
A Multilayer Neural Network Merging Image Preprocessing and Pattern

Recognition by Integrating Diffusion and Drift Memristors
Zhiri Tang, Ruohua Zhu, Ruihan Hu, Yanhua Chen, Edmond Q. Wu, Hao Wang, Jin He, Senior Member, IEEE, Qijun Huang,

and Sheng Chang, Senior Member, IEEE

Abstract—With the development of research on novel

memristor model and device, neural networks by

integrating various memristor models have become a hot

research topic recently. However, state-of-the-art works

still build such neural networks using drift memristor

only. Furthermore, some other related works are only

applied to a few individual applications including pattern

recognition and edge detection. In this paper, a novel

kind of multilayer neural network is proposed, in which

diffusion and drift memristor models are applied to

construct a system merging image preprocessing and

pattern recognition. Specifically, the entire network

consists of two diffusion memristive cellular layers for

image preprocessing and one drift memristive

feedforward layer for pattern recognition. Experimental

results show that good recognition accuracy of noisy

MNIST is obtained due to the fusion of image

preprocessing and pattern recognition. Moreover, owing

to high-efficiency in-memory computing and brief

spiking encoding methods, high processing speed, high

throughput, and few hardware resources of the entire

network are achieved.

Index Terms — multilayer neural network, diffusion

memristive cellular layer, drift memristive feedforward

layer, image preprocessing, pattern recognition

I. INTRODUCTION

L. O. Chua postulated memristor [1] in 1971, which is the

fourth basic element besides resistor, inductor, and capacitor.

In general, memristor can be divided into two main types [2]:

drift memristor and diffusion memristor. HP Lab made drift

memristor in 2008 first [3] while diffusion memristor was

first presented by UMass in 2016 [4]. Since memristor

device has been realized, research related to memristor have

emerged one after another. Recently, neuromorphic

computing with memristive neural networks (MNNs) [5]-[6],

which uses memristor as artificial synapse [7], has become a

hot research topic due to memristor’s potential on many

combinatorial descriptions of biological synapse’s

characteristics [8], such as spike timing-dependent plasticity

(STDP) [9], long-term potentiation (LTP) [10], and long-

term depression (LTD) [11]. Furthermore, memristor has

many advantages, such as in-memory computing [12], high

integration density [13]-[14] ,and small dimension [15].

Hence, memristive neural networks show great potentials on

various learning frameworks including long short-term

memory network (LSTM) [16], reinforcement learning (RL)

[17], and recurrent convolutional networks [18], and many

applications including pattern recognition [19], edge

detection [20], temporal data classification [21], and high

performance computing [22]-[23].

Although the number of existing works about memristor are

growing, most research and applications still used the drift

memristor only [24]-[25]. In these years, the emergence of

diffusion memristor gives room for the development of

MNNs with richer functions and stronger performance. Q. F.

Xia and J. J. Yang described diffusion memristor as a

synaptic emulator for neuromorphic computing [4] when

they first time made the diffusion memristor device in

UMass. Z. Wang applied diffusion memristor into artificial

nociceptor [26] and pattern recognition [27], in which

diffusion memristors were used as threshold switches and

crossbar structure, respectively. However, how to explore the

potentials of diffusion memristor in other fields is still a

challenging problem.

This work was supported by the National Natural Science Foundation of

China (61874079, 61574102, 61671293 and U1933125), the Fundamental

Research Fund for the Central Universities, Wuhan University

(2042017gf0052), the Wuhan Research Program of Application Foundation

and Frontier Technology (2018010401011289), and the Luojia Young

Scholars Program. Part of calculation in this paper has been done on the

supercomputing system in the Supercomputing Center of Wuhan University.

(Corresponding author: Sheng Chang)

Zhiri Tang is with the School of Physics and Technology, Wuhan

University, Wuhan, China. He is also with the Department of Computer

Science, City University of Hong Kong, Hong Kong, China. (E-mail:

gerin.tang@my.cityu.edu.hk).

Ruohua Zhu is with School of Physics and Electronics, Henan University,

Kaifeng, China.

Ruihan Hu is with Guangdong Key Laboratory of Modern Control

Technology, Guangdong Insitute of Intelligent Manufacturing, Guangzhou,

China.

Yanhua Chen is with Department of Geography, The University of Hong

Kong, Hong Kong, China.

Edmond Q. Wu is with Department of Automation, Shanghai Jiao Tong

University, Shanghai, China.

Hao Wang, Jin He, Qijun Huang, and Sheng Chang are with the School of

Physics and Technology, Wuhan University, Wuhan, China. (E-mail:

changsheng@whu.edu.cn).

According to state-of-the-art works, how to design a neural

network by integrating drift and diffusion memristor models

is also an open area. One research about fully memristive

neural networks used memristors and metal-oxide-

semiconductor field effect transistors (MOSFET) [28] while

another built a fully memristive crossbar by memristors,

capacitors, and inductors [27]. From the above research,

other devices besides memristor are still needed in fully

memristive neural networks, which limit not only

improvements on scalability [29] and processing speed [30],

but also simplifications on fabrication process [31] of the

entire networks.

