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Abstract—Artificial general intelligence revived in recent years
after people achieved significant advances in machine learning
and deep learning. This leads to the thinking of how real
intelligence could be created. Consciousness theories believe that
general intelligence is essentially conscious, yet no universal defi-
nition is agreed on the definition. In this work, a systematic theory
of consciousness, Global Workspace Theory, is implemented and
integrated with crucial cognitive components. The focus of this
paper is episodic memory. With inspiration from the natures of
episodic memory in psychology and neuroscience, the episodic
memory component is implemented in the Global Workspace
framework. The robotic agent operates in a real-world interactive
context, forming episodic memory and demonstrating static,
temporal and context memory capabilities during interactions.
Consciousness in this work engages in all formation, maintenance,
and retrieval processes of episodic memory. The novelties and
contributions of this work are 1) this work is implementing
episodic memory within the consciousness framework, suggesting
the sustainable potential of such an integrated approach to
cognitive agents with AGI; 2) Regarding the limited examples in
consciousness-based cognitive architectures, this work attempts
to contribute to the diversity of perspectives and approaches;
3) Extant episodic memory implementations are suffering from
various limitations, while This work summarises some key
features for modelling episodic memory within a cognitive ar-
chitecture; 4) Authors discuss the relationship between episodic
memory, consciousness and general intelligence, proposing the
compatibility and relationship between machine consciousness
and other AGI research. It is believed that a better alignment
between them would further boost the fusion of diverse research
for achieving the desired cognitive machines.

Index Terms—General intelligence, Cognitive Robots, Con-
sciousness, Global Workspace, Episodic memory

I. INTRODUCTION

ARTIFICIAL general intelligence(AGI) research focuses
less on the specific functions or algorithms like its

variation in the current mainstream Artificial Intelligence com-
munity. Instead, the general cognitive capabilities of human
beings are under the spotlight in this area. Many people
have made attempts in cognitive theories and models for
achieving AGI like [1] [2] [3] [4]. However, the outcomes
of extant attempts are not yet applicable in the real world
or not convincing to have reached AGI. Among various sub-
topics under this big title, this work is standing on the Global
Workspace Theory [5], which was inspired by psychological
and neuron-scientific research and proposed for consciousness.
The initial purpose of exploiting this theory in intelligence

systems is to create conscious machines by understanding and
reproducing the consciousness correlates such as functions and
mechanisms. This crazy idea for ordinary people should not
shock the scientific community as it is not a research minority
to build computing systems inspired by humans and animals
[6] [7].

This work holds the belief that consciousness is the essence
of general intelligence. However, this work does not take con-
sciousness as a specific mechanism or function like attention,
reasoning or others which are also crucial for intelligence.
Instead, we attempt to emphasise consciousness as a system-
atic principle with which the whole system should observe
during functioning. In other words, consciousness does not
give rise to general intelligence directly, but all advanced
cognitive modules of the human brain or the future cognitive
robots operating and collaborating with each other within a
consciousness framework would give birth to AGI. In this
blueprint, the GWT plays as the cornerstone.

Another involved topic in this work is cognitive robotics,
which nowadays is a popular way to study natural intelligence
and build artificial systems [8] [9]. With the increasing interest
in cognitive agents with consciousness, research on GWT has
expanded to form a community. The work on this theory
so far can be divided into three categories. The first one is
theoretical studies based on subjects including psychology
and neuroscience. This theory was firstly proposed by [5]
[10], which was basically psychological work for conscious
cognition. Later in recent years, this theory is further extended
and validated by findings in neuroscience due to the advances
in studies in brain dynamics.The main body of this kind is
expressed by researchers for example in [11] [12] [13] [14].
In these studies, the role of Global Workspace is enhanced by
the cortico-thalamic (C-T) evidence [15]. From a conclusive
phrase in [16], the standing of this work is also partially
consistent with that of GWT, viewing consciousness as the
product of highly integrated and widespread cortico-thalamic
(C-T) activity. Because of the consistency of the GWT in
psychology and brain science, it becomes a guiding theory
for cognitive computing, which is the second group of work
on GWT. In this group, researchers do the implementation
of the Global Workspace framework first but pay little atten-
tion to the complexities and capabilities of specialists. Some
example attempts of this were made by [15] [17] [18]. In
these works, GWT was exploited to simulate certain cognitive
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effects related to human consciousness. Works of this group
have at least one profound implication. It is a validation of
the potential of GWT in computing systems. For instance,
[17] combines GWT and internal model theory, enhancing
the agent’s cognitive responses to the changing situation. The
work of [18] integrates the attention mechanism, reproducing
two consciousness-related effects of human cognition. The
mentioned work for this group could be basically viewed as
the study of GWT in the computing area. Through this group
work, the viability of the theory of computing reproductions
is strengthened, providing later researchers with prototypes.
The third category of work is also from the perspective of
computing systems, but, instead of taking GWT as the study
subject, they are proposing cognitive architectures beyond
the scope of GWT. Two significant examples in this group
are LIDA [19] and IDyOT [20], in which the modules are
organised by in the formula of GWT to perform in a cognitive
way. By these, they put forward the work of cognitive archi-
tectures, providing concrete models for others. Based on the
LIDA architecture, some implemented agents are summarised
in [21]. These implementations to LIDA architecture repeat
the common goal for the discussed second group work to
GWT. Apart from the three groups discussed above, recent
research also tries to combine GWT and deep learning. In
[22], the authors proposed a roadmap to implement GWT
with various deep learning-based modules. This paper does
not categorise this kind of work due to the little attempt based
on it. However, it does not mean deep learning techniques are
excluded from the cognitive architectures discussed here. In
fact, most extant cognitive architectures employ various tools
including rule and statistics-based machine learning and deep
learning ones. Regarding the advances in deep learning, The
proposal of [22] is worth further exploration.

With the explanation of the extant work related to GWT, the
authors of this work would like to claim it to be an attempt
of consciousness-inspired cognitive systems with a different
approach from the discussed. This work is beyond the vali-
dation study of GWT but does not propose a comprehensive
architecture yet. Though it shares similarities with the third
category that is working on cognitive agents, this work does
it from a different perspective. Instead of implementing an
agent based on a proposed architecture like LIDA [19] and
IDyOT [20], this work investigates, incorporates and develops
new specialists within the Global Workspace framework in an
incremental manner. In this way, apart from taking GWT as
a guide of the general framework, our work also examines
the mutual influence of specialists and Global Workspace.
We explicitly claim that the specialists of the system are
functioning under the coordination of Global Workspace, and
in return specialists also collectively determine some details
of Global Workspace for it to support the information commu-
nications across the whole system. On the other hand, people
may identify similarities between our work and those two
examples. Firstly, the research scope of this work and its
future extensions would definitely overlap with most of the
example architectures though some may not. At a certain point,
secondly, the extensions of this work would arrive at another
cognitive architecture based on consciousness theories. Thus,

this work would like to claim contributions to the community
of cognitive agents with the innovations in a different approach
we exploit towards consciously cognitive architecture and
diversities of the pursued outcomes based on the similarities
of this work to others, both of which would provide more
community comparisons and discussions.

