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Abstract— 

 
Index Terms— biometrics, security, consumer electronics. 

I. INTRODUCTION 

A. Biometrics on Smartphones 
RADITIONALLY found on dedicated devices, biometric 
systems make use of physiological or behavioral properties 

of the human body in order to identify or authenticate a person 
based on a previously learned set of samples [1]. 

In previous works the use of biometrics on smartphones has 
been reviewed and considered in detail [2]–[4]. The use of 
fingerprint technology is well-known and has become highly 
integrated into certain modern devices [5]–[7]. Face recognition 
has also been explored for applications on consumer devices 
[8], [9]  but has not been widely adopted in practice, due in part 
to concerns on the ease with which face data can be captured 
and used in spoofing attacks [10], [11].  

More recently, research into second-generation biometrics 
has focused on the iris of the human eye. For iris recognition, 
images are generally captured at near infra-red wavelength. It 
is challenging to acquire such an iris region in current consumer 
devices without making significant modifications to the 
standard camera module or providing a dedicated Near-Infrared 
(NIR) imaging module [12]. 

B. Palmprint as a Smartphones Biometric 
One important barrier to incorporating additional biometric 

sensing capabilities into a consumer device is the need to add 
new hardware. Fingerprints require that suitable sensing 
technology is available as the initial experience with swipe 
sensors was highly unsatisfactory [27]. Similarly, iris 
acquisition will require either modified optical designs, the use 
of new NIR sensitive CMOS image sensors or a combination of 
both[13]. 

New hardware designs are expensive and take time to perfect, 
thus delaying the market entry of a new biometric technology.  
But the main camera on today’s devices has the capability to 
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capture good quality palmprint data. And improvements in 
focus and exposure algorithms make this camera quite effective 
in acquiring a normalized palmprint image across a broad range 
of lighting conditions. It is worth noting that the main use of 
palmprint is likely to be as a secondary, confirmatory 
biometrics rather than a primary, or transactional biometric 
[14]. 

Thus, while palmprint has not seen the mainstream use of 
face, fingerprint and iris biometrics, it is an equally valid 
candidate for use in smartphones and has the advantage that no 
additional sensing capabilities are required.  And there is a 
further advantage – one of the weaknesses of facial images [11] 
and fingerprints [6] lies in the ease with which high quality 
samples of these biometrics can be obtained by an attacker. 
Palmprints are not as easy to acquire without the user’s consent 
as people do not easily leave behind palmprint copies or expose 
them during daily activities. These considerations when 
coupled with the ease with which a palmprint can be 
authenticated by simply holding one’s hand at arm’s length and 
taking a picture have provided the primary motivation for this 
work. 

This article presents a literature survey on touchless palmprint 
recognition on mobile devices and its challenges. It is followed 
by the introduction of a novel unconstrained palmprint database 
acquired with several handheld devices. The database imitates 
the real-world challenges which may be experienced by a 
smartphone palmprint biometric system. 

The database is discussed and compared, bringing it in line 
with the other established palmprint databases that are more 
constrained. Baseline experiments are provided and an 
approach was recommended for smartphone use cases. Finally, 
the results are compared with the best case performance 
obtained in more constrained palmprint recognition systems. 
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II.  RELATED LITERATURE & CONTRIBUTION 

A. Contactless Sensing of Palmprints 
Palmprint recognition as a biometric feature can be used either 
in its latent [15], and low resolution form [16]–[18]. The former 
category is part of the field of forensics and requires high 
resolution images of at least 500 ppi, whereas the latter only 
uses 100 ppi and are enough for access control applications.  
The low resolution palmprint information can be extracted 
using texture descriptors. Wu et. al [19] use a derivative of 
Gaussian filter (DoG), while Sang et. al [20] have extracted 
Local Binary Pattern (LBP) [21]. Geometric features, including 
Difference of Gaussian, Hessian and others have been used 
[22]. 
The best performing approaches palmprint feature extraction 
techniques are the ones encoding the orientation at pixel level. 
While the Competitive Code (CompCode) [23] uses a set of 
Gabor filters with 6 orientations and encodes the minimum 
response based on a winner-take-all rule, the Robust Line 
Orientation Code (RLOC) [24] makes use of a modified Radon 
transform and uses a similar rule. Orthogonal Line Orthogonal 
Features (OLOF) [25] uses six elliptical Gaussian filters and 
compares each orthogonal pair to generate one bit feature code. 
Results are further improved by combining OLOF with SIFT 
[26]. A Histogram of Oriented Lines (HOL) [27] is computed 

using CompCode and RLOC features in cells of size 2x2 and 
was compared to Histograms of Oriented Gradients (HOG) 
extracted from the palmprints’ gradient. A collaborative 
representation of CompCode, together with a large contactless 
palmprint database was proposed by Zhang et al [28]. 

