

This document is published in:

“Consumer Electronics, IEEE Transactions on, November 2012, 58 (4), 1425-1433. Doi:
http://dx.doi.org/10.1109/TCE.2012.6415016 .

© 2012 IEEE. Personal use of this material is permitted. Permission from

IEEE must be obtained for all other uses, in any current or future media,

including reprinting/republishing this material for advertising or

promotional purposes, creating new collective works, for resale or

redistribution to servers or lists, or reuse of any copyrighted component of

this work in other works.

SuSSo: Seamless and Ubiquitous Single Sign-on for
Cloud Service Continuity across devices

Patricia Arias Cabarcos, Student Member, IEEE, Florina Almenárez Mendoza, Member, IEEE, Rosa Sánchez
Guerrero, Student Member, IEEE, Andrés Marín López, Member, IEEE, and Daniel Díaz-Sánchez, Member, IEEE

Abstract — The great variety of consumer electronic
devices with support of wireless communications combined
with the emerging Cloud Computing paradigm is paving the
way to real anytime/anywhere computing. In this context,
many services, such as music or video streaming, are
delivered to the clients using Cloud-based providers.
However, service continuity when moving across different
terminals is still a major challenge. This paper proposes
SuSSo, a novel middleware architecture that allows sessions
initiated from one device to be seamlessly transferred to a
second one, as might be desirable in the enjoyment of long
running media1.

Index Terms — Cloud Computing, service continuity, session
handoff, personal multimedia devices.

I. INTRODUCTION

A. Problem Statement

Many organizations are seeking to deliver services to their
users by means of Cloud-based providers (e.g. video or audio
streaming). This is typically motivated by a desire to avoid
management of commodity services which, through
economies of scale, can often be delivered more efficiently by
such providers.

This trend, together with the increasing usage of small
portable devices and wireless networks is paving the way to
real anytime/anywhere computing. Nowadays, due to the
dramatic evolution of technological convergence, the different
consumer electronic devices that a user owns have similar
capacities and may allow him to access the same applications
and services. The usage of one device or another will depend
on the context, i.e. on which option suits better to the current
situation. Furthermore, users want to enjoy services on the
move, which entails dynamic changes of context. As a
consequence, a user enjoying a long duration service may
desire to keep the same session across different devices during

1 This work was supported in part by the State of Madrid (Spain) under the
contract number S2009/TIC-1650 (e-Madrid), and the Spanish Ministry of
Science and Innovation under the project CONSEQUENCE (TEC2010-
20572-C02-01).

Patricia Arias Cabarcos is with the Telematic Eng. Department, Carlos III
University, 28911, Leganés, Madrid, SPAIN (e-mail: ariasp@it.uc3m.es).

Florina Almenárez Mendoza with the Telematic Eng. Department, Carlos
III University, 28911, Leganés, Madrid, SPAIN (e-mail: florina@it.uc3m.es).

Rosa Sánchez Guerrero with the Telematic Eng. Department, Carlos III
University, 28911, Leganés, Madrid, SPAIN (e-mail: rmsguerr@it.uc3m.es).

Andrés Marín López is with the Telematic Eng. Department, Carlos III
University, 28911, Leganés, Madrid, SPAIN (e-mail: amarin@it.uc3m.es).

Daniel Díaz-Sánchez is with the Telematic Eng. Department, Carlos III
University, 28911, Leganés, Madrid, SPAIN (e-mail: dds@it.uc3m.es).

the lifetime of the service consumption, maintaining
continuity. In this context, the need of adequate Multi-device
Single Sign-on (MD-SSO) technologies comes into scene.
MD-SSO is defined as "Single sign-on for users that crosses
devices, i.e. the session is initiated from one device or user-
agent, and subsequently transferred to a second, as might be
desirable in the enjoyment of long running media, e.g.
streaming video" [1].

A use-case that perfectly illustrates the added value of MD-
SSO is depicted in Fig.1: Bob is on his way home listening to
his favorite song list; while he drives, the music is reproduced
by the car audio system. When he goes out of the car and
walks towards the house, the session is seamlessly transferred
to his personal music player and it continues with the current
song in the same exact point. Finally, when he enters home,
the music session is switched again from Bob’s player to his
home sound equipment. This switching between Bob’s
personal music player, in-car player, and house music
equipment provides service continuity. Another example could
be the case where a user arrives home and wants to transfer his
browsing session and current activity on social networks from
his Smartphone to his TV, which offers a better display and
prevents his phone to run out of battery.

Fig. 1. Multi-device Single Sign-On scenario: a mobile user switches
his active session with a music streaming cloud provider between
different personal devices, achieving service continuity

Both use cases are feasible with current state of the art
technology, and the concept of session mobility across
terminals is far from new. In fact, the idea is described as an
essential pillar in the traditional literature on ubiquitous
computing [2], [3]. Nevertheless, few implementations have
been developed and there is no mainstream adoption of MD-
SSO technologies, which is especially remarkable and led us
to analyze the reasons and propose a solution.

