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Empowerment is an information-theoretic measure repre-
senting the capacity of an agent to affect its environment. It
quantifies its ability to inject information in the environment
via its actions and to recapture this information through its
sensors. In a nutshell, it measures the number of future options
available and perceivable by the agent. Originally, the definition
of empowerment does not depend on any particular extrinsic
goal and it is determined only by the interaction of the agent
with the world and the structure of its action-perception cycle.
In this paper we introduce a new formalism that combines
empowerment maximization with externally specifiable goal-
directed behaviour. This has two main implications: on the
one hand, the study of the relationship between empowerment
optimization and goal-directedness, to investigate to which extent
these two desirable behaviours can co-exist; on the other hand,
from a more operational point of view, the derivation of a method
to generate a behaviour (i.e., a policy of a Markov decision
process) that is both empowered and goal-directed, in order to
design agents capable of being as ”empowered” as possible when
facing any extrinsic task. Finally, we study how this hybrid policy
is able to handle problems of uncertain or changing goals and
delayed goal commitment.

Index Terms—Intrinsic Motivation, Empowerment, Goal-
directed Behaviour, Information Theory, Robustness

I. INTRODUCTION

EMPOWERMENT [1], [2] is an intrinsic motivation mea-
sure that quantifies the amount of control an agent has

over its environment and its capacity to perceive such control
through its sensors. It is defined information-theoretically as
the Shannon channel capacity [3] of the actuation channel of
the action-perception loop of an agent. Intuitively, it quanti-
fies in bits the amount of controllable options that are also
observable and available to an agent in the future. Although
a pure empowerment-maximizing agent is often not strictly
optimal in terms of the optimization of explicit external reward
functions, behaviour based solely on empowerment maxi-
mization sometimes coincides with the behaviour induced by
“natural” reward functions such as, for example, in the cases
of a pendulum, a bike, or a marine vehicle being balanced
in their upright poses [4], [5]. In addition, empowerment
maximization has been proved to be beneficial in several
diverse scenarios from Artificial Intelligence (AI) [1], [6]–[12]
to robotics and control [1], [4], [5], [13]–[15]. Salge et al. [2]
have hypothesized that natural organisms tend to maximise
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their empowerment and that this behaviour is in general
beneficial and plausible for both natural and artificial agents.
Still, during their lifetime, organisms are forced to perform
activities that are imposed through the external constraints that
survival imposes on them and that cannot be expressed through
empowerment maximization, but require explicit goals to be
formulated. In addition, in some applications artificial agents
may maximise their empowerment to aid the achievement of a
given extrinsic goal in order to tackle the task in a more robust
and controllable manner or to enhance exploration when learn-
ing is involved. Hence, it was suggested that empowerment
optimisation should be performed in conjunction with other
tasks [12], [14].

In this study, we modify empowerment maximization in a
way that permits us to express a new quantity that agents
can optimise when they want to be as empowered as possible
within the limits imposed by another active goal. We have
named this quantity goal-directed empowerment (GDE). The
introduction of this new concept will allow us to answer
fundamental questions regarding the relationship between
empowerment and goal-directed behaviour: to which extent
agents can be empowered when they are also constrained by
doing other activities and how the empowerment of an agent
decreases when a particular goal is chosen. In other words,
we address whether there is a way to measure the change in
the empowerment landscape of an agent when its behaviour
becomes goal-directed. A further aim is to investigate the
problem of loss of expected return (i.e., the regret) incurred to
allow the agent to maintain a desired level of empowerment
during the solving of a Markov decision process (MDP) [16].
The GDE formalism introduces a new quantitative approach
tackling these issues. We will see that a commitment to a
specific goal may need to be paid for by loss of empowerment.
This poses the question of why agents should sacrifice their
rewards to keep their empowerment large. Although to be
empowered usually implies to lose reward, its real advantages
have to be found in respect of long term gains in highly
dynamic scenarios: for instance, where the goals of agents
change often and unexpectedly. In these situations empow-
erment and goal-directed behaviour are not only alternative
to each other, but they can also work together to satisfy
both known short-term needs of the agent and unknown
long-term ones. Therefore, we propose that agents that are
pursuing a goal can benefit from keeping a certain amount of
empowerment available for the sake of robustness. GDE is a
generalisation of the empowerment formalism whereby agents
can benefit from being empowered in all those tasks where this
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is possible. Hence, GDE considerably widens the applicability
of empowerment, allowing roboticists and scientists from the
artificial intelligence community to design agents that are
both empowered and goal-directed in all those tasks that
are not compatible with the sole maximization of classical
empowerment. While the present study is focused on agents
with discrete actions and simple grid-world environments with
discrete state space, in the Conclusion (Section IV) we will
discuss how the presented formalism could be extended to
address more complex scenarios (i.e., continuous domains with
partial observability).

The rest of the paper will be structured as follows: in Section
I-A we will examine the literature relevant to our study; in
Section II we will present the goal-directed empowerment
formalism; in Section III a set of simulated experiments will
be reported and their results discussed; finally, in Section IV
we will provide our conclusion, including a perspective on
future work.

A. Related Work

1) Empowerment as Intrinsic Motivation
In recent years, instead of considering models of explicit

tasks to be learned by artificial agents, increasingly researchers
have begun to consider models of intrinsic motivation [17],
[18]. These are behaviour-generating models which do not
rely on an external reward function, but instead try to shape
the behaviour according to some plausible principles which
aim to be either biologically or psychologically plausible, or
else attempt to exploit universal aspects of the sensorimotor
interaction of the agent with the world. The study of intrin-
sic motivations in natural organisms aims at identifying the
underlying principles with the possibility to implement them
in robots and artificial agents in order to produce universal
behaviour. When the goal of an agent is induced by the
satisfaction of intrinsic motivations, the optimization of these
measures results in the autonomous generation of behaviour.
For instance, homeokinesis [19] and predictive information
[20] have been optimised to produce robot behaviour without
relying on any external reward function, taking into account
the robot embodiment and the nature of its interactions with
the world only [21]. Work that applies intrinsic motivations
to machine learning usually uses these measures as incentives
to improve the agent’s learning speed and quality, acting as
guidance to the underlying exploration process [22]–[24]. In
this regard, there has been interest in combining intrinsic
motivation measures with MDPs, in particular to enhance
reinforcement learning (RL) exploration and model acquisition
[25]–[29]. What distinguishes these approaches from ours
is their focus on learning and exploration rather than on
robustness and viability of goal-directed behaviour.

