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Abstract—The recent advancement of Deep Reinforcement
Learning (DRL) contributed to robotics by allowing automatic
controller design. The automatic controller design is a crucial
approach for designing swarm robotic systems, which require
more complex controllers than a single robot system to lead
a desired collective behaviour. Although the DRL-based con-
troller design method showed its effectiveness, the reliance on
the central training server is a critical problem in real-world
environments where robot-server communication is unstable or
limited. We propose a novel Federated Learning (FL) based
DRL training strategy (FLDDPG) for use in swarm robotic
applications. Through the comparison with baseline strategies
under a limited communication bandwidth scenario, it is shown
that the FLDDPG method resulted in higher robustness and
generalisation ability into a different environment and real
robots, while the baseline strategies suffer from the limitation
of communication bandwidth. This result suggests that the
proposed method can benefit swarm robotic systems operating
in environments with limited communication bandwidth, e.g., in
high-radiation, underwater, or subterranean environments.

Index Terms—Federated Learning, Deep Reinforcement
Learning, Swarm Robotics, Collective Navigation.

I. INTRODUCTION

Swarm robotics is a field of study of how a large number
of robots can coordinate for a common goal with local
communication and decentralised control [1]. It is inspired by
social insects that form swarms, such as ants that perform
long-distance foraging using pheromones. As social insects
collectively conduct challenging tasks, which are impossible
for single individuals, swarm robotic systems are prospective
for the challenging missions under dynamic and complex
environments, which are difficult for single robots [2]. Swarm
robotic systems have already been implemented for such
missions or are expected to be developed in future. For
example, a swarm of unmanned surface vehicles (USV) for
maritime environmental monitoring and border patrolling [3].
Furthermore, more diverse applications are expected in future,
such as planetary exploration with miniature robot swarms,
targeted drug delivery with microscopic robot swarms [4] and
agri-robotic applications [5]. To enable the aforementioned
applications, recent research works tackled several issues for
swarm robotics that can occur in real-robot deployments.
For example, a self-configured multi legged robot swarm
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have shown its potential in the terradynamically challenging
environment [6] and a swarm robotic system with block-chain
technology demonstrated improved security of swarm robotic
communication [7].

While the future of swarm robotics seems bright, there are
significant technical challenges to be overcome for further
development of swarm robotic systems [2], [8]. One of the
significant challenges is how to design the individual be-
haviour of a robot in a swarm. As swarm robotic systems
do not use a centralised unit to control the entire swarm,
careful design of individual controllers is essential to achieve
desired swarm behaviours [9], [10]. The current most dominant
strategy to design the behaviour of individual robots is the
manual design method [2]. It derives individual behaviour
rules heuristically from the target swarm behaviour and finds
an optimal controller through iterative tuning. This strategy is
suitable for simple scenarios. However, it is highly challenging
to manually derive individual controllers for more complicated
tasks and complex environments. Furthermore, manually de-
rived controllers cannot adapt to environmental change [11].

In contrast to manual design method, automatic design
method gives ability to individual robots to find the optimal
behaviour autonomously without external intervention. One of
the automatic design methods to design swarm robotic con-
troller is Reinforcement Learning (RL) [12]. RL allows to find
an optimal controller from interactions with the environment
in a way that it maximises the total reward in a given mission
period. Recently, Deep Reinforcement Learning (DRL), which
uses deep neural networks as a function approximator, has
been rapidly developed and showed the potential in diverse
domains, e.g. multi-robot systems [13]–[16] and self-driving
cars [17]. The effectiveness of DRL for swarm robotic system
has been demonstrated e.g. in [18], where DRL considerably
outperformed manual controller design in the navigation and
collision avoidance tasks with up to 100 robots. To overcome
the limitation of manual design, researchers proposed and
developed the automatic design method [11]. In contrast to the
manual design method, the automatic design method allows
individual robots to find the optimal behaviour autonomously
without external intervention. One of the automatic design
methods to synthesise a swarm robotic controller is Rein-
forcement Learning (RL) [12]. RL allows finding an optimal
controller from interactions with the environment to maximise
the total reward in a given mission period. Recently, Deep
Reinforcement Learning (DRL), which uses deep neural net-
works as a function approximator, has been rapidly devel-
oped and showed potential in diverse domains, e.g. multi-
robot systems [13] and self-driving cars [17]. Besides other
applications, DRL’s effectiveness for swarm robotic systems
has been demonstrated in navigation scenarios [18], where
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Fig. 1. Deep reinforcement learning training architectures for swarm robotic systems. (a) Individual DDPG (IDDPG), (b) Shared Network DDPG (SNDDPG),
(c) Shared Experience DDPG (SEDDPG) and (d) proposed Federated Learning DDPG (FLDDPG).

