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Hierarchical Video Summarization  
in Reference Subspace 

Richard M. Jiang, Abdul H. Sadka, Danny Crookes 

Abstract --- In this paper, a hierarchical video structure 
summarization approach using Laplacian Eigenmap is 
proposed, where a small set of reference frames is selected 
from the video sequence to form a reference subspace to 
measure the dissimilarity between two arbitrary frames. In the 
proposed summarization scheme, the shot-level key frames 
are first detected from the continuity of inter-frame 
dissimilarity, and the sub-shot level and scene level 
representative frames are then summarized by using K-mean 
clustering. The experiment is carried on both test videos and 
movies, and the results show that in comparison with a 
similar approach using latent semantic analysis, the proposed 
approach using Laplacian Eigenmap can achieve a better 
recall rate in keyframe detection, and gives an efficient 
hierarchical summarization at sub shot, shot and scene levels 
subsequently. 

 
Index Term --- Hiearchical Video Summarization, Latent 

Semantic Analysis, Laplacian Eigenmap, Representative 
Frame. 

 

I. INTRODUCTION 

With the explosion of multimedia databases due to the 
growth in internet and wireless multimedia technology, the 
management of vast video content demands automatic 
summarization to abstract the most relevant content or useful 
information from a massive visual data set [1]. Recent 
advances [1-4] in this area have successfully generated a 
number of practical systems, such as VideoCollage and 
VideoSue [5]. 

Video summarization refers to creating an excerpt of a 
digital video, which must contain high priority entities and 
events from the video and exhibit reasonable degrees of 
continuity with little repetition. The challenge in video 
summarization is how to effectively extract certain content of 
the video while preserving the essential message of the 
original video [1-4]. There are basically two types of video 
abstraction: static video summarization and dynamic video 
skimming. Video summarization is a process that selects a set 
of salient images called key frames to represent the video 
content, while video skimming represents the original video in 
the form of a short video clip. Both ways are actually similar 
to each other; they share temporal video structure analysis for 
implementing the finding of content or frames of specific 
interest to a user for video browsing. Fig.1 shows an outline 
of such video summarization systems. 

 
Fig. 1. A Three Layer Video Abstraction System 

Based on the way a key frame is extracted for video 
summarization, existing work in this area can be categorized 
into three classes: sampling based, shot based, and segment 
based. Most of the earlier summarization work belongs to the 
first class, where key frames were either uniformly sampled or 
randomly chosen from the original video. The MiniVideo [6] 
and the magnifier [7] systems are such two examples. This 
approach is the simplest way to extract key frames, but such 
an arrangement may fail to capture the real video content, 
especially when it is highly dynamic. 

More sophisticated work has since been developed to 
extract key frames by adapting to dynamic video content. 
Since a shot is defined as a video segment taken from a 
continuous period, a natural and straightforward way is to 
extract one or more key frames from each shot using low-
level features such as color and motion. A typical approach in 
[8] extracts key frames in a sequential fashion via 
thresholding. Other schemes may include the use of color 
clustering, global motion, or gesture analysis [9-11]. 

Various clustering-based extraction schemes at the higher 
representative scene-level have been also proposed. In these 
schemes, segments are first generated from frame clustering 
and then the frames that are closest to the centroid of each 
qualified segment are chosen as key frames [12~13]. Yeung 
and Yeo [14] reported their work on video summarization at 
the scene level based on a detected shot structure, where they 
classified all shots into a group of clusters and then extracted 
meaningful scenes, namely representative images (R-images) 
to represent its component shot clusters. 

Though there may have various video summarization 
schemes, they all share a basic infrastructure in two aspects: 
using specific features as the continuity metric for temporal 
video segmentation, and setting up decision methods (include 
fixed thresholds, adaptive thresholds, and statistical detection 
methods) for dissimilarity-based classification. Feature 
selection for video summarization involves a number of 
choices, such as HSV/YUV color feature [15~16], color or 
color-spatial histogram [17], edge information [18], motion 
features [19~20], and DFT/DCT/DWT coefficients [21~22]. 

Recently, singular value decomposition (SVD) and latent 
semantic analysis (LSA) [23~25] emerges as an attractive 
computational model for video summarization because 
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Eigenfeatures are usually the most representative and 
discriminant features for frame comparison. It can also put all 
frames into a balanced comparison, and thus the overall video 
structure can be hierarchically organized with adaptive 
thresholds. However, this approach is computationally 
intensive since it operates directly on video frames. 

