arXiv:1904.02956v1 [cs.SE] 5 Apr 2019

EvoCreeper: Automated Black-Box Model
Generation for Smart TV Applications

Bestoun S. Ahmed, and Miroslav Bures

Abstract—Smart TVs are coming to dominate the television
market. This accompanied by an increase in the use of the smart
TV applications (apps). Due to the increasing demand, developers
need modeling techniques to analyze these apps and assess their
comprehensiveness, completeness, and quality. In this paper, we
present an automated strategy for generating models of smart
TV apps based on a black-box reverse engineering. The strategy
can be used to cumulatively construct a model for a given app by
exploring the user interface in a manner consistent with the use of
a remote control device and extracting the runtime information.
The strategy is based on capturing the states of the user interface
to create a model during runtime without any knowledge of
the internal structure of the app. We have implemented our
strategy in a tool called EvoCreeper. The evaluation results show
that our strategy can automatically generate unique states and
a comprehensive model that represents the real user interactions
with an app using a remote control device. The models thus
generated can be used to assess the quality and completeness of
smart TV apps in various contexts, such as the control of other
consumer electronics in smart houses.

Index Terms—Model generation, Smart TV application, Ap-
plication reverse engineering, Model-based testing.

I. INTRODUCTION

The smart TV is a modern technological device that is a
hybrid of a computer and a traditional television. In addition
to a conventional TV terminal, this device incorporates digital
content and an operating system (OS) with an Internet con-
nection. Smart TVs usually provide access to broadcast media,
games, digital services, various online interactive sessions,
on-demand entertainment, Internet browsing, and many other
services, and these devices are expected to become even more
intelligent, interactive, and useful in the future [1]]. Invest-
ments in related technological advancements by electronics
companies and IT firms have recently been increasing. As a
result, new terminals and applications for smart TVs have been
launched. It is expected that these devices will soon become a
common feature of smart homes within an Internet of Things
(IoT) context [2]]. This explains why the smart TV market had
grown to be worth $265 billion by 2016 [3].

Like all new smart devices, a smart TV is operated by an OS
that handles the necessary hardware interaction functionality
and a set of applications (apps) installed on the OS to provide
various services to the user. Despite the visual similarities

This study is conducted as a part of the project TACR TH02010296 “Quality
Assurance for Internet of Things Technology”.

B. Ahmed is with the Department of Mathematics and Computer Science,
Karlstad University, Sweden and the Department of Computer Science, Czech
Technical University, Karlovo nam. 13, Prague, Czech Republic, email:
bestoun@kau.se

M. Bures are with the Department of Computer Science, Faculty of
Electrical Engineering, Czech Technical University, Karlovo nam. 13, Prague,
Czech Republic

between smart TV apps and mobile apps, the mode of user
interaction with smart TV apps is different. For mobile apps,
the user interacts with the touchscreen of the device (i.e., the
apps) directly by hand, whereas for smart TVs, the user inter-
acts with an app through another device, namely, the remote
controller. Of course, some vendors also provide touchscreen
interactions to users. Additionally, some recent studies have
investigated gaze-based interactive interface design for smart
TV apps [4]. However, the way in which a smart TV behaves is
still primarily based on a remote control device when it comes
to the navigation of the user interface (UI) states. Moreover,
the user of any TV (including smart TVs) is usually far away
from the screen and uses the remote controller to operate apps
almost all the time.

With the increasing number of smart TV apps, there is
an urgent need for methods of modeling Uls based on user
interactions. As in the case of the Uls of desktop or mobile
apps, such a model can be used for many purposes. It can be
used to assess the completeness of an app during development
or to assess the quality of the app during testing. Such a model
can also be used to trigger requirement specifications and
analyze poorly documented legacy apps. It can also be used in
the smoke testing of apps. In fact, most developers currently
create mental models of Uls in order to better comprehend the
software.

