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Abstract — For corporations or individuals who wish to 
protect the confidentiality of their data across computer 
networks, network-layer encryption offers an efficient and 
proven method for preserving data privacy. Network layer 
encryption such as IPSec is more flexible than higher layer 
solutions since it is not application-dependent and can protect 
all end-to-end traffics that go between two hosts. Using IPSec, 
two hosts must first establish a session key through message 
exchanges before they can communicate. In this paper, we 
present an Identity Based Encryption (IBE) scheme that 
allows a host to calculate the per-packet encryption key based 
on the IP address of the destination host, without going 
through the expensive key exchange process as in IPSec. Our 
mechanism is compatible with the current IP protocol and we 
tested our scheme with live HTTP and ICMP traffic. Our 
results show that our protocol provides a zero-configuration 
network layer encryption solution for end-to-end secure 
communications that is ideal for consumer electronics 
applications. 
 

Index Terms — Network encryptor, Identity-based encryption 
(IBE), Tate pairing, Supersingular curve.  

I. INTRODUCTION 
Network encryptor can be used to provide end-to-end 

encryption of data sent from the source node to the destination 
node. Compared to application layer encryption, such as 
S/MIME and PGP, which only works for a specific 
application and requires installation of programs in the client 
workstations and server hosts, network encryptor is 
independent of applications and is completely transparent to 
the end users. 

Internet Protocol Security (IPSec), which operates at the 
network layer, is a well-established protocol that provides 
end-to-end encryption for securing IP communications. In 
IPSec, both the sender and receiver must use the Internet key 
exchange protocol (IKE or IKEv2) to set up a security 
association (SA) for negotiating encryption protocols and 
algorithms, and for generating the encryption and 
authentication keys before an IPSec-protected communication 
can be set up. These generated encryption and authentication 
keys are then reused throughout the lifetime of the association. 

Unfortunately, because of its complexity, IPSec                  
is commonly implemented in software requiring operating  
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system support. Not only will such complex software setup 
prevent such security system to scale to future high-speed 
networks, the large per-host setup task also presents a 
significant challenge to system administrators of large 
corporations with thousands of clients. 

In this paper, we present a layer-3 end-to-end network 
encryptor using identity based encryption (IBE). In our 
scheme, the IP address of a target host is used as its identity 
for encryption. The proposed network encryptor has the 
following advantages: 
• Because of the simplicity of our IBE scheme, the 

encryptor can be implemented entirely in hardware as a 
black box, eliminating any need of per-host software 
setup. Furthermore, such hardware solution has the 
potential to scale with future high-speed networks. 

• Because IBE is used, complicated key management and 
exchange processes as in IPSec are unnecessary. As a 
result, the overhead of our encryption scheme is small 
when compared to IPSec. 

• Since complex key negotiation is not needed in our 
scheme, each IP packet can be encrypted using a 
different key, eliminating the risk of key-hijacking. 

• Compared to traditional public-key technologies such 
as RSA public key system (PKCS#1) and Elliptic 
Curve Diffie-Hellman public key system (ECDH), our 
scheme eliminates the burden of complex key 
management from the key servers. In fact, the presence 
of the key generating server (KGS) in our scheme is not 
required for data communications.  

As the proposed encryption scheme requires no per-host 
software setup, we term this scheme a zero-configuration 
network encryption scheme.  Because of its very simple key 
management mechanism, our scheme is particularly suitable 
for use in large corporations in which secure IP 
communication must be provided for use among a large 
number of devices in the corporation’s intranet and for 
roaming Internet access. 

The uses of identity-based cryptosystems have been 
proposed under various different contexts.  In [1], an identity-
based encryption scheme was proposed to provide secure and 
anonymous roaming wireless access, which improves on 
schemes such as [2] that utilizes symmetric key for 
encryption.  Similarly, an identity-based key exchange scheme 
was used in [3] to address man-in-the-middle attack of their 
previously proposed FEA-M scheme [4].  However, we are 
not aware of any prior work utilizing such identity-based 
scheme for IP network traffic encryption. 

