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Abstract—Predicting saliency in videos is a challenging prob-
lem due to complex modeling of interactions between spatial
and temporal information, especially when ever-changing, dy-
namic nature of videos is considered. Recently, researchers have
proposed large-scale datasets and models that take advantage of
deep learning as a way to understand what’s important for video
saliency. These approaches, however, learn to combine spatial and
temporal features in a static manner and do not adapt themselves
much to the changes in the video content. In this paper, we
introduce Gated Fusion Network for dynamic saliency (GFSal-
Net), the first deep saliency model capable of making predictions
in a dynamic way via gated fusion mechanism. Moreover, our
model also exploits spatial and channel-wise attention within a
multi-scale architecture that further allows for highly accurate
predictions. We evaluate the proposed approach on a number
of datasets, and our experimental analysis demonstrates that it
outperforms or is highly competitive with the state of the art.
Importantly, we show that it has a good generalization ability,
and moreover, exploits temporal information more effectively via
its adaptive fusion scheme.

Index Terms—dynamic saliency estimation, gated fusion, deep
saliency networks

I. INTRODUCTION

Human visual system employs visual attention mechanisms
to effectively deal with huge amount of information by fo-
cusing only on salient or attention grabbing parts of a scene,
and thus filtering out irrelevant stimuli. Saliency estimation
methods offer different computational models of attention to
mimic this key component of our visual system. These meth-
ods generate a so-called saliency map within which a pixel
value indicates the likelihood of that pixel being fixated by a
human. Since the pioneering work of [, this research area
has gained a lot of interest in the last few decades (please refer
to [2]], [3] for an overview), and it has found to have practical
use in a variety of computer vision tasks such as visual quality
assessment [4], [5]], image and video resizing [6]], [[7], video
summarization [8], to name a few. Early saliency prediction
approaches use low-level (color, orientation, intensity) and/or
high-level (pedestrians, faces, text, etc.) image features to
estimate salient regions. While low-level cues are used to
detect regions that are different from their surroundings, top-
down cues are used to infer high-level semantics to guide the
model. For example, humans tend to focus some object classes
more than others. Recently, deep learning based models have
started to dominate over the traditional approaches as they
can directly learn both low and high-level features relevant
for saliency prediction [9]], [10].

A single input frame and its corre- Four consecutive overlaid frames and

sponding fixation map their overlaid fixation maps

Fig. 1: Predicting video saliency requires finding a harmonious
interaction between appearance and temporal information. For
example, while the first row shows a case in which attention
is guided more by visual appearance, in the second row,
motion is the most determining factor for attention. Hence,
we speculate that an adaptive scheme would be better suited
for this task.

Most of the literature on saliency estimation focuses on
static images. Lately, predicting saliency in videos has also
gained some attraction, but it still remains a largely unexplored
field of research. Video saliency models (also called dynamic
saliency models) aim to predict attention grabbing regions in
dynamically changing scenes. While static saliency estimation
considers only low-level and high-level spatial cues, dynamic
saliency needs to take into account temporal information too
as there is evidence that moving objects or object parts can
also guide our attention. Motion and appearance play comple-
mentary roles in human attention and their significance can
change over time. As we illustrate in Fig.[T] in dynamic scenes,
humans tend to focus more on moving parts of the scene and
the eye fixations change over time, showing the importance
of motion cues (bottom row). On the other hand, when there
is practically no motion in the scene, low-level appearance
cues dominantly guide our attention and we focus more on
the regions showing different visual characteristics than their
surroundings (top row). Motivated by these observations, in
this work, we develop a deep dynamic saliency model which
handles spatial and temporal changes in the visual stimuli in
an adaptive manner.

The first generation of dynamic saliency methods were
simply extensions of the static saliency approaches, e.g. [11]],
[12), [13], [14], [13]. In other words, these methods adapted
the strategies proposed for static scenes and mostly modified



them to work on either 3D feature maps that are formed by
stacking 2D spatial features over time or 2D feature maps
encoding motion information like optical flow images. Sev-
eral follow-up works, however, have approached the problem
from a fresh perspective and developed specialized methods
for dynamic saliency detection, e.g. [16], [L7], [18], [19],
[20], [21], 1220, [23], [24]. These models either utilize novel
spatio-temporal features or employ data-driven techniques to
learn relevant features from data. As with the case of state-
of-the-art static saliency models, approaches based on deep
learning have also shown promise for dynamic saliency. These
studies basically explore different neural architectures used for
processing temporal and spatial information in a joint manner,
and they either use 3D convolutions [25], LSTMs [25], [26]
or multi-stream architectures that encode temporal information
separately [27]], [28]], [29].

In this work, we introduce Gated Fusion Network for video
saliency (GFSalNet). Our proposed network model is radically
different from the previously proposed deep models in that
it includes a novel content-driven fusion scheme to combine
spatial and temporal streams in a more dynamic manner. In
particular, our model is based on two-stream CNNs [30],
[31], which have been successfully applied to various video
analysis tasks. To our interest, these architectures are inspired
by the ventral and dorsal pathways in the human visual
cortex [32]. Although the use of two-stream CNNs in video
saliency prediction has been investigated before 28], the main
novelty of our work lies in the ability to fuse appearance and
motion information in a spatio-temporally coordinated manner
by estimating the importance of each cue with respect based
on the current video content.

The rest of the paper is organized as follows: In Section 2,
we give a brief overview of the existing dynamic saliency
approaches. In Section 3, we present the details of our pro-
posed deep architecture for video saliency. In Section 4, we
give the details of our experimental setup, including evaluation
metrics, datasets and the competing dynamic saliency models,
and discuss the results of our experiments. Finally, in the last
section, we offer some concluding remarks.

