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Abstract—Currently, an increasing number of model pruning
methods are proposed to resolve the contradictions between the
computer powers required by the deep learning models and the
resource-constrained devices. However, most of the traditional
rule-based network pruning methods can not reach a sufficient
compression ratio with low accuracy loss and are time-consuming
as well as laborious. In this paper, we propose Automatic Block-
wise and Channel-wise Network Pruning (ABCP1) to jointly
search the block-wise and channel-wise pruning action with deep
reinforcement learning. A joint sample algorithm is proposed
to simultaneously generate the pruning choice of each residual
block and the channel pruning ratio of each convolutional layer
from the discrete and continuous search space respectively. The
best pruning action taking both the accuracy and the complexity
of the model into account is obtained finally. Compared with
the traditional rule-based pruning method, this pipeline saves
human labor and achieves a higher compression ratio with lower
accuracy loss. Tested on the mobile robot detection dataset, the
pruned YOLOv3 model saves 99.5% FLOPs, reduces 99.5%
parameters, and achieves 37.3× speed up with only 2.8% mAP
loss. The results of the transfer task on the sim2real detection
dataset also show that our pruned model has much better
robustness performance.

Index Terms—Joint search, Pruning, Reinforcement learning,
Model compression

I. INTRODUCTION

IN recent years, the deep learning methods are widely ap-
plied to machine learning tasks such as speech recognition

[1], image processing [2], and structured output [3]. However,
the large computational costs of the deep learning models are
unaffordable for many resource-constrained devices and make
the inference very slow.
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To tackle these problems, a large number of approaches
have been proposed [4] [5]. Network pruning is a typical
rule-based model compression method to reduce the redundant
weights or structures in the network. There are two main types
of network pruning: the non-structured pruning [6] and the
structured pruning [7]. Since the structured pruning methods
utilize structures as the pruning units, such as channels [8],
blocks [9], groups [9] as well as both channels and blocks
[10], so that the structured pruning is much more hardware-
friendly than the non-structured pruning. Hence, most of the
researchers tend to pay attention to structured model pruning
currently, which is also the focus of this paper.

Nevertheless, the existing structured pruning methods still
have some problems. Firstly, fine-tuning the hyperparameters
like the pruning threshold increases the workload and it is
hard to prove which threshold is optimal [8] [9]. Secondly, the
traditional rule-based pruning method always cannot reach a
sufficient compression ratio with low accuracy loss. Finally,
the iterative pruning has been recommended [10][11], making
the “sparse training – pruning – fine-tuning” pipeline be
processed several times, which is time-consuming.

At present, the Neural Architecture Search (NAS) methods
which can automatically search the network structure have
gained ground [12] [13]. In this way, the networks with
promising performance can be obtained efficiently with little
human labor. To this end, we attempt to combine NAS and
network pruning to achieve an automated process for the
model pruning tasks. Some recent works have introduced
the NAS methods into the model pruning procedure. Since
AMC [14] utilized the deep reinforcement learning (DRL) to
search each pruning ratio of each convolutional layer, several
researchers realize the automated network pruning by DRL
[15] or the evolutionary computation [16].

However, most of these works [14] only prune the channels
and even can not prune the channels of the layers which belong
to the residual blocks, making a very limited compression. The
depth reduction of the network (e.g. residual block pruning) is
also required to achieve high model pruning rates. Meanwhile,
the discrete search space in some works [17] also results in
the confined compression ratio. In addition, the layers in the
model are so sensitive to be pruned by different ratios that it
is more suitable to utilize continuous search space.

Therefore, we propose Automatic Block-wise and Channel-
wise Network Pruning (ABCP) to jointly search the channel-
wise and block-wise pruning action by DRL. The action of
DRL is a list consisting of the pruning choice of each residual
block and the channel pruning ratio of each convolutional
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layer. The reward for DRL takes both the accuracy and
complexity of the pruned model into account. Specifically, we
propose a joint sample algorithm to generate the block-wise
and channel-wise pruning action. We combine the discrete
space and continuous space to sample the block pruning choice
and the layer pruning ratio respectively. In addition, we also
offer another choice to use the discrete space for sampling the
layer pruning ratio. The joint sample algorithm is trained by
the policy gradient method [18].

Extensive experiments suggest that ABCP has a very
promising performance. We collect three datasets, two of
them are proposed by ourselves for the fast and lightweights
detection algorithm for the mobile robots, and the third is
captured from the videos collected by University of Cali-
fornia San Diego (UCSD). Based on these three datasets,
we evaluate ABCP on YOLOv3 [19]. Results show that our
method achieves better accuracy than the traditional rule-based
pruning method with fewer floating point operations (FLOPs).
Furthermore, the results also demonstrate that the pruned
model via ABCP has much better robustness performance.

To summarize, our contributions are listed as the following:
• We propose ABCP, a pipeline to jointly search the block-

wise and channel-wise network pruning action by DRL.
• We propose a joint sample algorithm to jointly sample

the pruning choice of each residual block and the channel
pruning ratio of each convolutional layer from the discrete
and continuous space respectively.
• We test ABCP on YOLOv3 [19] based on three datasets.

The results show that ABCP outperforms the traditional
rule-based pruning methods. On the mobile robot detection
dataset, the pruned model saves 99.5% FLOPs, reduces
99.5% parameters, and achieves 37.3× speed up with only
2.8% mAP loss. On the sim2real detection dataset, the
pruned model has better robustness performance, achieving
9.6% better mAP in the transfer task.

