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Abstract—People often encounter difficulties in building shared
understanding during everyday conversation. The most common
symptom of these difficulties are self-repairs, when a speaker
restarts, edits or amends their utterances mid-turn. Previous
work has focused on the verbal signals of self-repair, i.e. speech
disfluences (filled pauses, truncated words and phrases, word
substitutions or reformulations), and computational tools now
exist that can automatically detect these verbal phenomena.
However, face-to-face conversation also exploits rich non-verbal
resources and previous research suggests that self-repairs are
associated with distinct hand movement patterns. This paper
extends those results by exploring head and hand movements
of both speakers and listeners using two motion parameters:
height (vertical position) and 3D velocity. The results show that
speech sequences containing self-repairs are distinguishable from
fluent ones: speakers raise their hands and head more (and
move more rapidly) during self-repairs. We obtain these results
by analysing data from a corpus of 13 unscripted dialogues,
and we discuss how these findings could support the creation of
improved cognitive artificial systems for natural human-machine
and human-robot interaction.

Index Terms—human behavior analysis, non-verbal communi-
cation, human motion analysis, human-robot interaction

I. INTRODUCTION

THE growing interest in computational understanding of
human social behaviour creates demand for new, effi-

cient ways of detecting and quantifying different aspects of
social interaction. One important area where current intel-
ligent systems struggle is in detecting and recovering from
misunderstandings [1], [2]. This is significant because misun-
derstandings are a ubiquitous, and arguably universal, feature
of natural human interaction [3]–[6]. The basic interactive
repair processes people use to deal with misunderstandings
in conversation have been described in detail by conversation
analysts [7]–[11] and there is experimental evidence that they
underpin people’s ability to adapt their communication to new
situations and new tasks by revising and repairing the meaning
of words and gestures on-the-fly [12], [13].

Any intelligent system that aims to engage in natural inter-
action needs to be able to recognise and respond to repairs.
The problem for engineering is that repairs require forms of
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Fig. 1: Head and hands positions of speakers (red) and listeners
(blue) during a dyadic conversation. We observed that the
position of the head and hands of the speaker is generally
higher during self-repair events.

real-time local adaptation that are difficult to achieve. For
example, they require online, one-shot learning that is incom-
patible with large-scale offline learning from large numbers of
examples of the kind used by contemporary machine learning
approaches (e.g. large transformer models such as BERT [14]),
current human-system and human-robot interaction is fragile
especially when interaction follows an unpredicted trajectory
and requires some form of collaborative recovery from a
communication problem.

Repair processes in natural conversation have a systematic
structure organised over sequences of multiple conversational
turns [10]. They include complex abilities such as asking
clarification questions and proposing paraphrases of another
participant’s turns. The most common forms of repair are
self-repairs (sometimes referred to as disfluencies in the psy-
cholinguistic literature) in which a speaker modifies what they
are saying mid-turn [8], [15]. This can consist of restarts,
repetitions, word substitutions, amendments and are often
accompanied by filled pauses, such as “uhh” and “umm” that
provide a signal that a repair is in progress [16] (see below
for more examples). Self-repairs in particular have received
significant attention in natural language processing (NLP) and
there are now systems that can recognise and parse them [15],
[17], [18].

The NLP systems for capturing repairs focus on their
verbal components. Recent work in Conversation Analysis has
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identified a number of non-verbal embodied repair processes.
For example, the query or question face speakers produce
to check ongoing understanding [19], the raised eyebrows a
listener may produce to query something about what a speaker
is currently saying [20], and various forms of distinctive hand
movements such as ‘cupping’ the ear or a ‘gesture freeze’ as
a form of clarification request [11], [21].

These signals are potentially attractive for engineering in-
telligent, interactive systems since, in principle, they can be
detected from camera without requiring speech recognition.
In addition embodied systems, such as robots and avatars,
can potentially exploit non-verbal repair behaviours to make
their interactions both richer and more robust, providing better
routes to graceful failure. The recognition of specific facial
expressions or gestures of embodied repair in the appropriate
dialogue context is challenging.

Previous quantitative work has suggested that repairs are
associated with distinctive patterns of hand movement [22]–
[24] and, to a lesser extent, head movements [23]. More
specifically, linear regression and mixed regression analyses
suggest that speakers’ hand heights are significantly higher
during self-repairs, and height keeps increasing for 0.5 seconds
after a repair [24]. This raises the question of whether simple
motion parameters could be used to help identify the key
moments in interaction when people are working to re-build
shared understanding. This paper investigates the potential
of measurements of changes in head and hand position and
velocity as signals of self-repair. Three dimensional head
and hand motion data obtained from a small corpus of task-
oriented interactions is analysed to determine whether fluent
speech can be distinguished from self-repaired speech on the
basis of relative height and motion [24], [25]. The analysis
addresses the following questions:

1) What are the specific non-verbal behaviour changes that
are manifested in head and hand movement data during
self-initiated self-repairs? Do they generalise to all such
instances?