Furthermore, existing research about MNNs in image

processing have many different applications, such as edge

detection [32] and image storage [33]. However, there are no

research on how to combine image preprocessing with

learning systems and explore the potentials of diffusion

memristor in image processing. Theoretically, image

preprocessing with MNNs can improve the performance of

entire systems including recognition accuracy, processing

speed, and hardware resource. Hence, a novel neural

network framework, which use drift and diffusion memristor

models only, and combine image preprocessing with

learning systems smoothly, need to be developed.

Inspired by the above, this paper designs a multilayer neural

network merging image preprocessing and learning systems

with diffusion and drift memristor models only. The main

contributions are summarized as follows:

a. A novel multilayer neural network is proposed, which

merges image preprocessing with learning systems.

Through this way, a fully memristive system with high-

efficiency in-memory computing and brief spiking

encoding methods is implemented, which lays a solid

foundation for achieving a good performance on

machine learning tasks.

b. To verify its merits, the proposed framework is applied to

noisy pattern recognition on hardware. Image denoising

and pattern recognition are implemented by image

preprocessing and learning systems, respectively.

Experimental results show that it achieves high noisy

pattern recognition accuracy with high processing speed,

high throughput, and few hardware resources.

II. OVERVIEWS OF ALGORITHMS

In this section, a novel multilayer neural network with

function of image preprocessing and learning systems is

proposed, which consists of two diffusion memristive layers

for image preprocessing and one drift memristive layer for

pattern recognition shown as Fig. 1. To verify the function of

image preprocessing and learning systems, the entire

network is applied to denoising and pattern recognition for

noisy image.

A. Diffusion Memristive Cellular Layer for Image

Preprocessing

The basic diffusion memristor model was proposed by

researchers from UMass [4] and has similar characteristics

to a threshold switch, which is shown as Fig. 2.

If the hold time of input voltage spikes of diffusion

memristor model is the same and the spikes exceed the set

threshold, the diffusion memristor model will “open” and the

Fig. 1. Overview of entire network

Fig. 2. Switching characteristic of diffusion memristor

model

Fig. 3. The way pixels are converted into spikes

output current spikes will follow the input voltage spikes.

Due to its switching characteristics, diffusion memristor

model can be used as a natural mean filter. The basic

diffusion memristor model with the same hold time of input

voltage spikes is as follow:

{
()output inputI t U= ,

inputU Threshold

() 0outputI t = ,
inputU Threshold

 (1)

To introduce the spiking encoding methods, a black and

white binary image is taken as an example, which is shown

as Fig. 3. First, pixels in the image need to be converted into

spikes and the hold time of each spike keeps same. Then, the

pixel value corresponds to the height of its peak voltage

spike. If the pixel is black, whose pixel value is 255, the

spike height of this pixel will be 255. If the pixel is white,

the height will be 0.

The diffusion memristive cellular layers, which has the

functions of denoising and edge compensation for image

preprocessing, use the eight pixels around the target pixel for

maintaining high processing speed as Fig. 4.

The entire preprocessing part is shown as Fig. 5. It can be

divided into two parts: memristive cellular layer 1 for

denoising and layer 2 for edge compensation. As a natural

mean filter, diffusion memristor models will filter out the

edge information of original image when they filter most

random noise. Some works [20],[32] have proposed that

memristive cellular neural networks have a good

performance in edge detection. Hence, layer 2 is designed

for supporting the function of edge compensation through

adding the edge detection results of original image to the

denoising image after layer 1. In this way, while getting a

good denoising performance, the original image information

is also restored as much as possible.

The diffusion memristive cellular layer 1 is act as a mean

filter for image denoising. The filter threshold is:

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑙𝑎𝑦𝑒𝑟1 =
1

8
∑ 𝑓(𝑖, 𝑗)𝑓∈𝑆 (2)

The fire thresholds of each diffusion in layer 1 are set

according to formula (2) and the output from layer 1 follows

the formula (1).

Fig. 4. The image preprocessing of diffusion memristive cellular layer

Fig. 5. The training process of diffusion memristive cellular layer 1 and 2 for image preprocessing

The edge compensation of diffusion memristive cellular

layer 2 follows the fully memristive cellular neural networks

in [32] and the threshold for gray images is calculated by:

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑙𝑎𝑦𝑒𝑟2 = 𝑅 · 0.299 + 𝐺 · 0.587 + 𝐵 · 0.114 (3)

in which R, G, and B are the minimum changes of red, green,

and blue that human eyes can recognize to color images,

respectively.

The fire thresholds of each diffusion memristor model in

layer 2 have been set separately according to formula (3).

Then it will compare the surrounding eight pixels with the

target pixel in turn. The voltage spikes of surrounding pixel

and target pixel are applied to two ends of diffusion

memristor model, respectively. Hence, if the difference

between these two voltage spikes of pixels is greater than

threshold, this diffusion memristor model will output a

current spike. If the difference is less than threshold, this

diffusion memristor model won’t fire according to formula

(1). After eight comparisons, the sum of output current is the

processed pixel through this cellular layer. The process ends

after each pixel of the image has been compared with the

surrounding eight pixels.