The rest of the paper is organized as follows. Background 
information about IBE using Tate pairing is first presented in 
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Section 2, followed by the description of the proposed 
encryption scheme in Section 3. Section 4 describes our initial 
implementation results and a method to enhance throughput. 
We discuss security considerations and the scheme's ability to 
coexist with common network protocol in Section 5 and 
Section 6, respectively. Concluding remarks are then given in 
Section 7. 

II. BACKGROUND 
The concept of IBE was introduced by Shamir in 1984 [5]. 

The idea is to let a user's identity to be used as his public key. 
The corresponding private key of a user can be generated by a 
publicly trusted Key Generating Server (KGS) using the user's 
public key and the master secret key of the KGS. In 2001, 
Boneh and Franklin [6] invented the first feasible solutions for 
IBE using the Weil pairing on elliptic curves. Since then, 
many ID-based key agreement protocols and signature 
schemes using bilinear pairing have been suggested [7]. 

We propose to use the Boneh-Franklin IBE scheme [6] to 
encrypt IP packets. In our scheme, IP address is used as 
identity of network hosts and so any message sender can 
calculate the public key of the message receiver using his IP 
address. Tate pairing [8] on an elliptic curve, E is used to 
generate the shared secret between the message sender and 
receiver. Such shared secret is used as the per-packet key for 
encrypting the IP packet. Tate pairing was chosen in our 
scheme because of its relatively low computational cost. 

The ease of implementation and degree of security depends 
on the choice of this curve, E. We will defer the discussion of 
our choice of E in our current implementation to Section 3.A. 

We now briefly describe the mechanism of Tate pairing. 
Let E  over qF  be an elliptic curve where q is a power of a 

prime and let ])[( lFEP q∈  and ])[( lFEQ kq
∈  be a pair 

of points on E  where k  is the embedding degree of E . The 
Tate pairing operates on P and Q , and produces a result in 

*
kq

F : 

l
qqqq kkk FFlFElFE )/(])[(])[(: **→×τ     (1) 

We write ),( QPτ  for the Tate pairing of P and Q . For 
P of order n , to get ),( QPτ , we first find a rational 

function Pf  so that )( Pfdiv  is equivalent to )0()( nPn −  

and then evaluate Pf  at a divisor, QD  equivalent to 

)0()( −Q . That is, 
lq

QP

k

DfQP /)1()(),( −=τ            (2) 

An effective algorithm for finding Pf  was proposed by 
Miller and was further improved by the works of [9] and [10]. 
In [11] and [12], a fast formula for the Tate paring 
computation of supersingular elliptic curve, bE  over binary 

field, with 1)2,gcd( =m  was proposed. That is, 

bxxyyEb ++=+ 32:  where 1,0=b     (3) 

The corresponding elliptic curves in the form of Equation 3 
have the embedding degree, 4=k  and have orders dividing 

122 +m  [13]. The most useful property of Tate pairing for 
use in IBE is its bilinearity [11]. That is, 

abQPbQaP ),(),( ττ =             (4) 

III. PROPOSED ENCRYPTION SYSTEM 
There are two distinct phases in our encryption scheme. 

First, a user must register with a central key generating 
server (KGS) to obtain its private key. The KGS holds the 
master key of the system which is required for generating 
the private key of a user. Once equipped with his private 
key, a user may then engage in encrypted communication 
with another user without contacting the KGS again. In this 
sense, the workload of our KGS is much lower than a 
certificate authority (CA) of a conventional public key 
infrastructure.  

Then, when a user A wants to transmit a stream of packets 
to user B, A would encrypt each individual packet with a 
unique key generated based on the IP address of B. Forty 
(40) bytes of information that is needed to decrypt a packet 
is embedded in the packet. To ensure that the encrypted 
packet may travel through standard routers, only packet 
payload and its corresponding header fields are modified in-
place. Upon receiving an encrypted packet, B decrypts the 
packet using the information carried in the packet and his 
own private key.  

A. System Setup 
As mentioned in Section 2, the choice of E  affects not only 

the efficiency of all subsequent computations, but also the 
security level of our scheme. To facilitate decryption of a 
packet on the receiving end, each IP packet needs to be 
embedded with extra information. The size of this information 
is directly proportional to the degree of E . At the same time, 
the security level of our encryption scheme increases with the 
degree of E . Therefore, a trade-off must be made to balance 
the effects.  