2) How do these changes compare to instances of fluent
(un-repaired) interaction for a) speakers and b) listeners

The results we report suggest that self-repairs manifest
themselves with distinct motion characteristics of speakers.
Specifically, this work has three main contributions:

1) we extend our previous analysis of the speaker hand
height [24] by analysing the 3D hand velocity as well
(Sec. IV-A);

2) we perform a novel analysis of the head position and
velocity of both speaker and listener (Sec. IV-B);

3) we discuss the observed hand and head motion pat-
terns by proposing possible reasons for their emergence
(Sec. IV-C).

The rest of the paper is organised as follows. In Sec. II
we discuss the state-of-the-art from the perspectives of social
and behavioural sciences, computational linguistics, social
and cognitive robotics. In Sec. III we describe the dataset
and the techniques employed to analyse the data. Then, in
Sec. IV we report the results; finally, in Sec. V we draw our

conclusions and we outline possible cognitive artificial systems
applications that could benefit from our results.

II. STATE-OF-THE-ART IN
SOCIAL SCIENCES AND ROBOTICS

A. Multi-Modal Integration in Natural Conversation

Non-verbal signals are as connected to the meaning and
message-to-be-conveyed as accompanying speech. They are
an integral part of the immediate communicative context [26]–
[28]. Together with words and prosody, embodied actions
combine to form a composite signal [29], [30] or integrated
message [28], [31]. The best known hand movements asso-
ciated with communication are the content specific gestures,
such as iconic and metaphoric gestures that help to convey the
referential context of speech e.g. by manually drawing out a
shape or depicting a spoken trajectory [32], [33]. These ges-
tures are tightly connected with processes of speech production
and are sometimes produced even when the recipient cannot
see them e.g. when we are on the phone; even blind people
addressing blind listeners sometimes gesture [33].

A different class of gestures, interactive gestures, play a key
role not in articulating the content of speech but in managing
the interaction [34]. These conversational gestures facilitate
addressees’ involvement by managing turn-taking, referring to
previous contributions and, as introduced above, sometimes
by using forms of embodied repair to signal problems or
elicit help from interlocutors. The use of these conversational
gestures is sensitive to whether people can see each other [34];
people used significantly more interactive gestures (at a higher
rate) during dialogue than sequential monologue (in which
they tell the story without help from each other).

For current purposes a useful feature of interactive gestures
is they are much less dependent on the specific content of
what is being communicated. For example, a gesture freeze
or a turn-hand over ’you speak next’ gesture can be identified
without requiring an understanding of what the gesture freeze
is querying or what the content of the next turn might be
[21], [34]. This creates the possibility that useful information
can be recovered from quite simple motion parameters. The
simplest example of this is that speakers move their hands
more, and more quickly, on average than listeners [22], [35].
This illustrates the potential for using simple non-verbal cues
to determine important interaction states without requiring any
speech processing.

Some motion paramaters have the potential to index quite
complex features of interaction. Holler, Tutton and Wilkin [36]
show how co-speech gestures are affected by the accumu-
lation of common ground. Both use of words and gestures
decrease overall as common ground – roughly, the level of
mutual knowledge of common referents in a conversation–
accumulates, however, the rate of gesturing increases (see also
[37]). More precisely, as the common ground accumulates the
gesture/word rate increases, i.e. the use of gestures decrease
less than words. This also underlines the important commu-
nicative functions of gesture use in adapting to the state of
the conversation independently of content specific cognitive
and lexical access theories of gesture production [36]. The
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findings regarding gestures in communication emphasise the
significance of including the analyses of gestural information
in the case of recognising, mimicking or computationally mod-
elling natural communicative behaviours without forgetting to
address language and interaction as composite, multimodal and
social rather than a combination of distinct and static pieces
of information. In a recent comprehensive overview, Holler
[38] discusses the centrality of visual bodily signals in face-
to-face human daily communication and how the vocal and
visual modalities are tightly intertwined in language evolution
and the coordination of minds.

B. Miscommunication Phenomena

Arguably, misunderstandings are one of the most critical
moments in natural conversation [2]. Evidence from exper-
imental and social psychology [13], [39], [40] highlights
how patterns of misunderstanding and their resolution shape
how shared meanings are created and maintained. People in
conversation, in the form of conversational partners or groups
repair misunderstandings on-the-go to update their mutual
understanding, in other words common ground. Repair occurs
in various forms and places in the dialog, which make it a
difficult phenomena to investigate and model, but it has a
systematic structure and distribution [4], [10].

An example of an incremental, collaborative, repair process
involving non-verbal signals is provided by a simple experi-
ment involving dyads in a collaborative task of building Lego
blocks [41]. One participant is given the role of Director and
provided with a paper-based drawing of a model whereas the
other participant, the Builder, is in charge of constructing
the model following the director’s instructions and without
seeing the drawing. The typical pattern of communication
is: the Director gives an instruction; the Builder checks if
they understand it by exhibiting and positioning the block
before attaching it, possibly with a quizzical facial expression
(clarification); if the position or the block selection is wrong,
the Director discusses it with the Builder until the Builder
finds the correct course of action. Notably, directors are able
to change their sentences mid-way to correct builders actions,
often in response to what the builder is doing. This concurrent,
real-time monitoring of listener’s actions and listener’s non-
verbal feedback enables them to adjust their instructions on-
the-fly. In experiments such as these, people come up with
creative solutions and short-cuts to the tasks they are given to
collaborate efficiently by adapting their communication skills.

