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Abstract—Autonomous discovery and direct instruction are
two distinct sources of learning in children but education sciences
demonstrate that mixed approaches such as assisted discovery
or guided play result in improved skill acquisition. In the field
of Artificial Intelligence, these extremes respectively map to au-
tonomous agents learning from their own signals and interactive
learning agents fully taught by their teachers. In between should
stand feachable autonomous agents (TAA): agents that learn from
both internal and teaching signals to benefit from the higher
efficiency of assisted discovery. Designing such agents will enable
real-world non-expert users to orient the learning trajectories of
agents towards their expectations. More fundamentally, this may
also be a key step to build agents with human-level intelligence.
This paper presents a roadmap towards the design of teachable
autonomous agents. Building on developmental psychology and
education sciences, we start by identifying key features enabling
assisted discovery processes in child-tutor interactions. This leads
to the production of a checklist of features that future TAAs will
need to demonstrate. The checklist allows us to precisely pinpoint
the various limitations of current reinforcement learning agents
and to identify the promising first steps towards TAAs. It also
shows the way forward by highlighting key research directions
towards the design or autonomous agents that can be taught by
ordinary people via natural pedagogy.

INTRODUCTION

From the etymology of the word, being autonomous means
deciding by oneself (autos) of its own rules (nomos). More
generally, an agent can be said autonomous if it determines
its own sensorimotor behavior, if it makes its own decisions.
Autonomy matters for Artificial Intelligence (AI). Indeed, at
first glance, intelligence seems to require some autonomy: if
we always had to tell an agent what to do at each step of a
sequential decision or control process, we would not consider
such an agent as intelligent. Let us temporarily consider
a radical definition and call “truly autonomous” an agent
which would only decide what to do on its own, without any
constraint, e.g. consideration for our needs and expectations,
without ethics. This agent would be useless, perhaps even
dangerous. At first glance, frue autonomy and usefulness seem
to be contradictory requirements: if an autonomous agent
decides what to do only on its own, how can it be useful
at all?

This apparently rhetorical question can be turned into a
much more practical one: if a truly autonomous agent decides
on its own, how can we influence it to make it useful anyways?
Charkraboti et al. proposed that autonomous agents should
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Fig. 1. Towards Teachable Autotelic Agents. We argue that teachability and
autotelic learning are complementary components to reach human-level Al. To
be fully teachable, agents must also be capable of inferential social learning.

understand and adapt to human behavior much like humans
adapt to the behavior of other humans [1]. How to obtain
such an adaptation? Part of the answer can be found in the
conclusion of the seminal paper of Alan Turing about Artificial
Intelligence:

“It can also be maintained that it is best to provide

the machine with the best sense organs that money

can buy, and then teach it to understand and speak

English. That process could follow the normal teach-

ing of a child.” [2]

Even if they are not always autonomous in the common
sense — they may need caregivers to fulfill their basic liv-
ing requirements — children are definitely autonomous in the
sense that we cannot fully control their behaviour. Neverthe-
less, we can succeed in influencing their behavior through
many ways, including “normal teaching.”

But again, we cannot teach an agent if it is “radically
autonomous” in the sense outlined above. So, resolving the
contradiction between frue autonomy and usefulness requires
a weaker notion of autonomy. In the following sections, we
propose to equate autonomy with the concept of autotelicity:
the ability to set one’s own goals and to learn to achieve them
using one’s own learning signals [3], [4]. Autotelic agents are
equipped with forms of intrinsic motivations enabling them
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TABLE I
THE TEACHABILITY CHECK-LIST. THE TABLE STATES WHETHER THE ALGORITHMS IN THE COLUMNS SUPPORT THE PROPERTIES IN THE ROWS. X (RED):
NO, o (LIGHT GREEN): PRELIMINARY, ® (GREEN): YES, N/A (GREY): NOT APPLICABLE. THE COLUMN ON AUTOTELIC AGENTS CONSIDERS ISOLATED
AGENTS, THUS NONE OF THE PROPERTIES RELATED TO SOCIAL INTERACTIONS CAN BE APPLIED.

Agents IRL Autotelic Inferential IMAGINE | DECSTR HME +
Properties agents Agents Social Agents GANGSTR
Learner Properties (Autotelism)
Autotelic learning N/A . o ° ° °
Open-ended learning X ° X . ° °
Few shot learning X ° X ° ° °
Hierarchical learning X o X X X °
Learner Properties (Social awareness)
Sensitivity to social signals ° N/A ° ) ° °
Proficient language learning o N/A X o o X
Recognition of pedagogical signals X N/A ° X X X
Observational learning X N/A ° X X X
Learner Properties (Social inference)
Modelling the tutor X N/A ° X X °
Internalization X N/A X X °
Pragmatic learning X N/A ) X X X
Tutor Properties
Motivation Regulation X N/A ° X X °
ZPD management X N/A ° o o °
Pedagogical demonstrations X N/A ° X X X
Modelling the learner X N/A ° X X °
Tutoring Process Properties

Social-based tutoring strategy ° N/A ° o X o
Task-based tutoring strategy ° N/A ° X X X
Social communication-based transparency ° N/A ° X X X
Task-based transparency ° N/A ° ) X °

to represent, generate and pursue their own goals. Though
autotelic agents pursue their own goals, their behavior can still
be influenced by external signals. Such agents could be made
appropriate and useful through teaching if we can influence its
goal representations or goal sampling strategy. Thus this paper
proposes to reach useful autonomous agents by developing
teachable autotelic agents — agents that choose their own
goals but whose choice still benefits from teaching via natural
social interactions, see Fig. m

According to education sciences, children can learn in
three ways: direct instruction where a tutor explicitly sets the
learning goals of children step by step, unassisted discovery —
also called free play — where children are left on their own
to discover new things, and guided play or assisted discovery,
where the tutor intervenes on the discovery process of children
to make it more fruitful [5]], [6].

In this paper we take the stance that, when transposed to Al
research, the first way children learn under the strict guidance
of a caregiver or tutor corresponds to interactive learning, and
particularly interactive reinforcement learning research [7],
whereas the second way, learning on their own, corresponds
to research on autotelic reinforcement learning agents [4].
However, the third way, guided play, has no counterpart in
current Al research though it is believed to be the most
efficient [6]. A major step towards endowing artificial agents
with such capabilities consists in combining the properties of

interactive and autotelic reinforcement learning agents. We
will describe preliminary efforts in this direction. However,
this integration remains insufficient. One must also keep in
mind that children are inferential social learners and that social
inference mechanisms play a key role in the extraordinary
learning capabilities of children [8].

In practice, Al agents will need such capabilities. When
immersed in human societies, they will need to acquire the
various socio-cultural skills required in these ecosystems —
skills specific to regions or social groups. The only way to
do so is by learning them through practical interactions with
social partners. For these agents, being teachable, autonomous
and capable of social inferences means being equipped with
the core capabilities to acquire such skills.

