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Abstract — There has been recently a significant increase 

in the number of available 3D displays and players. 
Nevertheless, the amount of 3D content has not increased in 
the same magnitude, creating a gap between 3D offer and 
demand. To reduce this difference, many algorithms have 
appeared that perform 2D-to-3D image and video conversion. 
These algorithms usually require several images from the 
same scene to perform the conversion. In this paper, an 
automatic algorithm for estimating the 3D structure of a scene 
from a single color image is proposed. It is based on the key 
assumption that color images with similar structure will likely 
present similar depth structures. The conversion algorithm is 
split into an offline and an online module to be easily 
deployable into consumer devices, such as smartphones or 
TVs. The offline module pre-processes a color+depth image 
database to speed up the subsequent depth estimation. The 
online module infers a depth prior from a color query image 
using the previous database as training data. Then, it is 
refined through a segmentation-guided filtering. The 
conversion algorithm has been evaluated in three publicly 
available databases, and compared with several state-of-the-
art algorithms to prove its efficiency1. 
 

Index Terms — depth extraction, 2D-to-3D conversion, depth 
maps, machine learning, clustering. 

I. INTRODUCTION 
In the last decade, the availability of displays and players 

with 3D capability, such as TVs, cinemas, smartphones, video 
game consoles, DVD/Blu-Ray players, and projectors, has 
experienced a significant rise. Nevertheless, the amount of 3D 
content that can be played in those devices, such as images, 
movies, or TV broadcastings, is still scarce. To close the gap 
between the number of 3D players/displays and the quantity of 
available 3D content, different techniques have appeared to 
convert the current 2D content into 3D [1]. 

This 2D-to-3D conversion task is usually divided into two 
stages. The first one is the estimation of a depth map from 
color images, and the second one is the Depth-Image-Based 
Rendering (DIBR) of a new image to form a stereo-par, or a 
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multi-view set of images. While for the rendering stage there 
are algorithms that generate good quality results, the 
estimation of depth maps from color images is still a 
challenging process. For this reason, this paper is focused on 
recovering the depth information from 2D color images, and 
more specifically and challenging from a single color image.  

The techniques used to convert 2D images into 3D ones can 
be divided into two groups, semi-automatic and automatic 
methods, depending on whether a human operator is involved 
in the process or not.  

In semi-automatic methods, a human operator assigns depth 
values to different parts of a scene, creating a sparse depth 
map. Then, this map is processed to build a dense depth map 
of the whole image. Alternatively, the operator may assign a 
convenient depth prior map to the scene, which is then refined 
to include independent objects in the scene that can not be 
modeled by the prior map. The human operation varies from 
small sketches that assign depth values to different scene 
regions up to an accurate delimitation of objects in the scene 
with their corresponding depth value assignments. Nowadays, 
these methods represent the most successful strategy for 2D-
to-3D conversion, and they are used by the industry to convert 
many 2D films into 3D. Nevertheless, the fact that a human 
operator must interact during the conversion process makes 
these methods highly time consuming and costly. An example 
of a semi-automatic system was presented by Guttmann et al. 
[2] to recover a dense depth map from sparse depth values 
assigned by the operator via diffusion. Similarly, Angot et al. 
[3] proposed an approach where a cross-bilateral filtering is 
applied to an initial depth map that is selected by a human 
operator from a library of prior depth maps. Phan et al. [4] 
presented a simplified and more efficient conversion method 
by using scale-space random walks, and a graph cut strategy. 
Liao et al. [5] reduced the human burden by computing first 
the optical flow, and then applying a structure from motion 
stage. The role of the human operator was reserved for 
correcting errors, and manually assigning depths to undefined 
regions. 

