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Abstract—With the development of research on novel 

memristor model and device, neural networks by 

integrating various memristor models have become a hot 

research topic recently. However, state-of-the-art works 

still build such neural networks using drift memristor 

only. Furthermore, some other related works are only 

applied to a few individual applications including pattern 

recognition and edge detection. In this paper, a novel 

kind of multilayer neural network is proposed, in which 

diffusion and drift memristor models are applied to 

construct a system merging image preprocessing and 

pattern recognition. Specifically, the entire network 

consists of two diffusion memristive cellular layers for 

image preprocessing and one drift memristive 

feedforward layer for pattern recognition. Experimental 

results show that good recognition accuracy of noisy 

MNIST is obtained due to the fusion of image 

preprocessing and pattern recognition. Moreover, owing 

to high-efficiency in-memory computing and brief 

spiking encoding methods, high processing speed, high 

throughput, and few hardware resources of the entire 

network are achieved. 

Index Terms — multilayer neural network, diffusion 

memristive cellular layer, drift memristive feedforward 

layer, image preprocessing, pattern recognition 

 

I. INTRODUCTION 

L. O. Chua postulated memristor [1] in 1971, which is the 

fourth basic element besides resistor, inductor, and capacitor. 

In general, memristor can be divided into two main types [2]: 

drift memristor and diffusion memristor. HP Lab made drift 

memristor in 2008 first [3] while diffusion memristor was 

first presented by UMass in 2016 [4]. Since memristor 

device has been realized, research related to memristor have 

emerged one after another. Recently, neuromorphic 

computing with memristive neural networks (MNNs) [5]-[6], 

which uses memristor as artificial synapse [7], has become a 

hot research topic due to memristor’s potential on many 

combinatorial descriptions of biological synapse’s 

characteristics [8], such as spike timing-dependent plasticity 

(STDP) [9], long-term potentiation (LTP) [10], and long-

term depression (LTD) [11]. Furthermore, memristor has 

many advantages, such as in-memory computing [12], high 

integration density [13]-[14] ,and small dimension [15]. 

Hence, memristive neural networks show great potentials on 

various learning frameworks including long short-term 

memory network (LSTM) [16], reinforcement learning (RL) 

[17], and recurrent convolutional networks [18], and many 

applications including pattern recognition [19], edge 

detection [20], temporal data classification [21], and high 

performance computing [22]-[23].  

Although the number of existing works about memristor are 

growing, most research and applications still used the drift 

memristor only [24]-[25]. In these years, the emergence of 

diffusion memristor gives room for the development of 

MNNs with richer functions and stronger performance. Q. F. 

Xia and J. J. Yang described diffusion memristor as a 

synaptic emulator for neuromorphic computing [4] when 

they first time made the diffusion memristor device in 

UMass. Z. Wang applied diffusion memristor into artificial 

nociceptor [26] and pattern recognition [27], in which 

diffusion memristors were used as threshold switches and 

crossbar structure, respectively. However, how to explore the 

potentials of diffusion memristor in other fields is still a 

challenging problem. 
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According to state-of-the-art works, how to design a neural 

network by integrating drift and diffusion memristor models 

is also an open area. One research about fully memristive 

neural networks used memristors and metal-oxide-

semiconductor field effect transistors (MOSFET) [28] while 

another built a fully memristive crossbar by memristors, 

capacitors, and inductors [27]. From the above research, 

other devices besides memristor are still needed in fully 

memristive neural networks, which limit not only 

improvements on scalability [29] and processing speed [30], 

but also simplifications on fabrication process [31] of the 

entire networks.  

Furthermore, existing research about MNNs in image 

processing have many different applications, such as edge 

detection [32] and image storage [33]. However, there are no 

research on how to combine image preprocessing with 

learning systems and explore the potentials of diffusion 

memristor in image processing. Theoretically, image 

preprocessing with MNNs can improve the performance of 

entire systems including recognition accuracy, processing 

speed, and hardware resource. Hence, a novel neural 

network framework, which use drift and diffusion memristor 

models only, and combine image preprocessing with 

learning systems smoothly, need to be developed. 