LSA is usually considered as a linear scale-space 
approach, which has disadvantages such as low dimensional 
reduction rate and low accuracy. Recently, nonlinear scale-
space approaches, such as kernel principle component 
analysis (KPCA) [26] and Laplacian Eigenmaps [27~29], 
have been considered as more efficient ways for discriminant 
information extraction. In this paper, we propose a reference 
frame subspace approach using Laplacian Eigenmap, which 
selects a limited number of reference frames to form a 
Laplacian Eigen subspace to measure the inter-frame 
dissimilarity. The proposed video summarization scheme is 
tested with standard test videos and movies, which shows the 
proposed approach can efficiently perform video 
summarization. 

In the rest of the paper, section II describes the proposed 
approach, section III gives the experimental results, and 
section IV concludes the paper. 

II. VIDEO ANALYSIS IN LAPLACIAN SUBSPACE 

A. Laplacian Eigenmap 
Conventional latent semantic analysis (LSA) [23~25] 

projects the frames into its Eigen subspace, where LSA is 
applied to extract a subspace in which the variance is 
maximized. Its objective function is as follows: 
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Recent non-linear scale-space approaches [26-30] have 
recently been intensively researched. Among these 
approaches, Laplacian Eigenmap [27-30] has been considered 
among the best ways that can outperform the traditional linear 
SVD or LSA approaches. The Laplacian approach seeks to 
preserve the intrinsic geometry of the data and local structure. 
The objective function of Laplacian Eigenmap is as follows: 
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where ||.|| is the Frobenius form, S is a similarity matrix, and ε 
defines the radius of the local neighbourhood that is 
sufficiently small, and greater than zero. The objective 
function with the choice of symmetric weights Sij incurs a 
heavy penalty if neighbouring data points xi and xj are mapped 
far apart, i.e., if ( )2yyi −  is large. Therefore, minimizing it is an 
attempt to ensure that, if xi and xj are “close,” yi and yj then 
should be close as well. Following some simple algebraic 
steps, we have, 
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L is called the Laplacian matrix. The problem then becomes: 
WXLXW TT

W
minarg     (5) 

With its solution WLap, we have Laplacian projection, 
xWyx T

Lap=⇒         (6) 
In this projection, the Laplacian graph model is embedded to 
map the nonlinear data separation problem into a linear 
separation problem. Details about Laplacian Eigenmap can be 
found in Ref.[27-30]. 

B. Dissimilarity in Reference Laplacian Subspace 
Similar to LSA, directly applying Laplacian Eigenmap to 

all frames will encounter the problem of computing efficiency. 
For instance, a video with 10000 frames will require the 
computation of a 10000×10000 matrix to obtain its projection 
matrix WLap. 

In order to resolve this bottleneck, instead of using all 
frames to extract the projection matrix WLap, we use a subset 
of frames selected uniformly from the video sequence as 
reference frames. Considering K frames selected from the 
video stream with a regular interval Δ (KΔ=N, N is the total 
number of frames), we have a set of K frames: 

Λ= [Λ1, Λ2, …, ΛK]   (7) 
From eq.(5), we can obtain the Laplacian projection matrix 
WLap

T from Λ. As stated in eq.(6), a given image xi can then be 
projected into this reference subspace as yi. The distance of 
the image xi from a reference image Λk can be calculated as, 

dk=||WLap
Txi - WLap

TΛk||=||yi - yk|| (8) 
where ||·|| is Hilbert-Schmidt norm, and dk is the dissimilarity 
between Mahalanobis distances of two images xi and xk. 

In this paper, the dissimilarity between a given image and a 
set of the selected frames {Λk} forms a dissimilarity vector Di, 

Di={d1, d2, …, dK }  (9) 
Thus, any frame can be simply featured by its similarity 
projection Di in the dissimilarity subspace K provided by 
reference frames.  

With this Laplacian subspace projection, the dissimilarity 
between any two frames xi and xj can be computed by their 
distance in this reference subspace, 

ds{i, j} = ||Di - Dj||   (10) 
In temporal video structure analysis, the most useful 
information is the dissimilarity between neighbouring frames i 
and (i+1), namely ds{i, i+1}. 