DRL considerably outperformed manual controller design. .
Although the feasibility and benefits of RL have been

demonstrated and expected to produce more promising results
as it develops, there is a critical issue in implementing RL
for swarm robotic systems in real-world applications. In the
simulated environments, all data collected from individuals are
used for training in a central server [18]–[20]. The dependence
on a central server is present in Multi-Agent Reinforcement
Learning (MARL), which is a sub-domain of RL dealing
with multi-agent scenarios. In several MARL research works,
centralised training and decentralised execution scheme is
used for training multi-agent systems, e.g., COMA [21] and
MADDPG [22]. Although the controllers used for each agent
can differ, training is conducted in the centralised server.
However, perfect and high-bandwidth communication between
large numbers of robots and a central server cannot be en-
sured in the real world. Communication constraints apply to
scenarios where robotic swarms would be especially effective,
e.g., underwater inspection, extreme environment exploration,
or subterranean search and rescue [23]. In the conditions of
limited communication, a centralised, data-intensive way of
training swarm robotic systems for real-world applications can
become ineffective or even impossible. Therefore, DRL train-
ing strategy that reduces communication bandwidth between
a large number of robots and the central server is necessary.

Federated learning (FL) is an emerging paradigm for dis-
tributed training of machine learning models with a large
number of agents [24]. In an FL setting, each agent trains an
individual model using locally collected data. The individually
trained models are then periodically shared with the central
server that aggregates them and transmits a refined model
back to the individual agents. Since it does not share the
sensorimotor data between the agents, it is used as a learn-
ing paradigm for domains where security and privacy are a
concern, e.g., secure 5G networks [25] and multi-institutional
medical diagnosis [26]. This paradigm has three significant
advantages for swarm robotic scenarios: i) major reduction in
communication with the server, ii) privacy preservation and
iii) customisation of models. First, as each individual only
communicates with the server to share the model, the volume
of exchanged data can be considerably reduced compared to
the conventional training methods. Second, since it uses local

sensorimotor data to train the local model and sends only the
model, the local sensory data remain concealed within the
agent. This avoids security and privacy issues when deploying
a swarm robotic system in strategic infrastructure facilities
or public areas. Finally, as the individual model is trained
using the local data, it can better adapt to the individual
characteristics of an actual agent. In the real world, swarm
robots are not identical, but they differ slightly due to the
nature of their manufacturing and wear and tear during their
operation. With the great potential of integration of FL with
DRL, FL-based DRL has been validated in a simple grid-world
environment [27] and internet-of-things applications [28]. In
a robotic application, it showed its advantages in navigation
and collision avoidance scenarios [29]. However, the authors
of [29] used only a single robot in different environments and
trained it sequentially.

This paper proposes an FL-based DRL training strategy for
swarm robotic systems (FLDDPG). We evaluate four DRL
training strategies, including the FLDDPG, in both simulated
and real-world scenarios, where a swarm of robots collectively
learns to navigate towards given destinations while avoiding
obstacles. We focus our evaluation on the performance of these
strategies under the limited communication bandwidth, which
reflects a major challenge of real-world swarm robotic mis-
sions. The obtained results from the experiments demonstrated
that FLDDPG resulted in higher robustness and generalisation
ability compared to the baseline strategies.

II. METHODOLOGY
This section introduces the proposed federated learning

(FL)-based DRL training strategy for swarm robotic systems.
First, we describe design choices when applying DRL for
swarm robotic systems. Second, we explain the selected DRL
algorithm. Third, we describe three traditional DRL training
strategies. Finally, we illustrate the proposed FL-based DRL
training strategy for swarm robotic systems. Figure 1 illustrates
how the three traditional training strategies and our proposed
strategy are utilised for swarm robotic systems in this study.

A. DRL Design Choices for Swarm Robotic Systems

DRL training for swarm robotic systems requires two design
choices: i) training algorithm and ii) training strategy. Regard-



ing the training algorithm, the question is what particular DRL
algorithm is suitable for the given agent and environment. For
example, when continuous action is required for the agent,
e.g. mobile robots [13], [18], DRL algorithm that outputs
continuous values needs to be chosen, e.g., the DDPG [30],
PPO [31] and TD3 [32]. In contrast, when discrete actions are
required, e.g. robot moves in a grid-like environment, DRL
algorithm for discrete action needs to be used, e.g., DQN [33].