To test the preprocessing performance of diffusion

memristive cellular layer, random Gaussian noise is added to

original images. The denoising preprocessing system uses

one image of number 0 from MNIST and parameters of

Gaussian noise are:

𝑁𝑜𝑖𝑠𝑒 = 𝑁(0,10^4) (4)

which has 𝜇 = 0 and 𝜎 = 100.

From Fig. 5, the processed image shows a good denoising

and restoration performance through adding the denoising

from layer 1 with the edge compensation from layer 2. Hence,

the preprocessing layers also have the same denoising effect

for images of other numbers in MNIST.

B. Drift Memristive Feedforward Layer for Pattern

Recognition

In HP memristor model, the value of drift memristor 𝑀(𝑡)

can be calculated as:

𝑀(𝑡) =
𝑑(𝜙(𝑡))

𝑑(𝑞(𝑡))⁄ =
𝑈(𝑡)

𝐼(𝑡)⁄ (5)

The relationship between the voltage at two ends of

memristor drift model 𝑈(𝑡) and the current through drift

memristor model 𝐼(𝑡) is:

𝑈(𝑡) = 𝐼(𝑡)[𝑅𝑜𝑓𝑓 − (𝑅𝑜𝑓𝑓 − 𝑅𝑜𝑛)𝜇𝑣
𝑅𝑜𝑛

𝐷2 ∫ 𝐼(𝑡)𝑑𝑡
𝑡

−∞
] (6)

So we have:

𝑀(𝑡) = 𝑅𝑜𝑓𝑓 − (𝑅𝑜𝑓𝑓 − 𝑅𝑜𝑛)𝜇𝑣

𝑅𝑜𝑛

𝐷2
∫ 𝐼(𝑡)𝑑𝑡

𝑡

−∞

= 𝑘1 − 𝑘2 ∫ 𝐼(𝑡)𝑑𝑡
𝑡

−∞
 (7)

where 𝑘1 = 𝑅𝑜𝑓𝑓 and 𝑘2 = (𝑅𝑜𝑓𝑓 − 𝑅𝑜𝑛)𝜇𝑣
𝑅𝑜𝑛

𝐷2 .

The change of synaptic weight equals to change of reciprocal

value of drift memristor model [4, 7, 11], which has:

𝑑𝑊 = 𝑑𝐺 = 𝑑(
1

𝑀(𝑡)
) = 𝑑(

1

𝑘1−𝑘2 ∫ 𝐼(𝑡)𝑑𝑡
𝑡

−∞

) (8)

Due to the way spikes encoded, 𝐼(𝑡) denotes the constant

for a specific pixel and 𝐼(𝑡)𝑑𝑡 is the electricity flowing

through this drift memristor model, which is the area of

spikes in the coordinate system. So we have:

𝑀(𝑡) = 𝑘1 − 𝑘2 · 𝐴𝑟𝑒𝑎𝑠𝑝𝑖𝑘𝑒 (9)

𝑑𝑊 = 𝑑𝐺 = 𝑑(
1

𝑀(𝑡)
) = 𝑑(

1

𝑘1−𝑘2𝐴𝑟𝑒𝑎𝑠𝑝𝑖𝑘𝑒
) (10)

Further, considering non-idealities of the memristors, a

complex memristor model which has window function is

shown as follow:

Fig. 6. The training process of drift memristive feedforward layer 3 for pattern recognition

𝑊(𝑡) = ∫ 𝜇𝑣

𝑅𝑜𝑛

𝐷
𝐼(𝑡)𝑓(𝑥)𝑑𝑡

𝑡

−∞

= 𝜇𝑣

𝑅𝑜𝑛

𝐷
𝑞(𝑡)𝑓(𝑥)

 (11)

So the value of drift memristor model can be derived as:

𝑀(𝑡) = 𝑅𝑜𝑛 (𝜇𝑣

𝑅𝑜𝑛

𝐷2
𝑓(𝑥) ∫ 𝐼(𝑡)𝑑𝑡

𝑡

−∞

)

 +𝑅𝑜𝑓𝑓 (1 − 𝜇𝑣

𝑅𝑜𝑛

𝐷2
𝑓(𝑥) ∫ 𝐼(𝑡)𝑑𝑡

𝑡

−∞

)

 = 𝑅𝑜𝑓𝑓 − (𝑅𝑜𝑓𝑓 − 𝑅𝑜𝑛)𝜇𝑣

𝑅𝑜𝑛

𝐷2
𝑓(𝑥) ∫ 𝐼(𝑡)𝑑𝑡

𝑡

−∞

(12)

From above, the drift memristor model with non-idealities

can also be transformed into formula (9). Hence, our network

has nothing to do with the non-idealities of memristor

models. In other words, the framework is universal to all

kinds of complex or nonlinear memristor models because all

our network needs is just the basic characteristic of

memristor models.

From above, the value of drift memristor model keeps a

linear relationship with the total area of spikes. If input

spikes of one drift memristor model are from black pixels,

the drift memristor model corresponding to these black

pixels will be lower than that corresponding to white pixels,

which is a brief and efficient training process for one drift

memristor model.