Inspired by the above, this paper designs a multilayer neural 

network merging image preprocessing and learning systems 

with diffusion and drift memristor models only. The main 

contributions are summarized as follows: 

a. A novel multilayer neural network is proposed, which 

merges image preprocessing with learning systems. 

Through this way, a fully memristive system with high-

efficiency in-memory computing and brief spiking 

encoding methods is implemented, which lays a solid 

foundation for achieving a good performance on 

machine learning tasks. 

b. To verify its merits, the proposed framework is applied to 

noisy pattern recognition on hardware. Image denoising 

and pattern recognition are implemented by image 

preprocessing and learning systems, respectively. 

Experimental results show that it achieves high noisy 

pattern recognition accuracy with high processing speed, 

high throughput, and few hardware resources. 

 

II. OVERVIEWS OF ALGORITHMS 

In this section, a novel multilayer neural network with 

function of image preprocessing and learning systems is 

proposed, which consists of two diffusion memristive layers 

for image preprocessing and one drift memristive layer for 

pattern recognition shown as Fig. 1. To verify the function of 

image preprocessing and learning systems, the entire 

network is applied to denoising and pattern recognition for 

noisy image. 

 

A. Diffusion Memristive Cellular Layer for Image 

Preprocessing 

The basic diffusion memristor model was proposed by 

researchers from UMass [4] and has similar characteristics 

to a threshold switch, which is shown as Fig. 2.  

If the hold time of input voltage spikes of diffusion 

memristor model is the same and the spikes exceed the set 

threshold, the diffusion memristor model will “open” and the 

 
Fig. 1. Overview of entire network 

 

Fig. 2. Switching characteristic of diffusion memristor 

model 

 

Fig. 3. The way pixels are converted into spikes 



output current spikes will follow the input voltage spikes. 

Due to its switching characteristics, diffusion memristor 

model can be used as a natural mean filter. The basic 

diffusion memristor model with the same hold time of input 

voltage spikes is as follow: 

{
( )output inputI t U= ,

inputU Threshold  

( ) 0outputI t =        ,
inputU Threshold  

     (1) 

To introduce the spiking encoding methods, a black and 

white binary image is taken as an example, which is shown 

as Fig. 3. First, pixels in the image need to be converted into 

spikes and the hold time of each spike keeps same. Then, the 

pixel value corresponds to the height of its peak voltage 

spike. If the pixel is black, whose pixel value is 255, the 

spike height of this pixel will be 255. If the pixel is white, 

the height will be 0. 

The diffusion memristive cellular layers, which has the 

functions of denoising and edge compensation for image 

preprocessing, use the eight pixels around the target pixel for 

maintaining high processing speed as Fig. 4. 

The entire preprocessing part is shown as Fig. 5. It can be 

divided into two parts: memristive cellular layer 1 for 

denoising and layer 2 for edge compensation. As a natural 

mean filter, diffusion memristor models will filter out the 

edge information of original image when they filter most 

random noise. Some works [20],[32] have proposed that 

memristive cellular neural networks have a good 

performance in edge detection. Hence, layer 2 is designed 

for supporting the function of edge compensation through 

adding the edge detection results of original image to the 

denoising image after layer 1. In this way, while getting a 

good denoising performance, the original image information 

is also restored as much as possible. 

The diffusion memristive cellular layer 1 is act as a mean 

filter for image denoising. The filter threshold is: 

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑙𝑎𝑦𝑒𝑟1 =
1

8
∑ 𝑓(𝑖, 𝑗)𝑓∈𝑆        (2) 

The fire thresholds of each diffusion in layer 1 are set 

according to formula (2) and the output from layer 1 follows 

the formula (1).  

