential as a consequence of cognitive conflict. The first 

component due to an erroneous response is known as error-

related negativity (ERN or Ne) [2, 6], which is a negative event-
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related potential peaking around 50–100 ms, followed by a 

second component, which is known as the error-related positive 

potential (Pe), peaking around 200–400 ms [7]. Since the first 

description, several experimental scenarios have been tested 

demonstrating ERNs and Pes [8-10]. Due to the nature of 

difference experiment, other variants of conflict-related 

potential were also investigated. For example, error due to 

feedback during a reinforcement-learning task, known as a 

feedback-related negativity (FRN), can be measured fronto-

centrally around 200–300 ms after the feedback [11]. The FRN 

seems to be related to, or can be seen as the same component 

as, the N200 [12]. Further, an error-related potential due to a 

person observing another person making an error, is commonly 

known as observation error [13]. It was also shown that an error 

could be measured through interaction [14]. Most of these 

protocols used discrete feedback mechanisms, but Krigolson 

and colleagues [15] have also investigated error-related 

potential in a continuous tracking task. They showed that an 

error due to a cognitive conflict can also be measured in a 

continuous task involving cursor movement [16].  

In the current study, we evaluate the PEN that arises when 

there is a mismatch between the perceived and expected 

changes in the environment. We believe that PEN belongs to 

the same class of negativities as ERN because both components 

can be explained by the Error Comparator Theory [4]. Our 

recent work [17] demonstrated that a PEN can be evoked in a 

3D object selection task in VR with an onset latency around 50-

150 ms. The result showed that the level of realism of the virtual 

body part, i.e. hands, modulated the PEN amplitude. A larger 

PEN amplitude was observed when the participant’s virtual 

hand was rendered with a realistic hand style, while no PEN 

was found when the participant’s virtual hand was replaced 

with a 3D cursor. In the previous experiment, we also showed 

that the mismatch leading to the PEN was based on a conflict 

between the visual feedback and the proprioceptive feedback.  
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The present study extends our previous work [17] and 

evaluates what other factors might impact the PEN component. 

We hypothesized that task completion time is an important 

factor affecting PEN because previous error detector and 

comparator theory [4] have shown that it requires time to 

develop an expectation and recognize the error. During 

response execution, visual feedback about the consequences of 

one’s action is compared with the proprioceptive feedback of 

the action. Thus, enough time is necessary to process a 

divergence in proprioceptive feedback during motor execution 

and visual feedback reflecting the motor consequences. 

Consequently, this follow-up study investigated how task 

completion time interacts with the amplitude and the latency of 

PEN in a 3D object selection task. 

II. MATERIALS AND METHODS 

This paper reports a new analysis of data published in our 

previous study [17]. In the previous study, we examined how 

the rendering fidelity of the avatar modulated the PEN 

amplitude. This paper presents new analysis results 

investigating the role of temporal integration of different 

sensory information on the PEN by examining the impact of 

task completion times on the PEN’s amplitude.  

A. Data Collection 

The EEG data were collected using a Scan SynAmps2 Express 

system (Compumedics Ltd., VIC, Australia) with 32 Ag/AgCl 

electrodes from 33 right-handed participants, who performed 

the 3D object selection task. The task was performed in a virtual 

reality (VR) environment using HTC Vive [18], with hand 

tracking using a Leap Motion controller (LMC) [19].   

B. Experiment Design 

The conducted experiment used a mixed factorial design of a 2 

by 2. This design contained two selection distances for cubes 

(equal and twice the size of the cube’s collider radius) and two 

within-participants factors based on completion time. The 

selection distance was changed by changing the radius of the 

object collider [20] for the cube. Here, the first radius 

represented the actual object collider radius for a cube, while 

the second represented the radius, which was twice the size of 

the first. The overall experiment consisted of three sessions, 

each with 120 trials, for 360 trials in total. The order of these 

three sessions was randomized to avoid any bias. Note that our 

previous work [17] already investigated the independent 

variable of hand styles, and the analysis in this study focuses 

only on the first-hand style, i.e. a high-fidelity, realistic hand. 