Our codes and predefined models, along with the saliency
maps extracted with our approach, will be publicly available
at the project website{ﬂ

II. RELATED WORK

Early visual saliency models can be dated back to 1980s
with the Feature Integration Theory by [33]]. The first models
of saliency, such as [34], [1]], provide computational solutions
to [33]], and since then a notable number of saliency models
are developed, most of which deal with static scenes. For a de-
tailed list of pre-deep learning saliency estimation approaches,
please refer to [2]]. After the availability of large-scale datasets,
researchers proposed various deep learning based models for
static saliency that outperformed previous approaches by a
large margin [35]], [36], [37], [38], [39], [40], [41], [42].

Early models for dynamic saliency generally depend on
previously proposed static saliency models. Adaptation of
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these models to dynamic scenes is achieved by considering
features related to motion such as the optical flow infor-
mation. For example, [11] proposed a saliency prediction
method called PQFT that predicts the salient regions via the
phase spectrum of Fourier Transform of the given image. In
particular, PQFT generates a quaternion image representation
by using color, intensity, orientation and motion features and
estimates the salient regions in the frequency domain by using
this combined representation. [12] extracted salient parts of
video frames by similarly performing a spectral analysis of the
frames considering both spatial and temporal domains. [13]]
employed local regression kernels as features to calculate
self similarities between pixels or voxels for figure-ground
segregation. [14] extended the previously proposed static
saliency model by [43]’s model by including motion cues
to the graph-theoretic formulation. [44] employ a two stream
approach that generates spatial saliency map (using color and
texture features) and temporal saliency map (using optical flow
feature) separately and combines these maps with an entropy
based adaptive method. [15] proposed a dynamic saliency
model for activity recognition that works in an unsupervised
manner. Their method is based on an encoding scheme that
considers color along with motion cues.

Following these early approaches, the researchers started
to develop novel video saliency models specifically designed
for dynamic stimuli. For instance, [[L6] proposed a sparsity
based framework that generates spatial saliency maps and
temporal saliency maps separatelty based on entropy gain
and temporal consistency, respectively, and then combines
them. [17] integrated several visual cues such as static and
dynamic image features based on color, texture, edge distri-
bution, motion boundary histograms, through learning-based
fusion strategies and later employed this dynamic saliency
model for action recognition. [18] suggested a learning-based
model that generates a candidate set regions with the use
of existing methods and then predicts gaze transitions over
subsequent video frames conditionally on these regions. [19]
proposed a simple dynamic saliency model that combines
spatial saliency maps with temporal saliency using pixel-
wise maximum operation. In their work, while the spatial
saliency maps are extracted using multi-scale analysis of
low-level features, temporal saliency maps are obtained by
examining dynamic consistency of motion through an optical
flow model. [20] suggested an approach that independently
estimates superpixel-level and pixel-level temporal and spa-
tial saliency maps and subsequently combines them using
an adaptive fusion strategy. [21] proposed an approach that
oversegments video frames by using both spatial and tem-
poral information and estimates the saliency score for each
region by computing the regional contrast values via low-
level features extracted from these regions. [22] suggested
to learn a filter bank from low-level features for fixations.
This filterbank encodes the association between local feature
patterns and probabilities of human fixations, and is used to re-
weight fixation candidates. [23]] formulated another dynamic
saliency model by exploiting the compressibility principle.
More recently, [24] proposed a saliency model (called AWS-
D) for dynamic scenes by considering the observation that


https://hucvl.github.io/GFSalNet/

high-order statistical structures carry most of the perceptually
relevant information. AWS-D [24] removes the second-order
information from input sequence via a whitening process.
Then, it computes bottom-up spatial saliency maps using a
filter bank at multiple scales, and temporal saliency maps with
the use of a 3D filter bank. Finally, it combines all these maps
by considering their relative significance.

Deep learning based dynamic saliency models have
received attention only recently. [25] proposed a recurrent
mixture density network (RMDN) for spatio-temporal visual
attention. The method uses a C3D architecture [45] as a
backbone to integrate spatial and temporal information. This
representation module is fed to a Long Short-Term Memory
(LSTM) network, which is connected to Mixture Density Net-
work (MDN) whose outputs are the parameters of a Gaussian
mixture model expressing the saliency map of each frame. [28]]
suggested a two stream CNN model [30], [31]] which considers
the motion and appearance clues in videos. While, optical flow
images are used to feed the temporal stream, raw RGB frames
are used as input for the spatial stream. [27] presented an
attention network to predict where driver is focused. In this
work, the authors also proposed a dataset that consists of ego-
centric and car-centric driving videos and eye tracking data
belongs to the videos. Their network consists of three indepen-
dent paths, namely spatial, temporal and semantic paths. While
the spatial path uses raw RGB data as input, the temporal one
uses optical flow data to integrate motion information and the
last one processes the segmentation prediction on the scene
given by the model by [46]. In the final layer of the network,
the three independent maps are summed and then normalized
to obtain the final saliency map. [29] proposed a deep model
called OM-CNN which consists of two subnetworks, namely
objectness subnet to highlight the regions that contain an
object, motion subnet to encode temporal information, whose
outputs are then combined to generate some spatio-temporal
features. [26] proposed a model called ACLNet which employs
a CNN-LSTM architecture to predict human gaze in dynamic
scenes. The proposed approach focuses static information with
an attention module and allows an LSTM to focus on learning
dynamic information. Recently, [47] proposed an encoder-
decoder based deep neural network called SalEMA, which
employs a convolutional recurrent neural network method to
include temporal information. In particular, it processes a
sequence of RGB video frames as input to employ spatial
and temporal information with the temporal information being
inferred by the weighted average of the convolution state of
the current frame and all the previous frames. [48] suggested a
different model called TASED-Net, which utilizes a 3D fully-
convolutional encoder-decoder network architecture where the
encoded features are spatially upsampled while aggregating the
temporal information. [49] recently developed another two-
stream spatiotemporal salieny model called STRA-Net that
considers dense residual cross connections and a composite
attention module.