The procedures that people use to deal with “troubles of
speaking, hearing and understanding” are referred to as repairs
in Conversation Analysis [8]. We know that repairs are very
frequent [42] in everyday interaction and they are “the only
type of turn with unrestricted privilege of occurrence” [9].
They are also arguably universal across human languages
(e.g. the utterence ”huh” as a signal of misunderstanding
[43]) and also occur in sign languages [44] and in graphical
communication [12], [45]. The Running Repairs Hypothesis
proposes that “coordination of language use depends primarily
on processes used to deal with misunderstanding on the
fly and only secondarily on those associated with signaling

understanding” [13]. In effect, this treats negative interactional
feedback as central to coordinating language use, and more
important than positive feedback such as head-nods and ut-
terences (“mmm”, “hmm”), [13]. The idea is that the crucial
points in natural interaction are about detecting and addressing
misunderstandings in response to problems in the interaction.

C. Exploring Self-repair and its Detection as a Dynamic
Strategy

The most frequent type of repair is when the speaker amends
or modifies their own contribution while speaking, i.e. self-
repair [4], [7]. Self-repairs provide useful information for
co-ordination in dialogue [4], [40], and as outlined in [18]
contribute to:

• compensating for misinformation and warning the listener
of a change or amendment [40]

• assisting with syntactic analysis/re-analysis of language
processing through grammaticality and ungrammaticality
judgments [46]

• signal responses to the amount and type of listener’s
backchannel responses to the speaker [23], [27]

In the field of computational linguistics, self-repairs have
been recognised as a significant component of spoken lan-
guage, hence their automatic detection have been explored
for robust natural language processing. State-of-the-art ma-
chine learning techniques have enabled [17] [18] effective
detection of self-repairs (mostly in the case of disfluencies,
i.e. self-initiated self-repairs) through dialogue transcripts with
minimal error. However, it is important to acknowledge the
limitations of these systems, as reviewed in [18]. The main
challenge is to achieve the ability that enables humans to
decide how to respond to or whether to initiate repair as
and when they encounter problems naturally in dialogue. So
far, the algorithmic approaches in natural language processing
are not competent enough to decipher and/or replicate how
humans recognise and intuitively act on these instances all the
while speaking, listening and gesturing.

D. Investigating Non-verbal Behaviour during Repair

In face-to-face natural conversation, feedback –including
repairs– can be displayed with multimodal non-verbal signals
such as gaze [47], intonation [48], or gesture [49] [50]
[23]. The relationship between embodied conduct (gaze and
gestures) and the self-initiation of repair were examined in
the case of word searches in Japanese conversation [51] [52].
Speech and visible acts by speakers during the course of
word-finding difficulties demonstrate how the use of gestures
can facilitate the recognition of missing words and promote
relevant forms of co-participation. A more recent investigation
of the combination of speech and iconic gestures during same-
turn self-initiated repairs in Mandarin [53] discusses excerpts
from naturally occurring conversations in which repair op-
erations consist of the integration of verbal and non-verbal
components. “Gestural repairs” are defined as multi-stage self-
initiated repair processes involving the use of iconic gestures.
The investigated excerpts show that speakers involve hand
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gestures when they have trouble finding the right words in
various ways. Iconic gestures show themselves as intentionally
coincident repair solutions that speakers provide to their word-
searching difficulties either within or after speech. A cross-
linguistic study of Northern Italian, the Cha’palaa language
of Ecuador, and Argentine Sign Language finds a generalised
pattern of behaviours near repair instances: gesture holds (the
hands, head, eyes, and upper body are held stationary for
periods of time) occur until the onset of the repair solution;
disengaging shortly after the solution [54].

Previous work has found strong correlation between repair
and non-verbal behaviour. [49] revealed an association be-
tween increased self-repair and increased overall gesture in
control groups containing healthy individuals. For the overall
gesture calculations, they have worked with hand movement
speeds. Encouraged by this finding, we previously studied and
[24] have reported a significant increase in hand heights during
self-initiated self-repairs.

Hand gestures are not the only indicator of repairs in natural
conversation. A study investigating repair and non-verbal
behaviour on a corpus of three person dialogues recorded with
motion capture finds evidence of a correlation between head
nods and self-repairs [23]. Cross-correlations of repair rate
and rate of nodding shows speakers nod more than primary
addressees or side participants in turns that include self-repairs.
Both recipients also nod significantly more at the time the
of the repairs, peaking at a 1-3 second offset. However, it
is important to note that the detection and/or classification
of specific movements such as head nods, particular hand
gestures could prove to be problematic as it was pointed out
by [25] that the methods for automatic detection of head nods
are unreliable and the theories of head nods are generally
underspecified.