To this end, the within-participant factor completion time was 

created by computing a median-split of all the trials for each 

participant and then grouping them into short completion times 

and long completion times (fast and slow group, respectively). 

Some participant trials overlapped between short and long 

completion times; therefore, we took the top 40% of trials as the 

short completion time group, and the bottom 40% of trials as 

the long completion time group, after median splitting the trials. 

The completion time for all participants for both normal and 

conflict trials was defined as the time from touching the first 

cube to touching the second cube. This resulted in one shorter 

completion time (fast) group with 1,284 trials (individual trial 

numbers varied with M = 76; SD = 15) and one long completion 

time (slow) group with 1,292 trials (individual trial numbers 

varied with M = 76; SD = 20). The distribution of individual 

trials to both groups were left-skewed (M = 85, IQR = 20.75 for 

the fast group; M = 83, IQR = 26.75 for the slow group). 

 (M = Mean; SD = Standard Deviation; IQR = Interquartile 

Range) 

Please see details of the experimental design in the previous 

study [17], as well Figure 1 and Figure 2. 

C. EEG Data Preprocessing 

The collected raw EEG signals were first filtered using a 0.5-

Hz high-pass and a 50-Hz low-pass finite impulse response 

filter, followed by a downsampling to 500 Hz for data 

reduction. The resultant EEG data were subjected to visual 

inspection for artifacts.   

Independent Component Analysis (ICA) [21] was applied 

and independent components (ICs) reflecting eye movement 

and muscle activity from the temporalis were rejected. This 

resulted in 19 remaining ICs, on average, per participant (SD = 

4). The resultant independent components were back-projected 

to the channel level and epochs were extracted from 200 ms 

before the onset of the visual feedback, indicating that the cube 

was touched to 800 ms after the feedback. A final artifact 

rejection was done on the epoched data through visual 

inspection. All remaining residual trials (total = 2,576, M = 76, 

SD = 17) were sorted into the short and long completion time 

groups, according to the median split. 

The PEN and error positivity (Pe) [22] were extracted for 

each participant on a single trial level. To this end, we 

calculated the PEN-amplitude, defined as the minima mean 

negative deflection in the time window from 50 to 150 ms (±5 

data points). Similarly, the Pe-amplitude was calculated as the 

maxima mean positive deflection in the time range 250-350 ms 

(±5 data points) after the visual feedback. 

D. Amplitude and Completion Time Correlation 

Statistical analyses were carried out using the SPSS Statistical 

tool (SPSS Inc Version 24). For each group, Pearson correlation 

coefficients between completion time and the PEN’s and Pe’s 

amplitude were evaluated. Our aim was to see if the amplitude 

for PEN and Pe are related to task completion time (fast and 

slow group). 

E. Effect Size 

The effect size for conflict condition was 𝜂𝜌
2   = .192 (i.e., a large 

effect [23] ). The power to detect an effect in the slow and fast 

condition of the experiment was found to be 0.76, (F (1,32) = 

7.623, p = 0.009, 𝜂𝜌
2    = .192 ). Thus, we can say that the number 

of participants was enough to detect an effect.  
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Figure 1. Experiment design: In the first two seconds, the participants looked at a fixation screen with both hands on their lap followed 

by two cubes shown on a table in VR then participant was instructed to reach and select (touch) cube 1, and then cube 2, and cubes 

would turn red as feedback on touched. 

 

 

 

Figure 2. The scene of the experiment. Each participant was 

instructed to touch cube 1 and then reaches for cube 2.   