The total drift memristive feedforward layer is shown as Fig.

6. Each pixel has one drift memristor model to act as its

synaptic weight. If one image is input into the feedforward

layer during the training process, all the values of drift

memristor models will be changed.

During the inference process, the pixels of inference images

are converted into voltages whose value depends on its pixel.

The “voltage” image is applied to each drift memristor

model in layer 3. Due to the difference in drift memristor

models after training, the output currents of each pixel will

be different, and the sum of output currents will be used as

numerical answers for inference.

C. Entire Network Architecture

The architecture and training process of entire network are

shown as Fig. 7. First, random Gaussian noises are added to

original images from MNIST. Then noisy images are

converted into voltage spikes, which are represented by blue

lines. Second, these voltage spikes are input into diffusion

memristive layer 1 and layer 2, respectively. The output

current spikes from layer 1 and layer 2, which are

represented by red lines, are input into drift memristive layer

3 together. Finally, the values of drift memristor models in

layer 3 will be changed during the training process.

Fig. 7. The architecture and training process of entire network

The inference process of entire network needs drift

memristive layer 3 only. From above, the values of drift

memristor models vary after training. Take an area of

random black pixels with high voltages as an example, the

output of these random pixels will be higher because the

values of drift memristor models in this area are lower than

others after training, which is shown as Fig. 8. For a wrong

test image, the input in the area contains some pixels being

or closed to white, which will result in lower output currents.

Hence, the sum of output currents corresponding to right

category is larger than other wrong categories. In other

words, the right test images have a better “match” for the

drift memristive layer 3.

III. OVERVIEWS OF HARDWARE DESIGN

In this section, circuit diagrams of diffusion memristive layer,

drift memristive layer, and entire network are introduced

based on diffusion and drift memristor models on Field

Programmable Gate Array (FPGA). Some hardware

optimization techniques are used to improve the hardware

performance including processing speed, throughput, and

hardware resource. Further, to better show the circuit

framework of the entire system, we use a single memristor

model to represent the corresponding memristive layer.

A. Circuit Diagram of Diffusion Memristive Cellular Layer

To build the entire network and verify the network’s

performance on hardware, FPGA is chosen as hardware

platform. FPGA is controlled by clock signals so that it is

very suitable to process spiking signals in many applications

[34-37]. First, the diffusion memristor is modelled on FPGA

according to formula (1). Based on the model, the circuit

diagram of diffusion memristive cellular layer for image

Fig. 8. The inference process of entire network

Fig. 9. The circuit diagram of diffusion memristive cellular layer for image preprocessing

preprocessing is shown as Fig. 9. The input includes clock

signals, reset signals, and voltages of target pixel and eight

surrounding pixels, in which the input voltage of pixels

depend on the value of corresponding pixels, e.g. input

voltage is 2.5mV for whose pixel value is 25 and 14.5mv for

whose pixel value is 145. The output is the processed pixel

composed by current spikes, which ranges from 0 to

229.5mA according to formula (1) to (3) and the framework

of diffusion memristive cellular layers. In diffusion

memristor model comparer, each pixel has two diffusion

memristor models for positive and negative comparisons.

Clock signal-controlled data selector determines the order of

comparisons. The entire memristive cellular layer is

pipelined without any complex calculation inside. Hence,

the processing speed of the entire system is quite high

theoretically.

B. Circuit Diagram of Drift Memristive Feedforward Layer

The drift memristor is modelled on FPGA according to

formula (9), which Ron is set as 14Ω and Roff is set as 14kΩ.

Based on the model, the circuit diagram of drift memristive

feedforward layer is shown as Fig. 10. The input includes

clock signals, reset signals, and the pixels of preprocessing

images. The preprocessing images, which are represented by

Fig. 10. The circuit diagram of drift memristive feedforward layer for pattern recognition

Fig. 11. The circuit diagram of entire network’s training and inference

Fig. 12. Using basic unit of nine pixels to perform loading

and calculation operations

currents and range from 0 to 229.5mA, are obtained from the

output of the diffusion memristive cellular layers. The

controller module determines the state of the entire circuit.

The right end of drift memristor model is linked to ground

directly during training process. From formula (8), the

values of drift memristor models are determined by input

current. However, if the values of drift memristor models are

tested as ordinary resistors, the values of drift memristor

models will be changed, which will affect the accuracy of

experimental results. Hence, the right end of drift memristor

model is linked to one spike current source whose value is

0.1mA during inference process and the output of the entire

circuit is the voltage of drift memristor model. Hence, the

values of drift memristor models can be calculated by the

output voltage. The entire memristive feedforward layer,

which is similar to cellular layer, is pipelined without any

complex calculation inside. Hence, the hardware

performance of the entire system is good theoretically.

C. Hardware Optimization and Circuit Diagram of Entire

Network

The circuit diagram of entire network’s training and

inference is shown as Fig. 11(a) and (b), respectively. The

inputs of training process in Fig. 11(a) include clock, reset,

and training images (pixels to voltage according to the

above). After each training images are processed by

diffusion memristive layers and drift memristive layer, the

value of drift memristor models won’t be changed.