 

Fig. 4. The image preprocessing of diffusion memristive cellular layer 

 

Fig. 5. The training process of diffusion memristive cellular layer 1 and 2 for image preprocessing 



The edge compensation of diffusion memristive cellular 

layer 2 follows the fully memristive cellular neural networks 

in [32] and the threshold for gray images is calculated by: 

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑙𝑎𝑦𝑒𝑟2 = 𝑅 · 0.299 + 𝐺 · 0.587 + 𝐵 · 0.114 (3) 

in which R, G, and B are the minimum changes of red, green, 

and blue that human eyes can recognize to color images, 

respectively. 

The fire thresholds of each diffusion memristor model in 

layer 2 have been set separately according to formula (3). 

Then it will compare the surrounding eight pixels with the 

target pixel in turn. The voltage spikes of surrounding pixel 

and target pixel are applied to two ends of diffusion 

memristor model, respectively. Hence, if the difference 

between these two voltage spikes of pixels is greater than 

threshold, this diffusion memristor model will output a 

current spike. If the difference is less than threshold, this 

diffusion memristor model won’t fire according to formula 

(1). After eight comparisons, the sum of output current is the 

processed pixel through this cellular layer. The process ends 

after each pixel of the image has been compared with the 

surrounding eight pixels. 

To test the preprocessing performance of diffusion 

memristive cellular layer, random Gaussian noise is added to 

original images. The denoising preprocessing system uses 

one image of number 0 from MNIST and parameters of 

Gaussian noise are: 

𝑁𝑜𝑖𝑠𝑒 = 𝑁(0,10^4)             (4) 

which has 𝜇 = 0 and 𝜎 = 100. 

From Fig. 5, the processed image shows a good denoising 

and restoration performance through adding the denoising 

from layer 1 with the edge compensation from layer 2. Hence, 

the preprocessing layers also have the same denoising effect 

for images of other numbers in MNIST. 

 

B. Drift Memristive Feedforward Layer for Pattern 

Recognition 

In HP memristor model, the value of drift memristor 𝑀(𝑡) 

can be calculated as: 

𝑀(𝑡) =
𝑑(𝜙(𝑡))

𝑑(𝑞(𝑡))⁄ =
𝑈(𝑡)

𝐼(𝑡)⁄       (5) 

The relationship between the voltage at two ends of 

memristor drift model 𝑈(𝑡)  and the current through drift 

memristor model 𝐼(𝑡) is: 

𝑈(𝑡) = 𝐼(𝑡)[𝑅𝑜𝑓𝑓 − (𝑅𝑜𝑓𝑓 − 𝑅𝑜𝑛)𝜇𝑣
𝑅𝑜𝑛

𝐷2 ∫ 𝐼(𝑡)𝑑𝑡
𝑡

−∞
] (6) 

So we have: 

𝑀(𝑡) = 𝑅𝑜𝑓𝑓 − (𝑅𝑜𝑓𝑓 − 𝑅𝑜𝑛)𝜇𝑣

𝑅𝑜𝑛

𝐷2
∫ 𝐼(𝑡)𝑑𝑡

𝑡

−∞

 

= 𝑘1 − 𝑘2 ∫ 𝐼(𝑡)𝑑𝑡
𝑡

−∞
                   (7) 

where 𝑘1 = 𝑅𝑜𝑓𝑓 and 𝑘2 = (𝑅𝑜𝑓𝑓 − 𝑅𝑜𝑛)𝜇𝑣
𝑅𝑜𝑛

𝐷2 .  

The change of synaptic weight equals to change of reciprocal 

value of drift memristor model [4, 7, 11], which has: 

𝑑𝑊 = 𝑑𝐺 = 𝑑(
1

𝑀(𝑡)
) = 𝑑(

1

𝑘1−𝑘2 ∫ 𝐼(𝑡)𝑑𝑡
𝑡

−∞

)   (8) 

Due to the way spikes encoded, 𝐼(𝑡) denotes the constant 

for a specific pixel and 𝐼(𝑡)𝑑𝑡  is the electricity flowing 

through this drift memristor model, which is the area of 

spikes in the coordinate system. So we have: 