III. RESULTS 

A. Behavioral Results 

Participants responded correctly in most trials, with only a 

small percentage of misses or incorrect trials (e.g., failing to 

touch the second cube). As expected, task completion times 

fluctuated for trials within participants; therefore, we sorted all 

trials from each participant and divided them into two groups 

(fast and slow groups), as mentioned in the methodology 

section. As per repeated ANOVA analysis, it was found that 

long and short trials were significantly different for normal 

condition (F (1,32) = 37.028, p < 0.000) and conflict condition 

(F (1,32) = 67.476, p < 0.000). (See Table 1 and Figure 3.) 
 

Overall completion time (ms) 

Condition Median Standard 

deviation 

Range (min-

max) 

Normal  424 131 189-677 

Conflict  458 100 250-670 

Short completion time (ms) 

Normal  312 57 189-436 

Conflict  374 60 250-497 

Long completion time (ms) 

Normal  550 54 424-677 

Conflict  541 53 412-670 
 

Table 1. Statistics for all normal and conflict condition trials 

before and after splitting into short (fast) and long (slow) 

completion time group of trials 

 

 
Figure 3. Boxplot for short (fast) and long (slow) completion time 

trials for the normal and conflict condition (FN= Fast with 

normal condition; SN = Slow with normal condition; FC= Fast 

with conflict condition; SC= Slow trials with Conflict Condition).  

B. EEG Results 

We evaluated if the task completion time played any role in 

participants’ electrocortical response towards the conflict. We 

evaluated how completion time affected the amplitude of the 

PEN and the Pe using an ANOVA with repeated measures. We 

found that trials with fast completion times showed a clear Pe 

component with the onset of the visual feedback, while trials 

with slow completion times revealed a PEN, together with a 

subsequent Pe component, in the ERP (see Figure 4).  

As can be seen in Figure 4, there was no significant  difference 

(F (1,32) = .017, p = .896) between PEN amplitude for normal 

trials between the fast and slow group and also no significant 

difference (F (1,32) = .449, p = .583) for the Pe amplitude 

between fast and slow trials within the normal condition. On the 

other hand, in the conflict condition, there was a significant (F 

(1,32) = 7.623, p = .009) difference for the PEN amplitude for 

the fast and slow group, but no significant difference (F (1,32) 

= 2.455, p = .127) for Pe amplitudes. In the comparison between 

normal and conflict conditions for the fast and slow group, there 

was also no significant difference (fast group: F (1,32) = .420, 

p = .522; slow group: F (1,32) = 1.745, p = .196) found for PEN. 

Similarly, in the comparison between normal and conflict trials, 

there was no significant difference (F (1,32) = .307, p = .583) 

for Pe amplitudes for the fast group, but there was a significant  

difference (F (1,32) = 7.623, p = .009) for the slow group 

regarding Pe amplitudes. 

S1 S2 S3

cube 1

cube 2



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

4 

 
 

 Figure 4. ERP for short (fast) and long (slow) completion time trials for normal and conflict conditions (SC= Slow with Conflict 

Condition; SN = Slow with normal condition; FC= Fast with conflict condition; FN= Fast with normal condition). 

 

Overall, among all four conditions and two ERP components 

of interest, there was a significant difference on the PEN 

amplitude between slow and fast trials in the conflict condition.   

We further evaluated the topographical distribution of the 

PEN and Pe component. Figure 5(A) shows that the PEN effect 

is more prominent over the fronto-central region of the brain; 

fast completion times showed less PEN compared to that of the 

slow group; and the same was not true for the normal condition. 

Similarly, as per Figure 5(B), it can be seen that the 

difference between the conflict and the normal condition for 

slow completion times demonstrated a Pe over the frontal-

central region of the brain, while fast completion times showed 

no such difference. Additionally, Pe seems more prominent in 

the slow group than in the fast group for the conflict condition. 

It was also evaluated whether the chosen EEG channel was 

the optimal choice for PEN and Pe analysis. As per Figure 6, 

PEN amplitudes were most negative over the ‘Cz’ electrode, as 

compared to ‘Fz’ and ‘FCz,’ for all conditions. Similarly, the 

Pe amplitude revealed the largest amplitudes over the ‘Cz’ 

electrode, and decreasing amplitudes towards ‘Fz’ and ‘FCz’ 

for all conditions. 