As one step in the incremental development of the cogni-
tive agent with consciousness, this work further incorporates
episodic memory based on our previously implemented model
[18]. In the previous work, the Global Workspace framework
was implemented and validated with experiments reproducing
two cognitive phenomena, attentional blink and lag-1 sparing
effect. However, the limitations with respect to width and
depth of consciousness were recognised. Based on the lim-
itations, we are seeking to integrate more components, which
are essential for conscious cognition and further AGI, into
the implemented framework. Episodic memory as a way of
perceiving the past experience [23] [24] fits well with the
limitation with respect to the width of consciousness. This
is a simple but strong motivation for us to investigate episodic
memory within our consciousness-based cognitive model. The
purpose is to investigate how the episodic memory module
could be implemented within the framework of GWT as well
as what requirements episodic memory has on the coordination
role of Global Workspace. By implementing episodic memory,
the authors believe the agent would demonstrate richer con-
scious cognition.

Based on the existing work, the novelties and contributions
of this work can be recognised as follows. Firstly, by imple-
menting episodic memory and conducting the human-robot
experiment based on the GWT consciousness framework, the
authors aim at convincing other researchers of the potential of
such an integrated approach with consciousness towards AGI.
Secondly, the main extant projects of cognitive architectures
based on consciousness are reviewed in this work. Regard-
ing the limited examples in consciousness-based cognitive
architectures, this work employs a different developmental
approach, attempting to contribute to the research diversity of
the community. Thirdly, extant episodic memory implementa-
tions are suffering from various limitations, while This work
summarises some key features for modelling episodic mem-
ory within a cognitive architecture by reviewing past work.
This provides others with a comprehensive reference on this
issue. Last but not least, the authors discuss the relationship
between episodic memory, consciousness and general intelli-
gence, proposing the compatibility and relationship between
machine consciousness and other AGI research. Through this
discussion, this work appeals to a more realistic goal of
machine consciousness research, which would better absorb
machine consciousness research into the big picture of AGI
or strong cognitive agents.

The whole script is structured as follows. The second
part reviews relevant work on episodic memory and relevant
attempts for intelligent agents. Based on the critical thinking
towards those existing research, the extensive implementa-
tion based on our previous work is introduced in the third
part. With this implemented model, the agent is expected to
demonstrate cognitive capabilities related to memory, under
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the assistance of consciousness. To show them, the experiment
is designed to be an interactive activity between the agent and
the human commander. After the model is properly configured
for the experiment, the results are organised and discussed
in the fifth part. This is followed by the discussion of the
implications of this work, providing the authors’ opinions on
the relationships between memory, consciousness, and general
cognitive agents (or AGI). Finally, this paper summarises the
achievements of this work and gives the limitations and future
possibilities of the current implementation.

II. COMPUTING ATTEMPTS ON EPISODIC MEMORY

A very general definition of this episodic memory was made
in [25] that episodic memory is recalling specific past events
with what, where and when they happened. It is the only
way in the cognitive system allows the agents to experience
past experiences. Due to its uniqueness compared to other
memory systems, its implications for cognition for humans
and even across species are under effortful investigations
including [26] [27]. These studies inspired many attempts in
computer science to reproduce episodic memory. To have a
clear understanding of them, in this part, some of the extant
attempts during 2000-2022 are reviewed.

[28] reviews some early mathematical models for episodic
memory involving context information retrieval. The focus
of their work is on the recognition and recall functions of
episodic memory, appealing for a unitary model to support
both tasks. Though this is not the current interest of our work,
the context information stored in episodic memory is also a
key aspect of our work. On the other hand, [28] reflects that
temporal information is another key aspect of episodic memory
as studied by [29], which has not been implemented in any
model in the review. This criticism could also be imposed on
some other work. In [30] and [31], the hippocampal model
implemented with the neural network technique is claimed
to support the recalling of episodic memory. However, the
experiments are constrained to context information, testing the
agent’s ability to recall the word pair patterns. [32] and [33]
introduce a quantum mathematical model but also suffer from
the same limitation. Though all of these mentioned lack the
comprehensive design of episodic memory, they do provide
various approaches to implementing non-temporal episodic
memory. To account for multiple aspects of episodic memory,
[34] proposes a neural network architecture called EM-ART
with multiple layers. In their model, not only the context and
temporal dimensions of episodic memory are implemented,
but also the dynamics of forgetting are employed. With
such implementation, the model was examined against other
models in tasks of word recognition and shooting game,
showing generally superior performance. The work presented
in [35], which implements the episodic memory module with
long-term memory cells [36], also demonstrates the temporal
dimension of episodic memory. These two implementations
are both appreciable from the perspective of functionalities
of episodic memory, which could be regarded as the main
implementation requirements for a cognitive architecture.

Apart from the functions of episodic memory discussed
above, the policies of encoding, maintenance and retrieval are

also studied. Most extant implementations implicitly encode
fixed elements into memory. However, this is not the effective
way in which episodic memory works. With the naive moti-
vation to maintain the performance and control the storage
consumption, [37] stores a subset of experienced samples
for each task. A more intuitive idea in [38] is that episodic
memory is updated with important information that is related
to the current state and is crucial for the retrieval process.
These designs are partial consistent with a common result from
studies of psychology that people can remember information
which is consciously perceived better and longer [39]. From
another perspective, the work of [40] discusses when to encode
and retrieve episodic memory. This is motivated by that most
extant studies are conducted within naive and fixed tasks,
missing the serious consideration of how episodic memory
functions in real-time. This point is key to the performance
of cognition in a real-world environment as episodic memory
has to interact with other modules within a cognitive system.
This means the maintenance of memory could not disrupt the
continuous information flow of others or the impact has to be
minimised. This leads us to think about the implementations
of episodic memory within the scope of cognitive architecture
with interacting modules.