Creating a model of the UI via the user interaction mode is
a common first step in assessing the quality and completeness
of a Ul-based app. While model generation is a common step,
the presentation of the model depends mainly on the type of
app and the user interaction mode. For a smart TV app, if the
app is to be used on a touchscreen TV, the same state-of-the-art
model generation methods used for mobile apps may also be
useful when deployed in the smart TV operation environment.
However, there is still a need to design a model generation
method for gaze interaction with an app, and our method may
not be useful for this purpose. Thus, in general, the model of
a smart TV app does not look like the model of a mobile app
due to the different mechanism of transitioning among the Ul
states. In a mobile app, a user can easily transition among app
states by going directly from one state to another. However,
for example, in a smart TV app, when the user wants to go
from one state to another, he must pass through some set of
states by means of the remote control device in order to reach
the destination state.

It is possible to create a model using the same state-of-the-
art approaches used for the reverse engineering of mobile apps.
In practice, however, that model will be useless for a smart TV
app. Normally, a model is created for some specific purpose.
For example, we may create a model to generate several test

cases. However, it will be impossible to run those test cases on
a real smart TV because there will be significant differences
in the transitions among the states of the UL

In this paper, we propose a strategy called EvoCreepeIF_]
for the automatic creation of comprehensible Ul models for
smart TV apps. EvoCreeper is a generic open-source model
generator for smart TV apps that can generate directed graphs
by reverse engineering an app without knowledge of its
internal code structure. In this strategy, the UI states and the
transitions among them are examined in order to create the
model. The contributions of this paper can be summarized as
follows:

« We present a new comprehensive automated black-box
strategy in which a smart TV app is executed on an
emulator and information is extracted from the UI during
runtime.

o We present an efficient exploratory algorithm that can ex-
plore the elements of a UI by simulating user interactions
with a smart TV app.

o We illustrate the implementation of our strategy within
our EvoCreeper tool, which can create directed graph
models of smart TV apps. The models thus generated can
be used for various development and testing purposes.

« We have developed an algorithm to verify the correctness
of the generated models.

o We have empirically evaluated our strategy through four
real case studies.

The rest of this paper is organized as follows. In Section [T}
we summarize the technological background of smart TV apps.
This section also mentions the related challenges and the most
closely related works in the literature. Section [III| summarizes
the details of our approach for generating models of smart
TV apps. Section || presents a proof of concept for our model
generation approach. Section |V|reports the evaluation results,
and Section summarizes the threats to the validity of our
evaluation experiment. Finally, Section gives concluding
remarks and discusses our future research directions.

II. BACKGROUND AND RELATED WORK

Smart TV apps are developed using software development
kits (SDKs). Each platform has its own SDK for the de-
velopment of software for TV devices. For example, the
Android and Tizen SDKs can be used for smart TV app
development. Recently, a few SDKs have also begun to support
cross-platform development. For instance, the Mautilus [5]]
Smart TV SDK is an example development framework, but
at present, the apps developed in this framework work on
only some versions of the supported devices. The Smart TV
Alliance [6] was another project for supporting cross-platform
development; however, this project has been inactive for some
time. In fact, the Tizen SDK is currently the SDK that is most
commonly used since it provides a set of tools and frameworks
for the development of smart TV apps through Tizen Studio
that utilize the latest web technologies, such as JavaScript,
CSS, HTMLS5, and W3C widget packaging, which are used by

'EvoCreeper can be downloaded here: https://bit.ly/2StQeG4

most smart TV apps. Additionally, JavaScript is used in most
apps as a standard programming language for programming
their behavior. The use of JavaScript endows an app with
the page jumping capability. It also enables the developer to
code complex expressions and calculation structures such as
conditional branches and loops.

In general, a smart TV app can be of one of two types:
installed or cloud-based. An installed TV app is a stand-alone
app installed on a smart TV without the need for an Internet
connection, while a cloud-based TV app primarily acts as an
interface between the cloud and the TV and offers only shallow
content (almost no additional functionality) when there is no
Internet connection available.

Regardless of the visual appearance of these apps, mobile
and smart TV apps are different in several significant respects.
For example, the size of the screen can affect the layout of an
app. Smart TVs have wider screens than small mobile devices
do. The background color of a smart TV app may also be
different from the corresponding color on mobile devices. The
size of the icons could also be different. From the perspective
user interaction, smart TV apps typically involve less text
entry because of the difficulty of entering text using a remote
control device. Most smart TV apps are designed to retrieve
content from the Internet, whereas this is not the case for
mobile apps, which can be standalone apps without Internet
connection interfaces [7]. The typical smart TV app is much
more straightforward than the typical mobile app, especially
in its design layout. We have explained these analogies and
differences in detail in our previous study [48]].