Empowerment [1], [2] is an intrinsic motivation measure
that can generate behaviour in a task-independent and univer-
sal manner. Its formalism uses information theory to model the
joint concepts of having an agent in control of its own envi-
ronment and its ability to perceive this controllability through
its sensors. Empowerment measures the maximum amount of
information that an agent can transmit to its future sensory

perception from its present actuators through the environment
(we will formally define empowerment in Section II-A2). It
quantifies (in bits) the capacity of an agent to influence its own
future. States with a large numbers of potential distinct futures
are states with large empowerment values. On the contrary, if
the agent has no impact on the environment that it can sense,
the agent attains only the minimum value of empowerment,
which is 0 bits. When there is no specific goal to pursue, it is
desirable to be in states where actions have the largest effect
on the environment and to keep as many available options
as possible in sight of an unknown future. This concept of
preparedness motivates the introduction of empowerment as
information-theoretic quantification and formalization of the
amount of open options that an agent can both control and
perceive. The principle of empowerment maximisation has
been applied to very different areas of artificial intelligence
[1], [6], [7], [30], [31], robotics and control [1], [4], [5], [13].
Importantly, empowerment was defined in the same fashion
across all these experiments. In addition, it has been shown
that when an agent maximises its empowerment, it aims at
its self-preservation (since both death or complete breakdown
implies zero empowerment [7], [15]). Hence, empowerment
can be used as an early warning metric of an agent reaching
the borders of its viability domain.

2) Empowerment, Goals and Reinforcement Learning
Although empowerment maximization on its own is capable

of solving certain AI problems, it is obviously not the best
method to use for all of them, because the state with maximum
empowerment will not always correspond with our expectation
of a goal state in general, even if it does so in unexpectedly
many cases. Here, instead of considering exclusively tasks
where the goal is in the state with maximum empowerment, we
would like to target arbitrary goals, whilst retaining as many
benefits of an empowered strategy as possible. Starting from
the work of Mohamed and Rezende [8] , which uses variational
inference in deep neural network to offer a computationally
efficient approximation of empowerment, several approaches
have been proposed to combine empowerment with RL (e.g.,
see [11], [32]). Although all these studies combine empow-
erment with MDPs, their main scope is the improvement of
the agent’s learning of a model of the environment, aiding the
exploration process underlying model-based RL. In contrast, in
this paper we integrate empowerment with MDP planning and
pure reward maximisation with no learning involved. In a more
similar vein with this paper, the empowered skills method [14]
uses a Lagrangian approach in the direct policy search frame-
work to maximise a trade-off between reward and empow-
erment. This method uses an approximation of empowerment
(i.e., entropy of future outcomes) that is exact for deterministic
environments. The result of this optimisation is a policy that
exhibits a largely diverse behaviour, which have been shown to
be advantageous in adversarial scenarios such as table-tennis.
Leibfried et al. [12] also use a Lagrangian-like approach to
compute a policy that maximises a trade-off between reward
and empowerment. They provide a Bellman-like optimality
principle for the corresponding optimisation process and the
method has been shown to improve the agent performance
at the initial stages of interaction with the environment using
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an action-critic algorithm for highly dimensional robotic tasks
(e.g., ant and humanoid simulated robots). In this paper, we
also present a way to compute a policy that agents can use
to maximises a trade-off between empowerment and reward,
showing also how this behaves in tasks with varying goals (see
Section III-D). However, it is important to underline that the
main scope of our study is not to improve the performance
of RL, but to introduce the new information-theoretic quantity
goal-directed empowerment. This fuses the advantages of the
empowerment formalism with the requirements of behaviour
directed towards a given goal, enabling to investigate the
change of empowerment landscape when an agent has goals
to pursue. We also expect that using GDE agents could behave
in a more robust and controllable manner.

II. THE GOAL-DIRECTED EMPOWERMENT FORMALISM

A. Technical Preliminaries

1) Markov Decision Processes
Markov Decision Processes [16] are sequential models of

decision-making used to represent the behaviour of agents that
act in stochastic environments with the aim of maximising
their expected return. Formally, an undiscounted MDP is
defined as the tuple (S,A, P,R), where this is composed
as follows: S is the set of states where the agent can be;
A is the set of actions the agent can choose in every state;
P (s′|a, s)1 represents the probability that the agent reaches the
state s′ ∈ S after having executed the action a ∈ A in state
s ∈ S; R(s, a, s′), with reward function R : S×A×S → R, is
the reward that the agent receives when, after having executed
the action a being in state s, arrives in state s′. Within the
MDP framework, a deterministic policy π : S → A is a
mapping between states and actions that is used to represent
possible behaviours of an agent, defining for every state which
action to take. An optimal policy, denoted as π∗, is a policy
that from every state guarantees to the agent the maximum
expected return. Where, denoting with st and at the state
and the action taken by the agent at time step t, the return
is defined by G

.
=
∑∞
t=1R(st, at, st+1). In other words, we

have π∗(st) = arg maxπ E[
∑∞
t=1R(st, π(st), st+1)]. Given

a policy π, the expected return cumulated starting in state s
is called the state-value function of s for the policy π and
is denoted by V π(s). The action-value function Qπ(s, a) is
the expected return cumulated starting in state s taking action
a first and then following π. An optimal policy π∗ induces
the optimal state-value and action-value functions, which are
denoted by V ∗(s) and Q∗(s, a) respectively (and which are,
unlike π∗, unique).

2) The Empowerment formalism
Given a horizon h, the h-step empowerment is defined as

the capacity of the h-step actuation channel of an agent. The
time horizon h represents the number of steps ahead in the
future that are considered in evaluating the empowerment of
the agent. Let us denote by ah

.
= a1 · a2 · a3 · · · · · ah ∈

Ah an action sequence of length h, being Ah the set of
all possible action sequences of length h. Given that the

1In this paper we will use the shorthand notation P (x) to denote Pr(X =
x).

agent is in state s at time t, the h-step actuation channel
(Aht , P (St+h|Aht , St = s), St+h) is a communication channel
(see Section 2 of the Supplementary Material). Its source
is the random variable Aht , representing the possible action
sequences of length h beginning in state s at time t and
executed in an open-loop fashion. Its receiver is the random
variable St+h, which is the state reached by the agent after
h steps. Empowerment is defined in an open-loop manner,
meaning that the probing action sequences ah do not utilize
any feedback during their execution. To complete the definition
of the channel it is necessary to introduce the h-step transition
probabilities P (s′|ah, s), which can be derived using simple
algebraic steps (see [4]). This conditional distribution plays
the role of the actuation channel, with the h-step actuations
being its input and the resulting state its output. Note that
only the effects of the agent’s actions on the environment
within the time horizon h are captured by empowerment. After
having defined the h-step actuation channel in state s, we can
now define the h-step empowerment of state s as its Shannon
capacity as follows

E
h(s)

.
= max
P (ah|s)

I(St+h;Aht |St = s) (1)

where I(X;Y ) denotes the mutual information between the
random variables X and Y (see Section 2 of the Sup-
plementary Material ). Being a Shannon channel capacity,
empowerment is an information-theoretic quantity measured
in bits. The computation of Eh(s) can be done using the
standard Blahut-Arimoto (BA) algorithm [2], [33]. Note that
usually empowerment is defined as the Shannon capacity of
the channel from the agent’s actuators to its sensors. However,
in the case where the agent has full observability over the
state space, the sensor variable and the state variable can
be equated without loss of generality. Then, empowerment
becomes a measure of the influence that an agent has on the
whole environmental state space. In this paper we will always
assume full observability.