One example work of episodic memory in cognitive archi-
tecture is the Soar [41]. In this project, the temporal dimension
of episodic memory is implemented though with simplifi-
cations. Also, it covers other features of episodic memory
missing or discussed above. Encoding memory is designed
to happen when an action is taken by the agent. During the
encoding, there is an activation threshold to filter out the
information in working memory to be stored in the episodic
memory system, and the dynamics of memory strength are
considered. However, episodic memory is not well defined,
basically driven by the task requirements of the agent. In
their implementation, an episode includes the agent’s input
(sensing), internal data structures and output (actions in the
world) [42]. This is quite different from the common sense
of episodic memory. As discussed by [26], episodic memory
is usually represented in the form of visual images. Though
the implementation in Soar architecture might benefit their ex-
periment performances, these over-inclusive episodic memory
contents are not appreciated by our work. Another cognitive
incorporating episodic memory is the project of LIDA [43]
[21]. Compared to other reviewed work here focusing on the
encoding, maintenance and retrieval mechanisms of episodic
memory, the LIDA architecture emphasises the differences
between long-term and short-term episodic memory. They pro-
posed the transient episodic memory, via which the encoding
of long-term memory could happen. Though this architecture
does not provide much detail about the implementation of
episodic memory, it stresses the role of consciousness in
memory. This is attributed to the GWT employed in the
architecture.

While the papers reviewed here have different focuses and
limitations on the implementations, one can summarise the
features attracting the majority of researchers’ attention to
episodic memory. Firstly, episodic memory should encode
both context and temporal information. The encoded memory
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also needs to be filtered via certain mechanisms so that only
useful memory is stored. This is an intuitive constraint for
humans as we human beings do not encode all elements in all
experiences into memory. With what should be encoded into
episodic memory specified, when to enter the encoding process
also needs consideration for the whole system functioning in a
robust and smooth way [40]. Apart from these, the dynamics of
memory strength are stressed by some researchers. This is an
obvious requirement for implementation regarding the memory
curves in our common senses. All of these key factors would
guide the implementation of episodic memory in this work. To
explicitly express the novelties of our model with respect to
the implementation of episodic memory, the table below gives
the comparison of different dimensions of the implementations
between extant models and our model.

TABLE I
COMPARISON AGAINST EXTANT EPISODIC MEMORY MODELS

Models Context Memory Temporal Memory Selective Encoding Episodic Information Maintenance Retrieval

Foster, 2002 Y N N Word Pairs N Y

Schapiro, 2017 Y N N Letter Pairs N Y

Brainerd, 2015 Y N N State Vectors N Y

Trueblood, 2017 Y N N State Vectors N Y

Wang, 2012 Y Y N State Vectors Dynamics of decaying Y

Kim, 2019 Y Y N Sentences Dynamics of decaying Y

David, 2018 N N Subset of learnt Samples Learning Samples N Y

Kasap, 2010 N N Important States State Vectors N Y

Lu, 2022 Y N N State Vectors N Y

Laird, 2019 Y Y N Not Specified Dynamics of decaying Y

Franklin, 2016 Y Y Conscious subset
of context Not Specified Dynamics of decaying Y

Our Model Y Y Conscious subset
of context

First-Order
Visual Experiences

Dynamics of decaying
and strengthening Y

To summarise, compared to extant implementations, our
design realises more features of episodic memory consistent
with the psychological evidence. Even though the work of [21]
shares more common points with our model as we are both
based on the GWT, the implementation in this work is more
specified with respects to the define of episodic information
and richer dynamics implemented.

III. OUR MODEL

Based on the discussion of AGI, consciousness, episodic
memory and its relevant implementations, it is fair to say
that memory is essential to intelligence and consciousness,
and consciousness in return interferes the memory formation
and retrieval. This work implements a model based on the
Global Workspace framework, incorporating sensory modules,
attention mechanism, episodic memory and semantic knowl-
edge. A simplified goal component is designed for increasing
conscious activities. The overall structure of the agent is
illustrated in Fig. 1. Those modules are running in parallel in
an asynchronous way, while the lifetime of the whole agent is
composed of infinite cognitive cycles. A cognitive cycle in this
work is initialised by a signal that enters consciousness. After
the signal gets broadcast to other specialists and processed the
cognitive cycle ends with the beginning of the next cognitive
cycle. The connections in the illustration are not all those im-
plemented but the main channels for communications between
those modules. Brief explanations of modules are given below.
The details of each would be provided in the appendix for

reproductive requirements. The code of the implementation of
this whole agent would be also available online after this work
is published.

Fig. 1. the structure of the agent implemented in this work

Vision receives signals from either the external world or
recalled scenes from episodic memory(frame by frame). It is
expected to have multiple objects detected in a frame. Thus,
these objects would compete with each with their salience
values determined by both pixel values and consciousness
interference. After the winner in the visual area is opted
out, the sub-image of the winner would be encoded into a
semantic representation with its position information together.
The generated representation would join the competition into
consciousness(GW).

Hearing receives signals from external world. It was de-
signed and implemented to detect speech sentences over time.
Due to the generalisation problem of this audio processing,
it is replaced by feeding pre-recorded audio to the agent
as the speech inputs. The Hearing module encodes audio
signals into semantic representations and, with the language
inputs, generates a task signal which would be accepted by
the Language module. Both semantic representation and the
task signal would be wrapped together, competing with other
modules for consciousness.

Episodic Memory functions with the interference of
consciousness(GW). Each time the interactive environment
changes, the contents in GW would be moved to memory
along with their strength values. As the contents to be stored
have already been filtered by the competitive mechanism
into consciousness, all contents inside GW are consciously
perceived. The episodic memory in this work is simply imple-
mented by a trace table, which intrinsically retains the tempo-
ral feature. Over the life cycle of the agent, the contents inside
Episodic Memory would decay with a threshold function,
while the revisited memory would be further strengthened.
This is a simulation of the forgetting curves of memory. For
retrieval, a cue would be provided for memory searching and
a retrieval mode would be set for retrieving static context or
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temporal episodes. The retrieved episodes would become the
possible inputs to Vision.

Speech is a simple module independent from Hearing and
Language modules. It receives signals from Global Workspace
and generates speech outputs if the received signals are com-
patible with the speech generation.

Language module is only for the analysis of speech inputs.
When GW broadcasts speech signals which are characterised
by a task signal generated by the Hearing module, the Lan-
guage module analyses the subject and task indicated by the
speech. For instance, the speech signal of ’what is the colour
of apple’ would be extracted to ’apple’ as the subject and
’colour inference’ as the task. The task analysed here is usually
accompanied by a task clock signal, which indicates how many
enquiry cycles are requested by the speech enquiry. Apart from
these two analysis results, when the speech signal requests the
engagement of Episodic Memory, a cue and a retrieval mode
signals would also be generated. The resulting signals from the
analysis would be in effect only if the Language module wins
the consciousness competition in the next cognitive cycle.