Training strategy refers to how to train multiple members
of a robot swarm using the selected DRL algorithm. Two
factors need to be considered when choosing a suitable training
strategy. First, whether the memory for collected transition
samples is shared or not, i.e., local memory vs shared memory.
Second, whether neural network training is conducted in the
central server or not, i.e., centralised training vs decentralised
training.

B. DRL Training Algorithm

We selected Deep Deterministic Policy Gradient (DDPG)
algorithm [30] as the training algorithm for this work. DDPG
is an actor-critic, model-free DRL algorithm for agents with
continuous observation and action spaces. It is one of the
successful DRL algorithms in continuous observation and
action domains, e.g., mobile robots [13], [18], mobile edge
computing [19] and unmanned aerial vehicles [34]. Since
robots in a swarm require continuous observations and actions
as the described application domains, we chose DDPG to train
individual robot in a robot swarm. We recommend the readers
to check the original paper for the technical details of DDPG
[30].

DDPG algorithm has a important feature that contribute
to applications with multiple agents as well as single agent
scenarios: experience replay. The agent collects transition
samples into an experience replay memory and the samples
are selected from the memory when the neural network is
trained. As the memory can be accessed by more than one
agent, this algorithm can be used for multi-agent scenarios.

C. Traditional DRL Training Strategies

Here we introduce three traditional DRL training strategies
using DDPG algorithms: i) Independent DDPG, ii) Shared
Network DDPG and iii) Shared Experience DDPG.

1) Independent DDPG: Independent DDPG (IDDPG)
training strategy is the most naı̈ve application of DDPG to
train a robot swarm. Fig. 1 (a) illustrates IDDPG training
strategy. IDDPG deploys individual neural networks and local
memory for each robot in a swarm. In other words, there is no
communications between the robots and the server for training.
The advantage of IDDPG is that it does not use a central server
to share data samples or neural network parameters. However,
this training strategy does not allow to utilise the collective
nature of swarm robotic systems for learning.

2) Shared Experience DDPG: Shared Experience DDPG
(SEDDPG) training strategy is one of the state-of-the-art train-
ing strategy for multi-agent systems [35]. Fig. 1 (c) illustrates
SEDDPG training strategy. In this training strategy, the agents
have individual neural networks and a shared memory. In the

original paper, it is stated that the advantage of SEDDPG is
that by sharing it can encourage exploration, thereby faster
convergence and better performance. Despite the improvement
in the training speed and performance, the robots still share
the collected data with the central server, which requires
significant communication bandwidth.

3) Shared Network DDPG: Shared Network DDPG (SND-
DPG) is a training strategy that uses a shared neural network
and a shared memory. Fig. 1 (b) illustrates SNDDPG training
strategy. In each time step, the robots transfer the transition
sample data to the shared memory located in the central server.
In every training period, the network update is performed by
the central server and the model is distributed to the individual
agents. The advantage of this method that the central server
can be trained using the data samples collected by different
agents in different environments. Compared to IDDPG, it
encourages the networks to learn from more diverse data,
leading to a more generalised controller. However, it requires
frequent communication between each robot and the central
server. The more frequent the communication between robots
and the central server is required, the more vulnerable the
training is as the communication is unstable.

D. Federated DRL Training Strategy

Using the concept of FL and DDPG algorithm, we proposed
a FL based DRL training strategy, FLDDPG. The process of
FLDDPG is illustrated in Fig. 1 (d), showing only the neural
network weights are shared in the central training server,
without sharing the locally collected data. This feature can
largely reduce the number of communication between the
robots and the server as collected data sharing takes a large
part in DRL setting as in SNDDPG and SEDDPG.

Algorithm 1 (d) describes the algorithm of FLDDPG. At the
beginning of the algorithm, actor and critic networks and local
memories are initialised with the number of robots. The data
collection and neural network parameter update are performed
individually for each robot. After initialisation, the transition
samples are collected from the robots for T time-steps and
stored in the replay buffer in every episode. Every ttrain times
in every episode, the actor and critic networks are updated by
the following process. First, l number of transition samples
are randomly selected from the local memories. Second, the
target, yi, is calculated for each transition sample. Third, using
the target, the temporal-difference loss, LQ, is calculated and
the critic networks are updated in the way minimising the loss.
Then, the actor networks are updated using the sampled policy
gradient. Additionally, for every ttarget time steps, the newest
actor and critic networks are assigned to the target networks. In
Algorithm 1, lines 19 to 24, we describe the process of neural
network weight averaging and update in the central server.
In every weight averaging and update period, Twa, the local
neural network weights are updated with the averaged weights.
For more efficient weight update, we proposed a new method
called Soft Weight Update. In the seminal work of FL [24],
the hard weight averaging called FedAvg was performed to