B. Goal-directed Empowerment: definition and computation

1) GDE Definition
We here introduce goal-directed empowerment (GDE),

which is a generalization of empowerment for goal-oriented
behaviour. As in traditional MDP models, goal-directedness
is modelled by the optimization of expected return and the
performance of extrinsic tasks is represented by the execution
of a given policy π. Within this framework, we define
goal-directed empowerment as follows:

The h-step GDE of state s is the Shannon
capacity of an actuation channel that considers
only those action sequence distributions that
guarantee on average a desired level of
expected action-value in s.

We formulate this as a constrained channel, as depicted
in Figure 1. We name it goal-directed actuation channel.
The desired minimum level of future average performance is
defined by a chosen lower bound Q̄s of E[Q(s,Aht )], which is
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the action-value function in s averaged over the optimising
distributions of all the possible future action sequences of
length h. In this paper we will always assume Q being
the optimal action-value function Q∗. However, GDE could
also be parametrised by a suboptimal Q function in order
to handle situations where a suboptimal action-value might
be more appropriate, for example in the case of a less
informed agent. The h-step action-value function Q(s, ah) of
an action sequence ah

.
= a1 · a2 · a3 · · · · · ah is defined

as the return averaged over all the possible outcomes of the
action sequence plus the action-value Q(sh+1, ah+1). Hence,
Q(s, ah)

.
= E[Gh + Q(sh+1, ah+1)|a1, . . . , ah, s], where

Gh
.
=
∑h
t=1R(St, at, St+1) is the return random variable

with S1 = s. Hence, given an action-value function parameter
Q(s, ah), a threshold Q̄s and assuming that the agent is
in state s at time t, the h-step goal-directed empowerment
Ē
h
Q̄(s;Q) is defined as the solution of the following constrained

optimization problem:

Ē
h
Q̄(s;Q)

.
= max
P (ah|s)

I(St+h;Aht |St = s)

s. t. E[Q(s,Aht )] ≥ Q̄s
(2)

Note that the h-step GDE is parametrised by the h-step

Fig. 1: Dynamic Bayesian network representing the MDP of an agent that
that at time t is in state s (in grey) and that operates with action sequences.
The h-step goal-directed actuation channel is highlighted in red.

action-value function Q(s, ah), which is used to ignore all
the distributions of the action sequences starting in s that do
not guarantee at least an average action-value Q̄s.2 Since to
execute h-step action sequences that maximise the action-value
Q(s, ah) implies the accomplishment of the task modelled by
the given MDP, to impose a threshold Q̄s over the average
action-value will enforce the empowerment optimisation to
take into account only action sequences with a certain level
of goal-directedness. These actions sequences will be closer
to optimality as the chosen threshold will be larger and thus

2In the following, for the sake of notational convenience, to denote GDE
we will use Ē

h

Q̄(s) instead of Ē
h

Q̄(s;Q), having the action-value function
parameter implicitly assumed.

will tend to be more goal-directed. Here the action-value of
a state is computed by averaging over all available action
sequences, but the threshold Q̄s should be different in each
state. This choice was made because setting a global action-
value threshold (i.e., one averaged over both the state and
action sequence distributions) would not specify how the
action distributions are selected for each individual state. There
would be no obvious choice for an ad hoc attribution of action-
value per state with a global threshold, which is exacerbated
by the fact that for different states s empowerment differs in
general and is moreover achieved by different action sequence
distributions in each state. We will tackle the problem of how
to choose the Q̄s in Section III. Table I lists the mathematical
notation used throughout the paper to facilitate the reader in
following the subsequent material.

2) GDE Computation: GDE-BA algorithm
The h-step GDE can be computed using the GDE-

Blahut–Arimoto (GDE-BA) algorithm described below. The
h-step action-value function Q(s, ah) is one of its inputs.
Hence, before running the procedure a method like the Value
Iteration algorithm [16], [25] (reported in Section 1 of the
Supplementary Material) has to be used to compute Q(s, a).
Then, the h-step action-value function parameter Q(s, ah) can
be computed using the aforementioned definition. Once the h-
step action-value function has been computed and the desired
Q̄s has been chosen for all s, the computation of ĒhQ̄(s) follows
a BA procedure similar to the one of classical empowerment.
The main difference is represented by the presence of a term
composed of Q(s, ah) and a Karush–Kuhn–Tucker (KKT)
multiplier µs. The latter is a parameter that can be used to
tune the amount of goal-directedness in the GDE of state s.
In the following, we will present the GDE-BA algorithm to
compute the GDE as a function of µs. How µs is linked to Q̄s
will be discussed in the next section. To compute GDE, the
GDE-BA algorithm uses an iterative procedure that produces
consecutive estimates P¯E

(ah|s)k of the GDE-maximizing ac-
tion sequence distribution P¯E

(ah|s) (i.e., the arg max of Equa-
tion (2))3, where k denotes the iteration step, and estimates
I¯E

(St+h;Aht = ah, St = s)k of the true conditional mutual
information I¯E

(St+h;Aht = ah, St = s) (Equation (3)). In this
regard, for each iteration k, I¯E

(St+h;Aht = ah, St = s)k can
be computed as follows (for more details about the derivation
of Equation (3) see [4]):

I¯E
(St+h;Aht = ah, St = s)k =∑

st+h∈S
P (st+h|ah, s) log

(
P (st+h|ah, s)∑

bh∈Ah P (st+h|bh, s))P¯E
(bh)k

)
(3)

Before starting the iterative procedure, the probability distri-
bution P¯E

(ah)k has to be initialized for k = 0. This can be
done, for instance, by starting with a uniform distribution as
estimate, hence ∀ah ∈ Ah P¯E