The inference process in Fig. 11(b) use the well-trained drift

memristive feedforward layer only. Similar as the training

process, the test images are converted into voltage spikes

first, but the values of input voltage are a tenth of the input

of training process, e. g. input voltage is 1mV for whose

pixel value is 100. This spike coding process is to prevent

the values of drift memristor models from changing too

much by the input of inference process. Put the input

voltages (inference images) into the drift memristor models

and add the output currents up. Based on Fig. 8 and inference

process in Section 3.3, the inference results are got through

a comparer, in which the biggest total output currents

represents the category of this input inference image.

What’s more, for both of training and inference processes,

the input are voltage spikes and outputs are current spikes.

The proposed multilayer neural network is with in-memory

computing and has quite concise and high-efficiency spiking

encoding methods.

In order to maximize the processing speed of the entire

network, pipeline design methods of hardware including

loading and calculation are adopted, which is shown as Fig.

12. Nine pixels are used as a basic unit to perform the

training and inference operations. The reason for choosing

nine pixels as a basic unit is that it can perform a complete

denoising, edge compensation and pattern recognition

through layer 1, layer 2, and layer 3, respectively.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, MNIST dataset with random noise [38] is

chosen to test the accuracy of noisy pattern recognition.

Further, the entire neural network with image preprocessing

and pattern recognition is implemented and optimized on

hardware platform to test the performance of hardware

resource, processing speed, and throughput.

A. Pattern Recognition

Noisy MNIST, which includes 60,000 training images and

10,000 test images with random Gaussian noise 𝑁(0,10^4),

is chosen as the training and test dataset. The noisy MNIST

consists of binary images of 10 numbers from 0 to 9 with

28*28 pixels. To verify the denoising performance, the same

voltages is applied to layer 3 to get the output current spikes.

The images of output current spikes from layer 3 without

preprocessing are shown as Fig. 13(a) and the images with

preprocessing are shown as Fig. 13(b). The brighter parts of

the output image represent the corresponding pixels which

have smaller values of drift memristor models and higher

synaptic weights. From above, one can see that the diffusion

Fig. 13. The images of output current spikes after training (a) without preprocessing (b) with preprocessing

memristive cellular layer 1 and layer 2 play an important role

in denoising of output images. In other words, the image

preprocessing of the entire network has a good denoising

performance, which lays a solid foundation for pattern

recognition task.

The recognition accuracy of noisy MNIST is shown as

TABLE I. The inference accuracy with preprocessing is

91.55% after training. From above, the fully memristive

neural network with image preprocessing and pattern

recognition is efficient in improving recognition accuracy of

noisy MNIST.

B. Processing Speed and Hardware Resource

As mentioned above, nine pixels of images are used as a

basic unit to perform the training and inference operations.

Hence, loading and calculation of one image with 28*28

pixels needs (28-2)*(28-2)＝676 times. Specifically, Intel

Quartus Prime and Stratix V: 5SGXEA7N2F45C2 are

chosen as the software and FPGA platform to test the

network’s performance, respectively. The processing speed

and hardware resource can be obtained from Flow Summary

in Quartus Prime after compilation. Through pipeline design,

the processing speed and hardware resource are shown as

TABLE II. Hence, it takes (60,000*676)/(517.87*10^6)≈

78.32ms to complete the training of 60,000 images and

676/(517.87*10^6)≈1.31μs to inference one image. The

throughput of the entire system is about 1/(1.31*10^(-6))≈

763,358 images per second, which is much faster than state-

of-the-art works.

C. Performance Comparison

To evaluate network’s performance on pattern recognition

accuracy, hardware resource, processing speed, and

throughput, comparison with other works has been done,

which is shown as TABLE III. Latest works about

memristive neural networks for pattern recognition on

hardware are chosen as comparison, including ESIL-

MMNN [38], RESPARC [39], CBRAM [40], and HDR-

MSN [41]. The criteria include device types, dataset,

accuracy, hardware resource, processing speed, and

throughput.

ESIL-MMNN [38] demonstrates an in-situ learning with

multilayer memristive neural network for pattern recognition.

Compared with ESIL-MMNN, our network on noisy

MNIST is with roughly the same pattern recognition

accuracy as ESIL-MMNN on non-noisy MNIST, benefiting

from the image preprocessing function of our network.

Further, our network uses less than a third of memristor

models in ESIL-MMNN because the multilayer structure in

our network needs few devices than the crossbar structure in

ESIL-MMNN.