II. RELATED WORKS

A. Network Pruning

Network pruning can be divided into non-structured pruning
and structured pruning. Because of the sparse weight matrix,
the acceleration of non-structured pruning in the hardware
implementation is very limited. While the model compressed
by the structured pruning is easier to be deployed on the
hardwares.

The structured pruning method takes the structures as the
basic pruning unit, such as channels, residual blocks, and
residual groups. Li et al. [7] firstly proposed the method
to prune the unimportant filters of the convolutional layers,
evaluating the importance of each filter via the absolute sum
of the weights. Liu et al. [8] presented a “sparse learning
– pruning – fine-tuning” pipeline to prune channels. He et
al. [20] developed a soft channel pruning pipeline to remedy
the problem of information loss in [8]. Then, a method for
pruning residual blocks and residual groups was proposed by
Huang and Wang [9]. Zhang, Zhong and Li [11] extended
the pruning method to the detection tasks, which iteratively
pruned YOLOv3 to accelerate the model on unmanned aerial

vehicles. Then, Li et al. [10] combined the block-wise pruning
and channel-wise pruning of YOLOv3 by elaborately designed
rules to reduce the cost of the model on the environment
perception devices of vehicles. In this paper, we also aim to
automatically prune blocks and channels of the YOLOv3 [19]
model via joint search.

B. Automatic Network Pruning

Currently, Neural Architecture Search (NAS) methods have
been proposed to automatically search network architectures
to reduce the intensity of human labor [21] [22]. Then, several
papers have presented the techniques to combine network
pruning and NAS. AMC [14] proposed an Automatic Machine
Learning (AutoML) engine to generate the pruning ratio of
each layer with continuous search space. MetaPruning [16]
utilized the evolutionary computation to search the pruned
networks, and then the structure and weights can be efficiently
sampled from a meta network without fine-tuning. DMCP [23]
introduced a differentiable search method for channel pruning,
with modeling the pruning procedure as a Markov process.
CACP [24] also cast the channel pruning into a Markov
decision procedure, and the pruned models with different com-
pression ratios can be searched at the same time. ABCPruner
[17] optimized the pruned structure by the artificial bee colony
algorithm, but the search space of the pruning was discrete.
AACP [25] presented an automatic channel pruning algorithm
that can optimize the FLOPs, inference time, and model size
simultaneously. Nevertheless, these methods only considered
channel-wise pruning. AutoCompress [15] combined the chan-
nel pruning and the non-structured pruning and searched the
best pruning action by DRL. In this paper, through DRL with
both discrete and continuous search space, we aim to search
for a block-wise and channel-wise pruning action that can
reduce resource costs with almost no accuracy loss.

III. METHODOLOGY

In this section, we present our pruning action search method
ABCP in Fig. 1. The method aims to automatically search the
block-wise and channel-wise redundancy of the overall model
by DRL. Inspired by the methods for neural network search
[12] [13], for the network which has T layers to prune, a list
a1:T consisting of the pruning choice of each block abi and the
channel pruning ratio of each layer ali can be considered as
the action for DRL. After pruning and fine-tuning, the testing
loss Ltest and the FLOPs of the pruned network F can be used
as the reward for DRL. Specifically, a joint sample algorithm
which utilizes a stack long short-term memory (LSTM) [26]
network has been proposed to the generate block-wise and
channel-wise pruning action. The details of the framework are
elaborated as follows:
a) Sampling the pruning action: The representation of the

large pre-trained model is fed into the joint sample al-
gorithm, and then the pruning action including the block
pruning choice for each residual block and the channel
pruning ratio for each convolutional layer is sampled. (see
Sec.III.A)
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Fig. 1. The framework of Automatic Block-wise and Channel-wise Network Pruning (ABCP). The input of this pipeline is a large pre-trained residual network
and the final pruned model has much fewer residual blocks and channels. In each episode, the first step is using the joint sample algorithm to sample the
pruning action a1:T which includes the pruning choice of each residual block abi and the channel pruning ratio of each convolutional layer ali, and then the
model is pruned by setting the corresponding weights to zero according to the sampled pruning action. After pruning, several particular layers in the pruned
model is fine-tuned on the training dataset with maintaining the values of the weights that have been set to zero in the previous step. In the final step, the
loss on the testing dataset Ltest is calculated and the FLOPs of the pruned model F is estimated to generate the reward R, then the weights of the joint
sample algorithm are updated by the policy gradient method.

b) Pruning and fine-tuning: Once the pruning action is gen-
erated, the corresponding weights in the original models
are set to zero. With maintaining the values of the weights
which have been set to zero, several particular layers in the
model is fine-tuned on the training dataset. (see Sec.III.B)

c) Updating: After finishing the fine-tuning, the loss of the
pruned model is calculated on the testing dataset and
the FLOPs of the pruned model is estimated. Then the
reward that takes both accuracy and FLOPs into account is
calculated, and the parameters of the joint sample algorithm
are updated by the policy gradient method. (see Sec.III.C)

d) Re-training: After several episodes, the pruning action with
the best reward is selected, and the final pruned model is
re-trained from scratch. (see Sec.III.D)

A. Sampling the Pruning Action

1) The joint sample algorithm: As demonstrated in Fig.
2, to sample the block-wise and channel-wise pruning action,
we propose a joint sample algorithm using the LSTM model.
The structure of the residual network that would be pruned
is also shown in Fig. 2, involving an ordinary convolutional
layer and a residual group that consists of two residual blocks,
each residual block consists of two convolutional layers. Each
LSTM cell samples the block pruning choice abi or the layer
pruning ratio ali for each corresponding block or layer of the

residual network respectively, which constitutes the list a1:T

as the pruning action of the residual network.
Fig.2 also illustrates that there are two branches connected

with each LSTM cell to sample the block-wise and channel-
wise pruning action. Each branch consists of one or two
fully connected (FC) layers and the softmax operation. One
branch is to sample the pruning choice of each residual block
abi, and the other is to sample the channel pruning ratio
of each convolutional layer ali. In addition, following [13],
the block pruning choice or the layer pruning ratio sampled
in the previous cell are embedded in the next cell as the
input ei. In this way, a continuous distributed representation
is created to capture the potential relationships between the
current situation of the pruned network and the block pruning
choices as well as the layer pruning ratios sampled by the
previous LSTM cells.