Beyond this, a deeper, more fundamental reason for endow-
ing Al agents with such capabilities stems from the endeavour
of building a human-level AI [9]. It might be the case, as
put forward by the social situatedness vision of researchers
like Vygotsky [10], Bruner [11], [12], [13]], Tomasello [14]]
and others [15)], [16] that, in addition to the capability to
pursue their own goals, social interactions with caregivers,
tutors and mates are themselves necessary conditions for the
emergence of sophisticated forms of intelligence in agents,
see [17]] for a review. In particular, these social and cultural
interactions may play a crucial role in the acquisition of
shared cognitive representations making sense for agents and
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their human partners. From that perspective, to obtain useful
autonomous agents in a strong sense, we should focus on
questions centered on the role of social interactions in the
acquisition of representational capabilities compatible with
those of social partners [10], [14]].

Our roadmap towards the design of such agents is organized
as follows. In Section |, we build on the developmental psy-
chology and education sciences literature to extract a feacha-
bility checklist emerging from the natural teaching of children.
More precisely, we organize these properties in three cate-
gories according to whether they involve the learning child,
the tutor or the whole tutoring process. We argue that these
properties are needed to teach autotelic agents. In Section
we scrutinize current research in Interactive Reinforcement
Learning, Autotelic Reinforcement Learning and Inferential
Social Learning under the light of these identified properties.
We then outline in Section the emergence of a new line
of research striving to combine the properties of interactive
agents and autotelic agents. In particular, we describe the
IMAGINE [18], DECSTR [19] and GANGSTR [20]] agents as well
as the the HME protocol [20] as examples of autotelic agent
research striving to endow Al agents with both problem solv-
ing capabilities and primitive interactive learning capabilities.
The main outcome of this work is Table [ where we recap all
the surveyed approaches and state whether they demonstrate
the properties expected from teachable autonomous agents. In
Section we build on the table and highlight key research
directions towards the design or autonomous agents that can
be taught by ordinary people via natural pedagogy.

I. THE “NORMAL TEACHING OF A CHILD”

This section leverages observations from developmental
psychology to characterize how children learn and how tutors
contribute to their learning process. First, we extract the
properties of learning children (Section [[-A), then those of the
tutors (Section and finally, those of tutoring interactions
themselves (Section [[-C).

A. Properties of Children Learners

In the list of properties below, the first four are related to
the task learning capabilities of children and the rest to their
social learning capabilities.

Children are autotelic learners: Either through free or
assisted play, children engage in sensorimotor interactions
with their environment and discover new things which they
might later try to reproduce. During free-play, children rely
on their intrinsic motivations to spontaneously explore their
surroundings and unlock new reachable goals [21]], [22], [23]].
They automatically take ownership of these discovered goals,
try to build their own understanding of them and attempt to
pursue them. This process is very important for subsequent
learning under the guidance of a tutor. For instance, the
experiments in [24] start with a short period of free-play with
the experimental setup. This time is necessary for them to
build an understanding of their surrounding before they can
be influenced by social signals.

Children are open-ended learners: An extraordinary prop-
erty of natural learning in children is that it is open-ended:
the child can solve new problems of increasing difficulty up
to becoming an adult and keeps learning during their whole
life. Given the potentially infinite set of goals that they may
pursue, children have to select some goal at all times. For that,
they may attribute to potential goals a value of interest that
evolves with time, resulting in efficiently organizing their own
developmental learning trajectory [23[, [26], [27]. In other
words, they self-define a learning curriculum that makes them
very sample efficient: they avoid spending too much time on
goals that are either too easy or too difficult, focusing on goals
that present the right level of complexity at the right time.

Children are few shot learners: Children can transfer what
they have learned from solving one task to a novel one. This
flexibility allows them to benefit from some prior knowledge
when facing a new problem that looks like the one they already
know. Consequently, children are few shot learners: they can
leverage what they learned in previous tasks to master new
tasks in a few trials. Thus, these mechanisms allow children
to discover highly complex skills such as biped locomotion,
block stacking or tool use, which would have been extremely
difficult to learn if they had directly addressed these goals
before mastering simpler skills.

Children are hierarchical learners: It is often the case that
our tasks in everyday life have a hierarchical structure. For
instance, the block assembly task of [24] involves several
repetitions of the same basic block manipulation movements.
More generally, the idea that children are hierarchical learn-
ers is pervasive in the developmental psychology literature
[28]. The elementary skills mastered by children are often
stepping stones for discovering how to learn other skills of
increasing complexity. As Bruner writes:

“The acquisition of skill in the human child can

be fruitfully conceived as a hierarchical program in

which component skills are combined into ‘higher

skills’ by appropriate orchestration to meet new,

more complex task requirements.” [29]

Children are social learners: Even shortly after birth, new-
born infants can imitate complex facial expressions such as
happiness, sadness and surprise [30]], [31]], [32]]. Infants can
detect caregiver’s eyes and prefer to look at pictures of direct
gaze over averted gaze [33]. The developmental psychology
literature reported several evidence of children’s social respon-
siveness during interaction with caregivers [29], [10], [14].
This literature demonstrates children’s social sensitivity, in
particular when actions are directed to them such as for infant-
directed speech [34].

Children are proficient language learners: Only humans
master complex compositional and recursive language. Chil-
dren’s puzzling ability to learn it so rapidly seems to be
essential to their development. Indeed, children born deaf with
no access to recursive sign language and Romanian children
socially abandoned in Ceausescu’s orphanages showed de-
creased abilities for abstract compositional thinking and men-
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tal simulation [35]. The mastery of compositional language
seems to further support other cognitive functions such as
creativity [36l], [37] or analogical reasoning [38]].

Children recognize pedagogical signals: Children are able to
recognize the pedagogical stance of a tutor from the general
context of the initiated interaction and from communicative
signals of the action itself [39]. Children are sensitive to
ostensive cues such as gaze, pointing or gesture modulation
(“motionese” [40]), which are generated by the caregivers
to signal their pedagogical intent. This specific strategy of
caregivers and the children sensitivity to it is called natural
pedagogy [39]. The children is able to infer the communica-
tive intention and correctly interpret the instrumental intention
to learn from the pedagogical caregiver.

Children are observational learners: In natural interactions,
children observe others acting in the environment even when
no pedagogical intention is present, and still extract a lot of
information from these observations, a process referred to as
observational learning [41]], [42].

Children construct a model of the tutor: During assisted-
play, it is crucial that children adjust their understanding of
the task at hand using the available social signals. As [24] put
it, “children understand goals before being able to produce
them.”