𝑀(𝑡) = 𝑘1 − 𝑘2 · 𝐴𝑟𝑒𝑎𝑠𝑝𝑖𝑘𝑒             (9) 

𝑑𝑊 = 𝑑𝐺 = 𝑑(
1

𝑀(𝑡)
) = 𝑑(

1

𝑘1−𝑘2𝐴𝑟𝑒𝑎𝑠𝑝𝑖𝑘𝑒
)  (10) 

Further, considering non-idealities of the memristors, a 

complex memristor model which has window function is 

shown as follow:  

 

Fig. 6. The training process of drift memristive feedforward layer 3 for pattern recognition 



𝑊(𝑡) = ∫ 𝜇𝑣

𝑅𝑜𝑛

𝐷
𝐼(𝑡)𝑓(𝑥)𝑑𝑡

𝑡

−∞

= 𝜇𝑣

𝑅𝑜𝑛

𝐷
𝑞(𝑡)𝑓(𝑥) 

 (11) 

So the value of drift memristor model can be derived as: 

𝑀(𝑡) = 𝑅𝑜𝑛 (𝜇𝑣

𝑅𝑜𝑛

𝐷2
𝑓(𝑥) ∫ 𝐼(𝑡)𝑑𝑡

𝑡

−∞

) 

                        +𝑅𝑜𝑓𝑓 (1 − 𝜇𝑣

𝑅𝑜𝑛

𝐷2
𝑓(𝑥) ∫ 𝐼(𝑡)𝑑𝑡

𝑡

−∞

) 

   = 𝑅𝑜𝑓𝑓 − (𝑅𝑜𝑓𝑓 − 𝑅𝑜𝑛)𝜇𝑣

𝑅𝑜𝑛

𝐷2
𝑓(𝑥) ∫ 𝐼(𝑡)𝑑𝑡

𝑡

−∞

 

(12) 

From above, the drift memristor model with non-idealities 

can also be transformed into formula (9). Hence, our network 

has nothing to do with the non-idealities of memristor 

models. In other words, the framework is universal to all 

kinds of complex or nonlinear memristor models because all 

our network needs is just the basic characteristic of 

memristor models. 

From above, the value of drift memristor model keeps a 

linear relationship with the total area of spikes. If input 

spikes of one drift memristor model are from black pixels, 

the drift memristor model corresponding to these black 

pixels will be lower than that corresponding to white pixels, 

which is a brief and efficient training process for one drift 

memristor model.   

The total drift memristive feedforward layer is shown as Fig. 

6. Each pixel has one drift memristor model to act as its 

synaptic weight. If one image is input into the feedforward 

layer during the training process, all the values of drift 

memristor models will be changed.  

During the inference process, the pixels of inference images 

are converted into voltages whose value depends on its pixel. 

The “voltage” image is applied to each drift memristor 

model in layer 3. Due to the difference in drift memristor 

models after training, the output currents of each pixel will 

be different, and the sum of output currents will be used as 

numerical answers for inference.  

 

C. Entire Network Architecture 

The architecture and training process of entire network are 

shown as Fig. 7. First, random Gaussian noises are added to 

original images from MNIST. Then noisy images are 

converted into voltage spikes, which are represented by blue 

lines. Second, these voltage spikes are input into diffusion 

memristive layer 1 and layer 2, respectively. The output 

current spikes from layer 1 and layer 2, which are 

represented by red lines, are input into drift memristive layer 

3 together. Finally, the values of drift memristor models in 

layer 3 will be changed during the training process. 

 

Fig. 7. The architecture and training process of entire network 



The inference process of entire network needs drift 

memristive layer 3 only. From above, the values of drift 

memristor models vary after training. Take an area of 

random black pixels with high voltages as an example, the 

output of these random pixels will be higher because the 

values of drift memristor models in this area are lower than 

others after training, which is shown as Fig. 8. For a wrong 

test image, the input in the area contains some pixels being 

or closed to white, which will result in lower output currents. 