TABLE I

IFERENCE RESULTS OF NOISY MNIST

 Expectation

0 1 2 3 4 5 6 7 8 9

Experiment

results

0 968 20 29 23 11 121 11 24 8 19

1 0 1046 1 0 2 5 1 16 0 4

2 2 21 919 21 13 6 9 7 2 9

3 4 17 19 936 18 23 2 19 3 18

4 0 0 7 0 877 0 1 7 2 8

5 0 0 0 0 0 719 0 0 0 0

6 1 0 11 3 19 0 905 2 6 3

7 0 0 2 4 1 1 0 924 1 3

8 5 31 44 23 34 17 29 26 950 34

9 0 0 0 0 7 0 0 3 2 911

TABLE II

THE PROCESSING SPEED AND HARDWARE RESOURCE OF ENTIRE NETWORKS

Device Processing

speed

Hardware

resource

Training time Inference time Throughput

Stratix V: 5SGXEA7N2F45C2 517.87MHz 145ALMs 78.32ms 1.31μs 763,358 images/s

RESPARC [39] proposes a memristive crossbar arrays for

deep spiking neural networks, which achieves the state-of-

the-art processing speed and throughput. However, even the

simplest architecture for MNIST in RESPARC still needs

2378 neurons and 1902400 synapses. Compared with

RESPARC, multilayer feedforward structure, which is more

flexible than crossbar, is applied in our network. Hence,

hardware resources of our network are much less than

RESPARC. More importantly, our network uses the

characteristic of memristor model itself to process the

spiking signals without numerous complex calculation

modules, so our network achieves higher processing speed

and throughput than RESPARC.

CBRAM [40] proposes a digital implementation by low

energy subquantum device and achieves high recognition

accuracy on MNIST. Compared with CBRAM, the pattern

recognition accuracy on noisy MNIST of our network

roughly equals with that on pure MNIST of CBRAM, which

benefits from image preprocessing function of memristive

layer 1 and 2. Further, the throughput of our network is much

higher because our network performs a parallel computing

system on FPGA rather than using many serial signals for a

single image in CBRAM.

HDR-MSN [41] demonstrates a hybrid convolutional neural

network based on HfO2 memristor neuron which have a high

integration density. Compared with HDR-MSN using the

similar noisy MNIST dataset, complex convolutional neural

networks are used in HDR-MSN while our network employs

spiking signals to implement high-efficiency in-memory

computing. Hence, our network has much higher processing

speed and over 700 times higher throughput under

approximate accuracy and hardware resources.

TABLE III

PERFORMANCE COMPARISON WITH STATE-OF-THE-ART WORKS ON MEMRISTIVE SYSTEMS

Design Device

types

Dataset Accuracy Hardware resource Processing

speed

Throughput

ESIL-MMNN

[38]

Drift

memristors

MNIST 91.7% 7,992 memristors N/A N/A

RESPARC

[39]

Drift

memristors

MNIST N/A 2378 neurons + 1902400

synapses

200MHz N/A

CBRAM

[40]

Drift

memristors

MNIST 92.02% N/A N/A 20 images/s

HDR-MSN

[41]

Drift

memristors

Noisy

MNIST

>90% 3,136 dimensional

arrays

+784 memristors

<1kHz <1,000 images/s

Our work Drift and

diffusion

memristors

Noisy

MNIST

91.55% 2,352 memristors

(145ALMs in Stratix V)

517.87MHz 763,358 images/s

TABLE IV

PERFORMANCE COMPARISON WITH STATE-OF-THE-ART WORKS ON MNIST

Design Platform Resource Usage Processing speed Training time Throughput

CryptoNets

[42]

Intel Xeon E5-1620

CPU
N/A N/A N/A 16.38 images/s

LPHS-DL

[43]

Titan V GPU N/A N/A 8204.82 (ms) N/A

Terasic DE1-SoC

FPGA
44856 (LUTs) N/A 5091.54 (ms) N/A

HPA-CNN

[44]

Xilinx Virtex 7

FPGA
55774 (LUTs) 200MHz 1481.4 (ms) 40,502 images/s

Our work

Stratix V:

5SGXEA7N2F45C2

FPGA

145 (ALMs) 517.87MHz 78.32 (ms) 763,358 images/s

Furthermore, to show its merits on hardware, some other

works [42-44] about MNIST classification on different

platforms, including CPU, GPU and FPGA, are chosen as

comparisons. CryptoNets [42] focuses on improving the

throughput, which is implemented in Intel Xeon E5-1620

and achieves the state-of-the-art performance on CPU.

However, CPU has no merits on processing speed of neural

networks and deep learning due to its serial computation

process. Hence, LPHS-DL [43] on GPU and FPGA, and

HPA-CNN [44] on FPGA are chosen as comparisons.

Aiming at high processing speed, the LPHS-DL achieves the

state-of-the-art training speed on both Titan V GPU and

Terasic DE1-SoC FPGA. HPA-CNN is implemented on

Virtex 7 FPGA, which is the best 7 series FPGA in Xilinx.

Hence, the performance of HPA-CNN, including training

time and throughput, is much better than CryptoNets and

LPHS-DL.

Compared with the above works on CPU and GPU, the

superior performance of our framework benefits from both

the learning mechanism and FPGA platform. Compared with

HPA-CNN on Xilinx Virtex 7 FPGA, our framework, which

is implemented in a similar high-end FPGA (Stratix V:

5SGXEA7N2F45C2), can still achieve better hardware

performance including resource usage, processing speed,

training time, and throughput.

From above, one can see that our network has a good pattern

recognition performance for noisy dataset due to the image

preprocessing function of diffusion memristive cellular

layers and pattern recognition function of drift memristive

feedforward layer. Further, owing to high-efficiency in-

memory computing and brief spiking encoding methods, our

network needs fewer hardware resources and has much

higher processing speed and throughput than state-of-the-art

works.