Statistical evidence from discussed literature [49], [22], and
[24] shows that, repair events in speech correspond to the
utilisation of non-verbal signals in the same turn. Finding
the quantifiable differences in movement data during repairs
could provide advantages in automatically detecting self-repair
instances as they happen and pave the way for creating more
robust applications for social interaction.

E. State-of-the-art in Cognitive Robotics and HRI

The approaches in the previous decades for the design and
implementations of mental processes in social collaborative
robots were mostly rooted in concepts such as human theory
of mind, perspective taking, embodied cognition or highly
integrated models (as can be seen in [55]). Implementing an
understanding of human attention and intention as the goal,
human emotion recognition through facial expressions has
gained significant interest. Facial expressions are an important
component of non-verbal communication, and in fact multiple
research efforts have been devoted to developing automatic
recognition systems that detect facial expressions and associate
them to specific emotions [56]. Recently, the focus on facial
expressions in emotion recognition has extended to include full
body movements, taking into account findings from cognitive
sciences [57]. Along with feature selection for detection,

Fig. 2: Video snapshots of a conversation session from the
dataset. Individuals holding handheld trackers and wearing
hats with trackers sit across each-other during natural dialogue.

systems should aid enhancing conversations with humans
especially when creating a shared context between robots and
humans, i.e. the common ground.

To further enable natural and effective interaction in a
dialogue setting we also need to account for the interpersonal
and interactive aspects of natural conversation as outlined in
Sections II-A - II-B. Examples to such aspects are grounding
[58], [59] and backchannelling [60], [61], in correlation with
the findings from natural human-human interaction research.
For instance, the affective grounding perspective for HRI, sug-
gested by [59], aims to extend previous accounts in affective
computing by recognising interaction as a jointly coordinated
interpersonal process and taking conversational analytic (CA)
notions into account by implementing back-channel responses
and repair to regulate shared understanding and attention
between human and robots. More recent work has tackled
detecting grounding problems and miscommunication in a
physically situated dialogue context that analyzes features
from spoken language input for navigation [62].

Work in HRI has recognised the importance of findings
from the literature in natural human dialogue and has be-
gun to incorporate them in their applications. The technical
possibilities afforded by substantially improved human motion
tracking technologies using vision depth sensors in the past ten
years will extend this further [63]. However, there has not yet
been an attempt to use human motion data to detect instances
of repair in natural dialogue through artificial (robotic or
computer) systems.

If the artificial conversational partner needs to know what
motion patterns to look for, it can generate specific interven-
tions (e.g. recheck the content of a sentence, which might have
been repaired on-the-go) or continue to update its processing;
therefore, research that aims at identifying what motion pat-
terns correlate to miscommunications is extremely important
to advance the field. Moreover, obtaining and parsing motion
data has advantages in situations where speech recognition
fails (noisy environments) and easier for computational tools
in real-time compared to advanced NLP modules.

III. METHODOLOGY

The finding that speakers’ hand heights are significantly
higher during self-repair instances [24] motivates the investi-
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gation of other motion patterns in miscommunication windows
using the same dataset described in [25]. This consists of
natural face-to-face conversation of 13 dyads (Fig. 2). During
their interaction the pairs were recorded with motion capture
(head and hand 3D positions) and cameras while they discuss
the design of an apartment for them to share, for 15 minutes.
For details of this task, see: [64]. The profile of the participants
is summarised in Table I. From the recorded sessions we have
extracted disfluency windows and fluent windows for compar-
ison (details of labelling, window extraction and filtering for
statistical analyses are explained in following sub-sections,
previous work [24] and summarised in Fig. 3).

TABLE I: Dataset Details and Analysis Windows

Participant Details

Gender Female: 14 Male: 12
Age Range: 18-26 Mean: 20.8, Std: 1.9
Number Total: 26 Pairs: 13

Recorded Data

Audio 44.1 kHz 24bit 2.5 GB (approx.)
Video 1280x720 at 25 fps 50 GB (approx.)
Motion capture Avg. sample rate: 89 fps
Length Per Session: 15 min No of sessions: 13

Analysis Windows

Disfluency Fluent

Preliminary 6359 7117
Filtered 2076 3557

The previous study [24] is extended by analysing additional
movement data: hand velocity, head height and head velocity.
The methodology for selecting the windows of motion data
to be analysed is identical to the previous method [24].
In summary, we use the disfluency labels obtained from
the automatic disfluency detection tool [65] for the start of
repair instances, as the dataset is not manually annotated for
miscommunication. Taking the disfluency timestamps as the
centre, we constuct windows starting from 2 seconds before to
2 seconds after the disfluency start timestamp. The movement
features are then inspected by looking at the mean and variance
of all these features in all speakers and listeners (that are a
dyad subjected to the detection of the floor control algorithm)
within these windows. The data analysis pipeline is further
summarised in Fig. 3.