The way in which the user interacts with the app constitutes
an essential difference between smart TV and mobile apps.
The user of a mobile app interacts directly with the app without
an intermediate device, while for a smart TV app, the user
interacts with the help of a remote controller. In fact, the Uls
of smart TV apps are sometimes called 10-foot Uls since 10
feet (3 m) is the standard distance between the user and the TV.
Developers consider this distance when developing smart TV
UIs [7]I, [9]. Using a remote control device at this distance is
not a user-friendly or responsive experience. Hence, the design
of a smart TV Ul must consider this significant difficulty.

Navigation in a smart TV app is achieved through a remote
control device. Although some new TV devices offer the
ability for the user to directly interact with the screen, the most
common form of interaction with a TV device is still through
a remote control device. A remote control device includes four
essential navigation buttons: Right =, Left <, Up 1} and Down
{. Additionally, a remote control device has an OK button to
choose any selected item in an app after navigating to it and a
Back button < to navigate back to the previous screen. These
six key buttons should work properly when using an app.

In addition to these six buttons, there are many other buttons
on remote control devices that vary from one TV brand to an-
other depending on the level of the functionalities they access.
Some of them are related to the hardware functionalities of the
TV itself. For example, the power button turns the TV on and
off. There are typically also ten number buttons (from 0 to
9) for channel jumps and entering numbers in text fields if
necessary.

The UI layout of any app plays a primary role in (black-
box) model construction. A better understanding of this layout
can lead to a more accurate model. Smart TV apps typically
follow one of a limited number of layout patterns. Figure [I]
shows the three main patterns followed by most smart TV
apps. Of these, layout (b) is most commonly used since it
presents many items on a single screen.

The remote control device places constraints on the navi-
gation from one state to another because it supports only one
step of navigation at a time. Hence, each move in the layout is
a step. Accordingly, the transition from one state to another is
not smooth as in mobile or desktop apps. To move from one
state to another in a smart TV UI, the user may need to pass
through several other states before reaching the desired state.
For nonadjacent states, more than one step is required to move
from one to the other. As a simple example, we consider the
UI of a puzzle game smart TV app, as shown in Figure [2]

Clearly, there are 12 items (each regarded as a state) in
the UI of the app in Figure |2} For clearer illustration, we have
numbered these states. For instance, state 1 is the starting state.
From here, there are only two valid moves: Right to state 2 or
Down to state 3. Note that the user cannot jump directly from
state 1 to state 4; we consider this to be an invalid move (red
arrow). Hence, to move from state 1 to state 4, the user must
press Down twice, passing through state 3.

Generally, model generation for Ul-based software apps is
performed frequently for many purposes during the develop-
ment process, as described in the literature. Such models have
been used in the literature for testing and quality assurance
purposes (e.g., [10]-[14]). Regardless of the app type, as long
as the model is for the UI, it must simulate the users interaction
with the app in some form. Using this approach, Memon
et al. [15]], [16] proposed a reverse engineering technique
called GUITAR for modeling the Uls of desktop apps. The
technique starts from the main window and automatically
captures UI widgets to construct an event-flow graph model.
That model is then used to generate test cases for program
testing. This technique has undergone considerable develop-
ment in many subsequent research papers. Aho et al. [17]]
presented an extensive survey of those studies and techniques.
This approach has also been used for model generation for
mobile apps. For example, Joorabchi and Mesbah proposed a
reverse engineering technique for generating models of mobile
apps, and Amalfitano et al. 18] developed the MobiGUITAR
strategy for creating models of mobile apps.

Mesbah et al. [19] also proposed a reverse engineering
technique called CRAWLJAX for generating models of web
apps. However, this technique relies on a dynamic crawler
acting on a web app and detecting the clickable states. The
model thus generated can then be used to generate test suites
and analyze the app. In fact, this technique works like a gray-
box technique rather than a black-box technique because it
also scans the code of the app.

Gimblett et al. [20] tried to define a generic approach
for establishing models of interactive software to simulate
user actions. It is clear from the literature that most related
techniques follow the same basic principles. However, the
technology, application type, and user interaction mechanism

introduce differences and thus pose challenges for model
generation.