V. CONCLUSIONS

In this paper, a novel multilayer neural network, which

consists of two diffusion memristive cellular layers for

image preprocessing and one drift memristive feedforward

layer for pattern recognition, is presented. Due to the

denoising and edge compensation for preprocessing of

diffusion memristive layers, the network has a good anti-

noise performance and the recognition accuracy of noisy

MNIST is over 90%. Further, because the in-memory

computing and spiking encoding methods of the entire

network are friendly for hardware implement, the processing

speed and throughput are much higher, and the hardware

resources are fewer than state-of-the-art works. We hope this

idea can give an inspiration for the works combining image

preprocessing with machine learning, the applications of

diffusion memristor model, and designs of neural networks

and neuromorphic computing by integrating memristor

models.

REFERENCES

[1] L. Chua, “Memristor-the missing circuit element,” IEEE

Transactions on circuit theory, vol. 18, no. 5, pp. 507-519,

Sep. 1971.

[2] Q. Xia, et al., “Memristor-CMOS hybrid integrated

circuits for reconfigurable logic,” Nano Letters, vol. 9, no.

10, pp. 3640, Sep. 2009.

[3] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S.

Williams, “The missing memristor found,” Nature, vol. 453,

no. 7191, pp. 80-83, May. 2008.

[4] Z. Wang, et al., “Memristors with diffusive dynamics

as synaptic emulators for neuromorphic computing,” Nature

Materials, vol. 16, no. 1, pp. 101, Sep. 2016.

[5] Z. Wang, et al., "Resistive switching materials for

information processing", Nature Reviews Materials, 2020,

doi: 10.1038/s41578-019-0159-3.

[6] X. Zhang, et al., "An artificial spiking afferent nerve

based on Mott memristors for neurorobotics", Nature

Communications, vol. 11, art. no. 51, 2020.

[7] B. Linaresbarranco, and T. Serranogotarredona,

“Memristance can explain Spike-Time-Dependent- -

Plasticity in Neural Synapses,” Nature Precedings, Mar.

2009.

[8] S. H. Jo, et al., “Nanoscale memristor device as

synapse in neuromorphic systems,” Nano Letters, vol. 10, no.

4, pp. 1297-1301, Mar. 2010.

[9] S. Ambrogio, S. Balatti, F. Nardi, S. Facchinetti, and D.

Ielmini, “Spike-timing dependent plasticity in a transistor-

selected resistive switching memory,” Nanotechnology, vol.

24, no. 38, pp. 384012, Sep. 2013.

[10] C. Ting, J. Sung-Hyun, and L. Wei, “Short-term

memory to long-term memory transition in a nanoscale

memristor,” Acs Nano, vol. 5, no. 9, pp. 7669-76, Aug. 2011.

[11] A. Thomas, “Memristor-based neural networks,”

Journal of Physics D: Applied Physics, vol. 46, no. 9, pp.

093001, Feb. 2013.

[12] S. Kvatinsky, et al., “MAGIC—Memristor-Aided

Logic,” IEEE Transactions on Circuits & Systems II:

Express Briefs, vol. 61, no. 11, pp. 895-899, Sep. 2014.

[13] J. J. Yang, D. B. Strukov, and D. R. Stewart,

“Memristive devices for computing,” Nature

Nanotechnology, vol. 8, no. 1, pp. 13-24, Dec. 2012.

[14] X. Zhu, et al., "Ionic modulation and ionic coupling

effects in MoS 2 devices for neuromorphic computing",

Nature Materials, no. 18, pp. 141-148, 2019.

[15] D. Fan, M. Sharad, and K. Roy, “Design and Synthesis

of Ultra Low Energy Spin-Memristor Threshold Logic,”

IEEE Transactions on Nanotechnology, vol. 13, no. 3, pp.

574-583, Mar. 2014.

[16] C. Li, et al., "Long short-term memory networks in

memristor crossbar arrays", Nature Machine Intelligence, no.

1, pp. 49-57, 2019.

[17] Z. Wang, et al., "Reinforcement learning with analogue

memristor arrays", Nature Electronics, no. 2, pp. 115-124,

2019.

[18] Z. Wang, et al., "In situ training of feed-forward and

recurrent convolutional memristor networks", Nature

Machine Intelligence, no. 1, pp. 434-442, 2019.

[19] E. Covi, et al., "HfO2-based memristors for

neuromorphic applications," in 2016 IEEE International

Symposium on Circuits and Systems (ISCAS), 2016: IEEE,

pp. 393-396.

[20] S. Duan, X. Hu, Z. Dong, L. Wang, and P. Mazumder,

“Memristor-based cellular nonlinear/neural network: design,

analysis, and applications,” IEEE Transactions on Neural

Networks & Learning Systems, vol. 26, no. 6, pp. 1202-1213,

Jul. 2015.

[21] J. Moon, et al., "Temporal data classification and

forecasting using a memristor-based reservoir computing

system", Nature Electronics, no. 2, pp. 480-487, 2019.