Semantic Knowledge in this implementation contains two
inference networks for colour and object recognition. When
this module receives the broadcast signal from Global
Workspace, it takes the task signal for choosing the responsible
network for inference and feeds the subject signal into the
chosen network. The output would re-join the competition into
consciousness with a fixed salience value.

Goal is functioning as an affective stimuli detector. With a
pre-defined global goal of the agent, the goal module would
analyse the coming signal from Global Workspace by direct
recruitment of the Semantic Knowledge module. However,
the goal module does not respond to Global Workspace with
generated semantic representations like those generated by the
Vision, Hearing or other responsive modules. Instead, if a
signal meets the pre-defined goal, a feedback signal would
be sent back to Global Workspace to strengthen the conscious
activation of the held information in working memory.

Move Model is equipped with a temporal cache. When the
agent is required to analyse the temporal pattern of objects, this
module would cache the broadcast signals and do the pattern
recognition when the inference trigger condition is met. It is
fair to consider it as a kind of semantic knowledge for temporal
information, though it is implemented independently in current
work.

Global Workspace is the core node of the implemented
model. At the beginning of each cognitive cycle, Global
Workspace reads the signals from all specialist modules except
Episodic Memory and Speech. Based on the salience values of
signals and the voluntary attention signal generated by Global
Workspace based on the signal pattern in the last cognitive
cycle, the winner of the competition for consciousness would
be broadcast to all modules. Apart from this hub function,
Global Workspace also holds a working memory, which caches
perceptual signals from Vision, which is the raw images
captured of the environment differentiated from the semantic
representations. An accompanying conscious score is attached
to each held working memory element. The conscious score
reflects the transient memory strength inside working memory,

and will also decay over time faster than those in Episodic
Memory. This is consistent with many studies on working
memory, short-term memory and long-term memory. This
score will be enhanced if any module is responsive to its
encoded signal and will decay over time by a weakening
function. Each time the interactive environment changes, the
contents held in working memory would be moved to Episodic
Memory, and the conscious scores would be stored together
as the memory strength values.

The key feature of this implementation is that Global
Workspace(or consciousness) is assisting the filtering, for-
mation and retrieval of episodic memory. For filtering, the
competitive selection of conscious perceptions intrinsically
makes only important information enter the transient memory
(working memory). The decaying mechanism within working
memory further drops out some memory candidates. For
formation, it simulates the enhancement of conscious process-
ing upon memory strength. Each module responsive to the
broadcast signal from Global Workspace would enhance the
conscious score of the corresponding memory element. Thus,
it implicitly takes the effective spread (resulting in responses)
of the signal across the whole system as the extent to which the
agent is conscious of it. The conscious score would determine
the initial memory strength of the episodic memory, which
would to some extent determine the memory trace to be short-
term or long-term. For retrieval, in this work, only if the agent
is consciously cued by certain signals, the retrieval process
would be initialised. More detailed descriptions of modules
are provided in Appendix.

IV. EXPERIMENT DESIGN AND CONFIGURATION

Fig. 2. Pepper robot within the experiment environment

To validate the implementation of the cognitive agent with
consciousness-assisted episodic memory, tasks requiring re-
calling of three aspects of episodic memory are designed. The
tasks are human-robot interactions, asking the robotic agent
to answer questions about past experiences. Firstly, the robot
agent is exposed to the changing experiment environment.
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During this period, the agent perceives various visual stim-
uli and accumulates memory. The environment is illustrated
above.

After this, the agent is asked questions requiring her to
recall episodic memory about cued objects, the static contexts
and the movement histories of objects. Testing the episodic
memory functions within this consciousness architecture is
consistent with the natures of episodic memory discussed by
[26]. For the three task requirements, the interactive questions
are set to be ’what is the colour of X’, ’what else are around
X’ and ’how does X move’.

In the exposure phase, the agent is facing a table with 4
distinct objects. The human commander changed the positions
of the 4 objects. The changes were made in 2 times, and each
time 2 of the 4 are moved. In this configuration, the memory
transformation from working memory in Global Workspace
to Episodic Memory is expected to happen at least 3 times
corresponding to the three different visual environments. More
episodes might be formed when the agent consciously per-
ceives the moving commander, which also incurs changes in
the visual environment. After the exposure phase, the agent
would be exposed to a visual environment irrelevant to the
interactive tasks to avoid unexpected disruptions. To configure
the agent, networks for processing are exploited from pre-
trained repositories online or trained with created dataset for
the experiments. They are summarised as follows.

Vision Detector has two candidates during configuration
phase, YoLOv5 and Detectron2 [44]. This network is re-
sponsible for detecting areas in visual field which possibly
contain an object but is not required to recognise them.
Though the available detection networks possess functions
much beyond this, only the position predictions are retained.
The performances of position prediction of these two models
are tested using the same series of frames. It turns out that
YoLov5 missed more objects while Detectron2 rarely missed.
On the other hand, it was obvious that Detectron2 runs much
slower compared to the swift predictions of YoLov5, which
is attributed to the differences in network structure and model
size. For our experiment, the speed is a inferior requirement
compared to the accuracy, as the latter will significantly impact
the cognitive capability of the agent. Thus, Detectron2 is
recruited here.

Vision Encoder takes the inputs from Vision Detector,
encoding the sub-image winning the local competition within
Vision into a semantic representation. The semantic represen-
tations designed in this work is to be the representations in a
hidden layer of a classifier network, which is not constrained
by accuracy requirement. Instead of the prediction result of
the classifier, the hidden layer states are much more sparse.
As expected, the semantic representations for different objects,
and the same object in different positions and poses would
be different from each other. This requirement could be met
by many open-source algorithms. The employed one here
is Resnet50, which could be directly instantiated from the
PyTorch repository.

Hearing Encoder is similar to the Vision Encoder, though
it has less input channels. The audio signals are firstly trans-
formed into image format based on Mel-frequency cepstral

coefficients (MFCC) features. The transformation result is
encoded by Hearing Encoder into semantic the representation.

Language Analyser is trained on the experiment data. The
inputs and outputs are both semantic representations gener-
ated by the Hearing Encoder. While the inputs and outputs
contains different information. The inputs are representations
of sentence speeches. The outputs consist of a representation
of words, concatenated with task signal, retrieval mode signal
and task clock signal which are explained in the previous part.

Colour Classifier and Object Classifier are trained with
experiment data. The inputs are semantic representations of
sub-images generated by the Vision Encoder. The outputs are
semantic representations of words generated by the Hearing
Encoder. This is a simulation of associations between visual
and auditory signals. For the model implemented in this work,
the space of semantic representations is playing the role of
the intermediate space for associations and communications
between different modalities.