Algorithm 1: DDPG with FL (FLDDPG)

1 Randomly initialise N critic neural networks,
Q1,...,N (s, a|θQ1,...,N ) and N actor neural networks
π1,...,N (s|θπ1,...,N ) with weights θQ1,...,N and θπ1,...,N

2 Initialise N target networks Q′1,...,N and π′1,...,N with
weights θQ

′

1,...,N ← θQ1,...,N , θπ
′

1,...,N ← θπ1,...,N
3 Initialise replay buffers R1,...,N

4 for episode = 1, ..., M do
5 Initialise the states st = s1
6 for t = 1, ..., T do
7 Run N actors and collect transition samples Dt

= (st, at, rt, st+1) into R1,...,N

8 if t = 0 mod ttrain then
9 Sample l transitions (si, ai, ri, si+1) from

local replay buffer memories, R1,...,N

10 Set yi = ri + γQ′(si, π
′(si+1|θπ

′
)|θQ′

)
11 Update critic networks by minimizing the

loss: LQ = 1
N

∑
i(yi −Q(si, ai|θQ))2

12 Update actor networks using the sampled
policy gradient:

13 ∇θπJ ≈ 1
N

∑
i∇aQ(s, a|θQ)|s=si,a=π(si)

14 ·∇θππ(si|θπ)|s=si
15 end
16 if t = 0 mod ttarget then
17 Update the target networks:
18 θQ

′ ← θQ, θπ
′ ← θπ

19 end
20 end
21 if episode = 0 mod Twa then
22 Perform Soft Weight Update for actor and critic

networks for all robots
23 θwa = 1

N

∑N
k=1 θk

24 for i = 1, ... , N do
25 θi = τθi + (1− τ)θwa
26 end
27 end
28 end

average the local neural network parameters. The hard weight
averaging is described in (1).

θwa =
1

N

N∑
k=1

θk

θ1,...,N = θwa,

(1)

where θwa denotes the averaged weights of neural network,
N is the number of robots, and θ1,...N are neural network
weights for N robots. With the hard weight update method,
the averaged weights are directly assigned to the local neural
network weights. The problem of hard weight update method
is that whenever the local weights are updated with the
averaged weights, adverse change in neural network can occur,
decreasing the efficiency of individual controllers in their cor-
responding environments and tasks after the update. To prevent
such adverse changes in the neural network update after the
weight update, we proposed a soft weight update method. The

Fig. 2. Experimental arenas for (a) training and (b) for real-robot experiments.
In (a), four robots learn navigation to the target and collision avoidance
independently under different environmental configurations. In (b), a robot
performs navigation to the target and collision avoidance in a different
environment than the training environment.

concept of soft weight update is that the local neural network
weights are fractionally updated with the averaged weights.
In the line 23 of Algorithm 1, the neural network weights are
updated with the sum of τθ and (1−τ)θwa, where τ represents
an update constant within the range [0, 1]. When τ is close to
zero, the local neural network weights are completely replaced
with the averaged ones. In contrast, when τ is close to 1, it
becomes analogous to IDDPG.

III. EXPERIMENTS
We designed the experiments to evaluate the performance of

four different training strategies, IDDPG, SEDDPG, SNDDPG
and FLDDPG, under the limited communication bandwidth
scenario. To evaluate the training strategies with the swarm
robotic scenario, we designed a collective learning scenario of
navigation and collision avoidance for swarm robotic systems.
Fig. 2 illustrates the collective learning simulation environment
and its real-robot evaluation environment. In Fig. 2 (a), the
robots learn navigation and collision avoidance using the four
training strategies. Although the robots do not communicate
each other for collective behaviours, the robots help other
robots to obtain a better controller utilising diversity of col-
lected samples and trained models for larger number of agents
than a single robot. Therefore, the collective learning scenario
can be regarded as a swarm robotic scenario.

After training models, evaluation of the trained models were
performed in the same environment in Fig. 2 (a). To evaluate
the robustness and generalisation ability of the trained models
with the four strategies, the real-robot platform was deployed
in the environment illustrated in Fig. 2 (a). The trained robot
used in the simulated environment is the Turtlebot3 burger
robot, which is a differential drive mobile robot with laser
sensors to detect obstacles. The real-robot platform used for
the real robot experiment is described in the later section.
In the real-robot experiment, only a single robot is used to
assess clearly the performance of a collectively learned model
from the swarm robotic systems rather than deploying multiple
robots, which can add a higher degree of complexity affecting
the evaluation of the trained model.