[22] M. N. Bojnordi and E. Ipek, "Memristive boltzmann

machine: A hardware accelerator for combinatorial

optimization and deep learning," in 2016 IEEE International

Symposium on High Performance Computer Architecture

(HPCA), 2016: IEEE, pp. 1-13.

[23] F. Cai, et al., "A fully integrated reprogrammable

memristor–CMOS system for efficient multiply–accumulate

operations", Nature Electronics, no. 2, pp. 290-299, 2019.

[24] T. A. Anusudha, and S. R. S. Prabaharan, “A Versatile

Window Function for Linear Ion Drift Memristor Model – A

New Approach,” AEU - International Journal of Electronics

and Communications, vol. 90, pp. 130-139, Jun. 2018.

[25] Z. Tang, et al., "A hardware friendly unsupervised

memristive neural network with weight sharing

mechanism," Neurocomputing, vol. 332, pp. 193-202, Mar.

2019.

[26] J. H. Yoon, et al., “An artificial nociceptor based on a

diffusive memristor,” Nature Communications, vol. 9, no. 1,

pp. 417, Jan. 2018.

[27] Z. Wang, et al., “Fully memristive neural networks for

pattern classification with unsupervised learning,” Nature

Electronics, vol. 1, no. 2, pp. 137, Feb. 2018.

[28] M. Hansen, F. Zahari, M. Ziegler, and H. Kohlstedt,

“Double-Barrier Memristive Devices for Unsupervised

Learning and Pattern Recognition,” Frontiers in

Neuroscience, vol. 11, Feb. 2017.

[29] R. Zhu, et al., "Influence of Compact Memristors’

Stability on Machine Learning," IEEE Access, no. 7, pp.

47472-47478, Apr. 2019.

[30] R. B. Hur and S. Kvatinsky, "Memristive memory

processing unit (MPU) controller for in-memory

processing," in 2016 IEEE International Conference on the

Science of Electrical Engineering (ICSEE), 2016: IEEE, pp.

1-5.

[31] T. Chang, et al., “Synaptic behaviors and modeling of a

metal oxide memristive device,” Applied Physics A, vol. 102,

no. 4, pp. 857-863, Mar. 2011.

[32] Z. Tang, et al., "Fully Memristive Spiking-Neuron

Learning Framework and Its Applications on Pattern

Recognition and Edge Detection," arXiv preprint arXiv:

1901.05258, 2019.

[33] Y. V. Pershin, and M. Di Ventra, "Experimental

demonstration of associative memory with memristive

neural networks," Neural Networks, vol. 23, pp. 881-886,

Sep. 2010.

[34] C. D. Schuman, et al., “A survey of neuromorphic

computing and neural networks in hardware,” arXiv preprint

arXiv:1705.06963, 2017.

[35] K. Cheung, S. R. Schultz, and W. Luk, “NeuroFlow: A

General Purpose Spiking Neural Network Simulation

Platform using Customizable Processors,” Frontiers in

Neuroscience, vol. 9, no. 19, pp. 516, Jan. 2016.

[36] S. Cawley, “Hardware spiking neural network

prototyping and application,” Genetic Programming &

Evolvable Machines, vol. 12, no. 3, pp. 257-280, Sep. 2011.

[37] R. Hu, S. Zhou, Y. Liu, and Z. Tang, “Margin-Based

Pareto Ensemble Pruning: An Ensemble Pruning Algorithm

That Learns to Search Optimized Ensembles,”

Computational Intelligence and Neuroscience, vol. 2019, art.

no. 7560872, Jun. 2019.

[38] C. Li, et al., “Efficient and self-adaptive in-situ learning

in multilayer memristor neural networks,” Nature

Communications, vol. 9, no. 1, pp. 2385, Jun. 2018.

[39] A. Ankit, A. Sengupta, P. Panda, K. Roy, “RESPARC:

A Reconfigurable and Energy-Efficient Architecture with

Memristive Crossbars for Deep Spiking Neural Networks,”

in 2017 Proceedings of the 54th Annual Design Automation

Conference (DAC), 2017: ACM, pp. 1-6.

[40] Y. Shi, et al., “Neuroinspired unsupervised learning and

pruning with subquantum CBRAM arrays,” Nature

Communications, vol. 9, Art. no. 5312, Dec. 2018.

[41] J. Wang, et al., “Handwritten-digit recognition by

hybrid convolutional neural network based on HfO2

memristive spiking-neuron,” Scientific reports, vol. 8, no. 1,

pp. 12546, Aug. 2018.

[42] N. Dowlin, et al., “CryptoNets: Applying Neural

Networks to Encrypted Data with High Throughput and

Accuracy”, in 2016 International Conference on Machine

Learning (ICML), 2016: pp. 201-210.

[43] C. Lammie, M. R. Azghadi, “Stochastic Computing for

Low-Power and High-Speed Deep Learning on FPGA”, in

2019 IEEE International Symposium on Circuits and

Systems (ISCAS), 2019: IEEE, pp. 1-5.

[44] A. Kyriakos, et al., “High Performance Accelerator for

CNN Applications”, in 2019 29th International Symposium

on Power and Timing Modeling, Optimization and

Simulation (PATMOS), 2019: IEEE, pp. 135-140.