Movement Analyser is trained with samples generated from
the collected experiment data. The input for this analyser is
a concatenation of two semantic representations of two sub-
images and the output is a label able to represent 16 different
movement directions. Though this network is designed to only
analyse the movement of the same object over time, the fed
training data includes pairs of different objects. Theoretically,
this network is generally able to classify the positional rela-
tions between two objects.

The descriptions in this part are for brief explanations only.
The configurations of model details including the training of
networks, data, and hyper-parameters of the agent would be
explained in Appendix.

V. RESULTS AND ANALYSIS

In this part, the results of 3 recall-inference tasks cor-
responding to different aspects of episodic memory are il-
lustrated. Five trials are analysed with the episode traces,
memory content, interactive performance and the memory
strength curves. For the memory content analysis, though the
agent is exposed to a real interactive environment, perceiving
continuous frames, the analysis of the episodes only displays
the episodes incurring memory formation. This is because only
frames changing from the previous perception will result in
the memory store process. However, the full experiences of
the agent would be provided via open source for any people
interested in analysing by themselves.

A. Trial 1

In the memory trace analysis, there are four episodes
triggering the store of episodic memory. Surprisingly, the
phone in each episode is not consciously perceived by the
agent as shown in the memory contents analysis. This is
the only exception throughout the 5 trials, which might be
attributed to the occasional performance flaw of the detector.
Interestingly, there are still objects recognised as phones in this
trial, generating unexpected mistakes in the interactive tasks.
That the answer for context enquiry is correct when asked
with the phone is understandable as the agent successfully
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accumulates the memory and knowledge of the context in the
exposure phase.

Fig. 3. Memory trace analysis of episodes incurring memory formation in
trial 1. The visual perceptions happened to the agent from the left to the right.

Fig. 4. Memory trace analysis of memory contents in trial 1. The traces are
memorised by the agent from top to bottom corresponding to the sequence in
Fig. 3.

TABLE II
INTERACTIVE PERFORMANCE OF TRIAL 1

Mouse Phone Car Toy

Movement Wrong ans Still Still Right

Colour Black Red Yellow Red

Context Phone, Toy, Car, Unknown Toy, Mouse, Car, Unknown Phone, Toy, Mouse, Unknown Phone, Mouse, Car, Unknown

Fig. 5. Memory trace analysis of episodes incurring memory formation in
trial 1. The visual perceptions happened to the agent from the left to the right.

B. Trial 2

In this trial, only three episodes incur the memory storage
process. That the frames disrupted by the human commander
do not result in episodic memory formation could be attributed
to the attentional blink effect studied in our previous work
[18]. While the consciousness is dedicated to previous frames,

the frames with disruptions are not consciously perceived by
the agent. In this trial, all 4 wanted objects are successfully
perceived by the agent in consciousness as shown in the figure
of the memory contents analysis. However, according to the
inference results of the phone, it seems that a wrong object is
recognised as a phone and results in the wrong answers for
movement and colour classifications. Apart from this, all of
the other inferences on recalled memory are correct.

Fig. 6. Memory trace analysis of episodes incurring memory formation in
trial 2. The visual perceptions happened to the agent from the left to the right.

Fig. 7. Memory trace analysis of memory contents in trial 2. The traces are
memorised by the agent from top to bottom corresponding to the sequence in
Fig. 6.

TABLE III
INTERACTIVE PERFORMANCE OF TRIAL 2

Mouse Phone Car Toy

Movement Right Still Farther and Left Still

Colour Black Yellow Yellow Red

Context Phone, Car, Toy,
Unknown, Unknown

Car, Mouse, Toy,
Unknown, Unknown

Phone, Mouse, Toy,
Unknown, Unknown

Phone, Car, Mouse,
Unknown, Unknown

Fig. 8. Memory trace analysis of episodes incurring memory formation in
trial 2. The visual perceptions happened to the agent from the left to the right.



8

C. Trial 3

Similarly to Trial 1, there are four episodes resulting in
episodic memory formation, one of which is caused by the
disruption of the human commander. In this trial, all objects
are successfully perceived in consciousness and all the infer-
ences on the recalled memory are correct except the movement
classification of the toy. This is attributed to the prediction
error of the Movement Analyser.

Fig. 9. Memory trace analysis of episodes incurring memory formation in
trial 3. The visual perceptions happened to the agent from the left to the right.

Fig. 10. Memory trace analysis of memory contents in trial 3. The traces are
memorised by the agent from top to bottom corresponding to the sequence in
Fig. 9.

TABLE IV
INTERACTIVE PERFORMANCE OF TRIAL 3

Mouse Phone Car Toy

Movement Left Closer and Right Still Still

Colour Black Black Yellow Red

Context Phone, Toy, Car,
Unknown, Unknown

Mouse, Toy, Car,
Unknown, Unknown

Phone, Mouse, Toy,
Unknown, Unknown

Phone, Mouse, Car,
Unknown, Unknown

Fig. 11. Memory trace analysis of episodes incurring memory formation in
trial 3. The visual perceptions happened to the agent from the left to the right.

D. Trial 4

Three episodes are perceived as changing the interactive
environment, resulting in memory formation. The inference
mistakes happen in the movement classification, with an
invalid prediction made for the movement of the mouse. The
invalid prediction (which also happens in Trial 1) indicates the
object is classified as moving in conflicting directions, such
as moving to the right also the left or move to farther also
closer. This is attributed to the imperfect performance of the
Move Analyser network. On the other hand, the overlapped
detections in this trial are obvious. The impact of this is
not well investigated. This is because of that the results are
generated by the collaboration of multiple modules, which
makes the analysis hard. However, this is not the focus of
this work.

Fig. 12. Memory trace analysis of episodes incurring memory formation in
trial 4. The visual perceptions happened to the agent from the left to the right.

Fig. 13. Memory trace analysis of memory contents in trial 4. The traces are
memorised by the agent from top to bottom corresponding to the sequence in
Fig. 12.

TABLE V
INTERACTIVE PERFORMANCE OF TRIAL 4

Mouse Phone Car Toy

Movement Wrong ans Still Still Farther and Left

Colour Black Black Yellow Red

Context Phone, Toy, Car, Unknown Toy, Mouse, Car, Unknown Phone, Toy, Mouse, Unknown Phone, Mouse, Car, Unknown
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Fig. 14. Memory trace analysis of episodes incurring memory formation in
trial 4. The visual perceptions happened to the agent from the left to the right.

E. Trial 5

Similar to other trials, based on the successful perceptions
of the desired objects over episodes, mistakes only happen in
the movement classification.

Fig. 15. Memory trace analysis of episodes incurring memory formation in
trial 5. The visual perceptions happened to the agent from the left to the right.