(ah)0
.
= 1
|Ah| . Then, for each

iteration k = 1, 2, . . . the following recursive equations are

3Although the GDE-maximizing action sequence distribution P¯
E

is always
conditioned on the state s, to have a more compact notation, in the rest of the
paper we will often use the shorthand notation P¯

E
(ah) to denote P¯

E
(ah|s).
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TABLE I: GLOSSARY of MATHEMATICAL SYMBOLS

Symbols Meaning

h time horizon
ah h-step action sequence

P (ah|s) or P (ah) probability of action sequence ah in state s (s sometime may be implicitly assumed)

E
h

(s) classical h-step empowerment of state s
P
E

empowerment-maximizing probability distribution of action sequences
Q(s, ah) MDP action-value of action sequence ah in state s
Q̄s GDE action-value threshold in state s

Ē
h

Q̄(s;Q) or Ē
h

Q̄(s) h-step GDE of state s with action-value threshold Q̄ and function Q (Q sometime may be implicitly assumed)
µs trade-off KKT parameter, used to tune goal-directedness vs empowerment
P¯
E

GDE-maximizing probability distribution of action sequences

π¯
E

GDE policy

Q¯
E

(s, a) GDE action-value of action a in state s

Q̄h¯
E

(s) action-value of state s averaged over the h-step GDE-maximizing action sequences’ probability distribution

used to get the new distribution P¯E
(ah)k from the previous

one P¯E
(ah)k−1, up to convergence towards the final estimate

of the GDE-maximizing action sequence distribution P¯E
(ah):

∀ ah ∈ Ah P¯E
(ah)k =

=
1

Z̄k
P¯E

(ah)k−1e
I¯
E

(St+h;Ah
t =ah,St=s)k−1+µsQ(s,ah)

(4)
The normalization factor Z̄k is given by

Z̄k
.
=

∑
ah∈Ah

P¯E
(ah)k−1e

I¯
E

(St+h;Ah
t =ah,St=s)k−1+µsQ(s,ah)

(5)
Using I(St+h;Aht |St = s) =

∑
ah∈Ah P (ah|s)I(St+h;Aht =

ah|St = s), the GDE estimate at iteration step k can be
computed with the following equation

Ē
h
Q̄(s)k =

∑
ah∈Ah

P¯E
(ah)kI¯E

(St+h;Aht = ah, St = s)k (6)

The algorithm is iterated until the absolute value of the
difference of two consecutive estimates of GDE is below a
very small threshold ε, in other words, when | ĒhQ̄(s)k −
Ē
h
Q̄(s)k−1 |≤ ε. When ε is small enough, we can use the

estimate for GDE as an approximation for the real GDE value
Ē
h
Q̄(s).

3) GDE-BA Algorithm Derivation
Here we give the highlights of the mathematical derivation

of the GDE-BA algorithm. In Section 3 of the Supplementary
Material we report the complete proof. The constrained opti-
misation problem (2) that finds the GDE-maximizing action
sequence distribution P¯E

(ah) at a given level of action-
value Q̄s can be turned into an unconstrained one using the
Lagrangian method with KKT conditions. These are neces-
sary because the optimization problem contains the utility
inequality constraint. First, let us define the auxiliary function
φ(s′|s, ah)

.
= P (s′|s,ah)∑

bh∈Ah P (bh)P (s′|s,bh)
. Then, using Equation

(3) we can write

I(St+h;Aht |St = s) = H(Ah)+

+
∑

ah∈Ah

∑
st+h∈S

P (st+h|s, ah)P (ah) log
(
φ(st+h|s, ah)P (ah)

)
(7)

The Lagrangian L with KKT conditions of the optimization
problem (2) is

L .
= I(St+h;Aht |St = s) + λ

1−
∑

ah∈Ah

P (ah)


+ µs

 ∑
ah∈Ah

P (ah)Q(s, ah)− Q̄s

 (8)

where the Lagrangian multiplier λ ensures the normalization
of the probability distribution of action sequences and the KKT
multiplier µs is chosen for the action sequence distribution to
fulfil the utility constraint. In addition, we will see that the
found solution for P¯E

(ah) will be always non-negative. We
can use the Lagrangian condition ∀ ãh ∈ Ah ∂L

∂P (ãh)
= 0 to

solve the maximization problem (2) for P (ãh) as follows

∂L
∂P (ãh)

= 0⇒ P (ãh) =

= e
∑

st+h∈S
P (st+h|s,ãh) log2(P (ãh)φ(st+h|s,ãh))−λ+µsQ(s,ãh)

(9)
The multiplier λ is eliminated by normalization, leading

to the normalizer Z̄ of Equation (5) and to Equation (4) for
P¯E

(ãh). There, we have obtained I¯E
(St+h;Aht = ãh, St = s)

using Equation (3) and the definition of φ(s′|s, ah). Looking
at Equation (4), we can see that the resulting P¯E

(ãh) is
always non-negative. Finally, to relate the parameter µs with
the threshold Q̄s, given the KKT conditions µs ≥ 0 and
µs
(
Q̄s −

∑
ah∈Ah P (ah)Q(s, ah)

)
= 0, we have to distin-

guish the case when µs = 0 from the one with µs > 0.
For µs = 0, the P¯E

(ãh) given by Equation (4) is equal
to the empowerment-maximizing action sequence distribution
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PE(a
h). The latter, using the BA algorithm for the computation

of classical empowerment [2], is given by

PE(a
h) =

1

Z
PE(a

h) exp(I(St+h;Aht = ah, St = s)) (10)

where Z is used for normalization. Indeed, for µs = 0,
we can see that Equation (4) and Equation (10) are identical.
Hence, when the empowerment-maximizing action sequence
distribution allows the agent to gather an amount of expected
action-value that is larger or equal than Q̄s we can set µs = 0.
For µs > 0, we plug Equation (4) into the KKT condition
related with the utility and solve numerically to get the value of
µs that corresponds to the desired threshold Q̄s. If the resulting
equation has no solution, then there is no solution that satisfies
the utility constraint with the given action-value function Q
and threshold Q̄s.