In automatic approaches, no human operation is required to 
estimate the depth from images or videos. This fact accelerates 
the conversion task and makes potentially feasible to perform 
the conversion in real time [6], [7]. Many automatic depth 
extraction algorithms have been proposed, which use different 
pictorial cues such as defocus [8], motion [9], shading [10], or 
saliency [11]. The main problem of these methods is that they 
can not be usually applied to all the scenes that composed a 
movie (or generic video content). For example, structure from 
motion algorithms require that the camera is in motion, since 



 

the depth is estimated from different non-simultaneous views 
of the same scene. The combination of different cues 
(perspective geometry, defocus, and visual saliency) have 
been also proposed in some works [12], but they still rely on 
different acquisition or scene assumptions that are only 
satisfied for specific situations. There are also more simple 
approaches that rely on heuristic assumptions to provide a 
real-time 2D-to-3D conversion. Although some of them have 
been already embedded in many 3D commercial devices (such 
as TVs, video game consoles, or DVD/Blu-Ray players), a 
satisfactory conversion is provided only in some simple and 
restricted scenarios.  

Recently, a new family of automatic methods based on 
machine learning have emerged, which uses a repository of 
color + depth images (RGBD) as training data to infer the 
depth of a color image. This approach is based on the key 
hypothesis that color images with similar 
gradient/edge/texture structure will likely present a similar 
depth configuration. A key advantage is that these methods 
can estimate a dense depth map from only one color image 
without any specific scene constrain. The general framework 
is as follows. Given a query color image, its depth map is 
estimated from a color+depth training image database by first 
finding the color images in the database that are most 
structurally similar to the query image. Then, the depth images 
corresponding to the previous selection of color images are 
combined to obtain the final depth map estimation. One of the 
seminal works was presented by Saxena et al. [13] who used a 
parsing technique and a Markov Random Field to estimate 
both 3D locations and orientations. An improved depth map 
estimation was achieved by Li et al. [14] and Liu et al. [15] 
through the inclusion of semantic labels and more 
sophisticated models. Konrad et al. [16] adopted a similar 
approach that transferred depth data instead of labels.  Karsch 
et al. [17] included smoothness and consistency priors to 
refine the depth map estimation. More recently, Konrad et al. 
[18], [19] developed a more computationally-efficient 
approach by discarding the image alignment stage of previous 
works. Additionally, the feature descriptor Histogram of 
Oriented Gradients (HOG) were used to characterize and find 
structurally-similar images. As a result, the processing time 
was greatly reduced with a minimal impact on the achieved 
depth map quality. Similarly, Herrera et al. [20] employed 
Local Binary Patterns (LBP) as image features, and an 
adaptive strategy to select a variable number of similar images 
for the depth fusion process. One common limitation of these 
methods is that they adopt a nearest neighbor approach to find 
the most similar images in the database, which implies costly 
and exhaustive searches. This strategy can be impractical for 
huge databases, which would be required to estimate the 3D 
structure of a wide range of different scenarios. Another 
limitation is related to the characterization capacity of an 
image descriptor. There is not one that achieves the best 
performance for all the potential scenes. 

In this paper, an automatic machine learning algorithm to 
infer the 3D structure of unconstrained scenes from a single 

color image is proposed, which addresses the previous 
limitations. Given a query color image, the algorithm starts by 
finding the most structurally similar color images in a database 
of color + depth images. The structure of color images is 
described by a combination of HOG, LBP, GIST, and 
Speeded-Up Robust Features (SURF) descriptors, which 
makes the algorithm more robust and adaptive to different 
types of scenarios (first contribution). The selection of the 
most similar images in the database is accomplished by a 
hybrid clustering and classification process that has a twofold 
advantage: adaptation to different scenes and fast image 
selection. Thus, it is possible to deal with huge databases 
(second contribution). The number of selected images and the 
specific combination of the feature descriptors are learned in 
the training phase with the purpose of obtaining an adaptive 
combination of parameters that improves the results (third 
contribution). The obtained selection of the most similar color 
images are then aligned with the query image via a fast 
feature-based image registration process, which additionally 
discards low quality registered images that can mislead the 
depth estimation. The depth maps of these color images are 
also aligned, and then fused to generate a depth prior 
estimation. Finally, a segmentation-based filtering refines the 
depth estimation by transferring smoothness and abruptness 
priors from the query color image to the depth prior estimation 
(fourth contribution). 

The paper is organized according to the following structure. 
In Sec. II, an overview of the proposed depth extraction 
algorithm is presented. Next, the different stages are described 
in detail in Secs. III and IV. In Sec. V, the obtained results are 
presented and discussed. Finally, in Section VI, the 
conclusions are drawn. 