1

B. Related Work and Challenges

Related academic work in the field usually focus on specific
modifications to protocols [4], [5], and industry work
concentrates on proprietary implementations that only work
within a narrow set of devices belonging to the same
manufacturer or for a specific application or service. The
majority of works focus on SIP-based session mobility [6],
[7], so the solutions are tied to the use of this protocol.
Besides, some recent approaches, such as [8] and [9] are based
on synchronization of session data, which are stored on a
proxy or external entity accessible by different devices. As it
can be seen, the main problems of the current solutions are
related to interoperability across heterogeneous systems.
Furthermore, in the case of synchronization, outsourcing the
storage of personal data to a third entity raises privacy issues,
since sessions may be tracked. Regarding usability, repeated
authentication is required when accessing synchronization
data from a different device, which is a cumbersome task and
imposes an undesirable delay. Therefore, it should be possible
to switch between devices in a seamless way without the need
to re-authenticate again on each device [10]. Finally, [11]
proposes an architecture to support application-level session
handoff between heterogeneous devices. This is focused on
multimedia sessions (i.e. MPEG), adaptation of resources and
management of multiple sessions. Nevertheless, security
considerations are not included in the architecture.

In order to overcome the aforementioned barriers, we state
that an open holistic architecture is required to guarantee
flexibility and allow interoperation across all platforms. Thus,
a new layer must be defined and embedded in consumer
electronic devices to abstract the complexity of session
transference and to achieve service continuity. With these
premises in mind, we propose SuSSo (Seamless and
ubiquitous Single Sign-on): a middleware architecture aimed
at enhancing the user experience when consuming services on
the move and maintaining a smooth personal experience even
when changing terminals. The original value of our
contribution is that serves as a foundation to construct
universal MD-SSO for any kind of applications and services,
and allows interworking between heterogeneous devices. We
also focus on maintaining the security sessions (i.e.
authentication/authorization state) when changing terminals to
accomplish service continuity based on single sign-on.

Other considerations related to the application properties
(e.g. multimedia transcoding or resolution) and to the network
level (e.g. QoS parameters) are out of scope of this paper. This
is oriented to the application and session levels. In [12] a first
approach about transferring trust information and security
session data between handheld devices belonging to the same
user was proposed. Nevertheless, this proposal requires
additional mechanisms in order to achieve the goals defined
above, and to include standard languages to achieve
interoperability. Our approach involves four well-defined
steps: identification of requirements, architecture definition,
prototype implementation, and performance evaluation.
According to this procedure, the remainder of this paper is

structured as follows: section II summarizes the main
functional and non-functional requirements to build a generic
MD-SSO system. Then, section III gives a global overview of
the proposed middleware architecture. Sections IV and V
explain the core elements of the architecture, namely the
components in charge of handling session data and the
mechanisms to transfer this information. Next, section VI
describes our work in the prototype implementation, giving
some details about performance measurements; and finally,
section VII outlines the main conclusions and future research
lines.

II. REQUIREMENTS FOR A GENERIC MD-SSO SYSTEM

In this section, we identify a basic set of requirements that
will be used as principle guidelines to model the proposed
architecture for MD-SSO.

On the one hand, the functional requirements for the
system to accomplish the main goal of session continuity
across multiple devices are:

 FR1. Context management: contextual information
must be extracted and processed to determine when a
session transfer can be performed.

 FR2. State management: state data of the current
running applications in the origin device must be
obtained before any session transfer. The security
context is especially relevant for future session
restoring.

 FR3. Session transfer: application data as well as
security context information must be packed and
transferred between different devices.

 FR4. Automatic session restoring: the destination
device must be capable of automatically restoring the
applications that were running on the origin device,
as well as its associated security sessions on behalf of
the user.

On the other hand, is important that the MD-SSO system
fulfills the following basic non-functional requirements:

 NFR1. User centricity: the system must be user
friendly, user controlled and take user preferences
into account.

 NFR2.Flexibility: the system must allow
interoperation across heterogeneous platforms and
protocols and be capable of accommodating different
applications and services.

 NFR3. Performance: the performance of the system
in terms of response time when moving sessions must
be reasonable to ensure a smooth user experience.

 NFR4. Security: communications and data handling
by the system must consider security as a primary
concern.

How different approaches in the related work cover these
non-functional requirements is analyzed in Table I. The
functional requirements are covered by such works, except
FR4, because they do not address automatic session restoring.

2

TABLE I
RELATED WORK COMPARISON

Proposal
Focus NFR1 NFR2 NFR3 NFR4

Protocol
modification
[4], [5]

- - NA +

SIP-based
[6], [7]

- - NA +

Proxy-based
[8], [9]

- - NA Security +
Privacy -

Application
level
[11]

+ + + -

SuSSo + + + +
Comparison of previous work according to identified non-functional

requirements. Symbol + indicates that the requirement is addressed, symbol -
means that the requirement is not addressed, and NA stands for Not
Applicable.