The aforementioned dynamic saliency models suffer from
different drawbacks. The early methods employ (hand-crafted)
low-level features that do not provide a high-level understand-
ing of the video frames. Deep models eliminate this pitfall by

utilizing an end-to-end learning strategy and, hence, provide
better saliency predictions. They differ from each other by how
they include motion information within their respective archi-
tectures. As we reviewed, the two main alternative approaches
include using recurrent connections or processing data in
multiple streams. Although RNN-based models help to encode
temporal information with less amount of parameters, the
encoding procedure compresses all the relevant information
into a single vector representation, which affects the robustness
especially for longer sequences. In that respect, the accuracy of
the two-stream models do not, in general, degrade as the length
of a sequence increases. Moreover, they are more interpretable
as they need to perform fusion of spatial and temporal features
in an explicit manner. On the other hand, their performance
depends on accurate estimation of the optical flow maps used
as input to the temporal stream. Hence, most of these two-
stream models employ recent deep-learning based optical flow
estimation models and even some of them uses some additional
post-processing steps such as confining the absolute values of
the magnitudes within a certain interval to avoid noise, as in
STRA-Net [49]. Our proposed model also uses a two-stream
approach, but as we will show, it exploits a novel and more
dynamic fusion strategy, which boosts the performance and
further improves the interpretability.

III. OUR MODEL

A general overview of our proposed spatio-temporal net-
work architecture is given in Fig. 2] We use a two-stream
architecture that processes temporal and spatial information
in separate streams, similar to the one in [28]]. That is, we
respectively feed the spatial stream and temporal stream with
RGB video frames and the corresponding optical flow images
as inputs. Different than [28]], however, our network com-
bines information coming from several levels (Section [[II-Al
and fuses both streams via a novel dynamic fusion strat-
egy (Section [II-C). We additionally utilize attention blocks
(Section to select more relevant features to further boost
the performance of our model. Here, we use a pre-trained
ResNet-50 model [50] as the backbone of our saliency network
as commonly explored by the previous saliency studies. In
particular, we remove the average pooling and fully connected
layers after the last residual block (ResBlock4) and then
adapt it for saliency prediction by adding extra blocks. Using
ResNet-50 model allows us to encode both low-, mid- and
high-level cues in the visual stimuli in an efficient manner.
Moreover, the number of network parameters is much smaller
as compared to other alternative backbone networks.

A. Multi-level Information Block

As its name implies, the purpose of multi-level information
block is to let the information extracted at different levels
guide the saliency prediction process. It has proven to be
useful that employing a multi-level/multiscale structure almost
always improves the performance for many different vision
tasks such as object detection [S1]], segmentation [52], [S3],
[54], and static saliency detection [S5], [S6]. In our work, we
also employ a multi-level information block to enhance feature
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Fig. 2: Our two-stream dynamic saliency model uses RGB frames for spatial stream and optical flow images for temporal
stream. These streams are integrated with a dynamic fusion strategy that we referred to as gated fusion. Our architecture also
employs multi-level information block to fuse multi-scale features and attention blocks for feature selection.
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Fig. 3: Multi-level information block. It is used to integrate
multiscale features extracted at different levels of the deep
network for predicting salient parts of the given input video
frame.

learning capability of our model. Specifically, it allows low-,
mid-, and high-level information to be fused together and to be
taken into account simultaneously while making predictions.

Fig. [3] shows the proposed multi-level information block
that we employ in our model. This block considers low-
level and high-level representations of frames by processing
features maps which are extracted at each residual block.
The aim is to combine primitive image features (e.g. edges,
shared common patterns) obtained at lower levels with rich
semantic information (e.g. object parts, faces, text) extracted
at higher levels of the network. Here, we prefer to utilize 1 x 1
convolution and bilinear interpolation layers to combine cues
from higher and lower levels. That is, after each residual block,
we expand the feature map with bilinear interpolation to make
equal size of the feature map with the size of the output of the
previous residual block. Then, we concatenate the expanded
feature map with the previous residual block’s output and fuse
them via 1 X 1 convolution layers.

B. Attention Blocks

Neural attention mechanisms allow for learning to pay
attention to features more useful for a given task, and hence,
it has been demonstrated many times that they can boost the
performance of a neural network architecture proposed for any
computer vision problem, such as object detection [S7]), visual
question answering [38]], pose estimation [39], image caption-
ing [60] and salient object detection [55]]. Motivated with these
observations, in our work, we integrate several attention blocks
to our proposed deep architecture to let the model choose
the most relevant features for the dynamic saliency estimation
problem. Resembling the structures in [60], [55], we exploit
two separate attention mechanisms: spatial and channel-wise
attention, as explained below.

Fig. fa) shows our spatial attention block, which we
introduce at the lower levels of our network model (see Fig.
that helps to filter out the irrelevant information. The block
takes the output of ResBlock4, shaped [B x C x H x W]
with C' = 2048, as input and it determines the important
locations by calculating a weight tensor, which is shaped
[B x 1 x H x WJ]. To estimate this tensor, input channels
are fused via 1 x 1 convolution layer following by a sigmoid
layer. The output (shaped [B x C' x H x W) of this block is a
result of Hadamard product between input and spatial weight
tensor.