II. ALGORITHM OVERVIEW 
The proposed automatic 3D structure estimation algorithm can 
be formulated as follows. Given a query color image Q, and a 
database DB composed by color images and their 
corresponding depth maps (RGBD), the goal is to estimate the 
depth map Dest of Q. The algorithm is divided into two main 
modules: an offline pre-processing of DB to speed up the 
posterior image searches, and an online processing to estimate 
the depth of each incoming Q.  

The offline module has a twofold purpose. The first one is 
to improve the efficiency of the image search strategy by 
clustering DB according to the structural similarity of the 
involved color images. The second purpose is to learn the best 
parameters (weight combination and number of candidate 
images) for the posterior depth extraction stage. 

The online module estimates the depth of Q using the 
clusterized DB and the parameters learned from the offline 
module. Fig. 1 shows the block diagram of the proposed 
algorithm, including the two main modules, which are in turn 
composed by other sub-modules that will be described in the 
detail in the following sections. 

 



 

 
Fig. 1. Block diagram of the proposed 3D reconstruction method. 

III. OFFLINE MODULE 
The offline module performs two independent tasks. One is 

the division of DB into clusters that represent different classes 
of indoor and outdoor scenarios. This clustering is a key 
component to speed up the depth estimation of Q and deal 
with large databases. The other task is to learn some critical 
parameters of the system from DB to achieve the best 
performance in the posterior depth estimation process (online 
module). 

A. Database Clustering 
The clustering of DB is performed applying a k-means 

strategy over a set of feature-based representations of the color 
images. The feature-based representation combines four state-
of-the-art image descriptors to capture the structural content: 
HOG, LBP, GIST, and SURF. The process is as follows. 
Every color image is divided into Nrow x Ncol blocks. Then, the 
four image descriptors are computed for each tile, which are 
then grouped and stacked per descriptor type as 
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where hogn,m, lbpn,m, gistn,m, and surfn,m, represent the HOG, 
LBP, GIST, and SURF descriptors, respectively, of the tile 
located in the n-th row and the m-th column. Subsequently, a 
super-descriptor representing the global image structure is 
obtained by concatenating the previous vectors as 

 [ ]                     
mix hog lbp gist surf

f f f f f= . (2) 
Finally, the previous vector is normalized as 

 ( ) σ
mix mix

norm
mix mix f ff f µ= −    (3) 

using the mean 
mixfµ  and the standard deviation σ

mixf . 

A weighted correlation function is used to compute 
distances among feature vectors in the k-means framework. 
The weighting operation allows to combine the different 
behavior of the descriptors that form part of fmix to maximize 
its representation capability for every type of scenario (such as 
indoor and outdoor ones). 

The number of clusters Ncluster is a critical parameter in the 
algorithm for the computational efficiency and the quality 

results. A low value of Ncluster tends to produce clusters whose 
images belong to very different scenarios. Therefore, their 
structural similarity is low, which is useless for a proper depth 
estimation. On the other hand, a large value of Ncluster tends to 
create clusters whose images are more structurally similar, 
improving the quality of the depth map estimation. But the 
computational cost related to the image search significantly 
increases. As conclusion, an optimum tradeoff is necessary, as 
will be discussed in the result section. These clusters represent 
different classes of indoor and outdoor images in DB 
according to their structural similarity.  

B. Parameter learning 
The purpose of this module is to learn the following 

parameters to improve the quality of the conversion process: 
the weights w used for the weighted correlation function 
associated to the k-means clustering of DB, and the number of 
candidate images k that will be used in the depth estimation. 

 The learning process is based on the minimization of the 
depth estimation error of all the images in DB.  The 
minimization procedure consists in an exhaustive search 
strategy performed over a dense grid of values of w and k. The 
depth estimation error computes the dissimilarity between the 
estimated depth map Dest of Q and its real depth map DQ. The 
depth estimation process is the same as that performed by the 
online module, but using a Leave One Out (LOO) 
configuration. This configuration iteratively selects one 
image+depth pair from DB to be used as Q and DQ, leaving 
the others pairs as training data for the estimation of Dest. 