To add the constraint of limited communication bandwidth,
we calculated the total data volume, a product of communica-
tion bandwidth and total communication time. We calculated



the total data volume from the total data transferred during the
training with FLDDPG. For each transfer of neural network
parameters, it takes 0.55 MB one-way and 1.1 MB for the
complete cycle of weight update. Since the weight update
period, Twa = 1, 120 weight update occurs for one training
instance. Therefore, the total transferred data volume for
training with FLDDPG is 132 MB.

With this total data volume, the update period for SEDDPG
and SNDDPG were chosen to distribute update events over
the training evenly. Both SEDDPG and SNDDPG include the
data transfer of experience replay buffer, which size is 2.4 MB
for one-way and 4.8 MB for the full cycle of transfer. For
SEDDPG, the update period of 5 was chosen over the total
120 episodes as the total transferred data volume is 115.2 MB,
while when the update period is four it is 144 MB, which is
greater than the upper limit. For SNDDPG, a total 2.95 MB is
transferred per update. Therefore, the update period of 3 was
chosen over the total 120 episodes, resulting total transferred
data volume of 118 MB. Unlike the three algorithms, the
limitation of the total transferred data volume does not affect
training process of IDDPG. The training of models using four
strategies applied to these update period settings.

A. DRL Implementation

Here we provide the DRL implementation details for four
training strategies. The four important design specifications are
introduced as: i) observation space, ii) action space, iii) reward
design and iv) actor and critic neural network structure.

1) Observation Space: During the training, the robot col-
lected observation to learn navigation and collision avoidance.
For navigation, the distance between the target and the cur-
rent position of the robot in polar coordinates (d, θd) were
collected. For collision avoidance, 24 sensor readings from
the laser rangefinder were collected. After collecting the 24
laser sensor readings, the readings are normalised in the range
between [0, 1], and the normalised readings are inversed so
that when the obstacle is close to the robot, the normalised
sensor reading is close to 1 for a more effective neural network
training. While the range of the laser sensor is up to 3.5 m,
only the value below 0.8 m was used to learn more effective
collision avoidance algorithm.

2) Action Space: There are two action values in our set-
ting: i) translational velocity, v, and ii) rotational velocity,
ω, i.e. a = [v, ω]. The range of velocities were limited to
v ∈ (0, 0.25) m/s and w ∈ (−π2 ,

π
2 ) rad/s in translation

and rotation respectively to reflect the motion constraints and
safety for the robot.

3) Reward Design: There were three types of reward
functions that were applied in the experiments. The reward
functions were designed to enable the learning of i) navigation,
ii) collision avoidance. Equation (2) describes the reward
functions used in the experiments.

TABLE I
PARAMETER VALUES FOR DRL TRAINING

Parameters Values

Total number of episodes, M 120
Training steps per episode, T 1024
Total number of robots, N 4
Discount factor, γ 0.99
Soft weight update factor, τ 0.5
Goal reward, Rg 100.0
Collision penalty, Rc -100.0
Progress reward factor, a 4.0
Approaching penalty parameter, λ log 2

r = rg + rp + rc + ra

rg =

{
Rg, if arrived goal
0, otherwise

,

rp =

{
ad, d > 0
−ad, otherwise

,

rc =

{
Rc, if collision
0, otherwise

,

ra =

{
−emax(slaser)∗λ, any(slaser) > 0
0, otherwise

(2)

The total reward, r, was the sum of a series of rewards, rg , rp,
rc and ra. In rg , the goal arrival reward, Rg , is given when
the robot arrived goal. In rp, ad or −ad is given depending
on whether the robot is approaching to or moving away from
the goal (specified to be equal to a step length, d, multiplied
by a tunable factor, a, which was set empirically to 4.0), In
rc, the collision penalty, Rc is given when the robot collides
to the obstacle. In ra, the approaching penalty is given when
any of the laser sensor value, slaser, is higher than zero, i.e.,
the laser finder detects obstacles. λ is a parameter to set the
intensity of approaching penalty. The parameter values used
in the experiments are provided in Table I.