Understanding the goal from the behavior of a tutor mostly
relies on inferring the tutor’s expectations and reasoning to
figure out how to meet them. Thus, this process clearly calls
upon a mental model of the tutor’s expectation. Such a mental
model derives from a more general model called a Theory of
Mind (ToM), as illustrated in Fig. [2]and put forward in recent
developmental psychology papers [43]], [8]. Having a ToM
means being capable of reasoning about other people’s mental
states [44]. The most common mental states these theories
refer to are beliefs, desires and intentions.

Task channel S|gnals

Tutor

Soc|al channel S|gnals

Learner

Fig. 2. Learners build and maintain a model of tutor’s beliefs about their own
knowledge, capabilities, intentions and desires. Tutors also have a model of
learners, and maintain it to provide adapted teaching feedback.

Children internalize social signals: In Vygotsky’s theory of
development, higher-level cognitive capacities first appear as
interpersonal processes before children internalize them and
turn them into intra-personal psychological tools [10]. Parents
first narrate the child’s activities, orient their attention, keep
them motivated, or decompose tasks for them. As children
grow, they progressively internalize this social narration into
private speech (outer speech for oneself) and, eventually, inner
speech. Just like we use traditional tools to augment our
control on the physical world, psychological tools augment
our control on our own thoughts and behaviors. In a wealth of
studies, private speech was proved instrumental to children’s
ability to reason and solve tasks. They use it for planning
[10]], [45], and even more so when the task gets harder [460].
Children seem to internalize models of their tutors and self-
generate tutor-like guidance and judgements on their own
behavior.

Children are pragmatic learners: Several striking exper-
iments have shown that infants use probabilistic inference
guided by an intuitive understanding of how other people
think, plan and act [8]]. When presented with teaching signals,
they consider how the information is generated, by whom,
for whom, and why [47]. Children also leverage a causal
understanding of how and why those behaviors came to be,
that is, a generative model of other minds. Children consider
tutor’s mental states (i.e., goals, beliefs, desires) but also their
utilities (i.e., costs and rewards). Given this evidence, they
are able to efficiently infer the intent that is communicated to
them, and thus rapidly understand the task at hand [8]. All
these properties make them pragmatic learners and play a
key role in their learning efficiency.

B. Properties of Tutors

Up to now, we have focused on the properties of children
as efficient learners. We now investigate the properties of
tutors. We do not aim to design an artificial tutoring agent,
but to extract from this perspective the properties that help
a teachable agent better respond to natural tutoring signals,
coming either from a human or another artificial agent.

Tutors regulate children’s motivation: [24] outline that most
tutoring interactions are targeting meotivation regulation in
children. They intend to keep them engaged in pursuing the in-
structed goal rather than their own goals. In turn, children must
have developed their own interests beforehand, independently
from social pressure. To illustrate this, [48] oppose a discovery
condition, where free-play precedes social interaction, to a
confirmation condition, where it is the opposite: the tutor
shows what to do and then leaves children on their own. They
show that freely acting on a toy beforehand allows children
to construct their own motivations, which then can be further
regulated if needed in guided play. [24] also account for the
discovery condition when children are left to freely engage and
get familiarized with the task before the tutoring process kicks
off. As the latter starts, the authors identify three processes
that regulate the children’s motivations. Through recruitment,
the tutor should find a way so that the child engages into
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the targeted goal rather than its other own goals. Through
direction maintenance, the tutor ensures that the child keeps
committing to that specific goal, providing incentives to make
further progress towards the goal. Finally, frustration control
is meant to prevent children from giving up on the instructed
goal.

Tutors maintain children in their zone of proximal de-
velopment: In the construction domain, a scaffolding is a
temporary physical structure used to support a working crew.
The term has been borrowed by education researchers to refer
to assistance provided by a tutor to support learning [24], [10],
[49], [50]. The two key aspects of scaffolding are 1) helping
the learner with yet unmanageable skills while 2) allowing
them to do as much as possible without help. First, in order
to grasp initially hard tasks, the tutor can, for example, break
them into more manageable sub-parts or engage in a thinking
aloud process, providing guidelines on how the task should be
performed [S1]]. Second, by leaving them unassisted as much
as possible, the tutor helps learners take responsibility over the
task. This makes scaffolding a temporary process, eventually
enabling the learner to work independently.

Embedded within the scaffolding process is Vygostsky’s
concept of the zone of proximal development (ZPD) [10].
The ZPD is defined as the area between what the learner
can accomplish on its own and what can be accomplished
with the help of a tutor. Notably, the ZPD is always shifting
as the child learns. As a result, tutor interventions must
constantly be individualized to address this change and ensure
ZPD management until children eventually internalize the
information and get exclusively self-regulated.

Tutors are modelling the tutee: To efficiently regulate
the motivational system of children and provide appropri-
ate instructions bringing them towards their ZPD, the tutor
needs to monitor a model of the knowledge, hypotheses and
performance of children as well as a model of the task
itself: “The effective tutor must have at least two theoretical
models to which he must attend. One is a theory of the
task or problem and how it may be completed. The other
is a theory of the performance characteristics of his tutee.”
[24]. Modelling the learner helps the tutor interpret what
children are trying to do, so as to efficiently teach them.
The authors go further and consider that this interpretation
process consists in generating hypotheses about the behavior
of children, something supposedly intuitive for humans.

Tutors are pedagogical: [24] provide several cues showing
that natural tutoring interactions do not rely much on demon-
strations to be followed blindly. They observe that, among the
30 children of their study, “there was not a single instance
of what might be called blind matching behaviour.” Blind
matching behavior is what would be observed if children
where replaying the tutor’s trajectory without understanding
the goal. Second, the authors mention that the only acts that
children imitate are those they can already perform fairly well.
That is, imitating is not a way to learn how to perform the
tutor’s actions, it is more a way to move to the next problem
solving step. Beyond showing what to do next, demonstrations

also play a role in learning new skills. If they are not used
for blind imitation, how do they help? “Demonstrating or
‘modelling’ solutions to a task, [...] involves an ‘idealization’
of the act to be performed and it may involve completion
or even explication of a solution already partially executed
by the tutee himself’ [24]. In fact, the tutor is ‘imitating’
in idealized form an attempted solution tried (or assumed to
be have been tried) by children in the expectation that they
will then ‘imitate’ it back in a more appropriate form. That
is, the tutor builds on a model of the learner’s knowledge
to communicate on the problem solving steps that are still
inadequate. In other terms, the tutor shows rather than it does,
which characterizes pedagogical teaching.

C. Properties of the Tutoring Process

Finally, we extract properties of the tutoring process as inter-
actions between tutors and their tutees, building on the social
learning perspective of [S2]. Tutoring can be conceptualized
as a mutual exchange process using two main communication
channels, the social channel and the task channel, were both
partners can play alternatively the role of the emitter or the
recipient, see Fig.