The second type of our attention block, the channel-wise
attention block, is shown in Fig. f[b), whose main purpose is
to utilize the context information in a more efficient way. The
block consists of average pooling, full connected and ReLU
layers. In particular, it takes the concatenation of the feature
maps from the main stream and multi-level information block
as input which is shaped [B x 96 x H x W], then downsamples
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Fig. 4: Attention blocks: (a) spatial attention block, (b)
channel-wise attention block. While the spatial attention
block defines spatial importance weights for individual feature
maps, the channel-wise attention block introduces feature-level
weighting which allows for a better use of context information.
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Fig. 5: Gated fusion block. It integrates the spatial and
temporal streams to learn a weighted gating scheme to de-
termine their contributions in predicting dynamic saliency of
the current input video frame.

it with average pooling (output shape is [B x 96]). The weight
of each channel is determined after two fully connected layers
followed by ReLUs. The shape of the matrices are [B x 24]
and [B x 96| respectively. The output of last ReLU which is
shaped [B x 96 x 1 x 1], contains a scalar value to weight
each channel. At the end of the block, the input feature map
is weighted via Hadamard product.

C. Gated Fusion Block

One of the main contributions of our framework is to
employ a dynamic fusion strategy to combine temporal and
spatial information. Gated fusion has been exploited before for
different problems such as image dehazing [61], image deblur-
ring [62], semantic segmentation [63]. The main purpose to
use a gated fusion block is to combine different kind of infor-
mation with a dynamic structure which considers the current
inputs’ characteristics. For example, in [63] feature maps that
are generated via RGB information and depth information is
combined for solving semantic segmentation. In our case, our
aim is to come up with a fusion module that considers the
content of the video at inference time. To our knowledge, we
are the first to provide a truly dynamic approach for dynamic
saliency. As opposed to the classical learning based approaches
that learn the contributions of temporal and spatial streams in
a static manner from the training data, our gated fusion block
performs the fusion process in an adaptive way. That is, it
decides the contribution of each stream on a location- and
time-aware manner according to the content of the video.

The structure of the proposed gated fusion block is shown
in Fig. [5] It takes the feature maps of the spatial and temporal
streams as inputs and produces a probability map which is
used to designate contribution of each stream with regard to
their current characteristics. Let S, St denote the feature
maps from spatial and temporal streams, respectively. Gated
fusion module first concatenates these features and then learns
their correlations by applying a 1 x 1 convolution layer. After
that, it uses a sigmoid layer to regularize the feature map
which is used to estimate weights of the gate. Let G4 and
G denote how confidently we can rely on appearance and
motion, respectively, as follows:

Ga=P, Gr=1-P, 1

where P is the output of the sigmoid layer. Then, gated fusion
module estimates the weights denoting the contributions of the
spatial and temporal streams, as given below:

Sy =840Ga, Sp=SroGr, 2

where © represents the Hadamard product operation. Finally,
it generates the final saliency map, Sfine;, via weighting
the appearance and temporal streams’ feature maps with the
estimated probability map:

Sfinal - 514 + S’/T . (3)

Fig. [6] visualizes how gated fusion block works. While the
appearance stream computes a saliency map from the RGB
frame, the temporal stream extracts a saliency map from the
optical image obtained from successive frames. As can be
seen, these intermediate maps encode different characteristic
of the input dynamic stimuli. The appearance based saliency
map mostly focuses on the regions that have distinct visual
properties than theirs surroundings, whereas the motion based
saliency map mainly pay attention to motion. Gated fusion
scheme estimates spatially varying probability maps and em-
ploys them to integrate the appearance and temporal streams,
which results in more confident predictions. The spatial stream
generally gives more accurate predictions than the temporal
stream, as will be presented in the Experiments section. On
the other hand, as can be seen from the estimated weight maps,
the gated fusion scheme in the proposed model has a tendency
to pay more attention to the temporal stream. We suspect that
this is because the model considers that it may carry auxiliary
information.

IV. EXPERIMENTS

In the following, we first provide a brief review of the
benchmark datasets we used in our experimental analysis.
Then, we give the details of our training procedure including
the loss functions and settings we use to train our proposed
model. Next, we summarize the evaluation metrics and the
dynamic saliency models used in our experiments. We then
discuss our findings and present some qualitative and quanti-
tative results. Finally, we present an ablation study to evaluate
the effectiveness of the blocks of the proposed dynamic
saliency model.
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Fig. 6: Gated fusion block estimates the final saliency map by combining the appearance and the temporal maps S4 and St

with the spatially varying weights G4 and Gr.

A. Datasets

In our experiments, we employ six different datasets to
evaluate the effectiveness of the proposed saliency model.
The first four, namely UCF-Sports [64], Holywood-2 [63],
DHF1K [26]], and DIEM [66], are the most commonly used
benchmarks. Among them, we specifically utilize DIEM to
test the generalization ability of our model. The last two
datasets considered in our analysis, DIEM-Meta [67] and
LEDOV-Meta [67], are two recently proposed datasets, which
are particularly designed to explore the performance of a
dynamic saliency model under situations where understanding
temporal effects is critical to give results more compatible
with humans.

UCF-Sports dataset [64] is the smallest dataset in terms of its
size, consisting of 150 videos obtained from 13 different action
classes. It is originally collected for action recognition, but
then enriched by [63] to include eye fixation data. The videos
are annotated by 4 subjects under free-viewing condition.
In the experiments, we used the same train/test splits given

in [68].

Holywood-2 dataset [63] contains 1,707 videos from
Hollywood-2 action recognition dataset [69], among which
823 are used for training and the remaining 884 are left for
testing. Since the videos are collected from 69 Hollywood
movies with 12 action categories, its content is limited to
human actions. In [63], the authors collected human fixation
data for each sequence from 3 subjects under free-viewing
condition. In our experiments, we use all train and test frames.