Recently the number of filter orientations used for CompCode 
and RLOC has been challenged, and a faster, better performing 
version was proposed [29]. By employing only one orthogonal 
pair of filter responses, both matching speed and performance 
are greatly improved. Another novelty represents the 
introduction of Difference of Vertex Normal Vectors (Don) 
[30], which extracts 3D information from a 2D palmprint 
image. 

These results are based on conventional databases which have 
been acquired in constrained conditions of lighting and hand 
pose. While the Hong Kong Polytechnic University database 
(HKPU) [31] provides images of scanned hands, IIT-Dehli 
database (IIT-D) [32] offers touchless hand images from an 
enclosed structure. Both databases make for an environment 
where the segmentation of the hand from the background is not 
the greatest challenge. And it is understandable the case be so, 
but at the moment we are looking to extend the capabilities of 
existing matching systems and include palmprint images 
acquired with non-professional devices in uncontrolled 
conditions, where alignment errors are one of the biggest factor 
affecting match rates. To overcome such challenges, Ito et al 

TABLE I 
PALMPRINT DATABASES DEVELOPED IN RECENT YEARS 

Name Capture Type Year Main characteristics Number of 
images 

Number of 
hands 

Publicly 
available 

PolyU [28] Contact-based 2003 Constrained environment 7,752 386 Yes 

CASIA [38] 
Contact-less 

2005 Constrained environment – uniform background, only small 
pose variation and regulated lighting conditions. 5,502 624 Yes 

IIT Delhi [29] 2006 Constrained environment – uniform background, only small 
pose variation and regulated lighting conditions. 3,290 670 Yes 

[28] Contact-less 2017 
Constrained environment – uniform background and uniform 
hand pose, with regulated lighting conditions. Large scale 
database with high quality images. 

12,000 600 Yes 

UPM [39] 1 Smartphone 
Camera 2011 

Intended for hand geometry, although contains the palmprint 
region; background is uncomplicated, which simplifies the 
segmentation of skin regions. 

30 per 
participant 

Not 
specified No 

[34] 1 Smartphone 
Camera 2011 Only hands with open fingers; no information regarding the 

acquisitioning environment. 252 84 No 

DevPhone 
[35] 

1 Smartphone 
Camera 2013 

Users did not receive any instructions when capturing 
palmprints; controlled acquisition using a square guide 
displayed on the screen; no information about the 
environment of acquisition. 

600 30 No 

BERC DB1 
BERCD B2 
[36][42] 

1 Smartphone 
camera 2015 

‘Wild’ acquisitioning conditions; a controlled hand 
orientation using a visual guide on the device screen; makes 
use of flash illumination. 

8,957 
9,224 120 Not 

currently 

PRADD 
[41] 

2 Smartphone 
Cameras and 1 
Compact Camera 

2012 
Only hands with open fingers, against a surface covered with 
black cloth. Images not captured by the device’s user. Two 
lightning cases - office and daylight.  

12,000 100 Not 
specified 

[37] 1 Smartphone 
Camera 2016 

Users had to position the palm in a circular guide displayed 
on the screen of the device. Each user filmed 3 short videos 
of the palm. 

186 short 
videos 62 Not 

specified 

Proposed 
Database: 
NUIG_Palm1 

5 Smartphone 
Cameras 2017 

Users did not receive instructions on how to acquire 
palmprint images; two extremes of lighting conditions - 
indoor light conditions, normal daylight conditions; 5 
different smartphones 

1,616 81 Yes 

 



[33] propose a novel palm region extraction method which is 
robust against hand pose variation, but relies on the 
segmentation from the background, thus making it sensitive to 
segmentation artefacts. Similarly, the approach of ElSayeed et 
al [34] relies on uncluttered background and open fingers. 
Aykut and Ekinci [35] employ an Active Appearance Model 
(AAM) to extract the Region of Interest (ROI) but only allow 
one hand posture. If the ROI is successfully extracted, then 
potential misalignments can be managed by the matching of 
SIFT features, as carried out by Zhao et al [36]. Even though 
these alignment approaches are intended to be used in touchless 
palmprint systems, they have not been used on smartphones. 