A. Expected Outcomes

In order to observe additional motion patterns during self-
repairs in speakers and listeners, the same windows (i.e.
disfluent and fluent) should be compared. The finding that
there are changes in hand height [24] and hand gesture rate
[49] during repairs suggests that other motion features (such
as head motion data) could show quantifiable differences.

Low level features such as movement and velocity are less
prone to problems of definition than semantic concepts such
as head nods, shakes, and gestures. For example, up and down
movement of the head, that is commonly associated with head
nods, is often found in other behaviours such as laughter [66].

B. Using Detected Disfluencies in the Speech to Label Mis-
communication Events

Manually annotating repairs is a difficult and time-
consuming task, especially when we consider the high fre-
quency and variability of repairs in natural conversation.
Hence, labelling miscommunication events with automatic
tools is a crucial step for more reliable and practical research
[18]. Therefore, in the previous study [24] we have chosen to
work with an automatic disfluency detection tool [65] to detect
disfluencies (i.e. self-initiated self-repairs). This tool follows
the assumption of reparandum-interregnum-repair structure
[15] in speech repairs and incrementally detects these struc-
tures:

• reparandum: the word to be repaired
• interregnum: edit word uh, I mean, you know
• repair: repair onset word that initiates the repair.
The disfluency detection tool which combines a deep learn-

ing system for sequence labelling and incremental decoding
techniques outperforms previous state-of-the-art models when
trained on the Switchboard dataset [67]: F1 scores for ’e’
(edit) tags is above 0.9 and for ’rpS’ (repair onset) tags above
0.75 [65]. We have used this model by inputting the IBM
Watson 1 speech-to-text service outputs to automatically label
disfluencies (repair onset or related words) in the speech texts.
The timestamps of the disfluency labels were taken as the exact
moment of disfluencies in the dialogue. Our previous method
has provided statistical differences over speakers’ hand heights
during disfluency instances. Therefore, we are expanding our
movement analysis of the disfluent instances constructed with
the same timestamps of the automatic disfluency labels.

In order to construct the labels in our dataset, the detection
tool was used in the simple mode and labelled utterances
as edit (e), fluent (f) and repair onset (rpS) term, detailed
in [24]. edit (e) or repair onset (rpS) tags were taken as
disfluency labels with their corresponding time stamps. There
are 3192 disfluency instances (M = 122.769, sd = 40.078,
over 26 participants) over the whole dataset which consists of
6:37 hours of natural conversation in total. As in the case
of previous study [24], we have investigated the disfluent
timestamps and the movement features during these instances
and compared them with windows not containing any labels
(hence fluent).

C. Automatic Detection of Speakers and Listeners

A simple floor control detection model [24] was used to
process the audio captured from the participants’ microphones.
It determines who is the speaker at any given moment. For the
same timestamp, the other participant that is the conversational
partner (who is in the same session) is labelled to be the
listener. This model, detailed in [24], employs simple audio
processing techniques such as low-pass filters and a thresholds.
All audio is processed in buffers of 0.02 seconds and for

1https://www.ibm.com/watson/
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Fig. 3: Data analysis pipeline: The audio of the pairs is converted to text by IBM Speech-to-text and sent to Disfluency
Detection Tool. The timestamps for the disfluency labels is used to analyse the motion data captured by HTC Vive trackers at
those timestamps within windows of 4 seconds. The speaker and listeners are differentiated from the audio signals with floor
control detection algorithm.

each buffer the root mean square (RMS) value is calculated.
Then, these RMS values are filtered by low pass filters with a
cutoff frequency of 0.35Hz. When the difference between the
minimal and the maximal filtered RMS values is larger than
0.1 the participant who has the maximal filtered RMS value is
identified as the speaker. If this is not the case, the previously
reported speaker is continued to be labelled as the speaker.

D. Hand and Head Movement Patterns during Fluent and
Disfluent Moments in Conversation

In order to compare movement features in the presence and
absence of self-initiated self-repairs (disfluencies), time-series
windows of the hand height and velocity, head height and
velocity features are generated for instances that contain self-
repairs. Timestamps from the automatic tagging are taken as
the centre of the repairs (time = 0), and an equal number of
motion readings are taken either side depending on the window
length (e.g. −2 seconds and +2 seconds for a four second
window). In order to capture the motion data that accompanies
fluent (unrepaired) sections of speech, sections that are at least
6 seconds after the end time of a previous repair tag and before
the next are extracted (including a buffer of 1 second). Here,
the aim was to exclude any movement that might have been
related to a previous repair. The fluent sections were also
split into 4-second windows, resulting in 3,557 instances to
be analysed. Both repaired (disfluent) and fluent windows of
4 seconds have the sampling period of 10 ms., resulting in 400
corresponding motion readings for each window. Each window
is also labelled either as a speaker or a listener window based

on the output of the floor control detection algorithm discussed
in Sec. III-C at the middle timestamp of the window.