DHFIK [26] is the most recent and the largest video saliency
dataset, which contains a total of 1000 videos with eye tracking
data collected from 17 different human subjects. The authors
split the dataset into 600 training, 100 validation videos and
300 test videos. The ground truth fixation data for the test split
is intentionally kept hidden and the evalution of a model on
the test data is carried out by the authors themselves.

DIEM [66] includes 84 natural videos. Each video sequence
has eye fixation data collected from approximately 50 different
human subjects. Following the common experimental setup
first considered in [18], we used all frames from 64 videos
for training and the first 300 frames from the remaining 20
videos as test set.



DIEM-Meta [67] and LEDOV-Meta [67] are two recently
proposed datasets collected from the existing video saliency
datasets DIEM [66] and LEDOV [29], respectively. The main
difference between these and the aforementioned datasets lies
in the characteristics of the video frames they consider. [67]]
constructed these so-called meta-datasets by eliminating the
video frames from their original counterparts where spatial
patterns are generally enough to predict where people look.
To detect them, they employ a deep static saliency model that
they developed. DIEM-Meta and DIEM-Meta are thus better
testbeds for evaluating whether or not a dynamic saliency
model learns to use the temporal domain effectively. DIEM-
Meta contains only 35% of the video frames from DIEM,
LEDOV-Meta includes just 20% of the original LEDOV
frames.

B. Training Procedure

As we mentioned previously, our network takes RGB video
frames and optical flow images as inputs. We extract the
frames from the videos by considering their original frame
rate. We employ these RGB frames to feed our appearance
stream. For the temporal stream, we generate the optical
flow images between two consecutive frames by using PWC-
Net [70]. We resize all the input images to 640 x 480 pixels
and map the ground truth fixation points accordingly.

Instead of training our dynamic saliency network from
scratch, we first train the subnet for the appearance stream
on SALICON dataset [71]. Then, we initialize the weights
of both of our subnets for spatial and temporal streams
with this pre-trained static saliency model and finetune our
whole two-stream network model using the dynamic saliency
datasets described above. Pre-training on static data allows
our dynamic saliency model to converge in fewer epochs
when trained on dynamic stimuli. We use Kullback-Leibler
(KL) divergence and Normalized Scanpath Saliency (NSS)
loss functions (which we will explain in detail later) with
Adam optimizer during the training process. We set the initial
learning rate to 10e-5 and reduce it to one tenth in every
3000th iteration. The batch size is set to 8 for UCF-Sports
and 16 for the other video datasets. We train our model on
NVIDIA V100 GPUs (3xGPUs) and while one epoch takes
approximately 2 days for the larger datasets of DHF1K, DIEM
and Hollywood-2, it takes approximately 2 hours for UCF-
Sports. We train our models for 2-3 epochs. Our (unoptimized)
Pytorch implementation achieves a near real-time performance
of 8.2 fps for frames of size 640 x 480 on a NVidia Tesla K40c
GPU.

For our experiments on standard benchmark datasets, we
consider two different training settings for dynamic stimuli.
In our first setting, we use the training split of the dataset
under consideration to train our proposed model. On the other
hand, in our second setting, we utilize a combined training
set containing training sequences from both UCF-Sports,
Hollywood-2 and DHF1K datasets. The second setting further
allows us to test the generalization ability of our model on
DIEM, DIEM-Meta and LEDOV-Meta datasets.

Loss functions. In our work, we employ the combination of
KL-divergence and NSS loss functions to train our proposed
dynamic saliency model. As explored in previous studies, [[72],
[26], considering more than one loss function during training,
in general, improves the model performance. Moreover, em-
pirical experiments on the analysis of the existing automatic
evaluation metrics in [73]] have shown that KL-divergence and
NSS are good choices for evaluating saliency models.

Let P denote the predicted saliency map, F' represent
ground truth (binary) fixation map collected from human
subjects and S be the ground truth (continuous) fixation
density map which is generated by blurring fixation maps with
a small Gaussian kernel.

KL-divergence is a widely used metric to compare two
probability distributions. It has been proven to be effective
for evaluating and trainig the performance of saliency models
where the ground truth fixation map S and the predicted
saliency map P are interpreted as probability distributions.
Formally, KL-divergence loss function is defined as:

Soom(i). o

NSS is a location based metric which is computed as the
average of the normalized predicted saliency values at fixated
locations that is provided with the ground truth. By using this
metric as a loss function, we force the saliency model to better
detect the fixation locations and assign high likelihood scores
to those pixel locations. This loss function is defined as below:

Z P(i (5)

where N is the total number of ﬁxated pixels >, F'(i) and

P is the normalized saliency map = P(f ),

Lkr(P,S)=

Lnss(P,F)

Our final loss function is then defined as:
ﬁ(P,F,S):CYEKL(P,S) + /BENSS(P,F)a (6)

where Ly is the KL loss function, Lygg is the NSS loss
function, and « and 3 are the weights for these loss functions.
We first perform a set of experiments on SALICON dataset
to empirically determine the optimal values of « and 3, and
then set o = 1 and 8 = 0.1 for all the experiments.