B. Research on Palmprint on Mobile Devices 
Only in recent years have researchers begun to consider the 

smartphone as a means of acquiring palmprint images with the 
embedded rear camera [37]–[40]. Choraś and Kozik [37] used 
a combination of classifiers and Eigen-palms to extract and 
match palmprint features. When using 50 randomly created 
classifiers they obtain an EER of around 3.3%, as opposed to 
the 50 manually created classifiers that give an EER of 7%. 
Aoyama et al [38] used a square guide, together with skin color 
segmentation and Band Limited Phase Only Correlation 
(BLPOC) for feature extraction. The authors compare the 
efficiency of their algorithm with a database of their own, 
together with HKPU (e.g. contact-based) and CASIA (contact-
less)[41]. This yields EER of around 4% for their database, 
whereas PolyU generates an EER of 0.05% and CASIA an EER 
of 0.5%. Kim et al [39] extract the ROI’s features using a local 
orientation histogram of palm lines based on CompCode. In 
order to normalize the hand’s posture variation a hand shaped 
guide was used on the smartphone’s screen. Furthermore, to 
make the algorithm more robust to lighting variation, the 
embedded flashlight was turned on during the image 
acquisition. Based on a database that the authors have collected, 
an EER of 2.88% was noted, whereas CompCode and OLOF 
provide EER of 6% and 5% respectively. Using the same 
database, Li and Kim [42] introduce a Local Micro-structure 
Tetra Pattern. Tiwari et al [40] implement a system on a 
smartphone which matches SIFT and Oriented FAST and 
Rotated BRIEF (ORB) features. They tested the influence of 
histogram equalization pre-processing before the ROI 
extraction, and reached the best result of 5.5% EER with an 
accuracy of 96.07% in the case of SIFT features with the pre-
processing stage. The least performant results of 27.2% EER 
and 73% accuracy were given by ORB features with no pre-
processing.  

A palmprint recognition system intended to operate in a 
smartphone specific environment firstly needs to be robust to 
many variations associated with handheld devices – of which a 
few are lighting conditions, hand rotation and hand pose. A 
database that can support all these challenges has not yet been 
made available. However, de Santos Sierra et al [43], [44] 
describe a hand biometrics database that was part of their 
research around hand geometry, which is a biometric feature 
distinct from the palmprint. According to the authors, the only 
restriction imposed on the participants was to maintain a 
distance of around 15-20 cm between the camera and the hand.  

Secondly, it needs to be consistent throughout several 
devices. An initial contribution in this area was made by Wei et 

al [45] with the introduction of a database of palmprint images 
acquired from 3 different devices - 2 smartphones and a 
compact digital camera. A number of common feature 
extraction techniques were matched in various training and 
testing scenarios, demonstrating the inter-device operability of 
a smartphone palmprint system. However, these results were 
obtained in significantly constrained conditions in terms of 
image acquisition. The hands were required to have fully 
extended open fingers against a uniform black cloth placed on 
the ground. Furthermore, in some cases the devices were 
handled by other people, which does not fit the use case of self-
authentication [45]. 

Unfortunately, the databases mentioned earlier [37]–[40], 
[45] have not been made publicly. The lack of a publicly 
available palmprint database able to mimic the variations of 
smartphone use cases has encouraged the development of the 
database entitled ‘NUIG_Palm1’, capable of covering the 
majority of variations found in an unconstrained environment. 

C. Contributions of this Work 
The primary contribution of this work is to demonstrate the 

feasibility of employing unconstrained palmprint biometrics 
across a range of contemporary smartphones. There is no 
specialized hardware and thus palmprint authentication can be 
readily implemented. Further, it is shown that biometric 
authentication is essentially portable between devices in an 
unconstrained environment. 

In support of our primary contribution a new database of 
palmprint images obtained for multiple handheld devices and 
based on an unconstrained acquisition protocol is presented. 
This database is, to the best of our knowledge, unique. It offers 
a set of unconstrained palmprint images acquired from 81 
individual subjects, each with a dataset acquired with five 
different smartphones. The goal is to represent practical 
acquisition conditions where users are only asked to capture the 
entire area of their palm in a substantially open/flat 
presentation. No further instructions were given to the subjects 
participating in this research. The database is provided with an 
annotated ground truths to provide a baseline for comparison 
between recognition algorithms.  