As we can observe in Table I, those proposals with focus on
protocol modification, based on SIP, or those works that rely
on storing session data in a proxy server, incur in a lack of
user centricity (NRF1). In fact, usability is hindered whether
by requiring re-authentication or because appropriate user
interfaces to allow easy interaction are not designed.

Another remarkable issue is that the majority of the existing
works do not take into consideration flexibility and
interoperability (NFR2). That is, instead of providing a
generic framework that allows to move different sessions
belonging to different applications, they just center in a
concrete type of session and give a tailored solution. The
flexibility provided by SuSSo, which is based on a plug-in
mechanism, is one of its main strengths.

Regarding to performance (NRF3), the proposal in [11]
cares about having a smooth device to device session transfer.
It is to say that the rest of proposals are not comparable from
this perspective, because they involve third parties in the
architecture or are tied to a specific protocol.

Finally security (NRF4) is addressed by the majority of the
works, although proxy-based solutions raise privacy issues
derived from storing user data in external servers and [11]
does not even take into account security considerations.

All reported approaches deal with at least two of the
identified non-functional requirements, but none of the
solutions considers all these requirements.

To summarize, the whole set of functional and non-
functional requirements previously described will lay the
foundations for the generic MD-SSO architecture explained in
the next section.

III. SUSSO: MIDDLEWARE ARCHITECTURE FOR MD-SSO

The architecture of the proposed middleware for MD-SSO
consists of a series of interconnected software blocks that
distribute all the functionality in a modular fashion, as
depicted in Fig.2. To clarify the details of these modules, as
well as the relationships existing between them, we provide an
individual explanation of each one and explain how the
functional and non-functional requirements defined in the
previous section are fulfilled by the system:

Fig. 2. The SuSSo middleware architecture for multi-device Single
Sign-on consists of four modules which distribute all the functionality in a
modular fashion: Configuration Manager, Communication Manager,
State Manager and Context Manager

A. Context Manager

The Context Manager is in charge of extracting context
information, such as remaining battery of the origin device,
available devices in the proximity, current location or time.
This context is then processed by the system to determine if a
session transfer can be performed. In order to make this
decision, user configuration data provided by the
Configuration Manager is also employed. Accordingly,
whenever a session can be moved to another device an event is
triggered to notify the Communication Manager. Hence, this
module is indispensable for the fulfilling of requirement FR1,
as well as it constitutes the basis for ubiquitous session
transfer.

It is to note that, there are many research works and real
implementations, such as [13], [14], and [15], which are
related to context extraction in different kind of devices and
for different operating systems. Specially, there are
remarkable works considering proximity detection using
Bluetooth, RFID [16], or natural interaction [17], which are
also applicable here. Thus, the integration of this functionality
in our generic MD-SSO architecture is straightforward.

B. State Manager

The main function of the State Manager is obtaining the
state of the applications that are currently running in the origin
device, so it can be subsequently transferred to the destination
device. This task is performed by the State Extractor sub-
module. Similarly, the State Processor sub-module is in
charge of reading the information regarding the application
session transferred to the destination device and restoring
them.

On the one hand this module communicates with the
Configuration Manager, in order to get all the configuration
information required to operate. And, on the other hand, this
module is also connected to the Communication Manager, for

3

sending and receiving the state of transferred application
sessions. It is to note that the state of running applications also
encompasses its security context.

The State Manager is thus the key for flexibility and it
allows the system to fulfill requirements FR2, FR4, NFR2 and
NFR4. For the purpose of maintaining flexibility, any
application developer or service provider that wishes to offer
MD-SSO to their final users, should implement a plug-in
component for this module. The plug-in should conform to
specific defined rules (as it will be defined in section IV) and
its function is to retrieve the state of the associated application
and encapsulate it in a XML file. Furthermore, when a session
transfer is received at the destination device, the correspondent
plug-in will be provided with the XML file with the state
information in order to notify its associated application and
restore the session.

C. Configuration Manager

The Configuration Manager module is responsible of
configuring applications in the framework and also handling
user configurable information: preferences for session
mobility, user credentials that may be required for
authentication of terminals on behalf of the user, etc… This
information is accessed and manipulated via a user interface,
empowering users so they are a central part of the system.
Therefore, this module allows the system to fulfill requirement
NFR1. This module provides information to all the rest of the
modules in the architecture so they can apply the rules as
defined by configuration policies. Finally, there are several
ways to create these configuration policies: they may be
interactively constructed by prompting the user to do so via
the user interface; they can be based on the history of the
transactions and be dynamically constructed; or a hybrid
approach can be employed that combines user feedback and
system knowledge.