Further, as shown in Table 2 and Figure 7, for slow trials, PEN 

and Pe amplitude were significantly correlated (PEN: r = -

0.2280, p < 0.05; Pe: r = 0.2839, p < 0.000) with completion 

time. On the other hand, PEN amplitudes for fast trials were not 

significantly correlated (r = -0.0446, p = 0.611) with completion 

time. Interestingly, Pe amplitudes demonstrated a significant 

positive correlation (r = 0.2180, p < 0.05) with completion time. 

Overall, slow trials and fast trials showed a negative correlation 

with PEN’s amplitudes, while such a pattern was not observed 

for Pe’s amplitudes, which demonstrated a positive correlation 

with completion time for the fast and slow groups.  

Further ERP analysis has been performed for each 

participant. The result consistently shows larger PEN 

amplitudes at Fz, FCz, and Cz channels among trials in the 

conflict condition than those in the normal condition 

(Supplementary Figure 1-3). The result also shows that 54.5%, 

57.6%, and 63.64% of participants have larger PEN amplitude 

among trials in the slow condition than those in the fast 

condition at Fz, FCz, and Cz channel respectively 

(Supplementary Figure 4-6). 

IV. DISCUSSION  

Our previous study reported a correlation between the fidelity 

of the visual appearance and the amplitude of the PEN [13]. The 

PEN is an ERP component evoked between 50-150 ms, 

followed by a positivity, the Pe component, around 250-350 ms 

over the fronto-central and central regions of the brain. Re-

analyzing data from a virtual object selection task [13], this 

follow-up study investigated the role of the time taken to 

complete the 3D object selection on the amplitude of the PEN 

and Pe components. The results demonstrated that PEN 

amplitudes and the following Pe amplitudes were significantly 

larger when participants had more time to process and integrate 

visual and proprioceptive feedback (i.e., during long 

completion trials) as compared to fast trials with short 

completion times. This result concurs with previous results that 

associated reaction time with the amplitude of different ERP 

components such as ERN [24]. The result showed no 

correlation between the latency of the PEN and task completion 

times, suggesting that a comparable cognitive process took 

place in all trials. We believe that the observed correlation 

between PEN amplitude and trial completion times for conflict 

trials can be attributed to the integration of sensory feedback 

that may require different processing time (see Figure 7). 

It was noted that PEN and Pe seem to appear in both normal 

and conflict conditions, which seems to suggest that users were  
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Figure 5. Topography plot. A.  PEN component at 50-150ms for normal and conflict condition for short (fast) and long (slow) 

completion time trials; B.  Pe at 250-350ms for normal and conflict condition for short (fast) and long (slow) completion time trials 

(SC= Slow with Conflict Condition; SN = Slow with normal condition; FC= Fast with conflict condition; FN= Fast with normal 

condition) 

 

expecting more sensory feedbacks, e.g. haptics feedback, 

than the perceived visual feedback of the object selection in VR. 

This result might be interpreted as reflecting a general conflict 

in the sense that participants perceived object selection in VR 

differently than object selection in the real world. Despite the 

realistic finger- and hand-tracking through the Leap Motion 

Controller, the participants might still have expected a haptic 

feedback when touching the cube and an impact of their action 

on the virtual object, e.g. moving the boxes by touching them.  