C. The Goal-directed Empowerment Policy

Within the context of classical empowerment agents self-
generate their own behaviour ascending locally the gradient
of empowerment, which sooner or later will bring them to the
state with locally maximal empowerment. Also in the case
of GDE, since ĒhQ̄(s) quantifies the number of options with
average action-value larger or equal than Q̄s available in states
s, an agent that follows its gradient will be placed in the state
with most sufficient high value options. Hence, to follow the
GDE of an agent does not necessarily imply to increase its
expected return, because, according to GDE, what counts is
the number of options with large value and not the value itself.
Therefore, walking along the GDE gradient allows the agent
to be as much empowered as possible fulfilling the utility
constraint but not necessarily to behave in a goal-directed
manner (e.g., to reach a desired goal state). This is the reason
why, to generate a behaviour that is both empowered and goal-
directed, in this section we introduce the GDE policy π¯E

. In
this regard, the classical approach to derive an optimal policy
in stochastic sequential decision-making would be to use a
Bellmann equation that combines immediate reward with the
future return. However, in the context of GDE, we are not
only interested in future return but in its combination with
empowerment, which is the projected GDE for the future. This
will be larger if more of the achievable values in the next step
are higher. So, the GDE policy should choose a successor state
that has more high-value potential future states as successors
(or else, fewer, but very high value ones, as per nature of the
Lagrangian).

The aforementioned observations led to the following def-
inition of GDE policy π¯E

that allows agents to take actions
that optimise a GDE action-value function Q¯E

(s, a), which
combines ĒhQ̄(s) and Q(s, ah) at the given trade-off parameter
µs. This GDE policy π¯E

can be used to make an agent address
the task given by the optimization of the action-value function
parameter, being at the same time as much empowered as
possible given the desired levels of performance µs. The
procedure to compute π¯E

is inspired by the Value Iteration
algorithm. Assuming that I¯E

(St+h;Aht = ah, St = s′) for
KKT parameter µs and Q(s, ah) have already been computed,

then the computation of Q¯E
(s, a) and π¯E

(s) proceeds as
reported in Table II. Note that the P¯E

(ah|s′) is a GDE-
achieving distribution but not the actual policy that the agent is
following - that policy is given by π¯E

. Furthermore, differently
from the Value Iteration algorithm, Q¯E

(s, a) is computed using
only one iteration, because the action-value function of the
left-hand side of Equation (11) is not as the one on the right-
hand side, therefore there is no bootstrapping or recursion.
This decision was made on purpose. In an initial study, a
double iteration algorithm was implemented to guarantee self-
consistency between GDE and action-value (i.e., to compute
the Qk¯E

induced by πk¯E
in iteration k, then to obtain a new

Ik+1
¯E

with that Qk¯E as parameter together with the novel

corresponding πk+1
¯E

, afterwards obtaining from this policy

πk+1
¯E

a new Qk+1
¯E

in the next iteration k + 1 and so forth),
but the double iteration converged to an oscillating solution;
in other words, no self-consistent formulation of Q¯E

could
be constructed. Hence, the method implemented by Equations
(11) and (12) has been adopted, which decouples the value-
function Q that represents the goal-directedness of the agent
from the value-function Q¯E

that is used to generate a GDE
behaviour. This approach is exact for an optimal action-value
parameter Q∗ and can be considered an approximation for
arbitrary action-value functions.

III. EXPERIMENTS

In the following experiments we will consider episodic
MDPs with the following structure: each state s ∈ S indicates
a different location in the world. The action set A = {↑,→
, ↓,←, ·} contains the possible one-step movements that the
agent can do towards the directions north, east, south, west
plus the ”stay” action, which makes the agent stay where
it is. Regarding the transition probabilities P (s′|s, a), if not
stated differently, an action succeeds with probability 0.8 or
moves the agent perpendicularly with probability 0.1 for each
direction (never backwards). If the agent tries to move into a
wall or towards the edge of the world, it remains where it is.
The reward function R is defined as follows: in every state
the agent receives reward -1 except for the goal state where
the agent receives reward 0. In particular, moving into a wall
is not punished specially, but incurs just the cost due to the
lost time. The optimal h-step action-value function Q∗(s, ah)
will be used as GDE parameter. Usually, Lagrangian are based
on some kind of universal threshold but, since in GDE every
state s has its own threshold Q̄s, here we face the problem
of how to choose these Q̄s for each state. Due to the highly
inhomogeneous nature of the system’s dynamics, a global rule
that would allow the Q̄s to adapt for each state (such as a rule
of the form Q̄s = E[Q∗(s,Aht )] − ∆Q with constant ∆Q
parameter), would result in local adjustments that would be
not easily comparable with each other. Therefore, we instead
use the same value µ of the Lagrangian parameters µs of all
states, in other words for all s ∈ S we select µs = µ. Note that
having the same µs for every state does not necessarily imply
having the same Q̄s for every state, because µs represents the
trade-off between both action-value and empowerment and is
not exclusively linked to Q̄s.
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TABLE II: GDE Policy Computation

∀ s ∈ S, a ∈ A Q¯
E

(s, a) =
∑
s′∈S

P (s′|s, a)

R(s′, s, a) +
∑

ah∈Ah

P¯
E

(ah|s′)
(
µsQ(s′, ah) + I¯

E
(St+h;Aht = ah, St = s′)

)
(11)

∀ s ∈ S π¯
E

(s) = arg max
a

Q¯
E

(s, a) (12)

A. Trading-off Empowered and Optimal Policies

Since GDE is a formalism for empowered and goal-directed
decision-making combined, in this section we will show that
moving µ to its extreme values, i.e. 0 or infinity, π¯E

takes the
form of a pure empowerment-maximizing policy in the first
case and of the classical optimal MDP solution in the second.
In practical terms, a large µ will be enough to approximate µ
going to infinity. In addition, we will look at what kind of π¯E
one obtains with values of µ that lie between these extremes.

Consider the 9x9 grid world reported in Figures 2.a-c,
where wall cells are coloured in white and the absorbing
goal state is labelled with the letter G (later on we will
consider non-absorbing goals as well). In addition, the red
arrows in each cell represent the actions chosen by π¯E

in the
corresponding states with the dot indicating “stay”. Each state
is coloured according to the two-step Ē2µ of that state (see the
associated colour bars for the corresponding values in bits).4 In
Figure 2.a, with µ = 0, for every state Ē2µ is equal to the 2-step
classical empowerment E2, whose action sequence distribution
P¯E

(a2) achieves a state averaged action value of Q̄2
¯E

= −8.4,
where Q̄h¯E(s)

.
= E¯E

[Q(s,Aht )] =
∑
ah∈Ah P¯E

(ah|s)Q(s, ah).
Furthermore, the behaviour obtained by executing the result-
ing π¯E

is identical to classical empowerment maximization
obtained through local gradient ascent. In Figure 2.c, Ē2µ and
π¯E

are reported for µ = 128. From Equation (4) we know
that large values of µ imply strong goal-directedness, which
causes the action-value to become Q̄2

¯E
= −6.63 and Ē2µ to

drop to 0 bits in most states, as it is possible to see from the
figure (note that this MDP has few degenerate solutions due to
its transitions’ noise and topology). This happens every time
there are only few possible ways to meet the selected utility
constraint. In contrast to that, the four states with Ē2µ ' 0.4
bits (in light blue) have multiple 2-step action sequences that
guarantee an average action-value larger than Q̄s. The GDE
policy of Figure 2.c shows that the chosen value for µ is
large enough to make π¯E

equal to π∗. In addition to the
extreme values of µ, other intermediate π¯E

can be computed
using in-between µ values, which allows the agent to trade-
off empowerment maximization against a quick arrival to the
goal. In this regard, in Figure 2.b we reported π¯E

for µ = 0.25,
where P¯E

achieves Q̄2
¯E

= −8.08. In this case the agent always
arrives to the goal passing, when possible, through states with
large empowerment.