Especially, there are four types of LSTM cells according
to the positions of the layers they control: the LSTM cell for
the ordinary convolutional layer, the LSTM cell for the 1st
layer of a residual block, the LSTM cell for the 2nd layer of
a residual block, and the LSTM cell for the 1st layer of a
residual group:

• The LSTM cell for the ordinary convolutional layer: The
LSTM cell for the ordinary convolutional layer takes the
sampled layer pruning ratio as the output of this cell, then
embeds and feeds it into the next cell along with the cell
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(a) The model of the joint sample algorithm.

(b) The structure of the residual network that will be pruned.

Fig. 2. The process of the pruning action sampling. (a) The model of the joint sample algorithm; (b) The structure of the residual network that will be pruned.
The LSTM network is used for the joint sample algorithm where each cell is connected by two branches: one branch outputs the block pruning choice and
the other branch outputs the layer pruning ratio. We denote four types of the layers in this residual network, so there are also four types of LSTM cells: the
LSTM cell for the ordinary convolutional layer, the LSTM cell for the 1st layer of a residual block, the LSTM cell for the 2nd layer of a residual block, and
the LSTM cell for the 1st layer of a residual group. During the pruning action sampling, each LSTM cell samples the corresponding block pruning choice
abi or the layer pruning ratio ali for each block and each layer in the residual network respectively, which constitutes the list a1:T as the pruning action for
the whole residual network.

state and the recurrent information.
• The LSTM cell for the 1st layer of a residual block: The

LSTM cell for the 1st layer of the residual block makes the
block pruning choice whether pruning both the two layers
involved in this block or not. When the choice is Yes, the
block pruning choice is embedded and fed into the cell after
the next cell. When the sampled block pruning choice is No,
this cell outputs are the sampled results of the layer pruning
ratio branch, which is embedded and fed into the next cell.
• The LSTM cell for the 2nd layer of a residual block:

Whether to launch the LSTM cell for the 2nd layer of a
residual block depends on the sampled block pruning choice
of the previous cell.
• The LSTM cell for the 1st layer of a residual group:

As for the LSTM cell for the 1st layer of a residual
group, since the 1st layers of the residual groups usually
include pooling operations, we treat these layers as the
ordinary convolutional layers to only prune the channels
for maintaining the accuracy performance.

2) Sampling the block pruning choice: For the block prun-
ing choice search, the action space is discrete, including “prun-
ing” and “no pruning”, i.e. abi ∈ {1, 0}. The probabilities of
“pruning” and “not pruning” are computed by the softmax

operation. Then the joint sample algorithm samples the block
pruning choice from the probability distribution. The sampling
process of the ith LSTM cell is denoted as:

Bi = Bi(ei;θbi) (1)

P (abi = Bk) =
exp(Bki )∑
K
k′=1 exp(Bk

′
i )

(2)

abi ∼ π(abi ∈ B|s;θbi) (3)

where B is the action space for the block pruning choice
search, K is the cardinality of B, i.e. K = |B|, K = 2 here;
Bk is the kth element in B; Bi in (1) is the FC layer of the
block pruning choice branch connected with the ith LSTM
cell, ei is the embedded result of the i-1th block pruning
choice, and θbi denotes the weights of Bi; Bi is the output of
Bi with K dimensions, and Bki is the kth element of Bi; abi
is the block pruning choice sampled by the ith LSTM cell,
s is the current state. (2) illustrates the softmax calculating
process, which generates the probability distribution of abi.
Then, as denoted in (3), abi is sampled from the distribution
π(abi ∈ B|s;θbi).

After sampling, a embedding map is learned and then each
block pruning choice in the discrete action space is mapped to
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a tensor in the continuous vector space through the embedding
layer.

3) Sampling the layer pruning ratio: For the layer pruning
ratio search, the action space can be discrete or continu-
ous. The discrete action space is a coarse-grained space,
i.e. ali ∈ {0, 0.225, 0.45, 0.675, 0.9}. The probability of each
pruning ratio is calculated by the softmax operation. However,
it is sensitive for the layers to be pruned by different pruning
rates, so that the fine-grained search space may be more
suitable for the layer pruning ratio search. Therefore, we also
introduce the continuous action space to guide more fine-
grained channel pruning, i.e. ali ∈ [0, 0.9].

For the discrete action space, the sampling process is similar
to that of the block pruning choice:

Di = Di(ei;θli) (4)

P (ali = Dm) =
exp(Dm

i )∑
M
m′=1 exp(Dm′

i )
(5)

ali ∼ π(ali ∈ D|s;θli) (6)

where D is the discrete action space for the layer pruning
ratio search, M is the cardinality of D, i.e. M = |D|, M = 5
here according to the action space mentioned above; Dm is
the mth element of D; Di in (4) is the FC function of the
layer pruning ratio branch connected with the ith LSTM cell,
ei is the embedded result, and θli denotes the weights of Di;
Di is the output of Di with M dimensions, and Dm

i is the
mth element of Di; ali is the layer pruning ratio sampled by
the ith LSTM cell. (5) demonstrates the softmax calculating
process, which can obtain the probability distribution of ali.
Finally, (6) shows that ali is sampled from the distribution
π(ali ∈ D|s;θli).