4) Neural Network Architecture: In DDPG, each robot
requires two sets of neural networks: i) actor network and
ii) critic network. The actor network consisted of 3 fully con-
nected layers with 512, 512 parameters followed by a rectified
linear activation function (ReLU) nonlinearities between the
input and output layers. Outputs were connected to sigmoid
and tanh activation functions to limit the range to (0 ≤ v ≤ 1
and −1 ≤ ω ≤ 1). The range of v and w is further processed to
limit the velocity applying the motion constraints of the robot
as described with action space. The critic network, consisted
of input and output layers, which were observations and state-
action values, and 2 fully connected layers with the same
number of parameters as the actor network. Unlike the actor
network, after the first layer, actions were concatenated and
fed into the second layer.

B. Metrics

1) Training Performance Metrics: To evaluate the training
performance of each training strategy, we measured three



training performance metrics are below.
• Average reward, ravg , is the averaged value of the re-

ward obtained for one episode over four agents in the
experiment.

• Catastrophic interference, Nci, is the number of the events
when the average reward changes by more than 50% of
the the range between the maximum and minimum values
of average reward over the training.

• Failed agent, Nfa, represents the average number of
failed agents during one training instance. The training
agents are regarded as failed agents when the difference
between the average reward at the beginning and the end
during training is within 1, and the difference between
the maximum and minimum value is under 1.5.

2) Evaluation Performance Metrics: To assess the perfor-
mance of trained models with IDDPG, SNDDPG, SEDDPG
and FLDDPG in the evaluation stage, we defined two per-
formance metrics: i) mission success rate and ii) mission
completion time
• Success rate, ρs, is the rate of the successful episode from

all the episodes without collision within one episode.
• Completion time, tcomp, represents the average time taken

for all the robots to reach the targets without collision and
within the time limit.

Success rate shows the robustness of the controller and
completion time represents the optimisation performance of
each training strategy. In the simulated evaluation experiment,
the success rate and completion time were calculated by
averaging performance of the four agents in the environment
over 20 runs with four trained models for each agent during
the training stage.

C. Real-Robot Experiment

Experiments including real-robots were performed in
4× 3m2 arena with one robot. The arena had several obstacles
similar to the ones in the simulation, such as boxes. The cam-
era is mounted outside the arena, and the main PC is connected
to the camera for real-time localisation. The snapshot of the
experimental arena is shown in Fig. 3.

1) Hardware Specification: Turtlebot2 mobile robot was
used as a robotic platform, depicted in Fig. 4. The Turtlebot2
is a tower-shape differential drive mobile robot with a diameter
of 38 cm and height of 60 cm. The robots use a differential
drive with a coaster wheel and can turn on the spot with a
maximum rotational speed of 3 rad/s and translational speed
of 0.65m/s. Robots were equipped with an RPlidar A2 which
is planar LiDAR mounted parallel to the ground with a 10 m
maximum range (covering the entire arena) with 720 beams
per 360°@ 10 Hz. The minimum range is 0.2 m, within
the robot’s footprint. Robots are also equipped with Intel
RealSense camera. However, the camera is not used in the
experiments. For computation, the robot is mounted with Intel
NUC i5 of 8th generation equipped with Ubuntu 20.04 and
ROS Noetic.

2) System Specification: Master PC with AMD Threadrip-
per 3960X, Nvidia RTX 3090 and 64GB RAM was used as a

Fig. 3. A snapshot of the experimental arena. The turtlebot2 mobile robot
performs navigation and collision avoidance in the rectangular arena. The
overhead camera is used for real-time localisation of the robot in the two-
dimensional arena coordinate frame, which is determined by the four corner
markers.

Fig. 4. Single Turtlebot2 from top to bottom with a camera, RPlidar, Intel
NUC and base platform.

centralised hub to which all the robots are connected via Wi-
Fi. The master PC was used for inter-robot communication and
training neural network models. Additionally, this PC provides
a position for all the robots running relevant ROS nodes for
the tracking system.

3) Tracking System: To provide each robot with its position
and orientation in the arena, the Logitech C980 camera was
used with 1080p @30 Hz resolution to detect and localise
fiducial markers placed on top of the robot. The WhyCode
fiducial markers [36], [37] were used for the external locali-
sation of the robots. The WhyCode is a low-cost vision-based
localisation system capable of real-time pose estimation of
extensive number of black-and-white circular fiducial markers.
It is capable of unique identification and 6 degree-of-freedom
(DOF) pose estimation with high precision using only an
off-the-shelf web camera. All this was computed and then
transferred to each robot from the master PC via Wi-Fi. The
6 DOF estimated information was used as state information
for the trained neural network to infer desirable actions for the



Fig. 5. Average reward per episode of two different weight averaging methods:
(red line) hard update and (blue line) soft update.