IV. ONLINE MODULE 
The online module can divided into three stages. The first 

one is the classification of Q into one (or several) of the 
classes determined by the DB clusters (i.e. every cluster 
represents a class). Then, the search of the most similar color 
images to Q among the members of the resulting class (or 
classes) is performed. Finally, a combination of the depth 
maps corresponding to the previous selected color images is 
carried out to obtain Dest. 

A. Classification 
This stage selects the images in DB that are structurally more 
similar to Q via a classification technique, which determines 
the most probable classes in DB which Q belongs to. Notice 
that Q will share a high similarity with the images of these 
classes, since they were created using a structural similarity 
criteria. A block diagram of the classification stage can be 
seen in Fig. 2. First, a feature descriptor fmixQ is computed 
from Q (see Sec. III.A), which is then delivered to a Nearest 
Neighbor classifier (NNC) to determine the Nζ most probable 
classes ζ in DB. For this purpose, the correlation function is 
used as similarity metric between fmixQ and the image feature 
descriptors in DB. The value of Nζ is a tradeoff between the 
accuracy in the classification and the computational cost. A 
high value guarantees that the most similar images in DB are 
found, but at the expense of increasing the computational cost 
of the search performed by NNC. On the other hand, a low 



 

value speeds up the classification process, but images in DB 
that are similar to Q can be missed.  
 As result, a selection Iζ of structurally similar color images 
to Q is obtained. 
 

 
Fig. 2. Block diagram of the classification step. 
 

B. Candidate search 
This stage refines the previous selection of images Iζ . Fig. 

3 shows the block diagram composed by two modules. The 
first module, Parameter estimation, computes the most suitable 
parameters, wQ and kQ, for the given Q. These are computed 
via a weighted average of the parameters w and k (see Sec. 
III.B) related to each image in Iζ , as shown Eq. 7 
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Fig. 3. Block diagram of the Candidate Search stage. 
 

The second module, Image matching, performs an 
exhaustive search over the images in Iζ  to select the kQ most 

structurally similar color images to Q. The search is carried 
out by a weighted correlation function WS given by 
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where descr can be fhog, flbp  fgist or fsurf. Figs. 4 and 5 show 

examples of the images obtained by this search. 
Finally, the corresponding depth images in DB of the 

previous kQ color images are selected to perform the depth 
estimation of Q.  

 

 
Fig. 4. From left to right: query image Q and the three most similar 
images to Q sorted by similarity for two examples of NYU dataset. 
 

 
Fig. 5. From left to right: query image Q and the three most similar 
images to Q sorted by similarity for two examples of Make3D dataset. 

 

C. Depth estimation 
The depth estimation stage computes the depth map of Q 

using the selection of depth images obtained in the previous 
stage. Fig. 6 shows the block diagram of this stage. First, an 
image registration process is performed with the kQ selected 
color images in DB. The registration is performed using the 
algorithm presented by Mahesh et al. [21]. This is a feature-
based method that uses SIFT for detecting and matching key 
points, and RANSAC for the robust perspective image 
transformation. 
 

 
Fig. 6. Block diagram of the depth estimation stage. 

 
Second, the resulting geometric transformation is applied to 

the corresponding depth images, which are then averaged to 
obtain the depth map Dreg.  

In the previous registration process, there can be some 
problems. For example, the obtained transformation is 
considered unfeasible, or even though being feasible, the 
warped image does not cover entirely the image frame of Q. 
To solve this problem, a coarse depth estimation, Dfusion, is 
computed by fusing all the considered depth images without 
any alignment. The fusion process is carried out by computing 



 

a weighted average of the candidate depth maps 
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where Dc is the i-th depth map to be fused, and WS(i) is the 
weighted similarity score computed in (9).  

Then, a dense depth prior Dprior is obtained by filling in the 
missing information in Dreg with the values from Dfusion. 

 

Fig. 7. From left to right: Actual depth, query color image Q, and 
segmentation of Q. A high correlation between the region transitions of 
color and depth can be observed. 