Tutoring combines the social and task channels: To be
successful, tutoring should exploit and combine both the social
and the task channels. On one hand, the social channel involves
instructions, feedback or gaze (Fig.[3). It allows learners to not
only adjust their own understanding of the task through non-
motor signals, but also constructively learn to understand the
tutor’s signals. On the other hand, the task channel involves
watching motor interactions with the environment performed
with the intent to teach or not (Fig. E]) Besides, children learn
to adjust their beliefs from goal-related signals, thus fostering
their proactive communication abilities.

Tutor

Commitment, gaze following

Instructions Feedback
\ J

Learner

Fig. 3. Examples of social channel signals exchanged between a tutor and a
learner. The signals can be verbal, such as instructions or feedback, or non-
verbal, such as gaze following. These interaction signals are used to maintain
the learner engaged into the learning activity.

Partners are emitters and recipients: Both participants
usually alternate the emitter and recipient roles, resulting
in a mutual exchange (Fig. [2). For example, when learners
execute a task in order to obtain a feedback from the tutor,
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Fig. 4. Examples of task channel signals exchanged between a tutor and a
learner. Here, these signals consist of the task-related behavior of the tutor,
either as demonstrations or as performance without a pedagogical intention.

they are first the provider and then the recipient. In more
details, the tutor may emit through the social channel when
providing instructions or non-verbal feedback, and through
the task channel when performing or showing the task.
We call the former social-based tutoring strategy and the
latter task-based tutoring strategy. From the other side,
the learner emits through the social channel when providing
feedback on their understanding or asking questions. We call
this social communication-based transparency. The learner
emits through the task channel when imitating the tutor or
performing the task to display their current capabilities, we
call it task-based transparency. Note that when both the
tutor and the learner are artificial agents, since the learner has
to perform the task, the presence of task-based transparency
corresponds to the fact that the tutor reacts to the behavior
of the learner. Combining both channels results in various
“frames” of exchanges where both participants can use both
channels and both roles. These frames of exchanges being
goal-oriented, they are called “pragmatic frames” in [53].

II. INTERACTIVE, AUTOTELIC AND INFERENTIAL SOCIAL
AGENTS

After this overview of natural tutoring processes, we turn to
the Al research dedicated to the design of artificial learners and
investigate for three broad classes corresponding to the first
columns of Table [I| how much the account for the properties
we have listed.

A. Reinforcement learners

Reinforcement learning (RL) is a process by which an agent
learns to solve sequential decision problems from a reward
signal [54]]. The learning agent is initially ignorant of the con-
sequences of its actions and must explore its environment to
discover them. By maximizing future rewards, it progressively
learns to favor more rewarding actions while avoiding costly

ones. RL first appeared as a computational model of learning
by trial-and-error in rodents [55]], but is also useful to explain
conditioning phenomena in monkeys [56] and human decision
making [57)]. Thus, RL seems to be a natural framework for
modelling learning to solve problems in children. However,
this framework suffers from several limitations.

First, the behavior of RL agents is fully determined by the
reward. In the standard framework, this reward is externally
provided by a human designer with some specific goal in
mind. In the absence of this external reward, most RL agents
would learn nothing. As outlined in Section this is to be
contrasted with children who can set their own goals and learn
in full autonomy.

Second, RL agents optimize a predetermined reward func-
tion. Their behavior should converge to a corresponding opti-
mum and stop changing, which contrasts with the open-ended
learning capabilities of children. At first glance, the richer
framework of multitask RL [58]] and its derivatives such as
meta-RL [59]] seem to do better but, as long as the set of
tasks is bounded, the obtained behavior should also converge
to a steady optimum. To overcome these limitations, open-
ended learning approaches suggest that RL agents receive a
potentially infinite sequence of unknown tasks [60]]. However,
this framework does not explicitly answer one of the most
important questions: where should all these tasks and reward
functions come from? Practically, all existing approaches
revert to the bounded learning case: first define a (bounded)
space of reward functions, then sample from it. Indeed, it is
hard to imagine and define a space of reward functions that
would encompass all activities humans are able to pursue.
Even in that case, how should we sample appropriate tasks
for an agent along its lifetime? In contrast, humans seem to
generate their own goals, learn from their own reward signals
and organizing their own learning trajectories in a virtually
infinite space of tasks.

Third, RL is notoriously slow and sample inefficient [61]].
The groundbreaking successes that have made the field popular
these last years have all been obtained with weeks of heavily
parallel computations that would correspond to centuries of
human experience. This is to be contrasted with the few shot
learning capabilities of animals [62] and particularly humans
[39].

Finally, the standard RL framework accounts for an agent
learning in isolation. As a consequence, standard RL agents
lack all the social properties linked to tutoring interactions that
we outlined in Sections [-B] and [-Cl

Now that we have established the limitations of the standard
RL framework, let us describe three Al research lines tackling
them: interactive reinforcement learning, autotelic learning and
inferential social learning.

B. Interactive Reinforcement Learners

Agents immersed in the real-world cannot be prepro-
grammed to meet all their users’ expectations. Interactive
learning research tackles that fundamental problem by en-
abling non-expert users to communicate or teach their pref-
erences and expectations in a natural way, as they would
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do with children [53]]. Thus, the field of interactive learning
investigates and models the way a human tutor guides the
learning process of an agent by providing teaching signals
[63]. More specifically, Interactive RL research focuses on the
case where the agent is an RL agent.

From the perspective adopted in this paper, Interactive RL
can be seen as solving several of the issues outlined above.
First of all, by definition, Interactive RL agents are social
learners. Though not all Interactive RL agents are endowed
with all these capabilities, one can find works where Inter-
active RL agents benefit from social-based tutoring strategy
[64], [63]], [66] or task-based tutoring strategy [67], [68] and
works in which the Interactive RL agent displays some task-
based transparency [69]], [70] and social communication-
based transparency [71], [[72], [70].

The Interactive RL approach relies too much on the tutor
to drive the learning process and fails to account for the
autonomy of children. As for their open-ended learning
properties, one may consider that a human user may specify
a sequence of increasingly more difficult tasks, for instance
by specifying preferences about outcomes [73l]. But in the
absence of autonomous learning, it is too much load for the
tutor to always monitor the learning progress of an agent and
to provide new tasks along a potentially infinite learning tra-
jectory. Thus, Interactive RL accounts better map to the direct
instruction approach to education than to assisted discovery.

Along the same line, though teaching signals can substan-
tially accelerate learning, Interactive RL research does not
generally consider multitask nor hierarchical contexts. Thus
the corresponding agents do not display few shot learning
nor hierarchical learning capabilities.

In addition, Interactive RL research does not satisfactorily
account for the social interaction properties of the tutoring
processes outlined in Section

First, a well-known weakness of Interactive RL research is
that the way naive human users tend to teach an agent is far
from meeting the expectations of the RL framework [74]], [75]].