For the continuous action space, we use the Gaussian
distribution to represent the distribution of the layer pruning
ratio and sample the ratio with the distribution. The ith LSTM
cell is connected with two FC layers to generate the mean and
log variance of the Gaussian distribution respectively.

µ̂i = µi(ei;θ
µ
li) (7)

ρ̂i = ρi(ei;θ
ρ
li) (8)

σ̂i
2 = exp(ρ̂i) (9)

π(ali|s;θµli,θ
ρ
li) ∼ N (µ̂i, σ̂i

2) (10)
ali ∼ π(ali ∈ C|s;θµli,θ

ρ
li) (11)

where µi and ρi in (7) and (8) are the two FC layers in the
ith LSTM cell that estimate the mean µ̂i and log variance ρ̂i
of the Gaussian distribution respectively, σ̂i2 is the variance of
the distribution, and θµli and θρli are the weights of µi and ρi.
Experiments show that approximating the log variance has a
better practice, so we set the output of the FC layer ρ̂i as the
log variance. Then the variance σ̂i2 is generated with ρ̂i, as
shown in (9). (10) illustrates that the distribution of the layer
pruning ratio ali can be the Gaussian distribution N (µ̂i, σ̂i

2).
(11) shows that ali is sampled in the action space C (i.e.
[0, 0.9] here) from the distribution π(ali ∈ C|s;θµli,θ

ρ
li).

After sampling, the layer pruning ratio sampled by each
cell are embedded. For the discrete action space, each pruning
ratio is mapped to a tensor in the continuous vector space

Algorithm 1: The joint sample algorithm
Input: the LSTM model C with T cells denoted as

C1, C2, ..., CT ; the branch that outputs the block
pruning choice of the ith each cell: Cbi; the
branch that outputs the layer pruning ratio of
the ith each cell: Cli; the cell state, recurrent
information, and embedded result inputted in
the ith cell: ci−1, hi−1, ei−1; the set of the ids
of the first layer in each residual block in the
original network: Sfrb.

1 Initialize the pruning action as an empty list a1:T .
a1:T = [ ];

2 Initialize c0, h0, e0;
3 for i = 1...T do
4 if i 6= 1 then Embed ai−1 as ei−1;
5 if i in Sfrb then
6 ci, hi ← Ci(ei−1, ci−1, hi−1),
7 Generate the block pruning choice probability

distribution by branch Cbi: (2) ← Cbi,
8 Sample abi with (3);
9 if abi=0 then

10 Generate the layer pruning ratio probability
distribution by branch Cli: (10) ← Cli,

11 Sample ali with (11), ai = ali;
12 else ai = abi;
13 else if i− 1 in Sfrb then
14 if abi−1=0 then
15 ci, hi ← Ci(ei−1, ci−1, hi−1),
16 (10) ← Cli,
17 Sample ali with (11), ai = ali;
18 else ai = abi−1, ci = ci−1, hi = hi−1 ;
19 else
20 ci, hi ← Ci(ei−1, ci−1, hi−1),
21 (10) ← Cli,
22 Sample ali with (11), ai = ali;
23 Add ai into a1:T ;
24 end

Output: the pruning action a1:T .

through an embedding layer and fed into the next cell. For
the continuous search space, the pruning ratio is first rounded
down, and then is mapped to a tensor.

The joint sample algorithm is detailed in Algorithm1.

B. Pruning and Fine-tuning

Once the pruning action is generated, the original pre-
trained model should be pruned and fine-tuned. For the block
pruning, we directly set the weights of the layers involved
in the blocks to zero. Due to the existence of the shortcut
operations, the block pruning does not influence the inference
of the network. As for the channel pruning, we are supposed
to select which channel to prune firstly.

As proposed in [8] and [27], the absolute value of the scale
factor γ in the batch normal (BN) layer can represent the
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importance of the channel. BN layer follows the convolutional
layer in the network, which can be formulated as:

xp,qout = γp,q
xp,qin − φ

p,q
Ω√

δp,qΩ + ε
+ βp,q (12)

where the superscript p, q means the qth channel of the pth
convolutional layer; xp,qin and xp,qout are the input and output
of the BN layer; φp,qΩ and δp,qΩ are the mean and standard
deviation of xp,qin over the Ωth batch; γp,q and βp,q are the
scale and shift parameters, which are trainable.

Since xp,qin is the output of the qth channel of the pth convo-
lutional layer, γp,q determines the output of the corresponding
channel. In addition, xp,qin has been normalized to multiply with
γp,q . So the importance of the channel can be represented by
the absolute value of γp,q . Hence, we sort the absolute values
of γ in the original model and set the weights of the channels
with smaller absolute γ to zero according to the layer pruning
ratios.

It is worth noting that the numbers of the channels in the
convolutional layers connected by the shortcut operations in
each residual block must be equal. To this end, all of the
pruning ratios of these layers are forced to be equal to the
maximum pruning ratio in the residual groups.

After pruning, we fine-tune the pruned model for one epoch
to recover the accuracy with maintaining the values of the
weights that have been set to zero. Especially, to speedup the
pruning action search, as mentioned in Sec.IV.B, we only fine-
tune several particular layers.