 
Finally, Dprior is refined using an adaptive smooth filtering 

technique to reduce noise and artifacts, and enhance edge 
definition. This filtering is guided by a hierarchical 
segmentation applied to Q. I.e., the structure of Q is used to 
refine the depth estimation, taking advantage of the high 
correlation between the transitions of the color and depth maps 
of a scene. An example can be seen in Fig. 7, which shows a 
depth image, the corresponding color image, and the resulting 
segmentation of the color image. Observe the high correlation 
between the edges of the depth and color images. However, 
the color segmentation includes edges that do not have 
correspondence in depth, due to the different reflectance 
patterns that an object surface can have. This problem is 
addressed by forcing an over-segmentation, i.e. more image 
partitions than those that a human could determine. Under this 
situation, an object located at a certain depth is split into two 
or more regions in the color segmentation. However, the 
smoothing will be the same over those segmented regions 
since all of them have similar depth values. Notice that an 
under-segmentation is explicitly avoided since the filtering 
would average regions belonging to different objects that 
would have different depth values. For the purpose of 
obtaining an over-segmentation, the algorithm presented by 
Arbelaez et al. [22] has been used, which produces a 
hierarchical image segmentation that allows to control the 
degree of over-segmentation. This algorithm computes first 
the image contours by combining multiple local cues via a 
spectral clustering framework. And then, it performs the 
image segmentation by converting the computed contours into 
a hierarchical region tree. Next, an adaptive average filtering 
is applied over the estimated depth map, using a uniform 
kernel with an adaptive spatial size that depends on the region 
sizes of the over-segmented image. Mathematically, the kernel 
of the adaptive filtering can be defined as 

 ( )
( )
( )

1,     ,
,

0,     ,
s

s

if x y R
s x y

if x y R

∈
=

∉





  (11) 

where Rs is a 2D over-segmented region containing the spatial 
coordinates of the depth pixel to be filtered. 

The effect of the above adaptive smooth filtering technique 
is more notable when the image registration process is not 
feasible, since the fusion of misaligned depth images can 
produce a significant quality loss in the estimated depth image 
Dest. Thus, the algorithm can still produce reasonable quality 
depth maps, even though the image registration process is not 
feasible.  

V. RESULTS 
The proposed algorithm has been evaluated in three 

different databases: Make3D [13], NYU [23], and Stereo 
RGBD 1 [17] (a subset of Stereo RGBD from Karsch et al. 
containing indoor images). Make3D is composed by 534 
outdoor images with their corresponding depths maps, 
acquired by a laser range finder. This database is divided into 
a test subset of 134 images and a train subset of 400 images. 
The resolution of the color and depth images are 1704 x 2272 
and 55 x 305 pixels, respectively. NYU is formed by 1449 
color images and their associated depth maps, captured by the 
Kinect sensor in indoor scenarios. The resolution is 640 x 480 
pixels for both color and depth images. Stereo RGBD 1 is 
composed by 8431 indoor images and their associated depth 
maps, arranged in short video sequences. The resolution is 430 
x 579 pixels for both color and depth images. A fourth 
database has been created and evaluated by joining the images 
from Make3D and NYU with the purpose to test the behavior 
of the conversion algorithm in hybrid databases containing 
indoor and outdoor situations. This database has been called 
Make3D-NYU. 

For a straightforward comparison with the results presented 
by the previous works in the literature, color and depth images 
from the above databases have been resized to 320 x 240 
pixels.  

As was introduced in Sec III.A, the right selection number 
of clusters Ncluster is a tradeoff between depth map accuracy 
and computational cost. Fig. 8 shows the normalized search 
time involved in the NN classification as a function of Ncluster. 
The normalization is performed respect to the search time 
considering only one cluster, which is virtually the same 
condition that not considering any cluster. As can be observed, 
the search time decreases fast, and remains stable in values 
between 5% and 20% (depending on the size of the database). 
Those percentages are obtained for values between 30 and 100 
clusters. Consequently, the clustering strategy allows to deal 
with large databases, which would be unfeasible in a pure 
exhaustive search framework. Notice also that the search time 
for the Make3D dataset starts to rise slowly as the number of 
clusters is increased. The reason is that the hierarchical search 
with one cluster is computationally equivalent to the 
hierarchical search with a number of clusters equal to the total 
number of images in the database. This phenomenon in deep 
occurs for any database.   