Second, the way Interactive RL research accounts for task-
based tutoring strategy is called “Learning from Demonstra-
tion” (LfD) [68]. In this approach, an expert first performs
highly rewarded trajectories in the environment where the task
is defined. Then, data from these trajectories are collected
and fed into the replay buffer of the learning agent —a
sort of episodic memory. From this data, the agent learns an
efficient policy with RL as if it was its own memories [76],
[77]. Rather than using RL, an alternative approach called
“Behavioral Cloning” (BC) consists in cloning the imitated
policy by applying standard — another kind of machine
learning process — from the same data to directly obtain
a policy which behaves like the imitated one [78]. These
methods assume the experience of the expert to be directly
transferred into the memory of the learning agent, which
cannot happen yet in real life given that both participants have
different viewpoints. Besides, they assume that the tutor and
the learner share the same state space, action repertoire and
dynamics of interaction with the environment. This is unlikely
in real life situations as made obvious by works on the so
called “correspondence problem” [79]]. Finally, they assume

that the agent can perfectly observe the states and actions of
the demonstrator and imitate these actions, in sharp contrast
with what we outlined in Section It is more likely that
natural learners recognize the goals of the partner and try on
their own to reach these goals. This is known as goal emulation
[80], [81] and can be accounted for in the RL framework
through inverse RL processes [67]. Among other things, this
approach can help solving the correspondence problem.

Beyond this, in Interactive RL, teaching signals lack a
communicative intent. As outlined in Section [I, infants and
more generally humans are sensitive to pedagogical teaching,
where the teaching signals are specifically emitted to optimize
learning efficiency. This is overlooked in the Interactive RL
literature, where a tutor will provide the same demonstrations
to all learners without taking their current knowledge in con-
sideration, thus failing to account for the ZPD management,
pedagogical teaching and modelling the learner properties.
Reciprocally, these methods expect all learners to learn equally
well from a given set of demonstrations, thus Interactive RL
agents cannot be seen as pragmatic learners.

Finally, natural teaching methods build on linguistic de-
scription of behaviors, instructions, explanations and both
verbal and nonverbal feedback. As for the linguistic signals,
Interactive RL agents rely on a limited set of predefined
tokens, which cannot be confused with a form of language
proficiency. For educating agents with the richer signals used
in natural teaching, these agents must be equipped with richer
capabilities. We claim that having the capability to represent
and pursue goals, to autonomously imagine and select goals, to
infer the goals of others and to interact with them about these
goals are some of the required capabilities, as these goals can
play a pivotal role at the interface between user expectations
and autonomous behavior learning. These concerns play a key
role in the emergence of the line of research that we describe
in Section

C. Autotelic Reinforcement Learners

The extraordinary transition from the mental life of human
infants to the sophisticated intelligence of adults is mostly
modelled in the domain of developmental robotics and Al
[82], [16], [83]. A central line of research in this domain is
interested in the design of autotelic agents [3], [84]. These
embodied agents interact with their environment at the sen-
sorimotor level and are provided with the ability to represent
and set their own goals and rewarding themselves when they
achieve them [83]], [86], [4]. By definition, they are autotelic
learners.

Fundamentally, these agents are problem solvers. Imple-
menting their learning capabilities using RL is natural, since
the RL framework provides the model of choice to account
for problem solving capabilities [54]. Most of these agents
are equipped with one or several goal spaces and rely on
goal-conditioned RL [4] and automatic curriculum learning
[87] to learn to achieve those goals along an open-ended
developmental trajectory. This endows them with the capa-
bility to decide which goals to target and learn about as a
function of their current capabilities [88]], [89]], [901], [91]], [92].
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Thus, by contrast to Interactive RL agents, autotelic agents are
open-ended and generally few shot learners. Note however
that very few works focus on the importance of hierarchical
learning in such agents [28], [93]. By contrast, there is
a growing tendency to combine autotelic architectures with
language learning capabilities. Many papers combining goal-
conditioned RL and language understanding have recently
flourished under the banner of instruction following agents
[94], but the corresponding agents are not truly autotelic in
the sense that they do not set their own goals. Autotelic agents
endowed with language learning capabilities are covered in
Section

Thus, autotelic reinforcement learners are endowed with
a lot of the properties that are missing to their interactive
counterparts. But symmetrically, they generally model isolated
agents, thus they miss all the interactive and social learning
properties listed in Section [I}

D. Inferential Social Learners

While Interactive RL research provides efficient ways for Al
agents to learn from demonstrations, feedback or instructions,
they lack methods for implementing the richest social interac-
tions between a tutor and a tutee presented in Section [I} A key
to model these richer interactions consists in simultaneously
addressing tutoring and learning processes.

A new family of agents that we call inferential social
learners have started to implement these more elaborated
types of interactions where the tutor and the learner build
a model of each other and infer the other’s beliefs, desires
and intentions using these models. These models are inspired
by the inferential social learning framework of [8], which
considers that learners recover the meaning of underlying
others’ actions by inverting intuitive causal model of the way
others think, plan and act. Such inference mechanisms are
crucial for social learning, notably to improve the efficiency
of the tutoring process.

By drawing inspiration from language-based communica-
tion, inferential social learning goes beyond literal interpreta-
tion of actions and considers pragmatic inference [95]. The
current approach of inferential social learning mechanisms
exploits probabilistic inference over structured representations
of the world, the other and even the representations of the
other. In [96], the authors describe the rational speech act
(RSA) for pragmatic reasoning in language understanding.
Their approach results in probabilistic models of pragmatic
speakers and listeners able to capture the meanings of complex
phenomena of linguistic interaction. Taking a more develop-
mental perspective, some other works try to account for the
way parents employ “motherese” [97], [34] to talk to their
children [98]], so as to endow social agents with the roots of
language proficiency.

Transposing these linguistic considerations to the domain
of interactions with objects, some works study communicative
demonstrations [99]]. Such demonstrations are not just directed
towards the manipulated objects, but also accompanied with
non-verbal cues such as eye gaze and or exaggerations of
the demonstrations in the space—time dimensions used to

convey the pedagogical intent. Again, similarly to the language
case, some studies have focused on “motionese,” the non-
verbal equivalent of motherese [40]], [100]. The corresponding
agents can partly be seen as autotelic, as they have some
desires and intentions, but as the corresponding works focus
on the interaction itself, generally they do not come with
sophisticated agents capable of open-ended learning, few
shot learning or hierarchical learning.

The mechanism behind these studies always requires to have
models of the other’s beliefs, desires and intentions and to
reason about them to choose the most appropriate way to
communicate, for instance selectively choose when to provide
feedback and corrections [101]].