D. Communication Manager

The Communication Manager handles communication with
other external devices. It receives notifications from the
Context Manager when a session transfer is possible. As a
reaction to these events, the module asks the State Manager to
get the information of the running applications that are
suitable for a session transfer. Under user consent or following
automation policies, the Communication Manager sends a
package with all the state information required for session
restoring in the destination device. Two communication
primitives have been defined for this purpose: MD-
SSORequest and MD-SSOResponse, which will be later
described in section V. The first message includes data about
the sessions to be restored; and the second one notifies the
origin device indicating whether the session transfer has been
successful or not. It is to mention that different underlying
communication technologies (e.g. Bluetooth, RFID, Wi-Fi)
can be used depending on availability and/or user preferences.
When selecting this technology, security must be also taken
into account. More specifically, encryption will be used to
exchange all the information transferred between devices and

ensure data confidentiality (e.g. by means of Secure Sockets
Layer [18]). Therefore, with this module the system fulfills
requirements FR3 and NFR4.

It is to note that requirement NFR3 is to be fulfilled by
developing efficient implementations of the system.

Finally, we consider that the fundamental blocks in the
SuSSo architecture are the State Manager and the
Communication Manager, as they are the basis for a generic
MD-SSO system. For this reason, our focus and main
contribution is the definition of the inputs and outputs of these
modules, as well as their formal operation. Thus, Sections IV
and V elaborate on these issues.

IV. SESSION MANAGEMENT

Here we define the input and output formats for session data
handling, as well as the mechanisms to achieve session
storing, processing and restoring.

Inspired by [1], we consider each active session associated
to a running application as a combination of two information
blocks: 1) Application State; and 2) Security State. The
Application State refers to the context of the application, i.e.
what it was doing when it ended at the first device, and that
should be reestablished at the second. The specific contents of
the context that are to be captured and shared between devices
will depend on the application, e.g. the relevant data would be
very different for a game than for audio streaming.
Accordingly, the format to include these application data is
general in order for the system to be flexible. For this purpose,
a plug-in based solution is employed that allows applications
and service providers to incorporate and process application
specific context data.

On the other hand, the Security State contains the security
session information of the application in order to enable Single
Sign-On across devices. By using the transferred security
context, the second device will be able to re-establish a new
security session on the behalf of the user. The Security State
encompasses both the security data required for user
authentication at the destination device, as well as the security
information of the current sessions maintained by running
applications. The data format for the Security State is also
aimed at guarantying flexibility. For this reason it may
include any kind of assertions and/or tokens (e.g. OAuth
tokens [19], SAML assertions [19], etc.) required by the
destination device to restore the security sessions with external
Service Providers.

Both Application State and Security State are packaged to
be transferred in a MD-SSORequest. It is to mention, as it
will be explained later in Section V, that the user may wish to
transfer several sessions associated to different applications.
Therefore, all the contents are packed together in order to be
encapsulated and sent in a MD-SSORequest.

According to this description, Fig. 3 shows the schematic of
a package unit containing session information for applications
in the SuSSo framework. More specifically, a protected XML
file (AppSessionFile) is created for each application whose
session is to be transferred. For this AppSessionFile, we define

4

the tags <AppName>, <AppState>, and
<SecurityState> that contain the name of the
application, the application state data and the security state
data respectively. The information is ciphered using a secret
user-key, so that only user’s devices can use such information.
Such secret key may be symmetric or asymmetric.

Fig. 3. Schematic overview of a package unit containing session
information. Each package may include a number N of sessions; each of
one comprises application data as well as security related data

Now the format for session data representation in SuSSo is
understood, we explain how the State Manager module
handles session storing, processing and restoring. Basically,
these tasks are performed following a plug-in based approach
which allows the system to maintain flexibility and to achieve
interoperability. Therefore, any application developer or
service provider -that wishes to offer Single Sign-on
functionality across devices to their final users- should
implement a plug-in component. The mechanisms for plug-in
acquisition may vary, but e.g. they can be shipped with the
application so the user can download it, install it and configure
it for MD-SSO usage in the SuSSo framework.

Every plug-in must fulfill the following rules in order to be
integrated in the system:

1) Contain an executable file capable of obtaining the state
of the application (with its specific information) and
generating an AppSessionFile with the appropriate tags
according to the session format in Fig. 3. This program will be
called by the State Extractor sub-module, as explained in
Section V. We use the name SessionCapturer in order to refer
to this part of the plug-in.

2) Contain an executable file capable of reading an input
AppSessionFile with session information, and restoring the
state of the application. This program will be called by the
State Processor sub-module, as explained in Section V. We
use the name SessionRestorer in order to refer to this part of
the plug-in.

3) Contain a configuration file (ConfigFile) that will be read
by the SuSSo framework in order to configure and install the
plug-in on the system. More specifically, we have defined an
XML format for the configuration file. According to this, the
file must include the tags <AppName>,
<AppSessionFile>, <SessionCapturer>, and
<SessionRestorer>. The first two tags contain the
name of the application and the name that will be given to the
AppSessionFile, respectively. On the other hand, the last two
tags are used to indicate the names of the executable files to
capture and restore the application session, so they can be later
called by the State Manager.