C. Updating

The parameters of the joint sample algorithm are updated
by the policy gradient method. Firstly, as shown in (13), we
define a reward R that takes both the accuracy evaluated on the
testing dataset and the cost of the pruned model into account
for assessing the joint sample algorithm performance:

R = −Ltest −F/λ (13)

where Ltest is the loss of the pruned and fine-tuned model,
which is calculated on the testing dataset; F is the estimated
total FLOPs of the pruned model; λ is a trade-off hyper-
parameter to balance the accuracy and the complexity. During
the joint sample algorithm updating, we compute the sum of
the FLOPs of every convolutional layer Flayer to approximate
the total FLOPs F of the pruned model. (14) demonstrates how
to estimate Flayer:

Flayer = H ×W × S × S × Cin × Cout (14)

where H and W are the height and width of the feature map
input in the convolutional layer, S is the kernel size, Cin and
Cout are the numbers of the input channels and the output
channels of the convolutional layer respectively.

As shown in (15), the goal of the policy gradient method
is to maximize the expected reward to find the best pruning
action, represented by J(θ):

J(θ) = Eπ(a1:T ;θ)[R(a1:T )] (15)

Where the reward R(a1:T ) is computed with the pruning
action a1:T for the model which have T layers to prune, and
a1:T is sampled from the probability distribution π(a1:T ;θ);
θ denotes the weights of the joint sample algorithm.

We employ the Adam optimizer [28] to optimize the pa-
rameters of the joint sample algorithm, and the gradient is
computed by REINFORCE [18] as (16):

∇θJ(θ) =

T∑
t=1

Eπ(a1:T ;θ)[∇θ log π(at|s;θ)R(a1:T )] (16)

where s is the current state, which can be denoted as a(t−1):1

in this task.
Through the Monte Carlo estimate, an empirical approxi-

mation of (16) is shown as (17). And in order to reduce the
high variance, a moving average baseline is employed in this
estimate:

∇θJ(θ) ≈ 1

N

N∑
n=1

T∑
t=1

∇θ log π(at|a(t−1):1;θ)[R(a1:T,n)− b]

(17)
where N is the number of different pruning actions a1:T that
the joint sample algorithm samples in one episode; R(a1:T,n)
is the reward calculated with the nth pruning action; b is
the moving average baseline. According to [13], although the
Monte Carlo estimate can approximate ∇θJ(θ) unbiasedly,
this method would bring a high variance when only the joint
sample algorithm is trained. Furthermore, [13] has found that
N = 1 works well. So we let N = 1 and let the reward
calculated with one pruning action sampled from π(a1:T ;θ)
be the expected reward.

D. Re-training

After finishing the joint sample algorithm training and
searching, several candidate pruning actions are obtained. We
only take the pruning action with the highest reward to get a
new pruned architecture, then the pruned model is re-trained
from scratch. Maybe it is better for us to prune and re-train
the models pruned by all the sampled pruning actions and
to choose the one with the best performance, but it is time-
consuming.

IV. EXPERIMENTS

In the area of computer vision, object detection plays an
essential role and is applied in increasing industrial areas.
Among the existing detectors, YOLOv3 [19] is the most
promising and classic model with excellent real-time perfor-
mance and considerable accuracy. Extensive diversity of meth-
ods have been presented to improve YOLOv3 (e.g. YOLOv4
[29], etc.), while compared with these new modified networks,
the operations in YOLOv3 are much more basic and simple,
which are easier to be put into use. Currently, the YOLOv3
model is widely deployed on the embedded devices, hence the
hope is to achieve better performance to meet the practical
needs by compression.

To this end, YOLOv3 is adopted to illustrate the perfor-
mance of our proposed ABCP framework in this section. We
first introduce three datasets namely the UCSD dataset, the
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TABLE I
THREE DATASETS FOR EXPERIMENTS

Datasets resolution
frames

classes
training set testing set

UCSD dataset 320×240 683 76 truck, bus, car

mobile robot detection dataset
1024×512,
640×480

13,914 5,969
red robot, red armor, blue robot,

blue armor, dead robot

sim2real detection dataset
the simulation dataset 640×480 5,760 1,440 robot
the real-world dataset 640×480 — 3,019 robot

(a) (b) (c)

Fig. 3. Examples of the UCSD dataset. (a) the sparse traffic; (b) the medium-
density traffic; (c) the dense traffic.

mobile robot detection dataset, as well as the sim2real detec-
tion dataset respectively, and then present the implementation
settings. Secondly, the ablation experiments on the UCSD
dataset are conducted to learn the significance of the block-
wise and channel-wise joint search and the continuous action
space of the search for channel pruning. Next, the effectiveness
of our pruned model is evaluated on the UCSD dataset and
the mobile robot detection dataset. Finally, the robustness of
our method is demonstrated on the sim2real detection dataset.

A. Dataset

The series of the YOLO models are designed for relatively
complex detection tasks, such as the object detection tasks
on the VOC dataset (20 classes) [30] and the COCO dataset
(80 classes) [31]. However, in many practical applications, the
abundant detection classes are not needed since the objects
in the detection tasks are relatively single, while the real-
time requirement is high. In this situation, the structure of
the YOLOv3 network is always redundant, and ABCP is
proposed for the network pruning in simple tasks. Therefore,
we evaluate ABCP on three detection datasets [32] including
vehicle detection and mobile robot detection, whose classes
are relatively simple, shown in Table I.

1) UCSD dataset: The UCSD dataset is a small dataset
captured from the freeway surveillance videos collected by
UCSD [33]. As shown in Fig.3, this dataset involves three
different traffic densities each making up about one-third: the
sparse traffic, the medium-density traffic, and the dense traffic.
We define three classes in this dataset: truck, car, and bus. The
resolutions of the images are all 320×240. The training and
testing sets contain 683 and 76 images respectively.