As another class of smart devices, smart TVs are currently
becoming increasingly popular due to the rapid development
of apps that can be installed on these devices and the ability to
control other consumer electronics and connect with them in
the IoT context. Some examples of the possible applications of
such technology include controlling home appliances through
smart TVs [21], [22], home sleep care with video analysis
using a smart TV app [23|], controlling smart homes from
smart TVs [24], healthcare applications for smart homes [25]],
smart lighting control [26], and smart security camera systems
[27]. With the increasing prevalence of these applications,
it is becoming increasingly difficult to ignore the unique
requirements of quality assessment for smart TV apps and
assume that the same quality assessment procedures can be
used as for mobile apps. As with other smart devices, creating
a model of a smart TV app is the first step towards quality
assessment.

To create a model for a smart TV app, it is necessary
to detect the active states of the app and the transitions
among them. While the same basic principles and concepts are
followed as in previous approaches to detect new states and
state transitions, as mentioned previously, there are significant
differences due to the different technologies and modes of user
interaction. In desktop GUIs and web apps, the combination
of a keyboard and mouse is still the standard mode of user
input for interacting with these apps. However, this is not
the case for mobile apps because the user interacts with the
touchscreen of the device by means of his or her fingers,
and hence, different users will exhibit different interaction
behaviors. Although this issue has led to the development
of new models for mobile apps, many of these strategies
still benefit, wholly or partially, from the earlier methods and
practices established for the reverse engineering of desktop and
web apps. Nevertheless, the differences in interaction create
many obstacles and difficulties. For example, Nguyen et al.
[16] used an event-flow graph (EFG) as a model of the Ul
of a desktop app, whereas Amalfitano er al. [[18] used a state
machine as a model for a mobile app due to the different
natures of their interactions. For smart TV apps, neither EFG
nor state machine models are applicable. In an app of this
kind, each transition from one state to another is, in practice,
just one step, while this is not the case in other apps. For
example, in a mobile app, the distance between two icons
(states) is irrelevant to the transition, whereas this is a critical
issue in a smart TV app, and this difference will lead to a
different model.

A significant effort to formulate such a model has been
made recently by Cui et al. [28]]. In their study, a hierarchical
state transition matrix (HSTM) was proposed as a model for an
Android smart TV app. While this model is promising, there
is a need to further develop and formulate it for the complex
structures of different apps. However, this type of model is
useful when model optimization and reduction are needed. In
fact, Cui et al. [28] used a white-box crawler approach to
scan the code of an app to construct a preliminary model.
This initial model contains many obsolete nodes because the

@ App name B @ x 8 U @ App name

<) App
name
‘menu item 1
menu item 2
menu item 3

menu item 4

(a) (b)

(c)

Fig. 1: Three main layout design patterns for smart TV apps ||

Fig. 2: A puzzle game smart TV app to illustrate the valid and invalid move based on the remote device

crawler detects all views present in the UI code. Even when
a view is not an active state in the UI, the crawler algorithm
considers it as a node in the model. For example, a piece of
text in an Android app is a view; however, in practice, it is
not a clickable state. When this approach is adopted, there is a
possibility of combinatorial explosion in the resulting model.
Therefore, the authors proposed an algorithm for reducing and
optimizing the model by distinguishing obsolete and active
nodes. However, this could be a time-consuming task and may
lead to deviation from the primary research focus while also
adding overhead to the model construction process.

In contrast to the contribution of Cui et al. [28], our
approach does not scan the app code. Our EvoCreeper strategy
instead explores the Ul of a smart TV app by examining
each element and observing its reaction. When an element is
clickable, the strategy will consider it as a state in the model.
Section [l1I| presents the details of our strategy.

III. OUR MODEL CONSTRUCTION STRATEGY

In this section, we present our new strategy for automat-
ically generating a model of a smart TV app. Our strategy
has been implemented with the Tizen SDK, which includes
a smart TV emulator; however, the proposed framework is a
general one, and it can be applied in combination with other
possible emerging SDKs in the future. The strategy depends
on the black-box approach to model generation and does not
require knowledge of the internal structure of the app code.