4Since in the following experiments we will investigate the GDE as a
function of µs and for every µs there a corresponding Q̄s (see Section II.B.3),
in the following we will write Ē

h

µs
(s) instead of Ē

h

Q̄s
(s) to denote GDE.

B. To what extent can agents be empowered in reaching a
goal?

In this section we investigate the extent an agent can be
empowered when it has a goal to reach. We will see that in
general the GDE of an agent decreases when the agent has a
task to face, because goal-directedness prunes the spectrum of
options of the agent towards those that are more favourable
towards the completion of the given task. This phenomenon
expresses itself differently in different states, for instance
according to their distance from the goal.

First, let us analyse the ”opportunity cost” relationship
between GDE and regret, showing how state averaged Ēhµ(s)
depends on state averaged regret ρh, where ρh(s)

.
= V ∗(s)−

Q̄h¯E
(s). In Figure 3, for different values of µ, we consider

Ē
2
µ as a function of ρ2, both averaged over an uniform

distribution of states, for the grid world considered in the
previous section. The plot shows that the average Ē2µ is a
monotonically increasing function of ρ2. For µ = 0, ρ2 = 1.78
and the average Ē20 has a value of 1.93 bits, which is the
full average empowerment available to the agent prior to any
decision about pursuing a goal. As µ becomes large, both Ē2µ
and ρ2 decrease to 0. For intermediate values of µ the trade-off
curve shows the average empowerment left to the agent when
it behaves at the chosen level of performance. This amount of
available empowerment can be explained by the fact that in
many states the agent can choose two perpendicular actions
to arrive to the goal that are similar in terms of obtained
action-value. In general, different MDPs will have different
Ē
h
µ/ρ

h trade-off curves, which can be used to characterise tasks
in terms of amount of empowerment needed to perform the
task at the desired level of performance and the amount of
empowerment still available when the agent is achieving this
performance. The difference between the average Ēhµ left at
trade-off parameter µ and average classical empowerment Eh

can be interpreted as the amount of empowerment invested by
the agent to attain at least the target average action-value.

In Figure 4, Ē21 and π¯E
are shown in a larger maze with a

more complicated topology. Note the three straight sequences
of states coloured in orange in the middle of the three rooms
of the environment. Along these routes toward the goal, Ē21 is
lower than their surrounding states. This happens because in
those states the GDE-maximizing action sequence distribution
P¯E

is squeezed towards those action sequences that allow the
agent to take the shortest straight route to the goal and all
other sequences would make the agent lose return, violating
the utility constraint associated with the given µ. Hence, those
corridors represent the lack of options in those states. On the
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Fig. 2: (a-e) 9x9 grid world environments. Goal states are marked with the letter ”G”. The red symbols within each cell represent the action taken by π¯
E

in

that state, with red circles representing stay actions. The cells are coloured according to Ē
2

µ, whose values in bits are indicated in the reported color bars. (a)
For µ = 0 (Q̄2

¯
E

= −8.4) the Ē
2

0 landscape is equivalent to the one of 2-step classical empowerment E2 and π¯
E

coincides with the classical empowerment

maximizing behaviour. (b) With µ = 0.25 (Q̄2
¯
E

= −8.08) π¯
E

is significantly more goal-directed. (c) For µ = 128 (Q̄2
¯
E

= −6.63) π¯
E

is equivalent to the

optimal policy π∗ and Ē
2

128 drops close to 0 bits for almost all the states.

Fig. 3: Trade-off curve for varying µ of the regret ρ2 versus 2-step GDE
for the MDP presented in the previous section. Both quantities are averaged
across all the states using an uniform distribution.

contrary, the other yellow areas contain states where several
action sequences give a similar outcome in terms of Q∗, so
these sequences provide to the agent more available options to
fulfil the utility constraint and consequently they increase Ē21.
Within these orange paths, the drop of Ē21 is more significant as
the agent gets closer to the goal. This happens because when
the desired performance is not stringent (i.e., low µ), while
the agent is far from the goal it has several alternative routes
to reach it. By contrast, as the agent approaches the goal,
the number of ways to reach it decreases so that the agent
needs to become more precise regarding what he does. Then,
in states adjacent to the walls the limitation of the movement

of the agent is reflected by a decrease of Ē21, as for classical
empowerment. In the case of GDE, Ē21 drops more for the
states adjacent to the walls that are located on the side away
from the goal (coloured in green), because in these states also
the option of moving away from the goal has a low probability
in P¯E

. We conclude that to reach a goal makes an agent lose

Fig. 4: 23x23 grid world environment. We can observe low GDE corridors
given by GDE-maximizing action sequences that are more probable than
others when the agent is obliged to meet the desired level of performance.
In states along these corridors Ē

2

1 decreases more for states that are closer to
the goal.

its h-step empowerment when there are only few different h-
step action sequences that initiate the routes towards the goal
at the desired level of utility. Hence, in states where the agent
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is forced to be more precise to meet the given performance
constraint, Ēhµ is usually small.