In previous work [24], we explored the mean and variance
of hand heights in repaired (disfluent) and fluent windows
before proceeding to a statistical analysis. We observed an
increase in mean hand heights within 0-0.5 seconds of a
repair label and statistical analysis suggested this pattern was
reliable. Following the same procedure, we report the mean
and variance comparison figures for three additional movement
features: hand velocity, head height and head velocity. The
disfluency windows (the mean and variance of 6359 instances)
and fluent windows (the mean and variance for 7117 instances)
for all motion features are displayed in Fig. 4 for comparison.

The hand heights feature is calculated for the highest of
the right and left hand readings (Y -position) from the hand
trackers. The highest (also referred to as maximum) hand is
chosen as the active hand for velocity calculation. Following
[68], hand velocity is calculated as 3D position changes over
a sample of each participant for each time t as:

V (t) =

√
(
xt+1 − xt−1

2S
)2 + (

yt+1 − yt−1

2S
)2 + (

zt+1 − zt−1

2S
)2

(1)
where xt−1, yt−1, and zt−1 are the positions along the

three spatial axes at one sample prior to time t, and S is
the interval of time between samples, S = 1/100 sec. The
resulting velocity vectors are used as the motion feature.

Preliminary findings for maximum hand velocities during
repaired and fluent windows show differences in mean and
variance over time (Fig. 4) with a similar pattern to hand
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Fig. 4b: Fluent WindowsFig. 4a: Disfluency Windows        

Fig. 4: Mean (line) and Variance (shades) of Hand and Head Features for Disfluency and Fluent Windows. The blue and red
lines are for a dyad of speaker-listener (based on the floor-control detection algorithm at the middle of the window). In the
case of speakers (in red), we observe an increase in hand features starting at the disfluency moment and continuing to increase
approximately for 0.5 seconds. For head features, this increase is for approximately 0.25 seconds. In comparison, during fluent
instances all hand and head features seem to be stationary both in speakers and listeners.

heights. For speakers, mean hand velocity starts increasing
just before a repair and continues until 0.5 seconds after the
repair. During fluent speech, speaker hand velocities are lower
than listener hand velocities in both window types.

Head height and head velocity were also investigated within
the fluent and disfluent instances. The windows of head motion
data are generated identically to the hand motion. Head height
measurements are normalised by subtracting each participant’s
initial height to prevent the differences in participant height
intervening with the behavioural head height fluctuations we
are looking for. Head velocity is calculated the same way as
hand velocity, 3D position changes over a sample, as suggested
[68] and presented in equation 1.

The comparison of head heights and head velocities during
repaired and fluent windows shows a similar pattern but with
more variation. Head heights in speakers in disfluency win-
dows seem to start increasing from around 1.5 seconds before
the disfluency label and continue increasing until around 0.25
seconds after the disfluency. Listeners’ head heights decrease
slightly between -2.0 and -1.0 seconds during disfluencies.
Speaker head velocity shows a very similar pattern to head

heights, congruent with the increase trend. Head velocities in
listeners (both cases) and in speakers during fluent windows
fluctuate throughout.

To determine the significance of these observations, we
performed mixed linear regressions for speakers’ head and
hand feature windows of 0.5 seconds right after disfluency
(disfluency = 1) and fluent windows of 0.5 seconds
(disfluency = 0), where we have observed the substantial
changes that are common in both heads and hands. Ad-
ditionally, for the statistical analysis, we have filtered the
disfluency windows, by removing the windows that are less
than 2 seconds apart, in order to prevent the overlaps between
movement windows. This resulted in 2076 disfluency windows
to be analysed. The number of fluent windows were reduced to
3557 samples by random selection. These samples were used
for the mixed model regression analyses of all features (2076
disfluency, 3557 fluent).

IV. RESULTS

The differences in head and hand movement features during
disfluent and fluent instances were investigated by performing
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separate linear regressions on these subsets and mixed linear
regression models. For all models, time offsets from 0 to 0.5
seconds were used, with a sampling period of 10 ms. In the
case of disfluency windows, this correlates to the disfluency
timestamp as the start. In the fluent cases, there is no particular
starting point of interest so any window of 0.5 seconds length
is sufficient for the comparison. For simplicity, we have
selected the start of each fluent window. We present each
movement feature along with their linear regression analyses.

A. Hand Movement Features

In our previous study, in order to analyse hand height of
speakers in disfluent and fluent windows, we have performed
two independent linear regressions over isolated sub-groups
and a mixed linear regression over the whole data [24]. We
have found that speakers’ hand heights were significantly
higher during disfluencies compared to maximum hand heights
of fluent instances; this is confirmed by the results in Table II.
The Estimate values, (intercept being the mean of hand height)
show how these are affected in different conditions. The mean
of hand height (0.7746), is 0.0139 higher in the case of
disfluencies (disfluency present = Disfluency1). Furthermore,
there is an increase in hand heights from the disfluency start
at 0 seconds to 0.5 seconds. This is deducted from Disflu-
ency1:Time Offset variable; the slope of handheight/disfluency
is 0.0208 higher when the disfluencies are present. In the
fluent cases the hand heights are slightly decreasing but not
significantly (TimeOffset = −0.0010, p > 0.1).