The smart TV app is modeled as a directed graph G =
(N, E), where N is a set of nodes, N # 0, and F is a
set of edges. E is a subset of N x N possibilities. In the
model, we define one starting node, ng € N. The set N, C N
contains the end nodes of the graph, where N, # (. Each
node corresponds to a Ul element (state) of the app. Each
edge corresponds to a possible transition between the states
focused on by the cursor. These transitions can be triggered

by individual keys on the remote control device. In this study,
e € {Dup, Daown, Dicft, Dright, Dox } for each e € E.

If the model allows parallel edges, formally being a directed
multigraph G’ = (N, E,ng, Ne, s,t), such that N # () is a
finite set of nodes, E' is a set of edges, s : E — N assigns
each edge to its source node and ¢ : & — N assigns each
edge to its target node. The node ny € N is the initial/start
node of the graph G and N, = {n. | n. € N has no outgoing
edge } defines nonempty set of end nodes of graph G’. In this
study, approach we decided to base the app model on G, which
practically does not allow parallel edges, to have the proposal
in accord with the current path-based testing approaches, for
instance, [29]-[31].

To detect all the necessary states in the app UI for presen-
tation in the model, we have developed an algorithm called
EvoCreeper. At present, the concept of state detectors for
the Uls of mobile, desktop, and web apps is rather famil-
iar. However, such detectors differ for each app category.
As mentioned earlier, algorithms called crawlers have been
developed that can crawl a Ul and detect states. Because we
are following a new approach to state detection, we do not
call our algorithm a crawler. Rather, from a linguistic point
of view, the name “creeper” is perfectly suited to what the
algorithm does, whereas the word “crawler” carries a different
meaning due to its use in web and search engine technologies.
Algorithm [T] shows the steps of the EvoCreeper algorithm.

One of the problems that EvoCreeper encounters when
exploring a Ul is establishing the position of the naviga-
tional cursor. Technically speaking, from the perspective of
a JavaScript developer, this problem arises when a focus point
is not set in the app. For several apps on the store, no focus
point has been set by the developers. As a result, when such
an app runs on the emulator, there are no preselected states
in its UI. Instead, the user must use the remote control device
to choose a state. Hence, a starting point for the navigator

Input: v; is the starting or user selected states
Output: List of states to be modeled L,
Iteration It <1

Maximum Iteration It,,,, < max

while ((It < It,04) || (newView # null)) do
Use v; as a start point

From v; generate five possible directions Dy, ,
DDown P DLeft s DRight’ and DOK

foreach direction D do

Navigate a step

Monitor emulator log for reaction
if newState = Active then

if the state is not duplicate then
Add newState to L,

else
| Back to the parental state
end

Record the in/out transitions
end

end
It + +

end
end
Algorithm 1: EvoCreeper Steps

is missing. This problem is common with cloud-based smart
TV apps because the UI changes in real time with the cloud
content. Therefore, our strategy starts by checking the initial
cursor condition. If a focus point is not set in the app, the
strategy starts by asking the user to choose at least one state
in the UI from which to start. From this state, the creeper
will start creeping the UI evolutionarily and incrementally. If
a focus point is already set, the strategy will proceed without
asking the user for input.

The algorithm has five directions Dup, Dpown, Drest,
Drignt, and Dok in which it can move from each state. When
a new state is discovered in each direction (i.e., newState =
Active), the algorithm will add it to the list of states to be
modeled, L,. The algorithm will continue until no new states
are discovered. At this stage, the algorithm will choose to
move back to the parent state. As an alternative stopping
criterion, the algorithm will perform some preset number of
iterations to avoid the possibility of an endless discovery loop
that is encountered in some special cases of cloud-based apps.

In the post-processing phase, states L, are converted to
nodes of the app model N. In this phase of the strategy, we
used the direct mapping between the states and IV, practically
speaking, for each [€ L,, an original n € N is created.

Figure [3] shows the directed graph model constructed by
our strategy for the CineMup smart TV app. To illustrate the
detail of the generated model, Figure [3| also shows a snapshot
of three nodes in the graph. Here, each node has a unique
identifier number preceded by the actual name of the state on
the smart TV app. The model also records the actual transitions
that can be performed from a state to another. Each transition
name is preceded by the name of the state that is originated
from.

The app model G can be subsequently used for two principal

purposes: (1) model checking, where a potential design sub-
optimalities can be detected, and (2) automated path-based
test case generation, being the major expected use case. Here,
the goal is to generate a set of test cases 7' that satisfy a
defined test coverage criteria and counted optimal by a test
set optimality criteria.