C. Hierarchical Video Structure Summarization 
With the overall dissimilarity measure in Eq.(10), it is not 

difficult to estimate the hierarchical temporal video structure. 
In this paper, we perform the video structure analysis in three 
steps. First, scene changes are evaluated from the frame-level 
dissimilarity continuity in video sequence. In the second step, 
the sub-shot key frames are detected by comparing intra-shot 
dissimilarity of all frames in a shot. Third, shot-level key 
frames are further clustered to find common scenes. With this 
scheme, a three layer video structure is summarized. The 
following gives details of the technical implementation using 
the Laplacian Eigen features. 
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1) Shot-level Temporal Video Segmentation 
To detect a video shot boundary, in this paper, rather 

than using any predefined threshold, we apply an adaptive 
threshold obtained from the dissimilarity distribution ds, 

( )( )TH
d

TH ddsQd
TH

,minarg→    (11) 

where Q is the target function to estimate the best threshold 
values. A frame with its neighbourhood dissimilarity ds 
greater than dTH can be defined as a segment boundary, and 
the middle frame between two shot boundary frames is 
defined as the representative frame of this segment. 

2) Scene-level Summarization 
After shot-level key frames are extracted, these key 

frames may still share common scenes. To eliminate this 
redundancy, further clustering and selection is required.  

Among various clustering algorithms, k-means 
clustering (KMC) is a practical and easy method for this 
kind of problem. KMC is a clustering algorithm to partition 
a set of n data items into K clusters (where K < n), which is 
very similar to the expectation-maximization (EM) 
algorithm for mixtures of Gaussians in that they both attempt 
to find the centres of clusters in the data.  

To attain the target of clustering, KMC algorithms are 
based on minimization of the following objective function: 
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where there are K clusters Sj, i = 1, 2, ..., K, and cj is the centroid 
or mean point of all the points xi. ||*|| is any norm denoting the 
distance between any data item and the cluster centre. 

In order to find an appropriate solution to the above 
equation, a cluster number must be provided before the 
KMC iteration starts. Assuming {ci}(k) is the set of K(k) 
initial cluster centres for KCM clustering, to obtain an 
optimal result of cluster centres {ci}(k+1) that matches the 
optimization target in the clustering model Ω, maximum 
likelihood estimation can be obtained through an 
Expectation-Maximization iteration. The iterative 
procedure can be summarized as follows:  

– Assume there are initially k=2 clusters in the data 
set. The KMC algorithm is applied to {xi}, resulting 
in two cluster centres with corresponding 
coordinates. 

– Euclidean distances between the cluster centres 
{ci}(m) are computed. If their mean distances are 
greater than the predefined thresholds {T(k)}, the 
optimal cluster number K is increased to K+1. 
Otherwise, the process is terminated, and we take 
K=m as our final result. 

– Using similar iterations to this, one is able to 
determine a cluster number that brings us a 
Euclidean distance less than the threshold. This 
cluster number is what we are looking for.  

At the end, the key frame at the cluster centre is considered 
as the most representative scene frame of this cluster. 

3) Sub-shot Level Representative Frame Selection 
After the shot-level video segment structure is 

determined, its hierarchical sub-shot structure can be 
extracted subsequently. The basic scheme is similar to the 
above KM procedure for scene summarization. The 
difference is that we use all intra-shot frames in one shot to 
generate the dissimilarity matrix for this shot. After we 
obtain the intra-shot dissimilarity matrix, the KM approach 
is applied to this matrix to find out most representative 
sub-shot frames, which cannot be represented well by shot-
level key frames. 

With the above three-level summarization scheme, we can have 
sub-shot level, shot level, and scene level results for browsing 
and skimming. However, mostly we may use two of these three 
levels. Some videos may need sub-shot summarization, but no 
common scenes between shots. Others may have frequent scene 
changes with no apparent sub-shot structure, while these shots 
may share the same scenes. In the following experiment, the 
experiment is conducted with both cases. 

 
III. EXPERIMENTAL RESULTS & DISCUSSION 

In an experiment, the proposed scheme and the state-of-
the-art LSA-based scheme are coded using MATLAB, and 
tested with the same set of test videos for comparison. The 
test videos are encoded in MPEG-4 format, which can be read 
through MATLAB multimedia interface. The experiment is 
carried out on a 2GH AMD 64 Turion PC with 512MB RAM. 

In all experiments, the video frames are resized to 50% to 
save computation time. In the test, the video stream is first 
input through the MATLAB multimedia codec interface, and 
reference frames are selected from the sequence at a regular 
interval, e.g. one reference frame per 200 frames. For a 30-
minute video sequence, there are about 250 reference frames. 
Then the Laplacian and LSA approaches are applied to these 
reference frames, respectively, to obtain the projection matrix 
WLap and WLSA. With the projection matrices, all frames can be 
projected into the Laplacian and LSA subspaces, and the 
dissimilarity between them can be defined as their Euclidean 
distance in the projection subspace. With the dissimilarity 
measure from LSA-based or Laplacian-based subspace, shot-
level key frames, sub-shot key frames and above-shot scene 
frames are then extracted successively.  