C. “Stop, it is too risky there...”

We would attribute “caution” to agents that do not like
to be confined inside cluttered spaces, because once they
enter there is no a quick way to go out. Sometime they stop
because they are too afraid of the unexpected dangers that
could appear in front of them, or because they are waiting for
better opportunities somewhere else. So, they can decide not to
move if to proceed could impact their freedom to find a new
route, which would allow agents to react to sudden events
on time. Similarly, a GDE-maximizing agent may decide
to stop at the borders of areas of the environment where
empowerment is low, refusing to further increase its return,
in scenarios where the goal is adjacent to walls or obstacles.
In Figure 5, we report a grid world where the goal is at the
edge of the environment and different 4-step GDE policies
are depicted for increasing values of µ. In this scenario the
agent decides to stop before arriving too close to the goal due
to its proximity to the edge. In Figures 5.a,b, µ is increased
from 0.03 (Q̄4

¯E
= −14.61) to 0.04 (Q̄4

¯E
= −14.49), causing

the agent to stop increasingly closer to the goal as it becomes
more goal-directed. Finally, in Figure 5.c we observe that with
a value of 0.17 (Q̄4

¯E
= −13.88), µ is large enough to make the

agent reach the goal from every state of the environment. A
similar stopping behaviour of that shown in Figures 5.a,b can
be found every time the agent needs to pass through states with
low empowerment to arrive to the goal. Indeed, if to take any
alternative routes to the goal implies also a loss of return (i.e.,
longer routes), the agent can decide to stop where it is. For
instance, consider an agent situated in front of the entrance of
a narrow tunnel, which must be traversed whilst following the
shortest route to the goal (as depicted in Figure 5). Consider
also that all the alternative routes to the goal are considerably
longer than the shortest one. Should the agent go through the
tunnel or should it take the way around it? On the one hand,
to go through the tunnel implies to decrease its empowerment
(inside the tunnel there are very limited options). On the other
hand, to reach the goal going around the tunnel increases
the length of the route to the goal. Hence, when µ = 0.03,
to not lose the overall Ē40.03 the agent does not commit to
either of these two alternatives but rather stops at the entrance
of the tunnel (see Figure 5.a). For a slightly larger trade-off
parameter (µ = 0.04) the agent decides to enter the tunnel, but
it still does not proceed completely, stopping one state after
the entrance (Figure 5.b). Finally, for µ = 0.17, the increased
goal-directedness causes the agent to traverse the tunnel and
to reach the goal (Figure 5.c).

In general, to be in the most empowered state is beneficial
for agents when the goal is completely unknown and its
location will be revealed at later stages, because probably some
of the options left available maximising empowerment will
be useful when the goal will be known. Although previous
work showed that global measures such as graph centrality
are strongly related with empowerment, which is a local
quantity, empowerment is not equivalent to pure centrality or

reachability measures (for a comparison of these concepts see
[5], [6]), which could be used to get similar effects (e.g., using
a Laplacian diffusion). Namely, when the interaction of the
agent with the environment is stochastic, the options provided
by empowerment maximization are controllable options - as
opposed to centrality, which does not cater for random noise.
The Laplacian looks at diffusion - but does not distinguish
whether this has been generated by the environment or by
the agent. The stopping behaviour generated for small µ by
GDE maximization could be interpreted as the one of an agent
that does not fully commit to the goal represented by the
Q∗ parameter nor to the possibility of a new forthcoming
goal that could unexpectedly substitute the previous one and
placed in any state of the environment. Hence, the agent
decides to stay in a position that in the future could serve
both goals. Furthermore, in Figure 5 a larger µ implies the
agent stopping closer to the given goal, as if the agent believes
more that goal to be the real one as the trade-off parameter
increases. So, although at first glance to favour empowerment
over return could seem not convenient for a greedy agent, this
is not the case in the long term when multi-task scenarios
are considered. Research on MDPs with uncertain goals has
been conducted by the AI community in the last years [34],
[35]. In reward-uncertain MDPs the reward is defined as a
set representing known bounds, or other imprecise parameters
about the reward, and criteria as min-max regret are used to
obtain robust solutions for the worst case scenario. Although
the scope of GDE is not to solve optimally problems with
uncertain goals, which are presented here for the sake of
interpreting GDE, it is worth to mention that its maximization
make agents satisfy other desirable properties under an unique
framework, such as increased states’ reachability, agent’s self-
preservation and controllability (i.e., noise adversity).

D. Robustness over Changing Goals

The GDE policy has the ability to make an agent arrive
to its goal through highly empowered routes. This usually
happens paying some cost in terms of return. In this section we
aim to address the following questions: why should an agent
choose to be empowered at the price of losing reward? More
precisely: why should the agent stop when to proceed further
towards the given goal implies decreasing its empowerment?
In the following experiment we will investigate the robustness
of π¯E

in a task where the goal is suddenly moved to a new
random location and compare its performance with that of π∗.
Consider the grid world reported in Figure 6, where the agent
is located in the state indicated with the letter S and has to
arrive to the goal state labelled with the letter G. As for the
task presented in the previous section, the optimal policy π∗

takes the shortest route to the goal, which traverses a tunnel
where the states have low empowerment. With µ = 0.03,
the 3-step GDE policy makes the agent take an alternative
route from S to G, which is longer and more empowered
(see the green path in Figure 6.a). This goes around the
tunnel instead of going through it or stopping in front of its
entrance. To evaluate the robustness of the two policies over an
unexpected change of goal, we compared their performances
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Fig. 5: 12x12 grid world environments with a tunnel. Cells are coloured according to Ē
4

µ. µ is increased from a minimum of 0.03 in (a), to 0.04 in (b) and
0.17 in (c).

Fig. 6: (a-c) 18x18 grid world environments. (a) For µ = 0.03 π¯
E

makes the agent take an empowered route that goes around the tunnel (in green). (b)
Example trial where both π¯

E
(azure) and π∗ (green) attempt to bring the agent to the first goal G1 (solid arrows). Here, after five steps the goal is changed

to a new random location G2 (where the red cross is depicted). Then, the optimal and GDE agents proceed to G2 using new π¯
E

and π∗ respectively (dashed
arrows). (c) The average returns of π¯

E
and π∗ against the number of steps after which the goal is changed. The returns are averaged across 10000 simulations

where the locations G2 is chosen randomly for each trial.

(i.e., average return) when, after they started seeking a first
goal, the goal position randomly changes according to an
uniform distribution after n steps from the beginning of the
trial. The agent has no prior knowledge about when this
change will happen and where the new goal will be. If the
agent starts one trial using π∗ for the first goal, it will use
a new π∗ for the new goal. Similarly, if the agent starts a
trial following π¯E

, it will use a new π¯E
to reach the new

goal. In Figure 6.b, we report an example of this two-phased
task, showing the execution of the two policies for a particular
instance. Figure 6.c compares the average return over 10000
simulations for n = 5, 6, 7, 8, cumulated starting when the
goal is changed until the agent reaches the new goal. As it is
possible to see from the bar plots, when the agent visits more
empowered states using π¯E

, it does not perform worse than
π∗ and it might be slightly better.