V. OPERATION FLOW FOR SESSION TRANSFER AND

RESTORING

According to the formats defined in the previous section,
we now go into detail about how the session transfer is
actually performed. It is worth mention that the transfer of the
session is protected using SSL with mutual authentication,
although the details are not included below.

The combination of both, input/output formats for session
data and operation flow, lay the foundations for the MD-SSO
system to be generic and abstract enough to be easily
implemented over any OS, and inside any consumer electronic
device.

A. Operation flow

The operation flow in SuSSo encompasses the following
steps:

Step 1: The applications whose sessions are to be moved
between terminals are initially registered in the MD-SSO
system, both in the origin and in the destination devices. The
registration of an application in SuSSo is performed through
the user interface, which allows to select the appropriate
ConfigFile. This file is read by the Configuration Manager,
which takes the information and stores it in the system using a
Mapping Table with entries AppName, SessionCapturer,
SessionRestorer and AppSessionFile. The image in Fig. 4
shows the structure of the SuSSo Mapping Table and content
example:

Fig. 4. Storage of configuration data for applications registered in the
SuSSo framework

Step 2: Whenever a change of context occurs the user is
notified about the possibility of switching the current active
sessions. Thus, the user is prompted to enter which sessions he
wishes to move. After this selection, a list (AppList) with the
name of the applications to be moved is generated to be used
by the State Manager in the next step.

Step 3: The system in the origin device, through the State
Manager, sequentially calls the plug-ins associated to those
applications whose sessions are going to be transferred to the
destination device. As a result of this action, the
AppSessionFiles (with application data and security data)
required for session restoring at the destination device are
obtained. This step is summarized by algorithm
getCurrentSessions, shown in Fig.5.

Step 4: The system in the origin device, through the
Communication Manager, builds and sends a MD-
SSORequest to the destination device. The underlying
communication technology may be selected according to
several criteria: security, availability, performance, etc.

5

Fig. 5. Algorithms executed in SuSSo for session extraction and
restoring. Algorithm 1 is run by the State Extractor in the StateManager
module of the origin device to obtain the application session files to be
transferred. Algorithm 2 is run by the State Processor in the
StateManager module of the destination device to restore the application
sessions whose session files were received

Step 5: Upon receiving a MD-SSORequest message, the
Communication Manager in the destination device extracts the
session files with the contexts to be restored from the request,
i.e. the AppSessionFiles, and generates a list (AppList) with
the name of the applications to be restored.

Step 6: The State Manager module iterates over the
application list generated in step 5 and sequentially calls the
associated plug-ins. These tasks are summarized by algorithm
restoreSessions, shown in Fig.5.

Step 7: The destination device constructs a MD-
SSOResponse to inform the origin device whether the
transfer has been successful or whether any problem exists.

Next, we define the format of the communication primitives
and protocol used in steps 4 and 7 to transfer the application
sessions from one device to another.

B. Communication Primitives

The session transfer protocol in SuSSo involves two
communication primitives: MD-SSORequest and MD-
SSOResponse, which are constructed and processed by the
Communication Manager.

In Fig.6 we show the format of a MD-SSORequest. The
header of the message contains the following fields:

 ID is the message identification number (1 byte).
Every response must match the ID of the request
being answered.

 Playload Descriptor (PD) indicates whether the
message is a MD-SSORequest or a MD-
SSOResponse (1 byte). Takes the value 1 for the
request case, and 0 for the response.

 Number of Sessions (NoS) indicates the number of
sessions to be transferred when the message is a
request; or the number of sessions that were not
successfully restored at the destination device, when
the message is a response (1 byte).

Fig. 6. MD-SSORequestmessage format: header and body fields.

On the other hand, the body part of the MD-SSORequest
message contains the field:

 Session Transfer Set consists of number of
File fields (i.e. the AppSessionFiles), each of one
preceded by a File Length field indicating its
length (4 bytes).

Fig. 7. MD-SSOResponsemessage format: header and body fields.

Similarly, the format of a MD-SSOResponse is shown in
Fig.7. The header of the message is the same as described for
the request. In this case, the body part of the message is
composed by the field:

 Error Set contains two fields per each session
that could not be properly restored at the destination
device: SessID and ErrCode. The SessID field
(1 byte) indicates the position in which the
application’s session file was sent in the associated
MD-SSORequest (so it can be identified in the
origin device). And the ErrCode field (1 byte)
contains a numeric error code with information about
the reasons of restoring failure.

According to the definition of the communication primitives
for the SuSSo framework, formula (1) shows how the size of a
MD-SSORequest can be calculated:(−) =() + () = () +∑ [(ℎ) +()] = () + ×(ℎ) + ∑ () (1)

6

Similarly, formula (2) shows the size calculation for a MD-
SSOResponse.(−) =() + () = () +∑ () +() = () + ×(() + ()) (2)

In (1) we can see that the size of a request has a variable
part that depends on two parameters: the number of sessions to
move (NoS) and the size of each session file (()),
which is, in turn, application dependent. On the other hand,
formula (2) shows that the size of a response has a variable
part that only depends on the number of sessions that the
system failed to restore (NoS).