Several preliminary experiments are also detailed to 
demonstrate the feasibility of this unconstrained acquisition 
mode. This initial study demonstrates acceptable performance 
as a secondary biometric. The use of palmprint in a two (or 
three) factor authentication scheme requires that its use is 
convenient for the user and it does not require additional 
sensing capacity to be added to a CE device. Unconstrained 
palmprint is ideal for such a use case and is faster than waiting 
for an SMS message and typing this back into your device. It 
can also serve as a presence/liveness check for a primary 
authentication means such as an iris or fingerprint scan – there 
have been several recent examples of spoofing both of these 
biometric techniques on smartphones [46]. 

III. MULTI-DEVICE PALMPRINT DATABASE 

A. Initial Proof-of-Concept Dataset 
When implementing a palmprint recognition system on a 

mobile device, one needs to take into account the nature of the 
images that are used. The user should restrict as few acquisition 



conditions as possible, mainly because of the profile of the 
handheld imaging capabilities, but also because the user 
experience should be straightforward and somewhat enjoyable. 
The camera’s environmental conditions vary strongly, from 
very sunny areas to dark rooms, the rotation of the hand also 
varies, but most importantly, the background’s content is 
completely ‘wild’ – all these factors create complex scenarios 
for pre-processing algorithms to deal with. 

An initial Proof-of-Concept (PoC) dataset has been collected 
from users using 4 different mid-market smartphones from late 
2012 and 2015. 

The variations associated with this database are detailed in 
Table II. Based on these parameters and related variables, the 
acquiring session consisted of taking 27 images per smartphone 
for every user. Reducing the hand orientations to the user’s 
choice meant that the images were closer to how palmprints 
would be acquired in real life and provided a smoother 
interaction with the device – a quality that is critical to all 
consumer devices. The lighting conditions were reduced to two 
setups, whereas two backgrounds were used.  

B. Design and Acquisition of Data for the Full Database 
Each participant was asked to choose one hand and take 

pictures of it against 2 distinct backgrounds representing 2 
specific cases: i) a cluttered background composed of several 
images with a number of calibration patterns and ii) skin like 
background, containing wooden texture. Two Lighting 
conditions were considered – ‘inside dark’ and ‘indoor normal’. 
This resulted in 4 images per device, with a total of 20 images 
per person. A few samples are provided in Fig.1.b) alongside 
palmprint images from HKPU and IIT-D databases in Fig.1.a). 
Users were not restricted to one particular hand orientation, 
they were free to choose whatever was most comfortable for 
them – including the distance from the hand to the camera. The 
camera settings were set to “Auto” the entire time with the flash 
turned off.  

C. Main Database Characteristics 
The proposed database provides researchers with a rich set of 

images taken from 81 individual subjects of mixed gender, and 
ages ranging from 19 to 55 years old. A total of 5 smartphone 

devices were used to acquire images for each subject, as 
detailed in Table III; images of each user’s palmprint were 
acquired at two distinct lighting levels and in two distinct 
background conditions. There are thus 20 images of palmprints 
per subject or 1,616 images available in the main database. Note 
that only one hand was used per subject as the workflow 
reflected a user’s natural predilection to use their lead-hand to 
hold the device, thus capturing an image of their secondary 
hand. In order to increase the relevance of the database, for this 
paper all right hand images were flipped vertically so that all 
samples can be considered as coming from a left hand. 

This is the first publicly available wild multi-device database 
to be used for testing palmprint biometrics. 

 
 

TABLE III 
DEVICES USED FOR DATABASE ACQUISITION 

Device # CPU GPU Sensor 
Resolution 

Lens 
f-number 

Month of 
Launch 

Device1 6 cores 2 cores 16 MP f/1.8 April 2015 
Device2 4 cores 4 cores 16 MP f/1.9 April 2015 
Device3 2 cores 3 cores 8 MP f/2.4 Sept. 2012 
Device4 2 cores 6 cores 12 MP f/2.2 Sept. 2015 
Device5 8 cores 8 cores 13 MP f/2.0 April 2015 

 

 

  
 

(a) (b) c) 
Fig. 1.  Image samples from (a) PolyU database (above) and IIT Delhi (below); (b) The proposed database;  

c) ROI extraction using new coordinate system determined by points X12 and X34 
 TABLE II 

VARIATIONS OF THE PROOF OF CONCEPT DATABASE 
Parameters PoC Database Final Database 

Light 

Indoor Dark  
(6 EV or 160 lux) 

Indoor Dark  
(6 EV or 160 lux) 