2) Mobile robot detection dataset: As shown in Fig.4,
the mobile robot detection dataset is collected by the robot-
mounted cameras to meet the requirements of the fast and
lightweight detection algorithms for the mobile robots. There

(a) (b)

(c) (d) (e) (f)

Fig. 4. Examples of the mobile robot detection dataset. Different exposures as
well as various distances and angles of the robots are performed. (a) and (b)
are the 1024×512 examples with different exposures, distances and angles;
(c) - (f) are the 640×480 examples with different exposures, distances and
angles.

are two kinds of ordinary color camera with different reso-
lutions which are 1024×512 and 640×480 respectively. Five
classes have been defined: red robot, red armor, blue robot,
blue armor, dead robot. The training and testing sets contain
13, 914 and 5, 969 images respectively. During collecting, we
change series of exposures as well as various distances and
angles of the robots.

3) Sim2real detection dataset: The sim2real detection
dataset is divided into two sub-datasets: the real-world dataset
and the simulation dataset. We search and train the model on
the simulation dataset and test it on the real-world dataset.
Firstly, we collect the real-world dataset by the surveillance-
view ordinary color cameras in the field. The field and the mo-
bile robots are the same as those in the mobile robot detection
dataset. Secondly, we leverage Gazebo to simulate the robots
and the field from the surveillance view. Then we capture the
images of the simulation environment to collect the simulation
dataset. The resolutions of images in the sim2real dataset are
all 640×480. There is only one object class in these two
datasets: robot. The training and testing sets of the simulation
dataset contain 5, 760 and 1, 440 images respectively, and the
testing set of the real-world dataset contains 3, 019 images.
Examples in the two datasets are demonstrated in Fig.5.

B. Implementation Details of ABCP

We jointly search the block pruning choice with the discrete
search space and the layer pruning ratio with the continuous
search space in all of the experiments.
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(a) (b)

Fig. 5. Examples of the sim2real detection dataset. (a) an example of the
simulation dataset; (b) an example of the real-world dataset.

For pre-training the original YOLOv3 model, we firstly train
the three prediction layers through the Adam optimizer for 20
epochs. The learning rate in the first stage is 10−3 for the
UCSD dataset and is 10−4 for other datasets. Secondly, we
train all of the weights in the model with Adam optimizer
until the loss converges. The learning rate in the second stage
is 10−4 for the UCSD dataset and is 10−6 for other datasets.
The batch size is 64 and the weight decay is 5 × 10−4 in
both two training stages. In addition, we perform the multi-
scale image resizing and image augmenting to improve the
accuracy.

For updating the parameters in the joint sample algorithm,
we initialize the weights θ uniformly in [−0.1, 0.1]. For
calculating the reward, λ in (13) is set to 5 × 105 for the
UCSD dataset and is set to 106 for other datasets. The network
of the joint sample algorithm is trained for 310 epochs with
the Adam optimizer and the learning rate is 10−3. Thus the
sample of the pruning action is also processed for 310 times.

For fine-tuning the pruned model, we only train the three
prediction layers in the pruned YOLOv3 for 1 epoch with the
Adam optimizer, with maintaining the values of the weights
that have been set to zero after pruning. The learning rate in
this stage is the same as that in the first stage of the pre-
training, and the other sets are also the same as those in the
pre-training.

For re-training, the final pruned model are re-trained by
Darknet [19]. The optimizer is the Stochastic Gradient Descent
(SGD) [34]. The total batches are 30, 000 for the UCSD
dataset and are 80, 000 for other datasets. The learning rate
is set to 10−3 with no dropping. The batch size is set to 64,
the weight decay is 5×10−4 and the momentum factor is 0.9.

C. Compared Algorithms and Evaluation Metrics

In the following experiments, we train the original YOLOv3
models [19] on the three datasets as the baseline and then
prune the YOLOv3 models by ABCP. At present, YOLOv4
[29] develops a powerful method to improve YOLOv3 to
get more efficient and more accurate. In addition, there is
also a faster version of YOLOv3 named YOLO-tiny [19].
Hence, the YOLOv4 models and the YOLO-tiny models are
also trained on the three datasets to compare with our pruned
models. These models are all trained by Darknet with the SGD
optimizer. During the training, following [19], we set the total
batches to 50, 200 for the YOLOv3 and YOLOv4 models, to
500, 200 for the YOLO-tiny models. The initial learning rate

is 10−3, which drops to 10−4 at 80% of the total batches and
drops to 10−5 at 90% of the total batches.

We also run a rule-based block-wise and channel-wise
pruning algorithm (RBCP) proposed in [10] to iteratively
prune the YOLOv3 model. RBCP takes the YOLOv3 model
trained by Darknet as the original model. During the iterative
process, all the intermediate models and the finally pruned
models are also trained by Darknet with the same hyper-
parameters as those in the re-training of ABCP.

To evaluate the performance of the models, we use mean
of average precision (mAP), FLOPs, the number of the pa-
rameters (Params) and the average inference time to represent
the accuracy, the complexity, and the inference speed of
the models. During the evaluating, images are resized to
416×416 before they are fed into the networks. The average
inference time is tested on a NVIDIA MX250 GPU card,
whose resource is very limited. In addition, there are three
thresholds during the evaluation of the series of YOLO models
[19]: the intersection over union (IOU) threshold is to calculate
the IOUs between the predicted bounding boxes and the actual
bounding boxes and to filter the predicted bounding boxes
whose IOUs are smaller than the IOU threshold, which is
set to 0.5; the confidence threshold is to filter the predicted
bounding boxes whose confidences are smaller than the con-
fidence threshold, which is set to 0.8; and the non-maximum
suppression threshold [35] is set to 0.5.