In our current implementation, we have chosen this 
underlying elliptic curve as a supersingular curve E  over 

)2( mF  where 283=m . E  is in the form of Equation 3 
with 0=b . That is, 

xxyyE +=+ 32:            (5) 

and the generating polynomial for the finite field is  

1)( 5712283 ++++= xxxxxf       (6) 

As the embedding degree of E  is 4, the result of Tate pairing 
is in )2( 4mF .  

This choice of E  is made because its corresponding 
Menezes, Okamoto, and Vanstone (MOV) security level [15] 
is 1132 which is comparable to a 1024-bit RSA encryption 
scheme. 
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B. Master Key and User Registration 
For each instance of our IBE system, the KGS must first 

generate a set of system-wide parameters according to the 
following steps:  

Step i : Select a point P on E. 
Step ii : Generate a field )2( mFx∈  randomly. 
Step iii : Calculate xP.  
 
While x is kept by the KGS as the master key, P and xP are 

announced to all users as the public parameters for the system.  
When a user registers with the KGS, the latter generates the 

user's private key based on his IP address using the following 
procedures: 

     Step i   : Calculate the public key, A  for the user, e.g. 
Alice, with IP address, Aip   

)( AipGenPubKeyA ←  
where the function GenPubKey() is defined in 
Algorithm 1. 

Step ii   : Calculate the private key of Alice, xA . 
Step iii  : Send xA  to Alice through a secure channel.  

 
Algorithm 1: Generate Public Key from IP 

  function GenPubKey(ip) 
Let ),( yx PPP  be a point on E  

)(ipMAPPx →  
   repeat 
   Use Equation 3 to find yP  

if yP  does not exist then 

1+= xx PP  
   end if 

until yP  exists 

return P  
end function 
 
function )(ipMAP  

for i = 0 to m -1 do  
]32mod[][ iipiPx =  

end for 
return xP  

end function 
 

C. Encrypting IP Packets  
When Alice sends a stream of IP packet to Bob, each packet 

is encrypted using the following steps:  
     Step i   : Calculate the public key of Bob, B using his IP 

address, Bip : 

)( BipGenPubKeyB ←  

Step ii   : Pick r  randomly from )2( mF  
Step iii  : Calculate rP . 
Step iv  : Calculate the shared secret, )2( 4mFs∈ :  

rxPBs ),(τ=         (7) 
Step v   : Convert s to a key of length of m bits and use it as 

the per-packet key, )2( m
s FK ∈ . That is: 

4321 ssssKs +++=  ,    (8) 

where  },,,{ 4321 sssss =  and  

     )2(,,, 4321
mFssss ∈  

Step vi   : Encrypt the IP packet by a RC4 stream cipher 
using sK  as the encryption key. 

Step vii : Send the x-coordinate of rP , )(rPX , and the 
encrypted IP packet to Bob.  

D. Decrypting IP Packets  
When Bob receives an encrypted IP packet, he takes the 

following steps to decrypt the packet:  
Step i    : Extract )(rPX  from the received packet. 
Step ii   : Calculate the y-coordinate of rP  based on 
      )(rPX , 
Step iii  : Calculate s  using his private key, xB : 

),( rPxBs τ←         (9) 
Step v  : Convert s  to a key of length of m bits and use it 

as the per-packet key, sK . 
  Step vi :     Decrypt the received IP packet by a RC4 stream   
                    cipher using sK  as the decryption key. 

Note that according to Equation 4,  
rxr xPBPBrPxB ),(),(),( τττ ==      (10) 

As a result, s  calculated in Equation 9 is identical to the s  
calculated in Equation 7 that was used to encrypt the packet, 
making decryption possible.  