Based on these data, together with the transfer rate of the
underlying communication technology (Bluetooth, WiFi,
RFID, etc.), the protocol performance can be determined.

Next we explain the state of the implementation, as well as
the tests performed to validate the proposed architecture.

VI. IMPLEMENTATION DETAILS

A. Prototype Description

So far, we have formally defined the middleware (i.e.
communication primitives, storage formats and operation
flow) and partially implemented a prototype that involves
communication between a mobile phone and a laptop. Based
on it, we tested a use-case where the state of the browsing
activity is transferred between these two devices. As
mentioned before, the State and Communication Managers are
the key components of the system, and so we focus the proof-
of-concept implementation on these two blocks.

Fig. 8. Prototype conceptual operation: a browser HTTP session is
transferred from device A (mobile phone) to device B (laptop)

We have implemented SuSSo in a popular Smartphone OS
based on Java and also in a PC. Next, we developed a SuSSo
plug-in which allows to store and to restore the state of the
internet browser (i.e. opened tabs/windows and security
sessions with internet services) and conforms to the session
data formats defined in section IV. To achieve this, the
executables designed for the plug-in generate a XML file
compliant to the SuSSo format that contains the browser state
(tabs, cookies); and, on the other side, launches the browser

with the state data read from these XML files.
According to this description, Fig.8 shows a conceptual

diagram of the prototype operation.

B. Testing Results

We have executed SuSSo as depicted in Fig.8 to move the
browser session between devices. The initial performed tests
showed that the state of a running application can be correctly
moved and restored at the destination in a reasonable time
(~0.5second in average). Furthermore, also in regard with
performance, we measured the amount of memory
consumption when executing our framework implementation.
In Fig.9 we can see that memory consumption is small and it
only increases slightly when a transfer is performed.

With the described proof-of-concept prototype we aimed to
prove that the proposed architecture is easy, generic and
feasible. In fact, comparing this solution with existing
proposals in [6] and [7], the complexity of our solution is
drastically reduced and the implementation is easier, modular
and allows interoperability.

Fig. 9. Memory consumption of the SuSSo prototype executed in a PC
with dual core processor (2GHz, 2GHz) and 4,00GB of RAM

Besides this initial test, we carried out a more complex
performance analysis, whose results are shown in Fig.10.

Fig. 10. Time used to transfer sessions from device A to device B,
depending on the session size, window number, cookies and history

The graph in Fig.10 shows the time elapsed since the
connection is established between the two devices involved in
a SuSSo dialogue until the application sessions are restored.
We performed 15 repetitions for each experiment and plotted

7

these values together with the average. The number of
sessions is not a useful unit for measures, since there is not a
direct correlation between number of sessions and size. In fact,
the session size depends on the application directly. For this
reason we used kilobytes as unit of measure. In the graph,
points for 15, 30 and 54 KB represent measures taken for the
transfer of 1, 2 and three sessions respectively; 90, 168 and
220 KB show data for different sessions in different windows,
or with browser history. Thus, besides the independency
between the number of sessions and the size, we can also
derive from these data that time increases linearly with the
amount of bytes transferred between devices (as expected
from formula (1)). On the other hand, the variability in the
time results obtained for the same session sizes is due to the
distance between the mobile device and the access point. We
observed that there are significant variations depending on the
proximity, e.g., a 30Kbytes transfer may vary around ~400ms.
These results are very good, because with 8 open sessions (e.g.
220KB), the maximum time obtained has been about 1 second.
The minimum time obtained in each measurement was slightly
greater in spite of the increase in bytes.

Finally, in order to complement the performance tests, we
also provide a qualitative comparison between SuSSo and a
synchronization solution developed for a popular web
browser. We have installed this latter tool also in a laptop and
in a Smartphone.

The working operation for the browser synchronization
solution is comprised of the following steps: 1) First, the
browser generates a random 128-bit key, called the sync-key;
2) this sync-key, which is always under control of the user, is
used to encrypt the browser bookmarks, history, cached
passwords, etc; 3) only the encrypted data is stored at the
“cloud”, in the browser company server.; 4) to allow the
synchronized data to be accessed from a second device, the J-
PAKE (Password Authenticated Key Exchange by Juggling)
algorithm [21], [22] is used to securely transfer the sync-key
between those devices. Fig. 11 graphically summarizes the
described steps.

Fig. 11. Web browser synchronization mechanism through of a Cloud
used by some commercial solutions

After testing and analyzing the synchronization tool, we
compared it with SuSSo regarding several usability criteria:

 Flexibility: both approaches can run in different
kind on devices, as long as the browser application

can be installed. However, SuSSo provides an
additional degree of flexibility since it allows users
to move sessions from more than one application.