C. Evaluation Metrics and Compared Saliency Models

In our evaluation, we employ the following five commonly
reported saliency metrics: Area Under Curve (AUC-Judd),
Pearson’s Correlation Coefficient (CC), Normalized Scanpath
Saliency (NSS), Similarity Metric (SIM) and KL-divergence
(KLDiv). For a detailed analysis of these metrics and their
definitions, please refer to [73]. Each metric measures a
different aspect of visual saliency and none of them is superior
to the others. AUC metric considers the saliency map as
classification map. A ROC curve is constituted by measuring
the true and false positive rates under different binary classifier
thresholds. While a score of 1 indicates a perfect match, a
score close to 0.5 indicates the performance of chance. NSS
is another commonly used metric, which we formally defined



before while describing our loss functions. CC metric is a
distribution based metric which is used to measure the linear
relationship between saliency and fixation maps using the
following formula:

o(P,S)
o(P) x o(S)
where ¢ corresponds to covariance. A CC value close to +1/-1
demonstrates a perfect linear relationship. SIM is another pop-

ular metric that measures the similarity between the predicted
and human saliency maps, as defined below:

SIM(P, S) = " min(P;, 5;)

CCO(P,S) = ()

where ZPZ- =1and Z S; =1 (8)

KLDiv metric evaluates the dissimilatrity between two distri-
butions. Since KLDiv represents the difference between the
saliency map and the density map, a small value indicates a
good result. However, we note that, according to the aforemen-
tioned study, NSS and CC seem to provide more fair results.
In our experiments, we report the scores obtained with the
implementations provided by MIT benchmark websiteﬂ

We compare our method with ten different models: Sal-
GAN [74], PQFT [11], [44], AWS-D [24], [28], OM-
CNN [29], ACLNet [26], SalEMA [47], STRA-Net [49], and
TASED-Net [48]]. Among these, SalGAN [74] is the only static
saliency model that gives the state-of-the-art results in the
image datasets. We evaluate this method on video datasets
considering each frame as a static image. PQFT [11], [44],
and AWS-D [24] are non-deep learning models whereas all
the other models employs deep learning techniques to predict
where people look in videos. We note that in [28]], the authors
tested different fusion strategies with static weighting schemes
and here we only report the results obtained with convolutional
fusion strategy, which was shown to perform better than the
others. In our experiments, we use the implementations and the
trained models provided by the authors and test our approach
against them with the settings explained in Sec. for
fair comparison. In particular, after a careful analysis, we
notice that some methods do not report results on whole
test set of Hollywood-2 and/or they mistakenly consider task-
specific gaze data collected for UCF-Sports while generating
the groundtruth fixation density maps. Hence, some of the
results are different than those reported in the papers but
they give a better picture of their performances. Moreover, in
our experiments, we also provide the results of single-stream
versions of our model that respectively consider either spatial
or temporal information.

D. Qualitative and Quantitative Results

Performance on UCF-Sports. Table [ reports the comparative
results on UCF-Sports test set, which contains 43 sequences.
As can be seen, the single-stream versions of our proposed
model gives worse scores than our full model. Moreover,
spatial stream generally predicts saliency much better than the

Zhttps://github.com/cvzoya/saliency/tree/master/code_forMetrics

TABLE I: Performance comparison on UCF-Sports dataset.
The best and the second best performing models are shown in
bold typeface and underlined, respectively.

Metric

Method AUC-JT CCt NSSt SIMt KLDivl)
Static SalGAN 0.869 0389 2.074 0.258 2.169
PQFT* 0.776 02IT T1.I189 0.157 2.458
Fang et al.* 0.879 0.387 2319 0.247 2.012
AWS-D* 0.845 0313 1.870 0.195 2.202
Bak et al. 0.864 0.387 2.231 0.130 2.575
Dynamic OM-CNN 0.880  0.398 2443 0.294 1.902
ACLNet 0.876 0.367 2.045 0.292 2.135
SalEMA 0.895 0470 2979 0.384 1.728
STRA-Net 0.902 0479 2916 0.384 2.483
TASED-Net 0.887 0453 2.680 0.369 1.876
Ours Spatial 0870 046l 3.029 0.377 2.504
(Single) Temporal 0.851 0418 2535 0.345 2.721
Ours Setting 1 0914 0526 3333 0.382 1.516
(Gated) Setting 2 0911 0499 2980 0.353 1.568

* Non-deep learning model

TABLE II: Performance comparison on Hollywood-2 dataset.
The best and the second best performing models are shown in
bold typeface and underlined, respectively.

Method Metric || Auc.t  cct  NSSt  SIMt  KLDivl
Static  SalGAN 0892 0478 2383 00298  1.760
PQFT* 0689  0.150 0610 0.139  2.387
Fangetal* || 0.862 0312 1614 0221  1.781
AWS-D* 0747 0227 0994 0193  2.256
Bak et al. 0.840 0310 1439 0.158  2.339
Dynamic OM-CNN 0.893 0430 2625 0330  1.89
ACLNet 0.899 0459 2463 0342  1.701
SalEMA 0.873 0383 2226 0330 3.157
STRA-Net 0913 0558 3226 0459 2251
TASED-Net || 0916 0570 3324 0471 2.740
Ours  Spatial 0904 0501 3.051 0378 1473
(Single) Temporal 0.898 0480 2581 0362 1468
Ours _ Setting 1 0914 0549 3.114 0413  1.277
(Gated)  Setting 2 0919 0563 3201 0424 1242

* Non-deep learning model

temporal stream, which is a trend that we observe on the other
standard benchmark datasets too. Our model trained only on
UCF-Sports outperforms all the competing models in most of
the metrics. It results in a performance very close to those
of SalEMA and STRA-Net in terms of SIM. We believe that
weighting the predictions by the spatial and temporal streams
using a gating mechanism allows the model to better handle
the variations throughout video sequence, thus resulting in
more accurate saliency maps on this action-specific relatively
small dataset.

Performance on Hollywood-2. In our experiments on
Hollywood-2 dataset, we use all the frames from the test
set that contains 884 video sequences. In that regard, it is
the largest test set that we considered in our experimental
evaluation. In Table we provide comparison against the
competing saliency models. Our results show that our model
gives better saliency predictions than all the other methods
in terms of the AUC-J and KLDiv metrics. The performance
of the model trained considering our second training setting
that includes a larger and more diverse training set provides
much better results than the one trained with the first setting.
In terms of the remaining evaluation metrics, our results are
highly competitive as compared to the recent state-of-the-art
models, namely STRA-Net and TASED-Net, as well.


https://github.com/cvzoya/saliency/tree/master/code_forMetrics

TABLE III: Performance comparison on DHF1K dataset. The
best and the second best performing models are shown in bold
typeface and underlined, respectively.