E. Noise Adversity and Delayed Commitment

One of the main properties of empowerment is that it
decreases when there is a source of noise in the environment.
Indeed, an empowerment-maximizing agent does not only
prefer to have as many available options as possible, but it
also wants to have control over the outcomes of its choices.
This property is retained by the GDE formalism as well.
In the following experiment we will show that between two
goals, a more empowered π¯E

favours the one that is not
surrounded by noisy states. Furthermore, along the resulting
route, the choice between the two goals is delayed by π¯E
as much as the utility constraint allows it (similarly to the
”delayed choice” phenomenon described in [36]), showing a
lack of commitment between them until this becomes strictly
necessary. In the grid world represented in Figure 7 we have
an agent starting in the state marked with the letter S. The
two goal states are indicated by G1 and G2 and have reward
0. The agent receives a reward of -1.5 when it lands in the
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penalty cells, which are marked with the letter P . Entering
every other state has reward -1. Regarding the transition model,
when the agent executes one of its actions, it succeeds with
probability 0.99 or it slips to each one of the two perpendicular
directions with probability 0.005. In addition, when the agent
is in the states indicated by the letter N the probability of
slipping is 0.2, making these states noisier than the rest of
the environment. In short, to arrive at G1 the agent must
pass through penalty states, however to arrive at G2 requires
passing through noisy states. Therefore, the agent has to
choose whether to go through the penalty states incurring loss
of reward, or to go through the noisy states incurring loss
of control. We can get both of these behaviours within the
GDE framework by tuning the trade-off parameter µ. With
µ = 10.2 (Q̄4

¯E
= −4.84), when the agent follows the 4-step

GDE policy (azure trajectory in Figure 7), it passes through
the noisy states and reaches G2, showing the same behaviour
of an optimal policy that maximizes the return averaged over
the noise. With µ = 6.7 (Q̄4

¯E
= −6.88), π¯E

passes through the
a penalty state to arrive to G1 (red trajectory), showing that
the agent now accepts the loss of reward in order to avoid the
loss of empowerment it would incur by approaching the noisy
states. The two trajectories reported in Figure 7 show another

Fig. 7: 13x13 grid world environment. The agent starts in the state marked
with the letter S and it can choose to reach one of the two alternative goals
G1 and G2. There are two penalty states, marked with the letter P , which
have a negative reward of -1.5 instead of reward -1 that all the other states
have, apart from the goals where the reward is 0. The state marked with the
letter N are noisy states. When the agent tries to move to a noisy state there
is a probability of 0.2 to slip to one of the two perpendicular states, instead of
slipping with probability 0.01 as for every other state. The paths taken by two
agent that follow the two GDE policies, generated using Ē

4

µ, are depicted by
arrows, where the red ones represent the route taken using π¯

E
for µ = 6.7

and the azure ones represent the route taken when µ = 10.2.

interesting behaviour which occurs when a GDE-maximizing
agent must choose between more than one goal. The color
map overlaid on the grid world of Figure 7 represents Ē46.7. In
the middle of the environment there is a vertical “highway”
of states with large GDE (coloured with the brightest yellow)
which both π¯E

cause the agent to traverse. These states have
Ē

4
6.7 and Ē410.2 large because most of their P¯E

are allocated
to action sequences that move the agent towards both G1 and

G2. The two considered policies pass through these states up
to the locations where the decision regarding which goal to
reach must necessarily be made. We see a delayed commitment
between these behaviours that leaves the options about which
goal to choose open for as long as possible.

IV. CONCLUSION

In this paper we introduced goal-directed empowerment, a
new information-theoretic quantity that generalises the em-
powerment formalism to the case when agents have to tackle
an externally specifiable task. Whenever possible, GDE allows
agents to retain the benefits of aiming to be as empowered as
possible for all the tasks where the goal is not in the state with
maximum empowerment. The GDE framework allowed us to
investigate the relationship between empowerment and goal-
directed behaviour, i.e. to study the change of empowerment
landscape when an agent has a given goal to pursue. Generally,
the presence of a goal causes the empowerment of an agent
to decrease, because it prunes the full spectrum of available
options of the agent leaving only those that are necessary to
achieve the goal. By analysing the GDE of an agent, it is
possible to quantify the amount of empowerment lost by the
agent to achieve its goal at the chosen level of performance and
the amount of empowerment still available when the agent is
tackling the goal. In this study we have also devised the GDE
policy π¯E

, which can be used by agents to both solve a task and
be empowered for different trade-off levels µ. Interestingly, for
low values of µ, agents are not always capable of arriving to
their goal and sometime they decide to stop before reaching
it, which poses the following question: why agents should pay
in terms of return to keep their empowerment? One way to
answer this question is that agents keep their empowerment to
lose it at later stages when new unknown forthcoming tasks
could be assigned to them.

In robotics, empowerment can be used to characterise safe
and reliable Human-Robot Interaction (HRI) [15]. For appli-
cation purposes, since a robot companion is usually expected
to provide user-centric services to humans, a method that
would allow it to deliver a service while complying with the
requirements specified by empowerment-based HRI would be
highly desirable. The GDE formalism could be used to achieve
this using a principled mathematical framework. Although in
this paper GDE was applied to simple grid world experiments
and its formalism was presented for fully observable systems
with discrete state and action spaces, its information-theoretic
formulation within the MDP framework is universal enough
to allow its extension towards more complex scenarios. Partial
observability is a built-in feature of the empowerment formal-
ism. Thus, the challenge of incorporating partial observability
in GDE lies on the MDP side of the framework. In this regard,
initial information-theoretic treatment of passive POMDPs has
been described in [37], which could constitute a promising
point of departure. In addition, several methods exist to com-
pute or approximate classical empowerment in the continuous
domain and for high-dimensional problems (e.g., see [4], [8],
[38]). Empowerment has also been applied to complex robotic
systems (e.g., wheeled robots [13] or autonomous underwater
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vehicles [5]). We therefore believe that these approximation
methods for empowerment may be a good starting point to
expand the GDE formalism towards similar directions. The
objective will be to widen the applicability of the GDE
framework to the realm of robotics, also bearing in mind the
aforementioned empowerment-based HRI applications.

In [31] the use of empowerment to design the behaviour
of an artificial agent companion is presented for a video-
game scenario. In this study, the non-person character (NPC)
companion behaves to maximise the empowerment of the
player, resulting in desiderata such as not obstructing the
mobility of the player or interfering with its plans when
accompanying it and defending the player, eliminating the
possible threats that aim at killing it or simply reduce its
ability to act. In principle, using GDE the NPC could perform
any other task while at the same time increasing the player
empowerment. Finally, systems that have to sustain cognitive
functions for a prolonged period of time (as those typically
found in biology) are current objects of investigation in life-
long planning for AI. These systems can face unexpected
perturbations that necessitate readiness in order to guarantee a
proper reaction. We believe that, through its inherent tendency
to foster preparedness with respect to unexpected goals, GDE
could be a suitable candidate quantity to select beneficial states
for tasks that must be sustained for a extended period of time.
We will study that in future work.
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