In the following sections, we report two kinds of test. 
One uses a standard test video database [30], where every 
video may have long shots that require sub-shot 
summarization as well. Another test uses movies that have 
short shots with common scenes that need further scene-level 
summarization. 

A. Experiment with Test Videos 
In this test, five videos from RUSHES video database [30] 

are used, as shown in Fig.2. These videos have long shots that 
may need further sub-shot level temporal segmentation, which 
means the video summarization at both shot and sub-shot level. 
Here, the reference frames are selected, one per 200 frames. 
With this subset of reference frames, the matrix size for SVD 
computation is reduced dramatically from N×N to N/200×N/200, 
where N is the number of total frames a video has. 
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Fig. 2. Frames in five test videos 

 
a) Projection of the 1st 1000 Frames in LSA space 

 
b) Projection of the 1st 1000 Frames in Laplacian space 

Fig. 3. Projections in LSA and Laplacian Eigenmap subspaces. 

 
Fig. 4. Dissimilarity distribution ds between neighbouring frames in 

reference-based Laplacian subspace. 

 
a) Shot-level keyframes detected by Laplacian Eigenmap 

 
b) Shot-level keyframes detected by LSA-based approach 

 
c) Lost keyframes in LSA-based summarization 

Fig. 5. Detected shot-level key frames in test video #1 

TABLE I 
COMPARISON OF RECALL AND PRECISION IN 

SHOT-LEVEL KEYFRAME DETECTION. 
LSA Laplacian Eigenmap Test 

Videos Recall Precision Recall Precision 
#1 0.8 0.91 1 0.89 
#2 0.76 0.95 0.87 0.92 
#3 0.71 0.76 0.8 0.85 
#4 0.68 0.82 0.75 0.81 
#5 0.75 0.87 0.81 0.88 

Total 0.74 0.86 0.85 0.87 

 
a) Dissimilarity matrix of frames in the same shot 

 
b) Sub-shot representative frames 

Fig. 6. Sub-shot level key frame detection 
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Table II 
AVERAGE COMPUTE TIME FOR LSA AND LAPLACIAN EIGENMAP 

(UNIT: SECONDS, 1000 FRAMES) 

Method Reference 
Eigenspace 

Frame 
Projection 

Total 
Time 

LSA 1.2 0.325/frame 326.5 
Laplacian 1.1 0.256/frame 257.3 

Fig.3 is the projected result of 1000 frames of the test 
video #1 into the Laplacian and the LSA subspaces, 
respectively. As shown in Fig.3-b, we can clearly see frames 
are clustered together in the Laplacian subspace, which 
implies a better temporal segmentation than LSA. This gives a 
very comprehensible explanation as to why Laplacian 
Eigenmap can give better results in the dissimilarity 
measurement for video summarization. 

Fig.4 shows the corresponding dissimilarity between 
neighbouring frames measured in Laplacian Eigenmap subspace, 
which is used to extract shot-level keyframes. With the computed 
dissimilarity, the temporal video structure can be easily obtained. 
Fig.5 gives the detected representative frames of one test video. 
Fig.5-a shows the results of the proposed Laplacian approach, 
and Fig.5-b shows the results of the conventional LSA approach. 
In comparison, the LSA-based approach failed in the detection of 
several shot-level key frames, as shown in Fig.5-c. 

The performance of both approaches can usually be 
evaluated in terms of the recall rate and precision, which are 
defined as: 

NP

P

A

P

KK
K

K
K

+
==  Precision     ,  Rate Recall

 
where PK is the number of correctly detected key frames, AK  
is the number of all real key frames, and NK  is the number of 
wrongly detected frames. Table I gives the overall test results 
of both approaches over all five videos in RUSHES database 
[31~32]. From the benchmark results, we can see that 
although both approaches have similar precision, the proposed 
Laplacian approach can have much better recall rate in 
keyframe detection. 

Because these test videos contain long shots, it is also 
easy to find out the hierarchical sub-shot video structure after 
the shot-level structure is detected. As introduced in section 
II-c, the first step is to establish the dissimilarity matrix of all 
intra-shot frames. Fig.6-a shows this intra-shot dissimilarity 
matrix of the first shot structure in the test video #1 measured 
in the Laplacian Eigenmap subspace. This shot has 1356 
frames and seven sub-shots are detected, as shown in Fig.6-b.  

Table II also gives the computing time of both 
approaches. We can see that Laplacian-based approach is 
slightly better in saving time. This is due to the dramatic 
dimensional reduction in Laplacian Eigenmap. While LSA 
subspace may have several hundred dimensions, Laplacian 
subspace can only have several ten. 