 



 

 
Fig. 8. Normalized search time as a function of the number of clusters.  

 
To evaluate the presented 2D-to-3D conversion algorithm, 

it has been trained using a LOO methodology. The quality of 
the generated depth map Dest has been measured using the 
correlation function 
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where Np is the number of pixels in Dest, DQ is the ground truth 
depth image, 

estDµ  and 
QDµ  are the mean values of Dest and 

DQ, respectively, and 
estDσ  and 

QDσ  the corresponding 

standard deviations. C takes values from -1 to +1, where 
values close to +1 indicate similar depth maps, and values 
close to -1 suggest they are complementary. The correlation 
function was first used in this context by Konrad et al. [19] to 
solve the problems that presented other metrics, such as the 
relative error (relerr), the logarithmic error (log10 err), and the 
root mean square error (RMSE), which can be defined as 
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These metrics are not invariant to lineal transformation of 
the depth maps, which implies that only good results would be 
obtained if depth estimations are in the same range of values 
as the actual depth maps. However, most of the 2D-to-3D 
conversion methods only can estimate the scene depth up to a 
scale factor. Other problem is that relerr and log10 err metrics 
cannot be computed if DQ has some zero-value pixels. Table I 
illustrates the problems of these metrics using the Make3D 
dataset (considering a test subset of 134 images and a train 
subset of 400 images). This table shows the results of the 
presented proposal and other state-of-the-art algorithms in the 
literature. The results are the average over the 134 test images. 
Note that some results are not available, since some metrics 
are not used by all works (indicated by the letters `NR': Not 

Reported). As can be observed, the results are not very 
coherent, since one algorithm can seem to be better than 
another depending on the used metrics. Therefore, it is 
difficult to claim which algorithm performs better.  

 
TABLE I 

RESULTS ON MAKE3D DATABASE 

Algorithm Rel Err Log10 
Err RMSE 

Baseline 0.698 0.334 NR 
Learn Depth: MRF [24]  0.530 0.198 16.7 
Pointwise MRF [13]  0.458 0.149 NR 
Superpixel MRF [13] 0.370 0.187 NR 
Surface Layout [25]  1.423 0.320 NR 
Cascade Models [26]  NR NR 15.4 
Ground Plane [27] NR NR 22 
Semantic Labe3ls [15]  0.375 0.148 NR 
Feedback Cascades [28] NR NR 15.2 
Theta-MRF [29] NR NR 15.0 
Depth Transfer [17] 0.361 0.148 15.1 
Depth Fusion [19] 0.432 0.187 18.3 
Adaptive LBP [20] 0.628 0.184 16.8 
Proposed approach 0.505 0.180 14.7 

Evaluation of state-of-the-art algorithms using the Relative Error (Rel. Err.), 
the Logarithmic Error (Log10 Err.) and the Root Mean Square Error (RMSE) 
metrics in the Make3D database. 

 
The correlation measure does not depend on absolute 

values, and therefore it is not affected by the aforementioned 
problems. For this reason, it is used to fairly compare the 
quality of the different algorithms, provided that they have 
either reported their results using the correlation, or at least 
their code is available to compute them. More specifically, the 
proposed algorithm has been compared with the HOG-Based 
Depth Learning approach of Konrad et al. [19], the Depth 
Transfer approach of Karsch et al. [17], and the Adaptive 
LBP-based approach [20].  

Table II shows the correlation results using the four 
proposed databases. Results for Make3D are obtained using a 
fixed subset of 400 images for training and other of 134 
images for testing. A LOO configuration has been adopted for 
NYU, Make-NYU and Stereo RGBD 1 datasets. The results 
are averaged over all the images in each dataset. As can be 
seen, a decrease in the quality is produced for indoor images 
in all methods. Indoor images are more challenging due to 
their higher variability (mainly because of the huge variation 
of different objects than can be present). The proposed 
approach not only reduces the impact of this decrease, but also 
outperforms the other approaches in both NYU (outdoor 
images) and Make3D-NYU (combination of outdoor and 
indoor images). Regarding Make3D (outdoor images), the 
presented approach achieves similar results to Depth Transfer 
algorithm [17]. Overall the proposed conversion algorithm can 
obtain better results in real situations, where indoor and 
outdoor scenes are mixed. The results for and Stereo RGBD 1 
are significantly better because the dataset is composed by 
short video sequences. In this case, the classification and 
candidate search modules find images that are really close to 
Q.  