In the Human-Robot Interaction community, similar works
about agents not just intending to perform the ordinary action
but also to convey something about it are using the concept of
legibility [102], [[103]]. The key idea is to design transparency
through motion models by which a robot communicates its
intent to a human observer [70]. The main assumption is that
humans will be able to infer the robot’s intention from its
motion by inverting a generative model. Thus, such works
account for both forms of transparency.

In [99], the authors proposed a pedagogical model based
on Bayesian Inference to generate communicative demonstra-
tions. They argue that this model should help the teacher select
examples to communicate a concept to the learner. They fur-
ther performed experiments involving real human instructors
and showed that the results were aligned with their proposed
model. A more recent work proposed a demonstration-based
ZPD teaching strategy where demonstrations are not perfect,
but are adapted to the current capabilities of the agent [104].

Driven by the Interactive RL framework where agents learn
from an external reward function, some works also study
how an agent can infer information about a reward function
from observed premises in the tutoring context [10S], [L06],
[1O7]. Moving to autotelic agents, similar processes could be
transposed to infer a goal rather than a reward function. A
few recent works start addressing this issue by captioning the
goal of a demonstration through natural language and a goal
generator [108], [109]. We expect follow-up of such works to
contribute to answering the key question of the nature of the
information conveyed by the tutor through the task channel
(1101], [99], [1O1].

As we noted above, social inferences require that both
learners and teachers reason about the beliefs and intent of
each other. Thus, the corresponding agents need to be endowed
with a Theory of Mind (ToM). There has been recent attempts
to account for the acquisition of a ToM through inverse
RL [44] and in the domain of multi-agent RL [111], but
these works generally suffer from the same limitations as
Interactive RL approaches: they do not consider explicit goals
nor social inference processes. In robotics, efficient human-
robot collaboration seems to require ToM models [1]].

To summarize the whole section, Interactive RL agents usu-
ally fall short in terms of autonomy, lacking all the properties
of autotelic agents and the inferential capabilities of inferential
social learners. Reciprocally, standard autotelic agents are not
teachable at all. This is only when combining all approaches
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that future agents will display both capabilities to learn on
their own and to be pedagogically taught. We now turn towards
preliminary attempts in this direction.

III. FIRST STEPS TOWARDS TEACHABLE AUTOTELIC
AGENTS

As outlined in the previous section, on the one hand, in-
teractive reinforcement learners and inferential social learners
are teachable, but they are not autonomous. On the other hand,
autotelic agents are autonomous, but they are not teachable.
To fully benefit from the efficiency of assisted discovery,
agents should be simultaneously autonomous and teachable. In
this section, we first describe preliminary research aiming at
making autotelic agents more teachable and modelling efficient
tutoring processes.

Autotelic agents

GANGSTR] [ DECSTR

HME
Interaction
Protocol

IMAGINE

\

Assisted
Discovery

Language
Feedback

Language
Instructions

Social Partner Interactions

Fig. 5. Overview of the teachable autotelic agents presented in this section.

In this section we describe three autotelic agents endowed
with some teachability properties, as well as a tutoring pro-
tocol, as depicted in Fig. 0] The IMAGINE agent learns to
achieve goals described through language by a social partner,
and can build on the compositionality of language to imagine
new goals and pursue them. The DECSTR agent represents its
sensorimotor interactions with objects using abstract spatial
predicates and learns to achieve goals represented in terms
of these predicates. A social partner describes the performed
actions and the corresponding linguistic input can be turned
into instructions. The GANGSTR agent extends DECSTR with
better sensorimotor learning capabilities and is trained with
a tutoring protocol called “Help Me Explore” (HME) which
significantly improves its capability to be taught.

A. The IMAGINE agent

The IMAGINE agent, illustrated in Fig.[f] is a autotelic agent,
thus it benefits from all the properties of autotelic agents,
apart from hierarchical learning. The aim of IMAGINE is
to discover and master possible interactions in a Playground
environment filled with procedurally-generated objects. As it
freely explores its world by pursuing its own goals, it receives
simple linguistic descriptions of interesting behaviors from a
simulated tutor. It then leverages both the communicative and

Agent

"Grasp red tree"

"Grasp red algae" [*"Grow red tree"

"Grow blue algae"

@

Social partner (¢]
"You grow blue algae" A
Agent

1. Guided exploration with a
social partner:

s

2. Creative autonomous
exploration:
Learning the meaning of sentences
through interaction with a social peer

Imagining new goals by
composing known sentences

Fig. 6. The IMAGINE architecture as a Vygostkian Deep RL system. The agent
learns to represent and understand language as a pre-existent social structure
through social interactions with a synthetic tutor (left). This internalization
of social language opens the door to a cognitive use of language. The
agent can now imagine new goals as systematic recombinations of known
sentences. As it pursues its own invented goals, IMAGINE creatively explores
its environment (right). IMAGINE also leverages Vygotsky’s notion of zone of
proximal development (ZPD) [112]. In each episode, the tutor sets the scene to
provide optimal challenges: it introduces the necessary objects for the agent
to reach its goal (not too hard), but generates them procedurally and add
distracting ones (not too easy).

cognitive functions of language to benefit from these signals
(L8]]

Let us first discuss the communicative function. If the agent
hears “you grasped a red rose,” it turns this description into a
potential goal and will try to grasp red roses again. To do so, it
needs to understand what that means and to learn to replicate
the interaction. The just-received description is an example
of aligned data: a trajectory and a corresponding linguistic
description. This data can be used to learn a goal-conditioned
reward function, i.e., a function that helps the agent recognize
when the current state matches the linguistic goal description.
Given some examples, the agent correctly recognizes when
goals are achieved and can learn a policy to perform the
required interaction via standard RL using self-generated goals
and rewards. Here, IMAGINE uses the communicative function
of language, it learns to represent the embedding of goals
and goal-conditioned reward function from linguistic social
interactions. As the social partner chooses to describe some
interactions and not others, it effectively guides goal repre-
sentation learning in the agent. Thus the goal representations
of the IMAGINE agent are influenced by social interactions
and, once they are formed, the agent can pursue them without
relying on tutors.

Now, IMAGINE also uses a cognitive function of language.
Once language has been grounded as described above, IMAG-
INE leverages the productivity of language to generate creative
goals falling outside of the domain of effects it already
experienced. Language — and its compositional properties —
is here used as a cognitive tool to facilitate the composition
and imagination of novel goals. The mechanism is crudely
inspired from usage-based linguistic theories [113[], [114],
[L15]. Tt detects recurring linguistic patterns, labels words
used in similar patterns as equivalent and uses language
productively by switching equivalent words in the discovered
templates. This simple mechanism generates truly creative
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goals that are both novel and appropriate, two adjectives used
to define creativity as discussed in [116]. As the authors show,
this simple mechanism empowers the creative exploration of
the environment and enhances the systematic generalization
abilities of the agent. Whereas the communicative function
of language mostly helps internalize the goal representations
of social partners, the cognitive function provides the agent
with individuality and open-endedness: it can generate novel
creative goals that its tutor did not mention.