 Transparency/seamless operation: Once installed,
the synchronization software centrally stores the
user’s files on the company’s servers, automatically
tracks the changes, and synchronizes them across the
user’s devices. All the synchronization process
happens in the background, which is transparent to
users. Nevertheless, when a user wants to use his
data in another device, he has to launch the browser
and select a “use my sync data” option himself. In
this regard, SuSSo avoids this manual step; the
session is automatically moved when a change of
context occurs (e.g., presence of a device with better
capabilities) and the application is also automatically
launched by the framework in the destination device.

 Security: both approaches take security into
consideration. In the case of the synchronization tool
the transmitted information is always encrypted.
Furthermore, despite this information is stored in the
company’s servers, privacy is also guaranteed since
all the stored data are also encrypted and only the
user has the key. In the case of SuSSo, the messages
for session transfer are encrypted by means of SSL.

 Performance: regarding this criterion, the
synchronization tool has a greater impact on
performance, i.e., the time elapsed since the user
decides to change device until he can use the
synchronized data in that device is higher than in
SuSSo. This is due to the fact that more manual
steps are required, as commented above for the
transparency criterion.

According to the above discussion, we can conclude that
SuSSo outperforms the analyzed web browser tool in regard to
usability, and these advantages would become even more
obvious in multi-application scenarios. It is worth noting that
the principle of operation followed by each approach is
different: SuSSo moves the session data form one device to
another and restores the applications, whilst the
synchronization approach stores the data in a centralized
server where it can be accessed from multiple devices.

To conclude, we aim to stress that the focus of our proposal
is in the definition of a generic MD-SSO system; but the plug-
ins are implemented by vendors and application developers
according to the specified formats.

VII. CONCLUSIONS AND FUTURE LINES

Since current solutions for mobility session across devices
are proprietary or limited, we maintain that a generic
middleware, as the one proposed here, is indispensable to
foster healthy progressive adoption by industries and users.

The main contribution of the paper is the design of
architecture for multi-device single sign-on that includes the
definition of both session storage formats and operation flow
for session transfer in an abstract level, so that it can be easily
implemented in any consumer electronic device and guarantee
interoperability.

8

We strongly believe that this system constitutes an
important step to advance in the field of ubiquitous computing
since it clearly constitutes a basis to realize Weiser’s well
known statement: "The most profound technologies are those
that disappear. They weave themselves into the fabric of
everyday life until they are indistinguishable from it".

As a suggested extension we consider that the system
configuration module can be enhanced in order to provide
higher degrees of automation, e.g., by including a prediction
component, such as the one in [16], which learns from the user
behavior and anticipates his decisions on session
transferences. Even, proposals oriented to dynamically adapt
to the new environment or device’s resources should be
addressed, especially in multimedia applications.

REFERENCES

[1] P. Madsen (ed.), “Liberty ID-WSF Multi-Device SSO Deployment
Guide”, 2008.

[2] M. Satyanarayanan, “Pervasive Computing: Vision and Challenges,”
IEEE Personal Communications, 2001.

[3] M. Weiser, “The Computer for the 21st Century,” Scientific American,
pp. 66–75, September 1991.

[4] Ji-Young Kwak, “Ubiquitous Services System Based on SIP,” IEEE
Transactions on Consumer Electronics, vol.53, no.3, pp.938-944, Aug.
2007.

[5] Ming-Deng Hsieh, Tsan-Pin Wang, Ching-Sung Tsai and Chien-Chao
Tseng, “Stateful session handoff for mobile WWW,” Information
Sciences, Volume 176, Issue 9, pp. 1241-1265, May 2006.

[6] Min-Xiou Chen and Fu-Ju, “Session Mobility of SIP over Multiple
devices,” Proceedings of the 4th International Conference on Testbeds
and research infrastructures for the development of networks &
communities, TridentCom '08, pp.1-9. 2008.

[7] M. Adeyeye and N. Ventura, “A SIP based web client for HTTP session
mobility and multimedia service,” Computer Communication, pp.954-
964, May 2010.

[8] F. Hao and P. Ryan, “How to sync with Alice,” Proceedings of the 19th
Security Protocols Workshop (SPW), Cambridge, UK, 2011.

[9] C. Soghoian, “An End to Privacy Theater: Exposing and Discouraging
Corporate Disclosure of User Data to the Government,” Minnesota
Journal of Law, Science & Technology, Forthcoming, 2010.

[10] M. Barisch, “Design and Evaluation of an Architecture for Ubiquitous
user Authentication based on Identity Management Systems,” IEEE
International Workshop on Trust and Identity in Mobile Internet,
Computing and Communications (TrustID 2011).

[11] L. Rong, I. Burnett, “Application Level Session Hand-off Management
in a Ubiquitous Multimedia Environment”, e-Business and
Telecommunication Networks, part 4, pp. 298-304, 2006.