Metric

Method AUC-JT  CCt NSST  SIMt
Static SalGAN 0.866 0.370 2.043 0.262
PQFT* 0.699  0.137 0.749 0.139
Fang et al.* 0.819  0.273 1.539 0.198
AWS-D* 0.703  0.174 0.940 0.157
Bak et al. 0.834 0325 1.632 0.197
Dynamic OM-CNN 0.856  0.344 1911 0.256
ACLNet 0.800 0434 2354 0315
SalEMA 0.890  0.449 2.574 0.466
STRA-Net 0.895 0458 2.558 0.355
TASED-Net 0.895 0470 2.667 0.361
Ours Setting 1 0.891 0.448 2505 0.326
(Gated)  Setting 2 0.895 0457 2.528 0.321

* Non-deep learning model

TABLE IV: Performance comparison on DIEM dataset. The
best and the second best performing models are shown in bold
typeface and underlined, respectively.

Metric

Method AUC-JT  CCt NSSt SIMtT KLDiv)
Static SalGAN 0.860 0492 2.068 0.392 1.431
PQFT* 0.680 0.190 0.656 0.220 2.140
Fang et al.* 0.825 0.360 1.407 0.313 1.688
AWS-D* 0.768 0.313 1.228 0.272 1.825
Bak et al. 0.810 0.313 1.212  0.206 2.050
Dynamic OM-CNN 0.847 0.464 2.037 0.381 1.599
ACLNet 0.878 0.554 2283 0.444 1.331
SalEMA 0.863 0.513 2249 0.452 2.393
STRA-Net 0.864 0.527 2277 0.456 2.461
TASED-Net 0.872 0.535 2.259 0.470 2.635
Ours Spatial 0.868 0512 2202 0439 1.387
(Single) Temporal 0.846 0446 1.785 0.391 1.513
Ours Setting 1 0.870 0.543 2313 0.454 1.401
(Gated) Setting 2 0.874 0.525 2228 0421 1.176

* Non-deep learning model

Performance on DHF1K. We test the performance of our
model on the recently proposed DHF1K video saliency dataset,
which includes 300 test videos. As mentioned before, the
annotations for the test split are not publicly available and
all the evaluations are carried out externally by the authors of
the dataset. As Table [lII| shows, our proposed model achieves
performance on par with the state-of-the-art models. In terms
of AUC-J, along with the recent STRA-Net and TASED-Net
models, it outperforms all the other saliency models. In terms
of CC, our model gives roughly the second best result.
Performance on DIEM. We also evaluate our model on DIEM
test set consisting of 20 videos. Table summarizes these
quantitative results. As can be seen, our model achieves the
highest scores in NSS and KLDiv metrics and very competitive
in others. The second setting demonstrates the generalization
capability of our proposed approach as compared to the recent
models like SalJEMA, STRA-Net and TASED-Net.

In Fig. [/ we show some sample saliency maps predicted by
our proposed model and three other deep saliency networks:
ACLNet, SalEMA, STRA-Net, and TASED-Net models. As
one can observe, our model makes generally better predictions
than the competing approaches. For instance, for the sequence
from UCF-Sports (Fig. [/(a)) most the models fail to identify
the salient region on the swimmer, or for the sequence from
the Hollywood-2 dataset (Fig. [7(b)) our model is the only
model that correctly predicts the soldier at the center of the

TABLE V: Performance comparison on DIEM-Meta dataset.
The best and the second best performing models are shown in
bold typeface and underlined, respectively.

Metric

Method AUC-J+ CCt NSSt SIMt KLDivl
ACLNet 0.845 0.437 1.627 0.391 1.473
SalEMA 0.832 0.392 1576 0.374 1.664
STRA-Net 0.840 0419 1.637 0.385 1.634
TASED-Net 0.857 0455 1.810 0.416 1479
Ours 0.857 0460 1.814 0.395 1.305
TABLE VI Performance comparison on LEDOV-Meta

dataset. The best and the second best performing models are
shown in bold typeface and underlined, respectively.

Mothod Metric 1l Auc.;t cot NSSt SIMt KLDiv)
ACLNet 0879 0384 1750 0342 1837
SalEMA 0863 0380 1815 0353 1850
STRA-Net 0893 0423 2041 0370 2304
TASED-Net 0.882 0489 2450 0403  1.697
Ours 0.892 0457 2190 0370 1485

background as salient. Similar kind of observations are also
valid for the sample sequences from DHF1K (Fig. [/[c)) and
DIEM (Fig. [7(d)) datasets.

Performance on DIEM-Meta and LEDOV-Meta. As men-
tioned before, [67] have recently showed that most of the
current benchmarks for video saliency include many sequences
in which spatial attention is more dominant than temporal
effects in describing saliency. DIEM-Meta and LEDOV-Meta
datasets are curated in a special way to contain video frames
in which temporal signals are found to be more influential
than appearance cues. Hence, they both offer a better way
to test how well a dynamic saliency model utilizes temporal
information. In our experimental evaluation, we compare our
proposed model with the state-of-the-art deep trackers, which
are all trained on the combined training set that includes
frames from DIEM or LEDOV datasets. As can be seen
from Table |V| and Table our model outperforms all the
other models in DIEM-Meta, and is the second best model
in LEDOV-Meta, achieving highly competitive performances.
These results demonstrate the effectiveness of the proposed
gated mechanism and its ability to use temporal information to
the full extent, as compared to the state-of-the-art approaches.