Fig. 16. Memory trace analysis of memory contents in trial 5. The traces are
memorised by the agent from top to bottom corresponding to the sequence in
Fig. 15.

TABLE VI
INTERACTIVE PERFORMANCE OF TRIAL 5

Mouse Phone Car Toy

Movement Still Still Closer and Right Farther and Left

Colour Black Black Yellow Red

Context Phone, Car, Toy,
Unknown, Unknown

Mouse, Car, Toy,
Unknown, Unknown

Mouse, Phone, Toy,
Unknown, Unknown

Mouse, Phone, Car,
Unknown, Unknown

Fig. 17. Memory trace analysis of episodes incurring memory formation in
trial 5. The visual perceptions happened to the agent from the left to the right.

From the experiments, some basic features of the Global
Workspace framework [5] could be figured out. The interac-
tion experiments involve the coordination between multiple
modules implemented in this model, in which the exclusive
permission among parallel specialist modules into conscious-
ness is the basic rule of the model. Another feature of global
availability is more implicit, while it is also functioning here
considering the agent is simultaneously getting tasks done
and goals fulfilled in multiple modules. Interestingly, the
attentional blink effect [45], which was validated in other
GWT research [17] [46] [47], is again generated as a side
effect in this model. This is demonstrated during the phase in
which the agent is exposed to a continuous visual experience
in the real environment. By comparing the memory trace
and real experience, some frames are found not consciously
perceived by the agent. This attentional blink effect is mainly
attributed to the suppression of consciousness permission from
the global workspace, which has been well discussed in our
previous work [18]. In this model, this suppression mechanism
is formally implemented as a block signal in this model
maintained by all the specialists.

As for the results, the episodic memory [26] part is the
focus of this work. According to the interactions, the agent
shows us the ability to recall visual experiences for different
task situations. The interaction tasks require the agent to
answer questions with her knowledge of the colour, movement
history and experience context of certain cued information.
They demand the ability to recall static, temporal and context
information respectively. As shown in the results, though with
minor mistakes, the agent recalls a memory about a static
object to answer the colour, about the temporal events to
answer the movement pattern of objects, and about the context
to answer the objects in a certain episode. From these, episodic
memory is successfully implemented in this model in terms
of memory contents.

What should be emphasised is the role of consciousness in
the formation of memory in this work. Firstly, only the experi-
ence attending consciousness would be encoded into working
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memory in the Global Workspace node of this model. After
this, when the consciousness about the whole environment
is changed, the contents of the working memory would be
moved into the memory area. By this, consciousness basically
plays the role of filter for efficient and effective memory
formation. Moreover, the dynamics of episodic memory are
also stressed in this work. The memory trace is autonomously
forming short-term and long-term ones under the interference
of consciousness. As explained in the model part, memory
strengths are determined by conscious exposure as well as
affection enhancement. As shown in the memory strength
curves in each trial, some starting above 10 units of memory
strength always remains above the threshold level. These
are objects meeting the affection goal (redness) during the
exposure phase. Besides the affection enhancement, memory
could sometimes get enhanced to be stronger, being equal to
or more than 10 units and transform into long-term memory if
that memory is revisited in later interactive activities. However,
memory contents starting below the threshold and never being
lifted above the threshold would eventually fade away from
the brain of the agent. This means the memory is forgotten to
be inaccessible.

VI. DISCUSSION

Instead of building a cognitive agent based on a given
architecture such as LIDA [19] and IDyOT [20], this work ap-
preciates implementing specialist modules related to conscious
cognition in an incremental way. Though overlaps with those
extant architectures are inevitable, authors expect to contribute
to the diversity of cognitive architecture research.

As explained in the model part, differences between the
implementation in this work and the extant models can be
identified with respect to the design of the episodic memory
module. Compared to the reviewed models in past work, this
implementation successfully demonstrates different forms of
episodic memory, including the retrieval of static, context
and temporal information. Importantly, this work shows that
consciousness is essential to all the formation, maintenance
and retrieval processes of episodic memory, which is consis-
tent with the psychological evidence (e.g., [39]). From this
perspective, this work is complementing the work in [43].
With the assistance of consciousness, episodic memory also
contributes to the consciousness of the agent in return. Imple-
menting episodic memory into the cognitive system implies
that the agent can demonstrate cognitive capabilities over time,
which are validated by the interactive experiments in this
work. Interestingly, this work does not explicitly implement
short-term and long-term memory systems. However, episodic
memory automatically transforms into long-term memory or
fades away as short-term memory. This is partially realised
by consciousness. Based on this implementation, the agent is
much stronger than systems only responding to the present
time. One example of the weaker agent is the precedent of
this implementation [18]. Without episodic memory, the agent
can only react to the present stimuli. From this point, one
would definitely agree that the implemented agent in this work
performs more consciously and intelligently.

Strengthened by this work, the authors would like to stress
the potential of the consciousness framework for potent cogni-
tive agents or AGI. Though it is still hard to define conscious-
ness and intelligence, it is believed that the consciousness
framework is the substrate of intelligence regarding its role
of integrating all the specialists key to general intelligence.
By comparing this implementation to its precedent version, it
is reasonable to conclude that richer dimensions or contents
of consciousness are important for achieving the ultimate
goal. This leads us to think about the essence of a conscious
machine. An attempted opinion is that the Global Workspace
framework in our research makes the consciousness phe-
nomenon possible to happen while the contents of conscious-
ness define what we feel about consciousness. On the other
hand, many researchers are struggling to find out the key corre-
lates of consciousness. In other words, they attempt to explain
what exactly makes consciousness arise [48]. However, they all
yet generate no convincing outcomes. From another perspec-
tive, researchers in psychological, medical and neuroscientific
studies never propose the loss of consciousness accompanying
the loss of certain brain functions. For instance, [49] [50]
[51] point out the disorders of consciousness due to certain
brain impairments, while only a subset of consciousness is
lost in each case. This is consistent with the opinion in this
paper. Though many processes are believed to be conscious
such as thinking, emotion, self-reflection and etc., none of
them is the producer of consciousness. The consciousness rises
from the structure within which all processors function in a
way coordinated by systematic principles. These principles are
competition and broadcast cycle in the definition of GWT,
though others may propose other frameworks. However, the
system implemented with only a processing structure without
any or with an insufficient subset of consciousness correlates
seems unreliable and hardly convinced to be conscious. The
extant models reviewed in this paper are all examples of this
group. This is simply because of the elusive definition of
consciousness. Basically, people including the authors intu-
itively expect conscious machines to behave in a human-like
way. Otherwise, we all will claim the implemented agent to
be conscious. However, that intuitive expectation seems very
similar to the one for a generally intelligent machine. This is
also a big confusion for the authors in the research of artificial
consciousness. Thus, we appeal for an explicit detachment
of consciousness from intelligence. Here, the authors provide
our opinions for discussion. A framework like GWT in this
work is the substrate of consciousness, while the specialist
processors provide various contents into consciousness which
are the embodiment of consciousness. In other words, only
if certain information from the external or internal world
is entering consciousness, consciousness is reportable. This
leads to that both the framework and specialists are essential
to consciousness. However, the authors propose that not all
dimensions of consciousness are necessary and researchers
should not, at least for now, pursue the reproduction of all
kinds of consciousness of humans. Within the big picture of
AGI, researchers only need a minimal subset of consciousness
correlates which are sufficient to meet the requirements of
developing human-like cognitive agents. Also, no matter what
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specialist modules are implemented, the researchers should
be confident to claim the created machine consciousness as
long as the framework employed is consistent with human
consciousness.