E. Encrypted IP Datagram Format 
The network encryptor works at the network layer to encrypt 

payload data in IP datagram. Because a RC4 stream cipher is 
used, the payload of the original packet is modified in-place 
with encrypted data. However, according to the protocol in 
Section 3.C step vii, )(rPX  must be appended into the 
payload of the encrypted IP packet. The size of )(rPX  is 

⎡ ⎤8/m  = 36 bytes.  
Since extra information must be inserted into the original IP 

packets, the resulting IP packets may exceed the maximum 
transmission unit (MTU) of 1500 bytes [16]. For such cases, 
the original packet is fragmented into two encrypted packets, 
with the first one containing the encrypted payload and the 
second one containing )(rPX . We call the first fragment F1 
and the second fragment F2. To determine if a packet is 
fragmented, an encrypted packet type identifier (EPT) is 
appended in the encrypted packets.  
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In the case of unfragmented packet, together with the EPT, a 
total of 40 bytes is appended to the original IP packet. As a 
result, both the checksum and the length fields of the header 
must be modified accordingly. The resulting datagram is 
depicted in Figure 1. 

Since F1 needs to carry the 4-byte EPT, 4-byte of encrypted 
payload is now carried by F2. Therefore, F2 contains the 
remaining 4 bytes of encrypted payload together with 

)(rPX  and EPT. 
 

Ver header 
len 

type of 
service 

length’ = length + 40 

16-bit identifier flags fragment offset 
time to live upper layer internet checksum’ 

Source IP address 
Destination IP address 

Options 
Encrypted payload data (in place) 

X(rP) 
EPT = NORMAL 

    Fig. 1.  Encrypted IP datagram with payload replaced.  

IV. IMPLEMENTATION RESULTS 
To demonstrate the feasibility of the above methodology, 

we have implemented the proposed network encryptor in 
software.  

A. Implementation Details 
The network encryption scheme was implemented under 

Microsoft Windows environment using Microsoft Visual C++ 
6.0 development tool. An open source library, WinPCap 
V4.0.2 was used for receiving and sending IP packets. 
Another open source library called MIRACL was used for 
implementing all the cryptographic algorithms.  

Figure 2 shows the high-level block-diagram of our test 
setup. Two computers, Host A and Host B, which act as 
source and destination for generating traffic, are set up within 
a local area network (LAN) that is connected to the Internet 
through a gateway router. All traffic between Host A and Host 
B are encrypted and decrypted by the two encryptors currently 
implemented by two 1.6GHz Pentium IV computers. The 
remaining traffic going on to the Internet are not encrypted.  
 
  
 
 
 
 
 
 
 
 
 
 
  
             Internet 

Fig. 2.  Hardware test platform. 
 
Between the two hosts, ICMP packets were first used for 

testing the basic functionality of our encryption scheme. 

Subsequently, standard web browsing traffic for downloading 
a file of 9M bytes was generated between the two hosts. 
Together with the encrypted traffic, background traffic going 
to the Internet, including FTP, POP, SMTP and HTTP traffic, 
are generated. The encrypted and the unencrypted traffic have 
been demonstrated to coexist successfully using our initial 
implementation.  

Using our initial software implementation, the processing 
time for encrypting an IP datagram is 70ms while the 
processing time for decrypting an IP datagram is 64ms.  

B.  Network Bandwidth Overhead 
Referring to Section 3.E, the overhead for the encryption is 

40 bytes if the size of the original IP datagram is 1460 bytes 
or less. If the packet is fragmented because of the size is larger 
than 1460, the overhead will be equal to the size of F2. The 
size of F2 is the sum of the size of IP header, 4 bytes of 
payload from F1, )(rPX  and EPT, i.e., 20+4+36+4 = 64 
bytes.  
The overhead of our scheme can be calculated using the 
following formula: 
 

∑
=

=
1500

28

)()(
i

iPiooverhead        (11) 

where o(i) is the overhead of our scheme when the packet size 
is i, and P(i) is the probability that a packet has a size of i. 
Assuming the size of IP packets is uniformly distributed 
between the minimum size of 28 bytes and the maximum size 
of 1500 bytes, then the network bandwidth overhead is:   

∑∑
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= 10.87% 
 
Such overhead does not impose significant traffic loading to 

the network.  

C.  Speed Improvement 
The most time-consuming step in the proposed IBE scheme 

is the calculation of Tate pairing. To improve the throughput 
of the encryptor, we propose a key caching scheme to 
eliminate the need of Tate pairing calculation for every IP 
packet.  