Hence, the sum of output currents corresponding to right 

category is larger than other wrong categories. In other 

words, the right test images have a better “match” for the 

drift memristive layer 3. 

 

 

III. OVERVIEWS OF HARDWARE DESIGN 

In this section, circuit diagrams of diffusion memristive layer, 

drift memristive layer, and entire network are introduced 

based on diffusion and drift memristor models on Field 

Programmable Gate Array (FPGA). Some hardware 

optimization techniques are used to improve the hardware 

performance including processing speed, throughput, and 

hardware resource. Further, to better show the circuit 

framework of the entire system, we use a single memristor 

model to represent the corresponding memristive layer.  

 

A. Circuit Diagram of Diffusion Memristive Cellular Layer 

To build the entire network and verify the network’s 

performance on hardware, FPGA is chosen as hardware 

platform. FPGA is controlled by clock signals so that it is 

very suitable to process spiking signals in many applications 

[34-37]. First, the diffusion memristor is modelled on FPGA 

according to formula (1). Based on the model, the circuit 

diagram of diffusion memristive cellular layer for image 

 

Fig. 8. The inference process of entire network 

 

Fig. 9. The circuit diagram of diffusion memristive cellular layer for image preprocessing 



preprocessing is shown as Fig. 9. The input includes clock 

signals, reset signals, and voltages of target pixel and eight 

surrounding pixels, in which the input voltage of pixels 

depend on the value of corresponding pixels, e.g. input 

voltage is 2.5mV for whose pixel value is 25 and 14.5mv for 

whose pixel value is 145. The output is the processed pixel 

composed by current spikes, which ranges from 0 to 

229.5mA according to formula (1) to (3) and the framework 

of diffusion memristive cellular layers. In diffusion 

memristor model comparer, each pixel has two diffusion 

memristor models for positive and negative comparisons. 

Clock signal-controlled data selector determines the order of 

comparisons. The entire memristive cellular layer is 

pipelined without any complex calculation inside. Hence, 

the processing speed of the entire system is quite high 

theoretically. 

 

B. Circuit Diagram of Drift Memristive Feedforward Layer 

The drift memristor is modelled on FPGA according to 

formula (9), which Ron is set as 14Ω and Roff is set as 14kΩ. 

Based on the model, the circuit diagram of drift memristive 

feedforward layer is shown as Fig. 10. The input includes 

clock signals, reset signals, and the pixels of preprocessing 

images. The preprocessing images, which are represented by 

 

Fig. 10. The circuit diagram of drift memristive feedforward layer for pattern recognition 

 

Fig. 11. The circuit diagram of entire network’s training and inference 

 

Fig. 12. Using basic unit of nine pixels to perform loading 

and calculation operations 



currents and range from 0 to 229.5mA, are obtained from the 

output of the diffusion memristive cellular layers. The 

controller module determines the state of the entire circuit. 

The right end of drift memristor model is linked to ground 

directly during training process. From formula (8), the 

values of drift memristor models are determined by input 

current. However, if the values of drift memristor models are 

tested as ordinary resistors, the values of drift memristor 

models will be changed, which will affect the accuracy of 

experimental results. Hence, the right end of drift memristor 

model is linked to one spike current source whose value is 

0.1mA during inference process and the output of the entire 

circuit is the voltage of drift memristor model. Hence, the 

values of drift memristor models can be calculated by the 

output voltage. The entire memristive feedforward layer, 

which is similar to cellular layer, is pipelined without any 

complex calculation inside. Hence, the hardware 

performance of the entire system is good theoretically. 

 

C. Hardware Optimization and Circuit Diagram of Entire 

Network 

The circuit diagram of entire network’s training and 

inference is shown as Fig. 11(a) and (b), respectively. The 

inputs of training process in Fig. 11(a) include clock, reset, 

and training images (pixels to voltage according to the 

above). After each training images are processed by 

diffusion memristive layers and drift memristive layer, the 

value of drift memristor models won’t be changed.  