Indoor Normal  
(7.5 EV or 450 lux) Indoor Normal  

(7.5 EV or 450 lux) Inside Bright  
(13.5 EV or 28,900 lux) 

Background 
Poster – complex scenes Poster – complex scenes 
Real objects scene Poster – wooden surface Wooden Surface 

Hand 
rotation 

Horizontal 
User’s choice Vertical 

Oblique 
 



IV. BASELINE EXPERIMENTS 

A. Region of Interest (ROI) extraction and pre-
processing 

A generic processing pipeline requires the palmprint to be 
extracted from the hand in a consistent manner. In this paper the 
finger bases were marked with 5 points, where the 3rd one marks 
the central finger valley. If we denote the first two points X1, 
X2 and the last two points as X3 and X4, then the middle point 
of the segments are represented by X12 and X34. They are then 
used to create a new coordinate system to rotate and align the 
palmprints, as demonstrated in Fig. 1c), where the extracted 
ROI is contained within the green square. These landmarks and 
the extracted ROIs are provided as benchmarks in future tests 
related to hand detection. 

B. Experimental Setup 
Experiments are performed in the proposed palmprint 

database to provide a set of baseline results. Several feature 
extraction methods are employed in the baseline experiments to 
obtain a diversified set of discriminative features.  
• Competitive Code (CompCode) [23] is one of the most 
used algorithms for feature extraction within the context of 
palmprints, thanks to its efficiency of encoding information 
with only 3 bits, making it ideal for low-memory conditions. It 
uses a family of 2-D Gabor filters with 6 orientations and 
computes the filter responses of the ROI template, to then apply 
a competitive rule (2) 
 

𝐶𝑖 = 𝐼 𝑥, 𝑦 ∗ 𝜓𝑅,𝑖 𝑥, 𝑦, 𝜔, 𝜃𝑖 , i = 1, . . . ,6  (1) 
 

𝐶 = 𝑎𝑟𝑔	𝑚𝑖𝑛7(𝐶7)    (2) 
 

where I is the input ROI template, (x,y) are the pixels, 𝜓:,7 is 
the real part of 2D-Gabor filter response with radial frequency 
𝜔 and orientation 𝜃7. 
• Robust Line Orientation Code (RLOC) [24] is defined 
as a modified finite Radon transform, which is a summation of 
image pixels over a certain set of lines (3): 

𝑟 𝐿< = 	 𝑓7,> ∈@A 𝑖, 𝑗 , 𝑘 = 1, … ,6, (3) 

,where [𝐿<] is the set of points that make up a line on a 9x9 
lattice which moves across the ROI template. 𝑓(𝑖, 𝑗) is the real 
function defining this line. To extract RLOC, the same 6 
orientations are used as in CompCode. A competitive rule is 
then applied to obtain the final code (4) 
 

  𝑅 = 𝑎𝑟𝑔	𝑚𝑖𝑛<(𝑟 𝐿< )  (4) 
• A Fast implementations of CompCode and RLOC 
was defined in [29] and reported better overall results than 
their original implementations. By reducing the number of 
filter responses being used, from 6 to 2, a more discriminative 
feature is obtained. The selected 2 orientations need to be 
orthogonal, therefore there are 3 pairs of orientation for 
CompCode and RLOC defined as (5) and (6): 
 

𝐶G = 𝑎𝑟𝑔	𝑚𝑖𝑛7 𝐶7, 𝐶7HI , 𝑖 = 1, . . ,3	  (5) 
 

𝑅G = 𝑎𝑟𝑔	𝑚𝑖𝑛> 𝑟 𝐿< , 𝑟 𝐿<HI , 𝑘 = 1, . . ,3	  (6) 
 
According to the authors, the pair of orthogonal orientations 
chosen for the fast implementation does not matter, but some 
differences were noted in the experimental part of this paper. 
As a notation, every fast implementation of CompCode and 
RLOC contains the pair number used for that feature extraction, 
as mentioned in (5) and (6).  
 
• Local Binary Pattern (LBP) [21], [47] is a simple yet 
powerful texture operator labeling the pixels of an image by 
thresholding the neighborhood of each pixel, considering the 
result as a binary number. The value of the LBP code of a pixel 
(𝑥K, 𝑦K) is computed with (7): 

𝐿𝐵𝑃N = 𝑠 𝑔P − 𝑔K 2PNST
PUV ,				𝑠 𝑥 = 1, 𝑖𝑓	𝑥 ≥ 0;

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, (7) 

 
where P is the size of the kernel, equal to 9, p is the index of the 
neighboring pixels in the region. 
• Orthogonal Line Orthogonal Features (OLOF) [25] is 
based on 2D Gaussian filters to obtain a weighted average of 
line-like regions (8).  