Respecting the standard approaches used in the field, a
test case t € T is a sequence of nodes ni,ns,..,n,, with
a sequence of edges ey, eq,..,en_1, Where ¢, = (n;nit1),
e; € E. The test case t starts with the start node ng (n1 = ng)
and ends with a G end node (n,, € N.) [29], [30]. Test
coverage criteria determine the strengths of the 7" in the sense
of number of alternative paths that are toured in the app during
the tests and vary from low test coverage levels (node coverage
or edge coverage) to very intense levels as all paths coverage
[29]. For the test set optimality criteria, several options can

be employed, for instance, the number of test cases, |77,
||

— 1
average length of the test cases, [t| = Il Z [t:],t; € T,
i=1
1T
or total length of a test set [= Z [til, t; € T [30], [31].

i=1
Such automated generation of test cases, which is subject of

other studies, for instance, [30]—[34] open variety of options
for construction of automated test frameworks for Smart TV
apps and document the applicability potential of our strategy.

In the following section, we present an example as a
graphical proof of concept for Algorithm [T}

IV. PROOF OF CONCEPT

In this section, we present a proof of concept for the
EvoCreeper concept introduced in Algorithm Here, we
consider a cloud-based app as a pilot example because this is
the most difficult scenario. As shown in Figure 4 each active
window has 12 states, and when the user shifts down or to
the right, new states may appear. We consider three iterations
of the algorithm. We assume that the user will choose v; as
the starting state. In fact, v; is the worst-case choice among
the states; we observe that choosing the state in the middle
of the window instead may lead to fewer iterations and better
recognition of the states. From vy, the algorithm will consider
four main directions: Dy, Dpowns Dreft, and Dgigne. For
this proof of concept, we do not consider Do i because we are
interested in the exploration of the current window, whereas
Dok will probably take the algorithm to another window.

In each direction, the creeper algorithm will check for
new states, which are most likely new elements in the UL
Considering the first iteration and starting from vy, the up and
left directions, D,, and D;, do not lead to new states, while
the right direction, D,., leads to v, and the down direction,
Dy, leads to vs. In the next iteration, the algorithm will start
from the newly discovered states (here, v and vs). From vs,
the new states vs and vg are identified by the algorithm. In
addition, vy is discovered in the D; direction; however, this
state is ignored by the algorithm since it is already included in
the state list. From vs, the states vy, vg, and vg are discovered
in the three directions D,,, Dg, and D,., respectively; however,
only vg is considered a new state.

Py

- H%]JHHWHHHMMLLUH\H\

H\mﬂl\\\\\\\\\W‘M\MTMHHW I
[T [T &L

T B 5EHTQETEMHHH [SXs]

g 4 g 5)
6 0B 5 z S B{][o
68]]][6 J o’é 6 &8 6
X o’,gz 1B 6B g6l n &)
S o[l & 58]0 L o 6
CRICE-aE-E o B:SikE:
X go R-ar-x:]
- S Qo g
©

3 \5 G OJTRINR
et ° SH[[6 0 [T
obllgollalr dogk o 0] 68 ¢ CR:
CE:aE-8: 6 7 ,' xgﬂio
T TG ¢ X B B g0
Pa-al-R-arY glox o A a0 [0
SRR CRA o6 Tlo¢t
50 PRI % alono
CE-EE) oo oo Bloglo
oS CE < 5
S
5
[oB

Fig. 4: Proof of concepts of the EvoCreeper

The third iteration similarly starts from the newly discovered
states, vs, vg, and vg. In the same way, considering all four
directions from each state and filtering out repeated states, four
new states are identified: vy, vy, v19, and vys.

EvoCreeper works in an iterative evolutionary manner to
discover new states and events in the app. As mentioned, a
cloud-based app is considered in this pilot example. Hence,
there is no expectation that the app will have a finite number
of states. Consequently, our proposed alternative stopping
criterion could be useful here. The creeper algorithm will stop
after a certain number of iterations or when no new states are
discovered.