The inference process in Fig. 11(b) use the well-trained drift 

memristive feedforward layer only. Similar as the training 

process, the test images are converted into voltage spikes 

first, but the values of input voltage are a tenth of the input 

of training process, e. g. input voltage is 1mV for whose 

pixel value is 100. This spike coding process is to prevent 

the values of drift memristor models from changing too 

much by the input of inference process. Put the input 

voltages (inference images) into the drift memristor models 

and add the output currents up. Based on Fig. 8 and inference 

process in Section 3.3, the inference results are got through 

a comparer, in which the biggest total output currents 

represents the category of this input inference image.  

What’s more, for both of training and inference processes, 

the input are voltage spikes and outputs are current spikes. 

The proposed multilayer neural network is with in-memory 

computing and has quite concise and high-efficiency spiking 

encoding methods.  

In order to maximize the processing speed of the entire 

network, pipeline design methods of hardware including 

loading and calculation are adopted, which is shown as Fig. 

12. Nine pixels are used as a basic unit to perform the 

training and inference operations. The reason for choosing 

nine pixels as a basic unit is that it can perform a complete 

denoising, edge compensation and pattern recognition 

through layer 1, layer 2, and layer 3, respectively. 

 

IV. EXPERIMENTAL RESULTS AND ANALYSIS 

In this section, MNIST dataset with random noise [38] is 

chosen to test the accuracy of noisy pattern recognition. 

Further, the entire neural network with image preprocessing 

and pattern recognition is implemented and optimized on 

hardware platform to test the performance of hardware 

resource, processing speed, and throughput. 

 

A. Pattern Recognition 

Noisy MNIST, which includes 60,000 training images and 

10,000 test images with random Gaussian noise 𝑁(0,10^4), 

is chosen as the training and test dataset. The noisy MNIST 

consists of binary images of 10 numbers from 0 to 9 with 

28*28 pixels. To verify the denoising performance, the same 

voltages is applied to layer 3 to get the output current spikes. 

The images of output current spikes from layer 3 without 

preprocessing are shown as Fig. 13(a) and the images with 

preprocessing are shown as Fig. 13(b). The brighter parts of 

the output image represent the corresponding pixels which 

have smaller values of drift memristor models and higher 

synaptic weights. From above, one can see that the diffusion 

 

Fig. 13. The images of output current spikes after training (a) without preprocessing (b) with preprocessing 



memristive cellular layer 1 and layer 2 play an important role 

in denoising of output images. In other words, the image 

preprocessing of the entire network has a good denoising 

performance, which lays a solid foundation for pattern 

recognition task. 

The recognition accuracy of noisy MNIST is shown as 

TABLE I. The inference accuracy with preprocessing is 

91.55% after training. From above, the fully memristive 

neural network with image preprocessing and pattern 

recognition is efficient in improving recognition accuracy of 

noisy MNIST. 

 

B. Processing Speed and Hardware Resource 

As mentioned above, nine pixels of images are used as a 

basic unit to perform the training and inference operations. 

Hence, loading and calculation of one image with 28*28 

pixels needs (28-2)*(28-2)＝676 times. Specifically, Intel 

Quartus Prime and Stratix V: 5SGXEA7N2F45C2 are 

chosen as the software and FPGA platform to test the 

network’s performance, respectively. The processing speed 

and hardware resource can be obtained from Flow Summary 

in Quartus Prime after compilation. Through pipeline design, 

the processing speed and hardware resource are shown as 

TABLE II. Hence, it takes (60,000*676)/(517.87*10^6)≈

78.32ms to complete the training of 60,000 images and 

676/(517.87*10^6)≈1.31μs to inference one image. The 

throughput of the entire system is about 1/(1.31*10^(-6))≈

763,358 images per second, which is much faster than state-

of-the-art works. 