𝑓 𝑥, 𝑦, 𝜃 = exp	 b cdefHg ehif
jk

l
− Sb ehifHg cdef

jm

l
, (8) 

 
where 𝜃 denotes the orientation of the filter, 𝛿b and 𝛿g denote 
the horizontal and vertical scale parameters. Throughout 
experiments the values 𝛿b = 1.8 and 𝛿g = 0.5 were used. 
An orthogonal filter is obtained with (9): 
 

𝑂𝐹 𝜃 = 𝑓 𝑥, 𝑦, 𝜃 − 𝑓 𝑥, 𝑦, 𝜃 + t
l

 (9) 
 

Three ordinal filters,𝑂𝐹(0),𝑂𝐹(t
u
) and 𝑂𝐹(t

I
) are applied to 

obtain three bit codes based on the sign of filtering results. 
• Difference of Vertex Normal Vectors (DoN) [30] 
represents a 3D feature descriptor recovered from a 2D image. 
Each point/pixel 𝑝7 on the image plane is corresponding to a 
vertex 𝑣7 on the palmprint surface. For every point 𝑝7, having 
two neighboring regions 𝑅7Tand  𝑅7l, its DoN feature is 
computed with (10): 

𝐷𝑜𝑁 𝑖 = 𝜏 𝑧>>|:}
~ − 𝑧>>|:}

� , 𝜏 𝛼 = 0, 𝛼 < 0;
1, 𝛼 ≥ 0. (10) 

 
Practically, in order to construct the feature extractor a filter 
needs to be constructed using (11) 
 

𝑓7,> =
1, 𝑖𝑓 𝑖 > 𝑗
−1, 𝑖𝑓 𝑖 < 𝑗
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

   (11) 

 
where i, j are the indexes 𝑖, 𝑗 ∈ −𝐵, 𝐵 . The filter size is (2𝐵 +
1)×(2𝐵 + 1). In order to obtain the final feature image, the 
palmprint is convolved with the filter (12): 

𝐹 = 𝐼 𝑥, 𝑦 ∗ 𝑓7,>   (12) 



 
The dimensionality of feature vectors was varied from 32x32 

pixels to 128x128 pixels. Computationally light feature 
extraction techniques are chosen in order not to exhaust the 
computation resources of a smartphones. 

C. CRC_RLS Classification Strategy 
As palmprint recognition is a small sample size classification 

problem, a collaborative representation classifier with 
regularized least squares (CRC-RLS) is used to determine the 
identity of the query image [48], [49]. 

Let 𝐷 = [𝐷T,𝐷l, … , 𝐷<] be the dictionary which denotes the 
training palmprint images of the 𝑘 subjects (available in the 
database).	𝐷7 = [𝑣7,�~,𝑣7,��, … 𝑣7,�},] are the training palm 
images of the 𝑖��person and the total number of training palm 
images of the same person is denoted as 𝑛7. A query palmprint 
image 𝑦 can be collaboratively coded over the dictionary 𝐷 by 
using (13) [48] 

𝑎 = 𝑋𝑦   (13) 
where 

𝑋 = (𝐷�𝐷 + 𝛾. 𝐼)ST𝐷�  (14) 
where 𝛾 is the regularization parameter and 𝐼 is the identity 
matrix. The regularized residual 𝜀7for each subjects 𝑖 in the 
dictionary 𝐷  over this coding scheme is calculated using (15) 
 

𝜀7 = 𝑦 − 𝐷7. 𝑎7 l	/ 𝑎7 l  (15) 
 

From the regularized residuals, the identity of the query image 
𝑦 can be calculated with (16) 
 

𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦	(𝑦) 	= 	𝑎𝑟𝑔	𝑚𝑖𝑛	(𝜀7) (16) 
 

This specific choice of classification scheme is employed based 
on not only its success rate in face recognition, gender 
classification etc., but also because it is up to 1600 times faster 
than the state of the art sparse representation based classifiers 
[3]. Such a high performing, computationally light classifier 
may be widely adopted in resource constrained consumer 
devices such as smartphones. 
 

The baseline experiments are classified into three main 
categories - (1) Cross-device Palmprint Matching, (3) 
Classification Strategy Evaluation and (2) Device-specific 
Palmprint Matching. 