The proposed key caching scheme works as follows. After 
Alice sends the first encrypted IP datagram to Bob, she caches 
rP  and s . When she sends the next IP datagram to Bob, she 
calculates rP  and s  using Equation 12 and Equation 13 
respectively instead of following step ii to iv in Section 3.C. 

rPrPrP +←            (12) 
2ss ←                (13) 

 
Similarly, Bob also caches rP  and s  after decrypting the 

first IP datagram received from Alice. The cached values are 
subsequently used to calculate the new rP  and s  for 
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decrypting the next IP datagram from Alice. After sending N 
(a parameter predetermined by Alice) IP datagrams to Bob, 
Alice resets her key cache and follows step ii to iv in 
Section 3.C again to calculate rP  and s . 

Without any Tate pairing computation, the processing time 
for encrypting/decrypting an IP datagram is reduced to 520μs, 
which is about 130 times faster compared to the one with Tate 
pairing computation.  

Subsequently, the frequency of resetting the cache will also 
affect the overall throughput. For example, if N = 1000, the 
average processing time for encrypting IP datagram is reduced 
to (70+0.52×999)/1000=0.59ms. Assuming the average size 
of IP datagram is 744 bytes and ignoring the processing time 
for receiving and sending IP packets, the throughput of the 
encryption for one-way traffic is 744×8/0.59ms ≈ 10Mbps.  

Note that this proposed key caching scheme has intrinsic 
capability for solving the synchronization problem. That is, if 
Bob fails to receive any of the encrypted IP datagrams from 
Alice, the cached s  cannot be used to calculate the new s for 
the decryption of the next encrypted IP datagram from Alice. 
However, Bob can still use the received )(rPX  and follow 
all steps in Section 3.D to decrypt the next IP datagram and 
resynchronize the key exchange between Alice and him.  

V. SECURITY CONSIDERATIONS 
The proposed network encryptor can provide end-to-end 

encryption of messages over IP network so they cannot be 
sniffed and uncovered by an unauthorized entity. However, as 
the encryptor works in transport mode, in which only the 
payload of the message but not the header information is 
protected, attackers may find some useful information from 
the unprotected header information to attack the network 
equipped with the network encryptors. On the other hand, at 
the present stage, the network encryptor only provides 
confidentiality but not source authentication and message 
integrity. Thus, it can only protect against passive attacks 
(eavesdropping and sniffing data as it passes over the 
network) but not active attacks (altering data and 
masquerading as another individual to send data over the 
network). We will explore how to enhance our mechanism to 
support authentication and message integrity in the future.  

A.  Chosen-Plaintext Attack 
As any user in the system can use the encryptor to encrypt 

any chosen plaintext, the system is subject to chosen-plaintext 
attack in which an attacker can choose the plaintext that gets 
encrypted and obtain the corresponding ciphertext from the 
output of the encryptor. However, as a 283-bit RC4 cipher is 
used for the encryption, it is unlikely to discover the key for 
the encryption by simply analyzing the plaintext-ciphertext 
pairs. In addition, each IP datagram is encrypted by a unique 
per-packet key. Therefore, the security of the system will not 
be seriously affected even if one of the keys is discovered by 
the attacker.  

B.  Key Escrow 
As the KGS is in possession of the master secret, x, it 

encompasses the full knowledge of private keys of all 

users, allowing it to decrypt any message sent to any user. 
There are two ways to reduce the risk of breaking the entire 
IBE system owing to the compromise of the KGS: 1. by 
using distributed key generating servers; and 2. by using 
short-lived master key.  
In the first method, x is split into two or more parts, xi, 
where ∑ =

i
i xx . Each ix  is then kept independently by a 

different key generating server, KGSi. When a user, such as 
Alice with public key A , registers with the system, she 
must approach each KGS independently. Each KGSi will 
then return a partial private key Axi , as well as Pxi  to 
her after verifying her identity. Once equipped with such 
information, Alice may then calculate her true private key 

∑=
i

i AxxA  as well as ∑=
i

i PxxP . Since each KGSi 

possesses only ix , no individual KGS can calculate the 
private key of any user unless they conspire to do so, which 
also reduces the risk of compromising x  if any one KGS is 
compromised.  