In this study we add an analysis of hand velocities. To
investigate the significance of observed patterns in hand ve-
locities, we have performed a mixed model regression analysis
that models the hand velocity based as a function of two fixed
factors, i.e. the presence (Disfluency1) or absence of a disflu-
ency and time offset, where the participant number whose hand
velocity was considered as a random factor. Table III shows
hand velocities are significantly higher during disfluencies in
comparison to hand velocities in fluent windows, as it can
be seen from the estimate values. The overall mean of hand
velocity (denoted by intercept) (0.1698), is 0.0377 higher in
the case of disfluencies. The increase in hand velocity between
0-0.5 seconds is proven by Disfluency1:Time Offset variable
being 0.1164, meaning the slope of handvelocity/disfluency is
0.1164 higher when the disfluencies are present.

The following equations quantify the average initial hand
velocity, increase and decrease amount over time in fluent (2)
and disfluent (3) cases:

0.1698− 0.0181t (2)

0.1698 + 0.0377 + (0.1164− 0.0181)t (3)

B. Head Movement Features

Similarly to the way in which we analyse hand features, we
study head height and head velocity as the dependent variables
for regression, and we report it below.

Mixed model regression analysis of the head height based
as a function of two fixed factors, i.e. disfluency presence and

time offset, where the participant number being a random
factor shows similar characteristics of the results for hand
height analysis of the same kind. Table IV substantiates that
speakers’ head heights were significantly higher during disflu-
encies. Looking at the estimate values, the mean (intercept)
of head height (which is -0.0095) is higher when there is a
disfluency (compared to fluent window mean) by (0.0019).
Moreover, following the trend, there is an increase in head
heights from the disfluency starting point as corroborated
by Disfluency1:Time Offset variable, i.e. the slope of head-
height/disfluency, is 0.0020 higher when the disfluencies are
present. In the fluent cases the head heights are stationary but
not significantly (TimeOffset = 0, p > 0.1).

Same analysis for head velocity has shown signif-
icantly higher head velocity means during disfluencies
(Disfluency1 = 0.0085, p < 0.01) but no significant upward
trend with the time offset that was present in the height
feature. This might be due to our selection of time window.
For the head movement features analyses, we have selected
the same time window as the hands, which is 0-0.5 seconds
after disfluency. However, in Sec. III-D we had observed the
increasing trends in head features between (-1.5) and (0.25)
time windows. There was a decrease in head features after
0.25. This results in not capturing the increasing trend in
the regression analyses. We have updated our analyses by
taking these sections for the head height feature, however
only got significant effect for disfluencies (Disfluency1 =
0.0017, p < 2e− 16) which is still an important finding.

C. Discussion

We discuss here the possible underlying reasons for the
observed motion patterns, also in relationship to previous
findings in the literature.

The increase in hand heights could indicate to speakers’
use of gesture space in correlation with the visibility/attention
field of the listener [32]. In other words, the speaker, aware of
the current lack of understanding of the listener, instinctively
moves the hands within the line of sight of the listener, to
call for their attention, in an attempt to make the self-repair
event more effective. Our analysis of the 3D hand velocity im-
plies faster and more frequent hand movements during repair
instances. This is consistent with general knowledge in the
literature that hand movements are very important to support
verbal communication, and in fact the number of hand gestures
does not decrease as much as the number of spoken words as
the common ground accumulates during conversations [36];
therefore it is to be expected that more hand movements
appear when there are troubles in the communication, and this
is consistent with previous findings showing the correlation
between repair rates and hand gestures [49].

Our analysis of head movements shows an increase of
head height (and higher movement speed) of the speaker
during self-repairs. Note that participants are sitting while they
engage in the conversation. Therefore, these results suggest a
motion pattern in which the head is quickly lifted, probably
as a consequence of the speaker straightening up the back or
readjusting on the chair; an example of this is shown in Fig. 2,
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TABLE II: Dependent Variable: Hand Height with Fixed Effects (Disfluency), (Time Offset), random effects (Participants).
The Estimates show an increase in the mean when Disfluency Variable is 1, they also increase further over time as shown by
Disfluency1:TimeOffset variable.

Variable Estimate SE t p

(Intercept) 0.7746 0.0199 38.9106 < 2e-16 ***

Disfluency1 0.0139 0.0009 15.7353 < 2e-16 ***

Time Offset -0.0010 0.0025 -0.3955 0.6946

Disfluency1:Time Offset 0.0208 0.0030 6.8605 6.9e-12 ***

***p < 0.01, **p < 0.05, *p < 0.1 Significance codes.

TABLE III: Dependent Variable: Hand Velocity with Fixed Effects (Disfluency), (Time Offset), random effects (Participants).
The Estimates show an increase in the mean when Disfluency Variable is 1, they also increase further over time as shown by
Disfluency1:TimeOffset variable.