1) Cross-device Training Set (CD_Train) 
All the images that are part of a lighting/background setup are 

used as the training set one at a time. For instance, images 
captured in cluttered background under ‘indoor normal’ 
lighting condition with all five devices make up the training set 
of images (total of 405 images), while the rest make up the 
testing set (total of 1215 images). Matching experiments are 
conducted by varying the template size, from 32x32 to 64x64 
and 128x128 pixels. 
 The training set is then changed to the other setups and results 
are averaged, giving a better perspective of the performances 
and challenges of the database. 

 Classification Strategy Evaluation 
This set of experiments is designed to compare the 

recommended strategy with several feature extraction 

techniques and with more traditional classification strategies 
such as Support Vector Machines (linear kernel), Nearest 
Neighborhood (number of neighbors optimized for the training 
set) classifiers and Fisher Discriminant Analysis [50]. The 
template feature sizes are the ones with best performances in 
the CD_Train case. Setup 1 was used, with ‘indoor normal’ 
lighting conditions. 
 

 Cross-device Testing Set (CD_Test) 
The training set for each class is using all the images from one 

device at a time. This results in training with 4 palmprint images 
for each class, thus covering both lighting conditions (total of 
324 images). The remaining 16 images from the other devices 
are used for testing (total of 1296 images). The template sizes 
used are the ones which yielded the best results in the cross-
device experiment. 

This experiment represents a more mature recognition 
strategy where the database can contain various imaging 
conditions. Such a scenario is viable when the recognition 
system updates the enrolled images over a period of time as the 
system encounters images acquired in conditions that are 
considerably different from the previously enrolled images’ 
environment. 

V. RESULTS 

A. Cross-device Training Set  
The CD_Train matching results are presented in Table IV, 

indicating that the CRC_RLS classifier is fairly robust to 
alignment errors, considering the matching is done at pixel 
level. Please note the fast implementations of CompCode and 
RLOC contain ‘Fast’ in their name and an indication of the pair 
used for their computation, as detailed in (5) and (6). 

The results reflect the appropriate size of the template for each 
feature extraction technique. While in most cases results are 
better when the template size is 64x64 pixels, LBP, OLOF, 
Fast-Comp2 and Fast-Comp3 achieve their best recognition rate 
(RR) around 73% and equal error rate (EER) around 13%  at 
32x32 pixels. The best result is achieved by the Don feature at 
around 80% RR and 10% EER, closely followed by Fast-
RLOC2 and Fast-RLOC3, at around 77% RR and 11% EER. 
The other features go only slightly above 70% RR and have 
high EER. 

B. Classification Strategy Evaluation 
 
 
 

C. Cross-Device Testing Set 
Further, Receiver Operating Characteristic (ROC) curves for 

the CD_Test recognition experiments are provided in Fig. 2, 
where it can be observed that results are better than CD_Train 
case. This suggests that training with more images from the 



same device is more important than having images from several 
devices. Of all cases, when training the CRC_RLS classifier 
with images from Device2 (Fig.2 b)) the best RR and EER is 
reached by DoN with 87.81% and 6.10%. Whereas Device2 
provides the best RR and EER, the lowest are resulting from 
Device4 (Fig.2 d)). Instead of correlating this result with the 
sensor’s resolution, it is more appropriate to justify it with the 
device’s firmware, more exactly image stabilization and overall 
behavior to low light scenes. As it can be noted from Fig.2 c), 
Device3, which represents another model of the same family of 
devices, follows a similar trend. Device5 is close to Device3 in 
terms of performance.  

If we are to consider the value of 0.01% for False Acceptance 
Rate (FAR) as benchmark for a reliable biometric system, then 
DoN gives the best result in CD_Test, with a Genuine 
Acceptance Rate (GAR) of 90.05% 

Table VI outlines the Genuine Acceptance Rate (GAR) of the 
best performing case of CD_Test, having as reference the False 
Acceptance Rate (FAR) of 0.01%, as displayed in Table VI. 

This result should not be considered as being a direct 
consequence of the device’s shortcomings, but a testament to 
the difficulty of using images acquired in a wild environment. 
Aspects such as image sharpness and alignment of palmprints 
need to be taken into consideration and mitigated.  