For future work, the implementation of the cognitive archi-
tecture could be enhanced in two directions. Firstly, though
the episodic memory module implemented here is sufficient
for the demonstration, the table-based structure is very con-
strained. People are usually not convinced with this storage
form inside human brains. For this, the neural network models
such as [34] [31] [35] might shed light on our future attempts.
On the other hand, the current implementation is still way far
from a reliable cognitive agent. More correlates are expected
to be implemented. An example is learning ability which is
usually emphasised by researchers [52]. As discussed above,
though we can claim the implemented agent to be conscious,
finding out a minimal subset of consciousness correlates is
crucial for further developing strong cognitive machines.
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APPENDIX A. MODEL DESCRIPTIONS

In this appendix, the model is explained in detail for people
who are interested. The information processes are illustrated
with diagrams when necessary. This appendix only gives the
details at processing level. For people who are interested in
reproduction or doing research based on this model, in case
there are any missing details, the code would be available on-
line as an open-source resource after this paper is published.

Vision receives signals from either the external world or
recalled scenes from episodic memory(frame by frame). The
competition between these two sources are determined by a
control signal G according to the interactive task. This signal is
one of the element in the analysis result of Language module
which will be explained in detail later. As the information
is in different format in the two sources. When the agent is
perceiving an image from the external world, it goes through a
detector network Detectron2, resulting in the detected objects.
Otherwise, the detected objects are directly retrieved from
Episodic Memory. Importantly, the array data of an object
consists of not only the sub-image but also the position
information. The position information is represented by two
channels appended to the RGB channels of the image. Also,
for computational convenience, the data arrays are reshaped
into [64, 64, channelNum]. Thus, each array data is of [64,
64, 5].

Fig. 18. Information process of Vision

When there are more than one object, these objects would
compete with each other based on their salience values. For
stimuli from the visual field, the salience values are partially
determined by the difference of pixel values between the sub-
image of certain object Sub and its local background Local,
which is defined as the square area surrounding the object.
The size of the area is as three times as the sub-image in both
terms of height and width as illustrated in figure below.

Fig. 19. the local background for a detected object

The calculation of the pixel salience is

PixelSalience =
|Sum(Local)− 2 ∗ Sum(Sub)|

MaxPixelSalience
(1)

Where MaxPixelSalience is held in Vision. It is updated every
time by the molecular if PixelSalience is greater than 1.0. For
the objects from Episodic Memory, the cued object has the
highest initial salience 1.0 while the rest have the same initial
salience 0.8. After the pixel salience values are calculated, the
consciousness interference is another factor determining the
salience values of those stimuli. This interference will decrease
the salience value of the objects which have previously entered
GW to be lower than the smallest salience value among all
detected objects. This is assited by the workign memory wm
held by GW.

obj.Salience =

{
min(PixelSalienceV alues), obj.in(wm)

obj.P ixelSalienceV alue, else
(2)
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Then, those stimuli compete by the salience values. The
winner is encoded into a semantic representation. The gener-
ated representation would join the competition into conscious-
ness(GW).

Hearing receives signals from external world. The received
audio input is firstly transformed into the MFCC feature map.
Then, the module encodes this feature map into a semantic rep-
resentation and, with the language input, generates a task sig-
nal which would be accepted by the Language module. Both
semantic representation and the task signal would be wrapped
together, competing with other modules for consciousness.
Also, Hearing holds a MaxAmplitudeSalience. The salience
of the audio input is calculated with the strongest amplitude of
the audio signal and normalised by MaxAmplitudeSalience.

Salience =
Max(AudioSignal)

MaxAmplitudeSalience
(3)

Fig. 20. Information process of Hearing

Episodic Memory functions with the interference of
consciousness(GW). Each time the interactive environment
changes, the contents in GW would be moved to memory
along with their strength values. As the contents to be stored
have already been filtered by the competitive mechanism
into consciousness, all contents inside GW are consciously
perceived. The episodic memory in this work is simply imple-
mented by a trace table, which intrinsically retains the tempo-
ral feature. Over the life cycle of the agent, the contents inside
Episodic Memory would decay with a threshold function,
while the revisited memory would be further strengthened.
This is a simulation of the forgetting curves of memory. During
the maintenance, a part of the memory would automatically
transform into long-term memory, while others fade away
which can be regarded as short-term memory. The memory
strength of each memory element at each time step would be
updated by the decaying function below.

Strength− =

{
Strength−10.

30. , Strength > 10.
Strength

30. , else
(4)

Where 10. is the threshold distinguishing short-term and
long-term memory and 30. is the decaying factor.

Fig. 21. Information process of Episodic Memory

For retrieval, a cue would be provided for memory searching
and a retrieval mode would be set for retrieving static context
or temporal episodes. For the former, the only one memory
frame would be retrieved, while, with the latter mode, retrieval
process would go through all memory traces one by one,
returning the trace if cued information is contained. The
retrieved episodes would become the inputs to Vision.

Speech is a simple module independent from Hearing and
Language modules. It receives signals from Global Workspace
and generates speech outputs. However, this will take effect
only when the agent is expected to answer a question.