The prediction error arises when there is a discrepancy between 

the users’ observation and their expectation. In our 3D object 

selection scenario, the participants computed their prediction 

dependent on the time necessary to reach the cube by 

integrating information from the visual, motor, and 

proprioception systems [25, 26]. This prediction is then 

compared against the actual visual feedback received in the VR 

environment, i.e. the cube changing its color from white to red 

when the participant touches the cube. We assume that in long 

completion trials, the slower movement allowed for more time 

to integrate all available sensory inputs with motor efferences, 

resulting in a more precise and confident prediction. This, in 

turn, resulted in the detection of a clear conflict between 

sensory and motor information in conflict trails, leading to a 

more pronounced PEN component. In the context of auditory 

negative priming, Mayr et al. [24] also observed a larger 

negative priming effect in trials with long reaction time. Mayr 

et al. provided an episodic retrieval explanation, arguing that 

long reaction time allows for a higher probability of successful 

prime retrieval. Results from our experiment and Mayr et al. 

share the similar conclusion that a long task completion time 

allows a complete development of the stimulus evaluation and 

a stronger negativity if a mismatch or error is detected.  

Another potential explanation of the reduction in PEN 

amplitude in faster trials is that participants might have 

sacrificed accuracy for speed in those trials and developed a 

larger tolerance to the designed conflict condition, i.e. a larger 

selection radius. Previous works on object selection task [27] 

have shown that, among trials of the same difficulty, the 

movement endpoint spread is larger for those with shorter task  

 

 
 

Figure 6. Grand average of PEN’s and Pe’s amplitude over Fz, 

FCz, and Cz for normal and conflict condition for short (fast) 

and long (slow) completion time trials for all participants (SC= 

Slow with Conflict Condition; SN = Slow with the normal 

condition; FC= Fast with conflict condition; FN= Fast with the 

normal condition) 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

6 

r = -0.2280

p = 0.0083
r = 0.2839

p = 0.0009

r = -0.0446

p = 0.6113

r = 0.2180

p = 0.0121

a
m

p
li

tu
d

e
 (

µ
V

)

time (ms)

 
 

Figure 7. Regression analysis of short (fast) and long (slow) completion time with PEN’s and Pe’s amplitude (SC= Slow with Conflict 

Condition; SN = Slow with the normal condition; FC= Fast with conflict condition; FN= Fast with the normal condition) 

 

Correlation Channel 

Short 

completion 

time  

Long 

completion 

time  

PEN’s 

amplitude 

Fz -0.1126 -0.0365 

FCz -0.0195 -0.1491 

Cz -0.0446 -0.2280** 

Pe’s 

amplitude 

Fz 0.2185 -0.0297 

FCz 0.2331** 0.1387 

Cz 0.2180* 0.2839** 
 

Table 2. Correlation matrix between short (fast) and long (slow) 

completion time with PEN’s and Pe’s amplitude over Fz, FCz, 

and Cz (** p<0.01 and *p<0.05) 

 

completion time as compared to those with long task 

completion time, i.e. the subjects favored speed over accuracy. 

One potential explanation toward such phenomena is that the 

precise object selection requires an engagement of attentional 

and executive control mechanisms and, over time, the 

participants might sacrifice precision to reduce mental fatigue 

and workload, or to simply finish the experiment faster. In the 

context of our experiment, participants might also have chosen 

speed over accuracy in the fast completion trials, and thus 

became less aware of the conflict condition, during which the 

cube changed its color before being selected.   

The reduction of PEN could be also due to the participants. 

The total number of participants who took part in this study 

were 33 from the age group of 20-26 years old. However, our 

effect size analysis suggests a large effect size but larger 

population with varying age group represent better results. For 

future work, a broader age population will be recruited for such 

experiments to make sure that age does not influence conflict 

perception in virtual reality. 

V. CONCLUSION 

In this study, we have investigated the role of intra-individual 

completion time on the PEN and Pe amplitude in a Virtual 3D 

object selection task. We have evaluated this by dividing intra-

individual trials into short (fast) completion time and long 

(slow) completion time groups and performed regression 

analysis with PEN and Pe amplitudes. Our results show that 

PEN’s and Pe’s amplitude significantly modulates in slow trials 

as compared to fast trials, while Pe’s amplitude modulates 

significantly in fast trials. These results indicate that different 

sensory systems (i.e. visual and proprioceptive systems) require 

different temporal integration to detect a cognitive conflict.  
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