Fig. 6. The training results of four different algorithms: IDDPG, SNDDPG,
SEDDPG and FLDDPG. (a) Average reward per episode over training. (b)
Average number of catastrophic interference and failed agents per training.

task.

IV. RESULTS & DISCUSSION

A. Results of FLDDPG Design Experiments

In this section, the results from experiments to evaluate
the two weight averaging methods: i) hard update and ii)
soft update were reported and discussed. This experiment
uses the same experimental scenario of collision avoidance
and navigation. However, it is conducted with the smaller
number of time steps per episode and different reward design
than the main experiment in a fast manner to evaluate the
performance of hard update and soft update only. Fig. 5 shows
the results from the experiments testing training performance
of FLDDPG with hard update and soft update.

In Fig. 5, it is illustrated that the average reward started
to increase earlier and converged faster with the soft update
method than the hard update method. We found that the
performance of each robot temporarily decreases after weight
update with the averaged model using the hard update method.
Since the averaged model generalises individual local models,
its performance in each local environment varies. The result
shows that the soft update method prevented the adverse
conversion from the local model to the averaged model,
resulting in faster training by 18% reducing training time
compared to the hard weight update.

B. Training Performance of the Four Strategies

During the training, the robots learned navigation and
collision avoidance in the environment, illustrated in Figure 2
with four training strategies. As described in the last section,
each strategy applies the limitation of the total transferred
data volume. The result from the training is illustrated in
Fig. 6. Fig. 6 (a) shows the average rewards of each training
strategy across the four agents over training instances with
three different random seeds, and Fig. 6 (b) show the average
number of catastrophic interference and the number of failed
agents over three independent runs.

In Fig. 6 (a), it is shown that the average reward of IDDPG is
the lowest and followed by SEDDPG, SNDDPG and FLDDPG
in ascending order at the end of training. This result means the
overall training performance of the four agents is the lowest
with IDDPG and the highest with FLDDPG. The performance
of the trained models with different training strategies is
more investigated with the evaluation experiments, described
in Section IV-C and IV-D. One interesting observation in
Fig. 6 (a) is that the average reward of SNDDPG fluctuates
with greater amplitudes than other strategies. This observation
about fluctuation is more quantitatively evaluated in Fig. 6 (b).

Fig. 6 (b) shows the number of catastrophic interference
and failed agents per training instance. For the number of
catastrophic interference, IDDPG and FLDDPG had the lowest
value with 0.33 per training instance. SEDDPG resulted in
a slightly higher value of 2. With SNDDPG, the number
of catastrophic interference had the highest value with 5.33,
which explains the dramatic fluctuation observed in Fig. 6 (a).
For IDDPG, as the agents are trained independently, it is
not affected by updated shared experience replay buffer or
shared network update. Therefore, it resulted in a low number
of catastrophic interference. For SEDDPG, as the experience
replay buffer is updated with large intervals, and the data
samples for each agent can drastically change. Also, during
the intervals, individual networks are trained in a personalised
way with the individual data, and the update of the experience
replay buffer with the shared aggregate data can deteriorate the
training of the models. This drastic change resulted in a higher
number of catastrophic interference compared to IDDPG. For
SNDDPG, during the intervals between updates, the agents
collect samples with the fixed models. The fixed models can
cause collecting only trivial data, which does not improve
the model’s improvement when updated. Subsequently, the
trained model with trivial data can cause the collection of
other trivial data, forming a vicious cycle. Moreover, when
the shared network is updated using the collected samples at
large intervals, there could be a drastic change in the shared
network. The collected samples with the non-improving model
can store non-beneficial samples for network improvement.

For the number of failed agents, both SNDDPG and FLD-
DPG had no failed agents. However, IDDPG and SEDDPG
resulted in 1.2 and 2 average number of failed agents per
training instance, respectively. For IDDPG, there is no data
exchange or model exchange mechanism so that one agent
cannot benefit from other agents. Their failure happens as they
do not have a sample or a neural network model generating



samples that are beneficial to update a neural network model
in an improving way. For SEDDPG, as their data transfer
is limited due to the limitation on the total transferred data
volume, the experience replay buffers are updated every 5
episodes. It can be presumed that this infrequent update of the
experience replay buffer caused noise in the samples, thereby
resulting in a higher number of failed agents. On the other
hand, SNDDPG and FLDDPG contribute to individual agents
getting benefits from the other agents by sharing samples to
update the shared network and neural network parameters.

C. Simulation Evaluation Results

The trained models for each agent using four different
strategies were evaluated by running the task in the same
simulated environment where the training is done. For each
model, the task was performed 20 times, and the results
averaged over 20 runs and four agents.