D. Best Performance Comparison with Existing 
Palmprint Databases 
This section compares the best performance found in the 

literature on various palmprint databases with the best 
performance obtained in the proposed unconstrained database. 
Note that the publicly available palmprint databases are 

acquired in constrained environments with dedicated 
acquisition devices in uniform backgrounds. Such a comparison 
is given in Table VII.  

VI. CONCLUSIONS AND FUTURE WORK 
This paper demonstrated the feasibility of user authentication 

on smartphones based on palmprint biometrics. Literature on 
touchless palmprint recognition on mobile devices and its 
challenges were outlined. A novel, unconstrained palmprint 
database is collected using multiple smartphones under varying 
image acquisition conditions. The publicly available palmprint 
databases are acquired in constrained environments with 
dedicated acquisition devices in uniform backgrounds. Unlike 
such databases, the proposed database is expected to mimic the 
real-world use case of palmprint biometrics as a user 
authentication on smartphones 

Future work includes increasing the size of the database to 
100 users, along with multiple sets of samples for the same user. 
Furthermore, additional approaches for ROI alignment will be 
considered that can be employed during the acquisitioning stage 
for a smoother human computer interaction. The applicability 
and robustness of these techniques will also be investigated 
when applied to the multi-device dataset. 

TABLE VII 
BEST RESULTS FOR SMARTPHONE PALMPRINT DATABASES 

Database Algorithm used Lowest EER 

BERC DB1 [42] Local Micro-structure 
Tetra Pattern 1.11 

BERC DB2 [42] Local Micro-structure 
Tetra Pattern 1.69 

DevPhone [38] BLPOC 4.00% 
Proposed Database 

‘NUIG_Palm1’ CRC_RLS with DoN 6.10% 

 

TABLE IV 
AVERAGED RESULTS: CROSS-DEVICE RECOGNITION RATES (RR) AND EQUAL ERROR RATES (EER) OF PALMPRINT IMAGES R 

Template Size 32x32 64x64 128x128 
Feature Extraction RR (%) EER (%) RR (%) EER (%) RR (%) EER (%) 
CompCode 67.03 14.03 69.81 15.69 56.68 21.98 
Fast-CompC1 66.64 14.60 69.15 16.63 54.59 25.23 
Fast-CompC2 73.12 12.31 71.31 15.68 55.72 25.62 
Fast-CompC3 70.74 13.11 69.07 16.94 51.37 27.90 
RLOC 70.57 12.20 77.06 10.88 71.46 15.37 
Fast-RLOC1 67.32 13.50 73.54 13.10 67.73 18.29 
Fast-RLOC2 70.06 12.58 76.81 11.67 69.79 17.04 
Fast-RLOC3 69.44 12.31 75.61 10.99 60.47 15.82 
LBP 72.71 13.61 72.59 14.89 68.37 15.96 

OLOF 73.02 12.94 70.47 16.34 56.58 24.37 

DoN 77.67 9.49 79.87 10.06 71.77 15.36 
 

TABLE V 
RECOGNITION RATES FOR CD_TRAIN TRAINING USING VARIOUS CLASSIFIERS 

Classifier Linear 
SVM 

K-Nearest 
Neighbour 

Fisher 
Discriminant 

Analysis 
CRC_RLS 

Feature 
Extraction RR (%) RR (%) RR (%) RR (%) 

CompCode 69.88 67.98 69.22 70.20 
Fast-Comp1 70.12 79.34 70.21 71.52 
Fast-Comp2 74.68 75.72 65.35 73.90 
Fast-Comp3 75.59 77.20 66.34 72.92 
RLOC 78.19 79.59 78.19 78.84 
Fast-RLOC1 73.09 78.85 74.16 74.73 
Fast-RLOC2 78.27 81.23 78.68 78.60 
Fast-RLOC3 74.07 56.13 76.13 76.46 
LBP 73.99 79.67 67.98 73.66 
OLOF 74.07 77.53 69.47 71.93 
DoN 74.49 63.79 76.05 81.07 

 

TABLE VI 
GENUINE ACCEPTANCE RATES (GAR) CORRESPONDING TO  
0. 01% FALSE ACCEPTANCE RATE IN THE CD_TEST CASE 
Feature Extraction TAR value 

DoN 90.05% 
Fast-RLOC2 86.50% 
RLOC 86.00% 
Fast-RLOC3 85.34% 
Fast-CompC3 84.65% 
Fast-CompC2 83.72% 
OLOF 82.48% 
Fast-RLOC1 82.40% 
LBP 81.87% 
CompCode 76.70% 
Fast-CompC1 75.31% 
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