[12] F. Almenarez, A. Marín, D. Díaz, A. Cortes, C. Campo, and C. García-
Rubio, “A Trust-based Middleware for Providing Security to Ad-Hoc
Peer-to-Peer Applications”, in Proceedings of the 2008 Sixth Annual
IEEE International Conference on Pervasive Computing and
Communications (PERCOM '08), 2008.

[13] M. Abe, Y. Morinishi, A. Maeda, M. Aoki and H. Inagaki, “A life log
collector integrated with a remote-controller for enabling user centric
services,” IEEE Transactions on Consumer Electronics, vol.55, no.1,
pp.295-302, February 2009.

[14] M. Mulvenna, C. Nugent, G. Xiaoyuan, M. Shapcott, J. Wallace and S.
Martin, “Using context prediction for self-management in ubiquitous
computing environments,” 3rd IEEE Consumer Communications and
Networking Conference, 2006 (CCNC 2006), vol.1, no., pp. 600- 604.

[15] U. Christoph, K.H. Krempels, J. von Stülpnagel, and C. Terwelp,
“Automatic context detection of a mobile user”, Proceedings of Wireless
Information Networks and Systems (WINSYS 2010).

[16] P. Arias Cabarcos, R. Sánchez Guerrero, F. Almenárez Mendoza, D.
Díaz Sanchez and A. Marín Lopez, “FamTV: An architecture for
Presence-Aware Personalized Television,” IEEE Transactions on
Consumer Electronics, vol.57, no.1, pp.6-13, February 2011.

[17] A. Vinciarelli, M. Pantic, and H. Bourlard. “Social signal processing:
survey of an emerging domain,” Image and Vision Computing Journal,
vol. 27, no. 12, pp. 1743-1759, 2009.

[18] A. Freier, P. Karlton and P.Kocher, “The Secure Sockets Layer (SSL)
Protocol Version 3.0”, RFC 6101, August 2011.

[19] E. Hammer-Lahav, D. Recordon, and D. Hardt, “The OAuth 2.0
Authorization Protocol,” IETF draft (work in progress), September
2011.

[20] S. Cantor, J. Kemp, R. Philpott, and E. Maler (Eds.), “Assertions and
Protocols for the (OASIS) Security Assertion Markup Language
(SAML) V2.0,” OASIS Standard, March 2005.

[21] F. Hao and P. Ryan, “J-PAKE: Authenticated Key Exchange Without
PKI”, Transactions on Computational Science XI, Part II. LNCS, vol.
6480, pp. 192–206. Springer, Heidelberg (2010)

[22] F. Hao and P.Y.A. Ryan, “Password Authenticated Key Exchange by
Juggling”, Security Protocols 2008. LNCS, vol. 6615, pp. 159–171.
Springer, Heidelberg (2011)

BIOGRAPHIES

Arias Cabarcos, Patricia received her Telecom. Eng.
degree from Univ. Carlos III of Madrid in 2008 and she
obtained the MSc degree in Telematics in 2009.
Currently, she is pursuing a PhD at the Department of
Telematics Engineering in the Univ. Carlos III of
Madrid, working within the Pervasive Computing
research group. Her research focuses on the problem of
identity management in open and dynamic environments,

with special attention to risk analysis and the underlying trust models.

Almenárez Mendoza, Florina (M’07) received her
Ph.D. degree from the University Carlos III of Madrid
(Spain) in 2006 and is currently an associate professor at
UC3M. She received an award-winning as Magna
CumLaude in her Computer Science degree. Her
research interests include trust management, identity
federation, security in ubiquitous computing, and SIM-
based applications. She leads the research activities of

the PerLab group in advanced trust models, security architectures for open and
dynamic spaces, and identity management.

Sánchez Guerrero, Rosa received a Telecom. Eng.
degree from Univ. Carlos III de Madrid in 2009 and she
obtained the MSc degree in Telematics in 2011.
Currently, she works as researcher at the Department of
Telematics Eng. in the Univ. Carlos III of Madrid,
working within the Pervasive Computing research
group. Her research topics include the problem of
identity management, security and privacy in healthcare.

Marín López, Andrés (M’07) received a Telecom. Eng.
degree and PhD from the Technical Univ. of Madrid in
1992 and 1996 respectively. He lectures in Computer
Networks and Ubiquitous Computing in the Univ. Carlos
III de Madrid, as an associate professor. His research
interests include ubiquitous computing: limited devices,
trust, security services, and security in NGN.

Díaz-Sánchez, Daniel (M’07) received a Telecom. Eng.
degree from Univ. Carlos III de Madrid in 2002. He
graduated as Master Telematic Engineering (2004) and
obtained his PhD (2008) from Univ. Carlos III of
Madrid. He works as researcher and teacher at
Universidad Carlos III. His research topic is distributed
authentication, authorization and content protection
activities.

9