Fig. 22. Speech Generation

Language module is only for the analysis of speech inputs.
When GW broadcasts speech signals which are characterised
by a task signal generated by the Hearing module, Language
module analyses the subject and task indicated by the speech.
For instance, the speech signal of ’what is the colour of
apple’ would be extracted to ’apple’ as the subject and ’colour
inference’ as the task. Apart from these, the result also contains
a part of control signal, consisting of a source gate signal,
a task clock signal, and a retrieval mode signal. The source
gate signal indicates if the retrieved memory should be taken
as the perceived stimuli, imposed on Vision. The task clock
signal indicates how many enquiry cycles are requested by
the speech enquiry. Each enquiry cycle ends when a the
inference task is completed, the clock value held in GW will
decrease while an enquiry cycle is completed. When the task
clock value is less than 1, the task is totally completed. For
instance, when the agent is asked to answer all the objects
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in a certain frame, the ’object inference’ task signal would
be held for multiple enquiry cycles. Only when all objects
are answered indicated by the task clock value less than 1, the
task signal would be released. Another contained in the control
signal is, when the speech signal requests the engagement
of Episodic Memory, a retrieval mode signal. Also, in this
case, the semantic representation of the analysed subject would
be taken as the cue for memory retrieval. Importantly, these
resulting signals from the analysis would be in effect only if
the Language module wins the consciousness competition in
the next cognitive cycle.

Fig. 23. Information process of Language module

Semantic Knowledge in this implementation contains two
inference networks for colour and object recognition. When
this module receives the broadcast signal from Global
Workspace, it takes the task signal for choosing the responsible
network for inference and feeds the semantic representation
which is the subject of inference into the chosen network.
The output would re-join the competition into consciousness
with a fixed salience value. This result would be accepted by
Speech if this module wins the competition into consciousness,
making the inference answer be articulated.

Fig. 24. Information process of Semantic Knowledge

Goal is functioning as an affective stimuli detector. With a
pre-defined global goal of the agent, the goal module would
analyse the coming signal from GW by direct recruitment of
the Semantic Knowledge module. However, the goal module
does not respond to GW with generated semantic representa-
tions like other responsive modules. Instead, if a signal meets
the pre-defined goal, an enhancement signal would be sent
back to GW to strengthen the conscious activation of the held
information in working memory. This is also assited by the
working memory of GW, which holds the raw information of
the analysed semantic representation.

Fig. 25. Information process of Goal module

Move Model is equipped with a temporal cache. When the
agent is required to analyse the temporal pattern of objects,
this module would cache the broadcast signals and do the
pattern recognition when the inference trigger condition is met.
It is fair to consider it as a kind of semantic knowledge for
temporal information, though it is implemented independently
in current work. This module firstly receives broadcast signal
from GW, when the task code is recognised, Move Model
firstly checks the received semantic representation with the cue
signal generated in Language. As explained, the cue signal is
also the resulting subject signal in Language. By employing
the object inference network of Semantic Knowledge, if the
semantic representation is verified, it is cached in Move
Model. After retrieval of the temporal sequence of a cued
information, only the oldest and latest two frames would be fed
into the movement analysis network, resulting in a semantic
representation of direction. This result would be accepted by
Speech if this module wins the competition into consciousness,
making the analysed direction be articulated.

Fig. 26. Information process of Move Model

Global Workspace is the core node of the implemented
model. At the beginning of each cognitive cycle, Global
Workspace reads the signals from all specialist modules except
Episodic Memory and Speech. Based on the salience values of
signals and the voluntary attention signal generated by Global
Workspace based on the signal pattern in the last cognitive
cycle, the winner of the competition for consciousness would
be broadcast to all modules. Apart from this hub function,
Global Workspace also holds a working memory, which caches
perceptual signals from Vision, which is the raw images
captured of the environment differentiated from the semantic
representations. An accompanying conscious score is attached
to each held working memory element. The conscious score
reflects the transient memory strength inside working memory,
and will also decay over time faster than those in Episodic
Memory. This is consistent with many studies on working
memory, short-term memory and long-term memory. This
score will be enhanced if any module is responsive to its
encoded signal and will decay over time by a weakening
function. Each time the interactive environment changes, the
contents held in working memory would be moved to Episodic
Memory, and the conscious scores would be stored together
as the memory strength values. The information processes of
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GW is complemented by above all explained modules.

APPENDIX B. MODEL CONFIGURATIONS

In this appendix, the configuration of 4 self-trained networks
would be introduced.

Language Analyser is convolutional neural network trained
on the experiment data, with input size 8192 and output size
8203. The inputs and outputs are both semantic representa-
tions generated by the Hearing Encoder. While the inputs
and outputs contains different information. The inputs are
representations of sentence speeches. The outputs consist of
a semantic representation of a word, concatenated with task
signal, retrieval mode signal and task clock signal which are
explained in the previous part. For the input data, the pre-
defined three questions are recorded for each subject. In this
experiment, 10 subjects are prepared for training while only
4 are used in the interactive experiments. For each sentence,
at least 10 variations are recorded, with minor differences in
numbers for randomness. Furthermore, each speech sample,
for enhancing the data set to achieve a good accuracy, is
augmented by adding noise and shifting the pitches, resulting
in 10 more variations for each sample. This results in the input
data set of 6043 speeches. All speeches are then encoded by
the Hearing Encoder into semantic representations, the size of
each is 8192. For the output data, the first 8192 elements are
the semantic representation of a word, which here is an object
name. The task code, source gate, retrieval mode and task
clock value consist of 3, 1, 2, 5 elements after the semantic
representation respectively. After the hyper-parameter pruning,
this network is trained by the Adam optimiser with learning
rate 0.001 for 800 epochs.

Colour Classifier and Object Classifier are both convolu-
tional neural networks trained with the same input data col-
lected in the experiment environment by the Pepper robot. The
input and output have the same size of 8192. Firstly, we use
the Pepper robot to take pictures of the visual field containing
the experiment objects. Then those images are processed by
the Vision Detector, resulting in 532 sub-images containing
certain objects, appended with the position information. After
this, those sub-images are manually annotated. The inputs
are semantic representations of sub-images generated by the
Vision Encoder. The outputs are semantic representations of
words generated by the Hearing Encoder. This is a simulation
of associations between visual and auditory signals. After the
hyper-parameter pruning, these two networks are trained by
SGD optimiser, with learning rate 0.001 for 200 epochs.

Movement Analyser is trained with same data for colour and
object classifier. It is also a convolutional neural network with
input size of 2*8192 and output size of 4. The input for this
analyser is a concatenation of two semantic representations
of two sub-images and the output is a label representing 8
different movement directions. For the input data, the pairs
are generated from those sub-images produced in the training
of colour and object classifiers. According to the position
information appended to those sub-images as explained above,
those pairs are manually annotated. Finally, 93856 pairs are
generated for training. For the output, though the represen-
tation space of 4 elements is 16, not all combinations are

valid. The 4 elements represent respectively closer, farther,
right, left. Thus, there are only 8 valid results. Notably, this
network is designed to only analyse the movement of the same
object over time, while the fed training data includes pairs of
different objects. Theoretically, this network is generally able
to classify the positional relations between two objects. After
the pruning of hyper-parameters, this analyser is trained by
Adam optimiser with learning rate 0.001 for 500 epochs.
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