 

C. Performance Comparison 

To evaluate network’s performance on pattern recognition 

accuracy, hardware resource, processing speed, and 

throughput, comparison with other works has been done, 

which is shown as TABLE III. Latest works about 

memristive neural networks for pattern recognition on 

hardware are chosen as comparison, including ESIL-

MMNN [38], RESPARC [39], CBRAM [40], and HDR-

MSN [41]. The criteria include device types, dataset, 

accuracy, hardware resource, processing speed, and 

throughput.  

ESIL-MMNN [38] demonstrates an in-situ learning with 

multilayer memristive neural network for pattern recognition. 

Compared with ESIL-MMNN, our network on noisy 

MNIST is with roughly the same pattern recognition 

accuracy as ESIL-MMNN on non-noisy MNIST, benefiting 

from the image preprocessing function of our network. 

Further, our network uses less than a third of memristor 

models in ESIL-MMNN because the multilayer structure in 

our network needs few devices than the crossbar structure in 

ESIL-MMNN.  

TABLE I 

IFERENCE RESULTS OF NOISY MNIST 

 Expectation 

0 1 2 3 4 5 6 7 8 9 

Experiment 

results 

0 968 20 29 23 11 121 11 24 8 19 

1 0 1046 1 0 2 5 1 16 0 4 

2 2 21 919 21 13 6 9 7 2 9 

3 4 17 19 936 18 23 2 19 3 18 

4 0 0 7 0 877 0 1 7 2 8 

5 0 0 0 0 0 719 0 0 0 0 

6 1 0 11 3 19 0 905 2 6 3 

7 0 0 2 4 1 1 0 924 1 3 

8 5 31 44 23 34 17 29 26 950 34 

9 0 0 0 0 7 0 0 3 2 911 

 

TABLE II 

THE PROCESSING SPEED AND HARDWARE RESOURCE OF ENTIRE NETWORKS 

Device Processing 

speed  

Hardware 

resource 

Training time Inference time Throughput 

Stratix V: 5SGXEA7N2F45C2 517.87MHz 145ALMs 78.32ms 1.31μs 763,358 images/s 

 



RESPARC [39] proposes a memristive crossbar arrays for 

deep spiking neural networks, which achieves the state-of-

the-art processing speed and throughput. However, even the 

simplest architecture for MNIST in RESPARC still needs 

2378 neurons and 1902400 synapses. Compared with 

RESPARC, multilayer feedforward structure, which is more 

flexible than crossbar, is applied in our network. Hence, 

hardware resources of our network are much less than 

RESPARC. More importantly, our network uses the 

characteristic of memristor model itself to process the 

spiking signals without numerous complex calculation 

modules, so our network achieves higher processing speed 

and throughput than RESPARC. 

CBRAM [40] proposes a digital implementation by low 

energy subquantum device and achieves high recognition 

accuracy on MNIST. Compared with CBRAM, the pattern 

recognition accuracy on noisy MNIST of our network 

roughly equals with that on pure MNIST of CBRAM, which 

benefits from image preprocessing function of memristive 

layer 1 and 2. Further, the throughput of our network is much 

higher because our network performs a parallel computing 

system on FPGA rather than using many serial signals for a 

single image in CBRAM. 

HDR-MSN [41] demonstrates a hybrid convolutional neural 

network based on HfO2 memristor neuron which have a high 

integration density. Compared with HDR-MSN using the 

similar noisy MNIST dataset, complex convolutional neural 

networks are used in HDR-MSN while our network employs 

spiking signals to implement high-efficiency in-memory 

computing. Hence, our network has much higher processing 

speed and over 700 times higher throughput under 

approximate accuracy and hardware resources. 