Fig. 7 illustrates the evaluation results in the simulated
environment. Fig. 7 (a) shows the success rates and (b) shows
the average completion time. In Fig. 7 (a), it is shown that
IDDPG, SEDDPG, SNDDPG and FLDDPG scored 11%, 5%,
10% and 26% success rates, respectively. By comparing the
scores, it is shown that the average performance of models
trained with SEDDPG is the lowest. This can be explained
by the number of catastrophic interference and failed agents
observed in the training performance (shown in Fig. 6). Since
the trained models from the failed agents never succeeded
in the task, it dramatically influenced the low success rate
of SEDDPG. Furthermore, the high number of catastrophic
interference also negatively influenced the performance of the
trained models, thereby causing a low success rate.

The effects of the number of catastrophic interference and
failed agents are further shown with the success rates of
SNDDPG and IDDPG, respectively. SNDDPG resulted in the
greatest number of catastrophic interference while having no
failed agents and IDDPG resulted in the comparably high
number of failed agents while having the lowest number of
catastrophic interference. Both SNDDPG and IDDPG scored
10% and 11%, which are considerably lower than the success
rate of FLDDPG (26%).

Compared to the three baselines, FLDDPG scored a higher
success rate of 26%, which is approximately 2.36 times
improvement than the second best method (IDDPG, 11%).
This reason for this improvement can be supported by the
significantly low number of catastrophic interference (0.33)
and the absence of the failed agent. Furthermore, FLDDPG
achieved a considerably short average completion time than
other baselines, which is only approximately 60% of the
second short average completion time (SEDDPG, 30.53 s).
Both high success rate and short average completion time
manifest the robustness and generalisation of FLDDPG.

D. Real-Robot Experiment Results

For the real-robot experiments, the most successful trained
model for each strategy under an identical communication
period constraints are chosen and used for the real-robot
experiments. Fig 8 (a) and (b) illustrate the success rate and

Fig. 7. The evaluation experiment results with the four different DRL training
strategies. (a) and (b) show success rate and average completion time of 4
agents over 20 runs of the four algorithms respectively.

Fig. 8. The real robot experiment results with the four different DRL training
strategies. (a) and (b) show success rate and average completion time over 5
runs of the four algorithms respectively using the most successful model.

average completion time of four training strategies in the real-
robot experiment.

The result shows that the FLDDPG achieved the highest
success rate and lowest average completion time. This supports
the finding from the evaluation experiments in simulation that
FLDDPG showed robustness and generalisation ability when
it is transferred into the real-robot platform.

E. Discussion

From the three sets of results, i) training performance, ii)
evaluation in simulation and iii) evaluation with a real robot, it
is found that the proposed FLDDPG strategy prevented failure
of training of individuals in a collective learning scenario by
aggregating the individual neural networks periodically com-
pared to the independent learning scenario (IDDPG). More-
over, under the limitation of the communication bandwidth,
FLDDPG showed greater robustness and generalisation ability
by evaluation in the simulation and the real robot setting. This
finding from the experimental results about FLDDPG suggests
that FLDDPG can benefit the autonomous swarm robotic
systems operating in uncertain environments where online
learning is required under the limitation of communication
bandwidth.

The examples of such environments are underground mines
and tunnels, where swarm robotic systems are required to
perform inspection or search-and-rescue missions. The teams
participating in the Defense Advanced Research Projects
Agency (DARPA) subterranean challenge actually reported
that one of the most difficult challenges was the limited



communication bandwidth [23], preventing the robots from
efficiently exchange sensorimotor data. Thus, we believe that
the use of FLDDPG in similar scenarios would improve the
robustness of the deployed multi- and swarm-robotic systems.

V. CONCLUSION

In this paper, we proposed a federated learning-based deep
reinforcement learning training strategy for swarm robotic
systems, FLDDPG. FLDDPG reduces their reliance on high-
fidelity communications and protects confidentiality of the
locally collected data. Through the experiments in a collective
learning scenario for navigation and collision avoidance under
the limitation of communication bandwidth, FLDDPG showed
higher robustness and better generalisation compared to the
three baselines, IDDPG, SEDDPG and SNDDPG. This finding
is supported by both simulation and real-robot experiments.
The result suggests that FLDDPG can benefit autonomous
swarm robotic systems operating in environments with the
limited communication such as underground or underwater.
In the future, the federated learning based DRL training
strategy with heterogeneous swarm robotic systems in the real,
changing environments will be developed and investigated.
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