D. Ablation Study

We ascribe the excellent performance of ABCP to two
points: 1) ABCP prunes both residual blocks and channels via
the joint search of the block-wise and channel-wise pruning
action; 2) the search space for channel pruning is continuous.
In the following experiments shown in Table II, we prove the
contributions of these two points on the UCSD dataset.

1) Effects of the joint search: To explore the effectiveness
of the block-wise and channel-wise joint search, as shown in
Table II, the model pruned by ABCP is compared with two
models pruned through the single-wise search: ABCP-w/o-C
is the model pruned with the action generated by the block-
wise pruning action search; ABCP-w/o-B is the model pruned
with the action generated by the channel-wise pruning action
search. The implementation details are the same as those of
ABCP.

The results show that compared with the FLOPs of ABCP,
ABCP-w/o-B can achieve a comparable compression ratio
while ABCP-w/o-C is still much more resource-consuming.
It is because that the block-wise pruning is coarse-grained
while the channel-wise pruning can prune more fine-grained
structures. Therefore, ABCP combines the coarse-grained and
fine-grained pruning and can obtain an ultra-slim pruned
model. As for the comparison of accuracy, ABCP reaches the
highest mAP among these models. It is validated that the joint
search can sample a better pruning action to accomplish a
larger compression ratio with low accuracy loss.

2) Effects of the continuous search space: To check the
effects of the continuous search space for the channel-wise
pruning, as shown in Table II (ABCP-D), we prune the
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TABLE II
RESULTS OF THE ABLATION STUDY ON THE UCSD DATASET

Models
mAP
(%)

FLOPs
(G)

Params
(M)

Inference
Time (s)

ABCP 69.6 4.485 4.685 0.016
ABCP-w/o-C 64.3 35.283 36.096 0.061
ABCP-w/o-B 58.1 4.943 9.249 0.020

ABCP-D 63.5 4.924 4.340 0.015

model with the action generated by the joint search, while
the action space is discrete for the search of the channel-
wise pruning, which is set to {0, 0.225, 0.45, 0.675, 0.9}. The
implementation details are the same as those of ABCP.

The results show that ABCP achieves better accuracy with
fewer FLOPs as well as the comparable Params and inference
speed. It is verified by experiments that the continuous search
space is more suitable for the pruning task since the models
are sensitive for the layers to be pruned by different pruning
ratios. In addition, the continuous search space contributes to
getting a higher compression ratio.

E. Results and Analysis

According to the conclusion of the ablation study, we train
and prune YOLOv3 models on three datasets by ABCP. Then
the pruned models are compared with YOLOv4, YOLO-tiny,
as well as the models pruned by RBCP.

1) Results on the UCSD dataset: The performances of the
models on the UCSD dataset are demonstrated in Table III.
The results show that the mAP of our pruned model surpasses
the baseline YOLOv3 model by 8.2% with 93.2% FLOPs
reduction, 92.4% Params reduction, and 6.87× speed up.
Fig. 6 shows the great detection results of our pruned model,
and the video of the detection results is demonstrated on the
github. The pruned model also achieves 6.5% higher mAP than
the YOLOv4 model with much fewer FLOPs and Params as
well as much faster speed. The highest mAP of ABCP reflects
the redundancy of the structures of YOLOv3 and YOLOv4,
which are not suitable for the relatively simple detection tasks.
Compared with the YOLO-tiny model, ABCP outperforms it
by a large margin. It is due to in YOLO-tiny, the parameters
are reduced by replacing the residual blocks with the ordinary
convolutional layers and cutting a level of the feature pyramid
structure, leading to irrecoverable accuracy loss.

As for the rule-based block-wise and channel-wise joint
pruning method RBCP, since the pruning process of RBCP
is iterative, we perform the pruning pipeline iteratively until
the pruning causes a dramatic accuracy loss or the results of
the sparse training indicates that there are almost no redundant
structures to be pruned. During the pruning iteration of RBCP,
the mAP of the 7th pruned model reaches 66.5%, but the
FLOPs and Params are both much larger than ours. However,
in the next iteration, the mAP of the 8th pruned model
drops significantly, while the FLOPs reduction is little. In
addition, after the 8th iteration, almost no parameter is close
to zero after sparse learning, the iteration process is forced to
terminate. Hence, we terminate the pruning iteration here and

Fig. 6. The detection results of the model pruned by ABCP on the UCSD
dataset.

TABLE III
RESULTS OF THE MODELS ON THE UCSD DATASET

Models
mAP
(%)

FLOPs
(G)

Params
(M)

Inference
Time (s)

YOLOv3 [19] 61.4 65.496 61.535 0.110
YOLOv4 [29] 63.1 59.659 63.948 0.132

YOLO-tiny [19] 57.4 5.475 8.674 0.014
RBCP [10] 66.5 17.973 4.844 0.042

ABCP (Ours) 69.6 4.485 4.685 0.016

take the performance of the 7th pruned model as the result of
RBCP in Table. III. Compared with the performance of the
models pruned by ABCP shown in Table. III, it is verified
by experiments that RBCP can not achieve the sufficient
compression ratio.

Additionally, Fig. 7 demonstrates the pruning ratios of each
layer of the models with the best performance pruned by
RBCP and ABCP. The biggest difference between the two
policies is the pruning ratios of the first 24 layers. For RBCP,
the pruning ratio of each layer is the sum of the pruning
ratios generated in all previous iterations. Hence, during the
pruning iteration, the pruning ratios of the first 24 layers
at each time are always confined in a small range, which
results in the limited FLOPs reduction of RBCP. We suppose
that it is another manifestation of the limited compression of
RBCP. Therefore, it is easier for ABCP to find the best pruned
network.