Overall, the results reported on all the six datasets con-
sidered in our experimental analysis suggest that our model
has better capacity to mimic human attention mechanism
by combining the temporal and static clues in an effective
way. It has a better generalization ability that it can predict
where people look at the videos from unseen domains much
better. Moreover, it utilizes the temporal information more
successfully with its gated fusion mechanism, which adap-
tively integrates spatial and temporal cues depending on video
content.

E. Ablation study.

In this section, we aim to analyze the influence of each
component of our proposed deep dynamic saliency model. We
perform the ablation study on UCF-Sports dataset by disabling
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Fig. 7: Qualitative results of our proposed framework and the deep learning based SalEMA, ACLNet and SalGAN models.
Our approach, in general, produces more accurate saliency predictions than these state-of-the-art models.

or removing some blocks of our model and by examining model under evaluation, we first train a single stream model
how these changes affect the model performance. As we did on SALICON dataset and then use this model to finetune the
with training our proposed model, for each version of our actual two-stream version. Accordingly, Table [VII| reports the
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Fig. 8: Our model dynamically decides the contribution of motion and appearance streams via gated fusion. Here, we plot the
average motion probabilities (the contribution of motion stream) for two regions having different characteristic, one containing
a moving object (the gummy bear) and the other with relatively no motion, shown with red and blue, respectively. As can be
seen, our model assigns higher weights to the motion stream when motion becomes the dominant visual cue, and the weights

adaptively change throughout the sequence.

performance of different versions of our saliency model.

Effect of gated fusion. As we emphasized before, the role
of gated fusion block is to adaptively integrate spatial and
temporal streams is a key component of our model. In our
analysis, we replace the gated fusion block with a standard
1 x 1 convolution layer. As can be seen from Table [VII, the
performance of the model decreases considerably without the
gated fusion mechanism. That is, using a dynamic weighting
strategy, instead of a fixed weighting scheme (learned via 1 x 1
convolution), generates much better predictions. Fig. [§] shows
a visualization of how our proposed gated fusion operates,
demonstrating the behavior of the weighting scheme for both
dynamic and static parts of a given scene, In particular, we
plot the motion probabilities averaged within the correspond-
ing image regions over time, which clearly shows that the
motion probability (the contribution of motion stream) for the
region that contains a moving object is, in general, much
higher than that of the static region. Moreover, depending
on the characteristics of the regions, it shows the changes in
the motion probabilities throughout the whole sequence. For
example, when no motion is taking place in the region initially
containing the moving object, the weight of the temporal
stream starts to fall. These results supports our main claim that
considering the content of the video while combining temporal
and spatial cues is a more appropriate way to model saliency
estimation on dynamic scenes.

Effect of multi-level information. Previous studies demon-
strate that low and high-level cues are equally important
for saliency prediction [9]], [10]. Motivated with these, we
included a multi-level information block to fuse features
extracted from different levels of our deep model. For this
analysis, we disable this multi-level information block and
train a single-scale model instead. Compared to our full
model, disabling this block reduces the performance as can be

TABLE VII: Ablation study on UCF-Sports dataset.

Metric

Method AUC-J+ CCt NSSt SIMt KLDiv|
w/o spatial attention 0.872 0474 2884 0.374 2223
w/o channel-wise attention 0.892 0489 2923 0.319 1.707
w/o spatial & ch.-wise attention 0.875 0.447  2.885 0.364 2.646
w/o multi-level information 0.890 0484 2755 0.303 1.711
w/o gated fusion 0.900 0480 2913 0353 1.676
full model 0.914 0.526  3.333  0.382 1.516

seen in Table Employing a representation that contains
information from low and high levels helps to improve the
performance of our model. We speculate that our multi-level
information block allows the network to better identify the
regions semantically important for saliency.

Effect of attention blocks. As discussed before, the reasons
we introduce the attention blocks are to eliminate the irrelevant
features via the spatial attention and to choose the most
informative feature channels via the channel-wise attention
when processing a video frame. In this experiment, we remove
the spatial and the channel-wise attention blocks from our full
model and train two different models, respectively. The results
given in Table [VII] support our assertion that both of these
attention blocks improve the model performance. Disabling
them results in a much lower performance as compared to
that of the full model.

V. SUMMARY AND CONCLUSION

In this study, we proposed a new spatio-temporal saliency
network for video saliency. It follows a two-stream network
architecture that processes spatial and temporal information in
separate streams, but it extends the standard structure in many
ways. First, it includes a gated fusion block that performs
integration of spatial and temporal streams in a more dynamic
manner by deciding the contribution of each channel one
frame at a time. Second, it utilizes a multi-level information



block that allows for performing multi-scale processing of
appearance and motion features. Finally, it employs spatial
and channel-wise attention blocks to further increase the
selectivity. Our extensive set of experiments on six different
benchmark datasets shows the effectiveness of the proposed
model in extracting the most salient parts of the video frames
both qualitatively and quantitatively. Moreover, our ablation
study demonstrates the gains achieved by each component
of our model. Our analysis reveals that the proposed model
deals with the videos from unseen domains much better that
the existing dynamic saliency models. Additionally, it uses
temporal cues more effectively via the proposed gated fusion
mechanism which allows for adaptive integration of spatial
and temporal streams.

We believe that our work highlights several important direc-
tions to pursue for better modeling of saliency in videos. As
future work, we plan to explore more efficient ways to include
the temporal information. For instance, instead of using optical
flow images, one can use features extracted from early and mid
layers of an optical flow network model to encode motion
information. This can reduce the memory footprint of the
model and decreases the running times.
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