Variable Estimate SE t p

(Intercept) 0.1698 0.0171 9.9571 3.3e-10 ***

Disfluency1 0.0377 0.0022 16.7907 < 2e-16 ***

Time Offset -0.0181 0.0098 -1.8478 0.0746

Disfluency1:Time Offset 0.1164 0.0077 15.0669 < 2e-16 ***

***p < 0.01, **p < 0.05, *p < 0.1 Significance codes.

TABLE IV: Dependent Variable: Head Height with Fixed Effects (Disfluency), (Time Offset), random effects (Participants).
The Estimates show an increase in the mean when Disfluency Variable is 1, they also increase further over time as shown by
Disfluency1:TimeOffset variable.

Variable Estimate SE t p

(Intercept) -0.0095 0.0069 -1.3765 0.1809

Disfluency1 0.0019 0.0001 12.6171 < 2e-16 ***

Time Offset 0.0000 0.0003 0.0269 0.9786

Disfluency1:Time Offset 0.0020 0.0005 3.8317 0.000128 ***

***p < 0.01, **p < 0.05, *p < 0.1 Significance codes.

in which the speaker (images on the left) switches from the
fluent (top image: relaxed on the chair, hands down) to the
disfluent (bottom image: straight back, hands up) case. This
behavior could be triggered by a desire to make themselves
more visible to the listener (by straightening up the back)
and to mentally reset (by readjusting on the chair) before re-
starting one part of the conversation that needs to be explained
again because of the lack of understanding by the listener. This
would be a different motion pattern than e.g. head nods, that
have been shown to be used by listeners as positive feedback
to help speakers in trouble [25]. This interpretation of the
head motion data is partially supported by another indication.
The overall mean of the head height reported in Table IV is

a negative value: (-0.0095). This was not unexpected given
the data normalization procedure we execute with participants
and their general behaviour during the procedure. In order
to normalise the head height, as explained in Sec. III, we
record the initial position of the head, when the participant
is instructed to sit still for a few seconds after the recording is
started. However, participants sit in a more stiff manner, with
their back straight, when instructed to ”sit still”, and they then
relax on the chair after the conversation starts, with the head
position being lower. This explains the negative overall mean
of head heights. At the same time, it gives them room to lift the
head higher if they want to, which they apparently do during
self-repair events.
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TABLE V: Dependent Variable: Head Velocity with Fixed Effects (Disfluency), (Time Offset), random effects (Participants).
The Estimates show an increase in the mean when Disfluency Variable is 1. The increase further over time as shown by
Disfluency1:TimeOffset variable is not significant in the head velocity feature.

Variable Estimate SE t p

(Intercept) 0.0485 0.0042 11.6070 9.84e-13 ***

Disfluency1 0.0085 0.0014 6.1591 7.33e-10 ***

Time Offset -0.0035 0.0023 -1.5342 0.133

Disfluency1:Time Offset 0.0028 0.0017 1.6227 0.105

***p < 0.01, **p < 0.05, *p < 0.1 Significance codes.

An important limitation of this study is that holding the large
handheld controllers could have affected natural gesturing of
the participants even though we observe plenty of gestures
while holding the controllers. In future work, we plan to
replicate the same task without the use of such large sensors.
In the next data collection, the participants will be recorded
using depth-cameras and the 3D positions of head and hands
are to be extracted using computer vision methods.

V. CONCLUSIONS

This paper identifies some specific human non-verbal behav-
iors that appear to be correlated to self-repair events during
natural dyadic conversations. In particular, we extend our
previous study in which we showed how speakers raise their
hands higher during self-repair events [24], and we report here
a detailed analysis of the position and velocity of the hands and
head of both speakers and listeners. Our results demonstrate
that also the head position of the speaker raises during self-
repair events, as well as the hands and head velocity. The re-
sults reinforce the idea, coming from previous findings in cog-
nitive and behavioural sciences, that human conversation has
to be treated as an interactive and multimodal process, and that
artificial cognitive systems based on this approach could obtain
a more effective human-machine and human-robot interaction
in natural settings. This is facilitated by the fact that the
automatic tracking (and even prediction) of human movements
has improved substantially during the last two decades [69],
and therefore it is reasonable to conceive artificial systems
which integrate the detection of specific movements with the
analysis of an audio voice signal. In particular, because self-
repair events are a sign of some miscommunication happening
(i.e. the speaker repairs their utterance because the listener has
signalled a problem with understanding), artificial systems that
could detect such events will be more aware of the context
during a conversation, leading to better artificial conversational
agents. Potential applications include social and service robots
(in e.g. care facilities, education, entertainment) as well as
computer programs that monitor conversations between a
human and an automated agent, or between two humans (e.g.
patient-doctor interactions), in order to recommend specific
interventions or to generate reports. Furthermore, these find-
ings could be specifically used to improve the performance of

NLP tools detecting disfluencies by integration of head and
hand positions modalities.
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