Using descriptions rather than instructions in IMAGINE is
a deliberate choice given that linguistic guidance through
descriptions is a key component of how parents teach language
to infants [[117], [[14]. This contrasts with the instruction-based
approach dominant in language-conditioned agents research
[94] but rarely seen in real parent-child interactions [118]].
Finally, the technical cornerstone of this work is that it learns
a goal-conditioned reward function where the goal is learned
as a language expression from data coming from the social
partner. This removes the need for a lot of feedback from
the social partner, which is one of the target functionalities of
teachable autonomous agents.

Despite these advanced uses of language, IMAGINE learns
simplified pattern-based sentences and, thus, cannot be said
fully language proficient. Besides, the description of actions
plays a direct role in orienting the exploration process of the
agent. However, in all experiments performed in [18], the
agent is only targeting its own goals and the social partner
only describes what the agent does, without providing any
direct incentive to target a particular goal rather than another.
This is to be contrasted with the studies of [24] where the
tutor is in charge of making sure that children will build a
pyramid. Thus, though the IMAGINE agent has the potential to
receive instructions, this potential has not been demonstrated
and IMAGINE cannot be said sensitive to task-based tutoring
strategy nor to motivation regulation. Beyond that, it does
not benefit from any of the inferential social mechanisms
described in Section and it does not display social
communication-based transparency.

B. The DECSTR agent

In the intrinsically motivated agents outlined in Section
just as in most goal-conditioned RL algorithms [119], [120],
[4]], the space of goals is generally defined as a subset of
the state space of the agents [88], [121], [122]. However,
this approach falls short of providing the level of abstraction
necessary for natural communications with social partners. The
IMAGINE agent addresses this concern by directly representing
goals in a language embedding space. But, doing so, it cannot
account for the fact that infants learn to target sensorimotor
goals before they master language.

The DECSTR agent solves the latter issue by introducing an
abstract goal representation layer in the architecture where a
goal is expressed with general predicates. At the sensorimotor
level, this helps targeting more abstract goals, opportunistically
making profit of the current situation to obtain the easiest re-
alisation of the goals. The DECSTR agent interacts with blocks
in the Fetch Manipulate Tutoring environment, a benchmark

which was used in several recent works to train hierarchical RL
agents [123] and autotelic agents [[124], [90], [125]. To take an
example from this domain, having the red block “close to” the
blue block can be realized in an infinity of ways and the agent
can find the simplest movement to move one of the blocks
close to the other depending on the whole scene. At the lan-
guage level, the abstract goal representation layer also plays a
key role in grounding linguistic descriptions into sensorimotor
experience, as it simplifies the correspondence between natural
language instructions such as “put the red block close to the
blue block” and the goals the agent manipulates in practice.
The capability of generating a diversity of goals for a same
description also results in an increased diversity of behaviors
displayed by the agent and a capability to retry to pursue the
same goal in another way [19].

In more details, the architecture of the DECSTR agent is
depicted in Fig. |8] To ground language into its sensorimotor
experience, it relies on a Language Goal Generator (LGG)
that takes a language expression as input and samples concrete
goals matching the linguistic expression. Fig. [/| depicts the
way this component endows sensorimotor autotelic agents with
language sensitivity by relating language to behavior. This is
precisely through this LGG that language is grounded into
sensorimotor goals.

Put the red cube
above the blue cube

End state
simulations

Goal
generator

>

Goal-conditioned

policy Action

Fig. 7. The DECSTR architecture as a Vygotskian autotelic agent. DECSTR
learns to ground linguistic descriptions of its trajectories provided by a
synthetic tutor into innate semantic representations. This language grounding
process occurs in a language-conditioned goal generator. Once trained,
DECSTR uses language as a cognitive tool to guide the simulation of possible
future world configurations matching an input description (e.g. from the tutor
or self-generated). As it selects one of them as goal, DECSTR commits to
turning the world into this selected future.

After a while, the DECSTR agent consistently learns to
build pyramids and towers of three blocks. Once becoming
more expert, it gets opportunistic, making profit of the current
configuration to reach its goal with as few block moves as
possible. More details about this work are presented in [19].

The DECSTR agent benefits from nearly the same prop-
erties as IMAGINE. The main difference is that, in DECSTR,
since language acquisition and instructions are decoupled from
sensorimotor learning, language obviously plays no role in the
sensorimotor learning phase thus there is no room for social-
based tutoring strategy with DECSTR.
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Fig. 8. The DECSTR architecture in the Fetch Manipulate Tutoring envi-
ronment. The tutor can interact with the agent by setting the initial scene,
providing descriptions or instructions. DECSTR uses aligned descriptions and
trajectories to train a language-conditioned goal generator mapping language
to a set of matching configurations used as goals. The agent either pursues
language-conditioned goals or its own. In either case, it learns to achieve them
through intrinsically motivated goal-conditioned reinforcement learning.

C. The GANGSTR + HME agent

The last work we investigate combines an autotelic agent
and an interaction protocol.

The GANGSTR agent

Similarly to DECSTR, GANGSTR is a predicate-based au-
totelic agent designed for object manipulation. It faces five
blocks within the Fetch Manipulate Tutoring environment
and strives to discover a large spectrum of diverse semantic
configurations from the easy ones (no stacks at all, stacks of
two, pyramids of three) to the more complex ones (stacks of
three and higher, combinations of stacks and pyramids). As
opposed to the IMAGINE and DECSTR agents, it does not
rely on language as a communication tool. However, it can
decompose its goals into sequences of sub-goals. This endows
it with a hierarchical learning capability. Results show that
this decomposition is necessary for the mastery of the most
complex goals such as stacks of four or five blocks.

The GANGSTR agent builds a structured representation of
its discovered semantic goal space as a graph where nodes
represent configurations. Two nodes are linked with a directed
edge if it is possible to reach one configuration from the other
by moving exactly one object. In turn, this graph is exploited
in the context of the HME protocol.

The HME protocol

Help Me Explore (HME) is a simple interaction protocol
where a tutor helps an autotelic agent explore its goal space.
The role of the tutor is to propose communicated goals that
help the agent quickly discover its entire goal space. The
autotelic agent then remembers the communicated goals and
trains to pursue them as well as its own goals. When GANGSTR
uses the HME protocol, both communicated goals and autotelic
goals are subsets of the same predicate-based goal space as in
DECSTR.