B. Summarizing Real Movies 
Since video abstarction appears more natural and 

attractive to viewers, most recent work on movie abstraction 
focuses on the generation of a short synopsis of a long feature 
film. In this section, the proposed Laplacian-based approach is 
applied to two well-known test movies, Friends and Titanic. 

In the experiment, we first select reference frames by one 
per 200 frames. For a 30 minute story, this gives about 225 
reference frames. As described above, the Laplacian 
Eigenmap approach is applied to extract the projection matrix 
WLap. After WLap is obtained, all frames can be projected into 
its Eigen space.  

Fig.7 shows the frames in the movie Friends. We can see 
there are frequent scene transitions that may make up the 
video story. Fig.8 shows the projection result of about 8000 
frames. With this projection result, the distance between any 
two frames can be easily measured. A useful dissimilarity 
measure is the dissimilarity between two neighbouring frames, 
which may represent the scene transition process. Fig.9 gives 
the measured neighbourhood dissimilarity distribution along 
the frame sequence. With this dissimilarity measure, shot 
transitions and key frames can be detected, as shown in Fig.10. 
In total, about 80 keyframes are found from the first 5 minutes 
of the movie. 

 
Fig. 7. Frames in Movie --- Friends Episode 

 
Fig. 8. Projection of frames in Laplacian Eigen Space (8000 frames 

shown in total). 

 
Fig. 9. Dissimilarity between the neighboured frames in Eigen space 

 
Fig. 10. Extracted shot-level representative frames in Friends 
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Fig. 11. Dissimilarity matrix between keyframes 

 
Fig. 12. Summarized representative scenes in Friends 

 
Fig. 13. Frames in Movie --- Titanic 

 
Fig. 14. Projection of frames in Laplacian Eigen Space (about 27000 

frames for the 30 minutes video). 

 
Fig. 15. Extracted shot-level representative frames in Titanic 

 
Fig. 16. Dissimilarity matrix between keyframes 

 
Fig. 17. Summarized representative scenes in Titanic 

As it can be seen from the detected key frames in Fig.10, 
shot transitions happen frequently in such movies, while many 
shots are taken from the same scene. Thus, scene-level movie 
summarization becomes necessary to find the most 
representative scene frames.  

In order to achieve this purpose, the dissimilarity of all 
detected keyframes can be computed by measuring the 
distance in their Eigen space projection. Fig.11 gives the 
calculated dissimilarity matrix of all shot-level key frames. 
Similarly, as described in section II-C, K-means clustering is 
applied to the dissimilarity matrix to find out which are the 
most representative scene frames. Fig.12 is the result from the 
EM procedure, where about 20 scene-level representative 
frames are selected from about 80 key frames. It can be seen 
that these scene frames have obviously less redundancy or 
scene similarity than shot-level keyframes. 

Fig.13 shows the frames in another classical movie, 
Titanic. Fig.14 shows the projection result of about 27000 
frames of the 30 minutes video. After the frames are projected 
into the subspace, the distance between any two frames can be 
measured as their dissimilarity. With the disismilarity of 
neighbouring frames, the shot transitions are detected and 
their corresponding key frames are listed, as shown in Fig.15, 
where we can see that many similar keyframes are actually 
from the same scene.  

In order to provide further scene level suimmarization, 
the dissimilarity matrix between key frames is computed, as 
shown in Fig.16. KM clustering is then applied to the 
dissimilarity matrix, and scene-level representative frames are 
obtained, as shown in Fig.17. 

From the experiment on two typical movies, it is shown 
that the proposed approach can work well for movie 
summarization. With the proliferation of digital videos, as a 
useful video abstraction tool for fast content browsing, 
skimming, transmission, and retrieval of massive video 
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databases, video summarization and skimming has become an 
indispensable tool of any practical video content management 
system, which illustrates the potential of the proposed 
approach for commercial applications in web multimedia, 
mobile multimedia, interactive TV, and emerging 3D TV. 

 
IV. CONCLUSIONS 

In conclusion, a novel video summarization approach 
using Laplacian Eigenmap for hierarchical video 
summarization is presented, and the experiments on test 
videos show that the proposed approach can adaptively give 
the hierarchical video summary with higher recall accuracy 
for finding representative content in comparison with the 
similar LSA-based approach. A further examination was 
performed on movie summarization, which shows the 
proposed hierarchical scheme can also effectively eliminate 
the redundancy in key frames and find the most representative 
scene frames from shot-level key frames. 
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