Furthermore, we attempt to use RBCP to prune the model
pruned by ABCP. The block-wise pruning and the channel-
wise pruning are processed iteratively in RBCP. After the
block-wise pruning, three residual blocks are pruned and
the FLOPs is reduced by 0.07G. Nevertheless, the inference
speed is the same (0.016s) and the mAP is dropped by
0.04%. Sequentially, the channel-wise pruning is performed,
but the results of the sparse training demonstrate that there are
almost no redundant channels in the model. It is verified by
experiments that the model pruned by ABCP can no longer
be optimized by RBCP.

2) Results on the mobile robot detection dataset: The
performances of the models on the mobile robot detection
dataset are demonstrated in Table IV. The results show that
compared with the baseline YOLOv3 model, our pruned model
saves 99.5% FLOPs, reduces 99.5% Params, and achieves
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Fig. 7. The pruning ratios of each layer of the models with the best performance pruned by ABCP and RBCP. The vacancy of the column represents the
pruning ratio is 0%.

TABLE IV
RESULTS OF THE MODELS ON THE MOBILE ROBOT DETECTION DATASET

Models
mAP
(%)

FLOPs
(G)

Params
(M)

Inference
Time (s)

YOLOv3 [19] 94.9 65.510 61.545 0.112
YOLOv4 [29] 92.1 59.673 63.959 0.141

YOLO-tiny [19] 85.3 5.478 8.679 0.014
RBCP [10] 89.9 2.842 1.879 0.012

ABCP (Ours) 92.1 0.327 0.299 0.003

37.3× speed up with only 2.8% accuracy loss. The accuracy
of our pruned model is the same as that of YOLOv4. It is
also demonstrated that reaching excellent detection accuracy
on the simple task does not require such complex structures
as YOLOv3 and YOLOv4. Fig. 8 shows the great detection
results of our pruned model, and the video of the detection
results is demonstrated on the github. Compared with YOLO-
tiny and RBCP, ABCP outperforms them by a large margin
with much lower accuracy loss and much higher compression
ratio.

Compared with the UCSD dataset, the objects in the mobile
robot detection dataset are sparser and more obvious, so that
the detection task on this dataset is simpler. Hence, the results
also illustrate that ABCP can work much better than RBCP
on a simple dataset.

Moreover, we deploy the model pruned by ABCP on
the NVIDIAr Jetson AGX XavierTM platform mounted on
the robot. After speeded up by NVIDIAr TensorRTTM, the
inference speed can reach approximate 300 frames per second,
which manifests that the pruned model also has remarkable
property on the embedded devices.

3) Results of the transfer task on the sim2real detection
dataset: The transfer task on the sim2real dataset is to train the
model on the simulation dataset and then transfer the model on
the real-world dataset. In the following experiments, we search
and train the model on the simulation dataset, and directly
transfer the weights to the real-world dataset with no fine-
tuning to evaluate the performance on the real-world dataset.
Table V illustrates the results of the models on this task.
Compared with the baseline YOLOv3 model, under 97.6%

Fig. 8. The detection results of the model pruned by ABCP on the mobile
robot detection dataset.

FLOPs reduction, 95.8% Params reduction, and 14.6× speed
up, our pruned model achieves 2.4% better accuracy on the
simulation dataset and 9.6% better accuracy on the real-world
dataset. Compared with other models, the performances tested
on the simulation dataset are similar, while the model pruned
by ABCP achieves the best accuracy on the real-world dataset
with the fewest FLOPs. Fig. 9 shows the visualization of the
detection results comparison on the simulation dataset and the
real-world dataset, and the video of the detection results of the
model pruned by ABCP is demonstrated on the github. It can
be seen that the model pruned by ABCP has better accuracy
on the real-world dataset. It is verified by experiments that the
model pruned by ABCP has better robustness performance.

Furthermore, it has been shown that YOLOv4 does not
perform well on this transfer task, which may be caused by
the overfitting problems as the YOLOv4 model has more
redundant parameters. At the same time, YOLOv3 also has
the overfitting problems. In addition, the accuracy of YOLO-
tiny on the real-world dataset loses much more than ABCP,
probably reflecting that the slim model generated by this
method does not capture all of the available features of the
objects.

V. CONCLUSION

In this paper, we propose ABCP, which jointly search the
block-wise and channel-wise pruning action through DRL,
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Fig. 9. The visualization of the detection results comparison on the simulation dataset and the real-world dataset. The first two columns are the detection
results on the simulation dataset, and other columns are the detection results on the real-world dataset.

TABLE V
RESULTS OF THE TRANSFER TASK ON THE SIM2REAL DETECTION

DATASET

Models
mAP (%) FLOPs

(G)
Params

(M)
Inference
Time (s)sim

dataset
real

dataset

YOLOv3 [19] 95.6 66.5 65.481 61.524 0.117
YOLOv4 [29] 98.3 28.8 59.644 63.938 0.141

YOLO-tiny [19] 98.3 42.3 5.472 8.670 0.014
RBCP [10] 97.9 71.2 2.321 1.237 0.009

ABCP (Ours) 98.0 76.1 1.581 2.545 0.008

pruning both residual blocks and channels automatically. A
joint sample algorithm is proposed to generate the pruning
choice of each residual block and the channel pruning ratio of
each convolutional layer in the models. Evaluated on YOLOv3
with three datasets, the results indicate that our method
outperforms the traditional rule-based pruning methods with
better accuracy and higher compression ratio. Furthermore,
since ABCP is only applied to the detection models in the
experiments, we would like to apply the proposed method on
more deep learning tasks, such as image classification and 3D
object detection.
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