 
TABLE II 

QUALITY RESULTS ON DIFFERENT DATABASES 



 

Algorithm Make3D NYU Make-
NYU 

Stereo 
RGBD 1 

Depth Transfer [17] 0.69 0.59 0.60 NR 
Depth Fusion [19] 0.610 0.61 0.60 0.90 
Adaptive LBP [20] 0.66 0.63 0.62 0.90 
Proposed approach 0.67 0.63 0.63 0.97 

Evaluation of state-of-the-art algorithms using the Correlation Coefficient 
(C) in different databases.  
  

Table III shows the average computational time in seconds 
for the 2D-to-3D conversion for different state-of-the-art 
algorithms and for all the considered databases. As can be 
seen, the conversion time for the proposed algorithm is 
significantly lower than for the others. Unlike other 
approaches, the presented approach performs some processing 
tasks in an offline module, whose time is also reflected in the 
table (notice that this processing is not involved in the 
conversion process).  

 
TABLE III 

COMPUTATIONAL TIMES 

Algorithm Make3D NYU Make-
NYU 

Stereo 
RGBD 1 

Depth Transfer [17] 92.7 98.7 101.4 108,3 
Depth Fusion [19] 0.83 3.22 4.11 18.16 
Adaptive LBP [20] 0.98 3.81 4.93 19.84 
Proposed approach 0.17 0.48 0.52 1.7 
Offline module  6.9 7.2 7.3 8.3 

Evaluation of the computational time in seconds for different state-of-the-
art algorithms and for different databases. 

 
Figs. 9 and 10 show some examples of depth map 

estimations for the Make3D and NYU, respectively. Due to 
the nature of these databases, the image registration is not 
feasible (there are not images close enough to Q). Therefore, 
Dprior has only a moderate quality, but the adaptive smooth 
filtering achieves to enhance the quality of the final depth 
estimation. 

 

 
Fig. 9. From left to right: query image Q, depth prior Dprior, final depth 
estimation Dest, and depth ground truth DQ for two examples in Make3D.  
 

Fig. 11 shows an example of the obtained depth map for the 
Stereo RGBD 1. In this dataset, the image registration is 
feasible, and consequently the estimated depth map offers a 
higher quality. In this case, the impact of the adaptive smooth 
filtering is not very noticeable. 

 

 
Fig. 10. From left to right: query image Q, depth prior Dprior, final depth 
estimation Dest, and depth ground truth DQ for two examples in NYU. 

 

 
Fig. 11. From left to right: query image Q, final depth estimation Dest, and 
depth ground truth DQ for one example in Stereo RGBD 1. Dprior is not 
shown because of his high similarity to Dest. 

VI. CONCLUSIONS 
There has been proposed a new automatic 2D-to3D 

conversion algorithm for indoor and outdoor scenarios that is 
based on a machine learning framework. It can effectively 
estimate a dense depth map from a single color image. The 
presented approach learns the optimum weights for combining 
several feature descriptor, as well as the optimum number of 
candidate database images to be used in the depth map 
estimation. The algorithm also clusters the database according 
to their structural similarity to be able to use realistic and huge 
database images. The algorithm is divided into two different 
modules. The offline module is run beforehand and involves 
the main computational cost, alleviating the burden of the 
online module and making feasible the implementation of the 
proposed approach in consumer electronics devices such as 
smartphones or TVs 

The approach achieves similar or higher results to the best 
algorithms in the state of the art, outperforming them for the 
most challenging cases, such as the indoor scenes, and for the 
combinations of indoor and outdoor scenes. Additionally, in 
cases where very similar images are available, as in video 
sequences, the presented approach experiments a very 
significant increment in the quality, due to the inclusion of an 
image registration step. 
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