TABLE III 

PERFORMANCE COMPARISON WITH STATE-OF-THE-ART WORKS ON MEMRISTIVE SYSTEMS 

Design Device 

types 

Dataset Accuracy Hardware resource Processing 

speed 

Throughput 

ESIL-MMNN 

[38] 

Drift 

memristors 

MNIST 91.7% 7,992 memristors N/A N/A 

RESPARC 

[39] 

Drift 

memristors 

MNIST N/A 2378 neurons + 1902400 

synapses 

200MHz N/A 

CBRAM 

[40] 

Drift 

memristors 

MNIST 92.02% N/A N/A 20 images/s 

HDR-MSN 

[41] 

Drift 

memristors 

Noisy 

MNIST 

>90% 3,136 dimensional 

arrays 

+784 memristors 

<1kHz <1,000 images/s 

Our work Drift and 

diffusion 

memristors 

Noisy 

MNIST 

91.55% 2,352 memristors 

(145ALMs in Stratix V) 

517.87MHz 763,358 images/s 

 
TABLE IV 

PERFORMANCE COMPARISON WITH STATE-OF-THE-ART WORKS ON MNIST 

Design Platform Resource Usage Processing speed Training time Throughput 

CryptoNets 

[42] 

Intel Xeon E5-1620 

CPU 
N/A N/A N/A 16.38 images/s 

LPHS-DL 

[43] 

Titan V GPU N/A N/A 8204.82 (ms) N/A 

Terasic DE1-SoC 

FPGA 
44856 (LUTs) N/A 5091.54 (ms) N/A 

HPA-CNN 

[44] 

Xilinx Virtex 7 

FPGA 
55774 (LUTs) 200MHz 1481.4 (ms) 40,502 images/s 

Our work 

Stratix V: 

5SGXEA7N2F45C2 

FPGA 

145 (ALMs) 517.87MHz 78.32 (ms) 763,358 images/s 

 



Furthermore, to show its merits on hardware, some other 

works [42-44] about MNIST classification on different 

platforms, including CPU, GPU and FPGA, are chosen as 

comparisons. CryptoNets [42] focuses on improving the 

throughput, which is implemented in Intel Xeon E5-1620 

and achieves the state-of-the-art performance on CPU. 

However, CPU has no merits on processing speed of neural 

networks and deep learning due to its serial computation 

process. Hence, LPHS-DL [43] on GPU and FPGA, and 

HPA-CNN [44] on FPGA are chosen as comparisons. 

Aiming at high processing speed, the LPHS-DL achieves the 

state-of-the-art training speed on both Titan V GPU and 

Terasic DE1-SoC FPGA. HPA-CNN is implemented on 

Virtex 7 FPGA, which is the best 7 series FPGA in Xilinx. 

Hence, the performance of HPA-CNN, including training 

time and throughput, is much better than CryptoNets and 

LPHS-DL.  

Compared with the above works on CPU and GPU, the 

superior performance of our framework benefits from both 

the learning mechanism and FPGA platform. Compared with 

HPA-CNN on Xilinx Virtex 7 FPGA, our framework, which 

is implemented in a similar high-end FPGA (Stratix V: 

5SGXEA7N2F45C2), can still achieve better hardware 

performance including resource usage, processing speed, 

training time, and throughput.  

From above, one can see that our network has a good pattern 

recognition performance for noisy dataset due to the image 

preprocessing function of diffusion memristive cellular 

layers and pattern recognition function of drift memristive 

feedforward layer. Further, owing to high-efficiency in-

memory computing and brief spiking encoding methods, our 

network needs fewer hardware resources and has much 

higher processing speed and throughput than state-of-the-art 

works. 

 

V. CONCLUSIONS 

In this paper, a novel multilayer neural network, which 

consists of two diffusion memristive cellular layers for 

image preprocessing and one drift memristive feedforward 

layer for pattern recognition, is presented. Due to the 

denoising and edge compensation for preprocessing of 

diffusion memristive layers, the network has a good anti-

noise performance and the recognition accuracy of noisy 

MNIST is over 90%. Further, because the in-memory 

computing and spiking encoding methods of the entire 

network are friendly for hardware implement, the processing 

speed and throughput are much higher, and the hardware 

resources are fewer than state-of-the-art works. We hope this 

idea can give an inspiration for the works combining image 

preprocessing with machine learning, the applications of 

diffusion memristor model, and designs of neural networks 

and neuromorphic computing by integrating memristor 

models. 
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