To select a goal to communicate, the tutor has a model
of the agent’s current exploration limits. In GANGSTR, this
model is a copy of the graph of the semantic goals discovered
by the learner. Using this model, the tutor first communicates
a goal at the frontier of the learner’s knowledge. If the learner
succeeds in reaching this goal, the tutor uses its own, full-
grown graph of goals to select a goal just beyond that frontier
that the learner may reach with just one block manipulation
from the current configuration. The learner then memorizes
this (frontier, beyond) pair of goals and may train reaching
them on its own until it sufficient masters it. In practice,
the agent first discovers easy goals. Once these goals are
discovered, the agent can either follow 1) autotelic episodes
by uniformly sampling a goal to pursue among the set of
autonomously discovered goals, or 2) social episodes where
the tutor communicates a pair of goals as explained above.

The HME protocol accounts for several features of human
tutoring processes described in Section First, memorizing
the (frontier, beyond) pair of goals is a form of internalization
mechanism where the learner can train on its own on goals
communicated by the tutor. Moreover, by proposing (frontier,
beyond) pair of goals, the tutor maintains the learner into its
ZPD, where goals at the frontier act as stepping stones towards
further discoveries. Even more strikingly, an experimental
study where the rate of social episodes is varied from 0%
(pure autotelic learning) to 100% (pure instruction following)
shows that a moderate rate of social episodes works best. This
is clearly reminiscent of the claim in educational sciences that
guided play and assisted discovery work better than purely
autonomous learning or direct instructions. More details about
GANGSTR and the HME protocol are presented in [20].

Properties of GANGSTR + HME

The properties of GANGSTR + HME are close to those of
the DECSTR agent. We already outlined that it benefits from
hierarchical learning but not from language proficiency.
Additionally, by contrast with DECSTR, GANGSTR incremen-
tally learns to reach goals in interaction with its tutor, who can
thus play a much more direct role in orienting the exploration
process of the agent. Thus GANGSTR + HME can thus be said
sensitive to motivation regulation and to task-based tutoring
strategy.

As for missing properties, GANGSTR + HME, when the tutor
suggests a goal, the agent immediately pursues it. A more
realistic agent should be endowed with mechanisms to arbitrate
between their own goals and those coming from the tutor.
These arbitration mechanisms should, in turn, endow these
agents with a form of ‘personality’ where different agents
with different parameters would be more or less teachable,
exactly as children. But it would also require a form a so-
cial communication-based transparency which is currently
missing in the autotelic agents we have listed.

IV. DISCUSSION AND FUTURE DIRECTIONS

For all the properties we have listed in Section [[, Table [
recaps whether all the agents that we have presented so far
display or not these properties.
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One can see that IMAGINE, DECSTR and HME + GANGSTR
all display some of the properties one may expect from
teachable autotelic agents. They are even complementary with
respect to several of these properties. For instance, IMAGINE
and DECSTR are endowed with a basic capability to interpret
language, which is not the case of HME + GANGSTR. But the
latter implements reciprocal modelling of the tutor and the
learner, by contrast with the former methods. Thus a good
deal of the limitations of the above agents could be overcome
by combining their capabilities.

Integrating all these features into a single teachable au-
tonomous agent would significantly increase their flexibility,
making it possible to leverage a more significant part of the
vast repertoire of interaction protocols or “pragmatic frames”
used in human tutoring [S3] and, more generally, opening
the possibility to more natural, non template-based interaction
[1O8]]. It would also open the way towards new research
questions, such as modelling feedback about goal selection
rather than just about action, or the need for an arbitration
mechanism between intrinsic motivations and social feedback.
Besides, such an integration may require some developmental
dynamics, resulting in displaying overlapping waves of sen-
sorimotor and linguistic development [126].

However, Table [I] shows that such a combination would
still lack most of the properties of inferential social agents.
Thus an important direction for future research will consist
in combining the properties of the existing teachable autotelic
agents and endow them with further social inference capabil-
ities. To do so, the model of the learner’s skills used in the
HME protocol could serve to leverage the Bayesian inference
processes proposed in [43]. Besides, all tutoring processes
that IMAGINE, DECSTR and HME + GANGSTR agents can
benefit from consist in descriptions and instructions about
goals. These agents could be extended with capabilities to
learn from pedagogical demonstrations.

Looking more closely at Table [ one can see that an
agent combining the properties of IMAGINE, DECSTR, HME
+ GANGSTR and inferential social learning agents would
still lack one property, which is language proficiency. In
language-augmented agents such as IMAGINE and DECSTR,
the template-based language learning mechanism does not
mimic the language acquisition processes of infants. Though,
the developmental processes and constraints involved in lan-
guage acquisition may play a crucial role in the more general
acquisition of interaction capabilities. Thus, more realistic
models of language acquisition and learning of semantic
predicates in infants [127], [128], [129] may be required to
better account for these capabilities. Besides, communication
itself could be extended to richer natural language interactions
[130] so as to increase the teachability of these agents. The
very fast progress in language learning with large transformer
models [131]], [[132] creates an opportunity in this direction.

Finally, in contrast with the above questions which should
be answered soon given the current pace of learning agents
research, there are a few questions which remain largely
unaddressed. For instance, how can an autonomous agent learn
to determine the positive or negative valence of sophisticated
feedback signals such as attitudes or linguistic nuances? Or

how can we endow agents with the capability to generalize
immediately what they have learned from an intended demon-
stration to other contexts? More fundamentally, how can we
extend the language grounding capabilities of current teach-
able autotelic agents to solve the harder symbol grounding
problem [133]]? In short, language in DECSTR and IMAGINE is
more indexical than symbolic because the language tokens do
not form a system [[134]. The acquisition of symbolic behavior
is an emerging topic [135] which can be of fundamental
importance for future agents as, from one side, considering a
social partner is necessary to establish conventional meaning
and, from the other side, such agents may need the flexibility
of symbolic behavior to appropriately learn from natural tutors.

V. CONCLUSION

Many efforts have been made to endow artificial agents
with the capacity to learn from humans, in a natural and
unconstrained manner. However, for now, we are still far
from achieving “normal teaching of a child,” in reference to
Turing’s view. In this paper, by investigating the way children
are taught, we claimed that autotelic agents were a better
starting point for such a research than standard RL agents.
The resulting agents would pursue their own goals, but should
be endowed with an additional capability to be taught so that
they choose their goals in accordance with the expectation of
their users. We have then described some of the ongoing and
immediate future work along this line of research, and revealed
some of the issues which must be overcome to get closer to
the way children are taught.

In the immediate future, the existing teachable autotelic
agents could be combined and integrated with inferential
social learning capabilities and more natural language learning
capabilities. Given the fast progress currently observed in the
design of autotelic learning agents, we expect to soon see
good enough teachable autonomous agents to use them for
quantitative analyses in developmental psychology studies and
for a better design of education programs. We also believe
that this starting point is a key move towards better insertion
of AI agents in the society, with improved capabilities to
communicate with and to adapt to their human users, which
is one of the central concerns of Al research.
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