The second method to lower the chance of compromising 
the master secret key, x  is by employing a short-lived 
master key x . In this case, KGS changes the value of x  at 
a regular interval. With each new master key, private keys 
for all users are also updated. The updated private keys may 
subsequently be pushed to each individual users registered 
in the system, or pulled by a user when the old private key 
is found incapable of decrypting IP datagram correctly.  

VI. APPLICATION CONSIDERATIONS 
This section discusses the implications of application 

protocols commonly deployed to our IBE encryption 
scheme and the precautions that must be made to ensure 
correct operations.  

A.  Dynamic Host Configuration 
Dynamic Host Configuration (DHCP) is a protocol used 

for assigning IP addresses to individual networked devices 
dynamically for operation in an IP network. As a 
fundamental assumption of our proposed IBE scheme is to 
utilize the IP address of the receiver as the unique identity 
for public key calculation, our scheme cannot work with an 
IP network using DHCP that randomly assigns IP addresses 
to users. However, as many DHCP servers do, it is possible 
to fix the mapping between a MAC address and the 
corresponding assigned IP address. With such a mapping, 
our scheme may then perform as expected.  

B.  Network Address Translation 
When an IP packet is routed through a router, the source 

or destination IP address in the IP header may be translated 
by the router, which will affect the use of our proposed 
network encryptor. For our scheme to be compatible with 
NAT, extra encryptors and decryptors must be deployed 
together with the NAT server, as shown in Figure 3. 
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Fig. 3. Use of the network encryptors with a NAT router. 

In the proposed network architecture, E1 keeps the 
private key for the IP address of 138.76.29.7 and it is only 
used for decrypting IP packets from the Internet, whereas 
E2 does not keep any private key and it is only used for 
encrypting IP packets from the intranet. For all outgoing IP 
packets from Host B or C to Host A, as there is no address 
translation, E1 and E2 will simply route the packets 
through them. For all incoming IP packets sent from Host A 
to Host B or C, the packets will be decrypted by E1 first 
and then encrypted again by E2 using the IP address of 
Host B or C as the public key before sending the packets to 
Host B or C.  

C.  Mobile IP 
Mobile IP is an extension to the Internet Protocol which 

enables mobile computers to stay connected to the Internet 
regardless of their locations and without changing their IP 
addresses. Mobile IP uses two types of routing protocols, 
namely, indirect routing and direct routing.  

In indirect routing protocol, IP packets sent to the mobile 
user use its home address. Since the destination address of 
an IP datagram remains pointing to the original home IP 
address, our proposed network encryption scheme, which 
requires only the destination address for encryption, works 
without any modification in this case.  

In direct routing protocol, the following techniques can be 
used: During the link setup phase in which the 
correspondent user gets the care-of-address of the mobile 
user from the home agent, the encryptor connected to the 
correspondent user sniffs the packets sent between the 
correspondent user and the home agent, obtains the care-of-
address of the mobile user, and associates it with the home 
address of the mobile user. When the corresponding user 
actually sends data to the mobile user using his care-of-
address, the encryptor uses the care-of-address to look up 
the home address of the mobile user and uses the home 
address as the public key for encryption.  

VII.  CONCLUSION 
In this paper, a zero-configuration Identity-based IP 

network  encryptor is presented. The destination IP 
address of an IP datagram is used to generate unique keys 
to encrypt each individual IP datagram. Since all 
information required to generate encryption keys is 
available with the sender, no communication with 

centralized key servers is needed, eliminating any 
possible performance bottleneck. Furthermore, since a 
new per-packet key is generated for each individual IP 
datagram, the risk of key hijacking is virtually eliminated.  

In addition, design considerations when our IP-centric 
encryption scheme must coexist with common network 
protocols, including DHCP and NAT, are presented.  

The proposed encryptor has been implemented in 
software and the initial implementation results indicate 
that it can work effectively to provide strong encryption 
for IP packets sent among hosts in an IP network. 
Furthermore, using a key caching scheme, our proposed 
network encryptor can achieve a throughput of 10Mbps 
half-duplex traffic.  

In the future, we plan to implement the IBE encryption 
scheme entirely in FPGA so as to provide the needed 
speed to cope with live traffic in a 10Gbps Ethernet 
network.  
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