V. EMPIRICAL EVALUATION

To assess the effectiveness of our model generation strategy,
we conducted a case study on four smart TV apps. During
this evaluation, we attempted to address the following research
questions (RQs):

o RQI. Is EvoCreeper capable of exploring and identifying
the states and transitions of a given smart TV app
accurately relative to manual exploration?

o RQ2. To what extent is the generated model complete in
terms of the numbers of states and edges? Is the created
graph valid?

¢ RQ3. What is the performance of EvoCreeper compared
to that of manual exploration for a given smart TV app?

A. Experimental Objects

Research in the area of smart TV apps is in an early stage.
More time may be needed for developers to create and publish
smart TV apps, as it is a new development environment.
As a result, not many apps and repositories are available
for benchmarking. Tizen does maintain a page with several
simple apps and examplesEI However, most of the provided
samples are simple apps with few states. To demonstrate the
effectiveness of our strategy, we chose four different Tizen

Zhttps://bit.ly/2qC5ncS

smart TV apps of different sizes from GitHub. These apps are
from different domains and have varying numbers of states.
Table [I| shows the name and source of each app.

The chosen apps are CineMup, ChessLab TV, Monitor de
Loterias, and the game Memory. CineMup is an app for
searching for various types of movies and TV shows. The app
categorizes movies and shows and presents relevant data for
each along with a trailer. ChessLab TV is an app for improving
ones personal skills in chess by presenting tactics and solutions
to puzzles. Monitor de Loterias is a Spanish lottery gaming
app. Memory is a gaming app for memory-based puzzles.

B. Experimental Procedure

To address RQ1 and RQ3, we conducted a set of experi-
ments. The goal was to compare the models of the benchmark
apps created by EvoCreeper with models created through
manual exploration. For the experiments, we adopted the
following set-up.

We instructed four groups of 60 students from the advanced
software engineering study program to download a software
package consisting of a portion of Tizen Studio that allows its
emulator to be run on a desktop or notebook computer. We
extended the remote control module in the emulator to record
the exploration history in each smart TV app, consisting of the
source Ul elements, the particular remote control keys pressed,
the target elements and the corresponding timestamps. Each
member of the group was assigned one app to explore and was
instructed to export the exploration history log when finished.
The stopping criterion was “the participant considers all parts
of the app to have been explored”.

We then processed the recorded logs to construct the app
models. For each model, we analyzed several properties: the
time needed to create the model (to explore the smart TV app
to the extent captured by the model), the number of nodes in
the model, the number of unique nodes in the model (thus
enabling the determination of the level of duplicity of the
nodes in the model) and the number of edges.

C. Model-Checking Algorithm

To address RQ2, we developed an algorithm to check the
consistency of the graphs generated by EvoCreeper. Each
generated model graph was validated with Algorithm

As can be seen from Algorithm 2] during this validation,
several steps are performed. The model must not be empty,
its starting node must be defined, and all nodes of the model
except the starting node must have at least one incoming edge.
Furthermore, at least one end node must be present in the
model. From each node, it must be possible to reach an end
node. Finally, each of the nodes must be reachable from the
starting node.

D. Results

As previously mentioned, we created a set of experiments
using the Tizen SDK environment to assess the effectiveness
of our EvoCreeper strategy. Additionally, we developed an
algorithm for automatically verifying the correctness of the

Input: G
Output: list of issue tokens [
if G = () then

| I < IUempty_model
end

if ng not exist then
| I <+ IUno_start_node_defined
end
foreach n € N \ {ns} do
if deg (n) = 0 then
| I+ IUnode_n_has_not_incomming_edge
end
end
if there is not at least one n € N \ {ns} that
deg*(n) = 0 then
| I <+ IUmodel_has_not_end_node
end
foreach n, € N\ N, do
if there does not exist a path from ny to any node

from N, then
| I <+ IUend_node_for_ni_not_reachable

end
oreach n € N\ {n;} do

if there does not exist a path from ng to n then
| I <+ IUnode_n_not_reachable_from_start
end

=

end
Algorithm 2: The app model validation algorithm

models thus generated. The goal of these experiments was to
address three main RQs. The following subsections answer
these RQs.

1) RQI. State detection comparison of EvoCreeper and
manual exploration: To answer this RQ, we compared the
numbers of unique states and edges detected by our strategy
with those identified through the manual exploration of the
apps. The experimental procedure is described in Section
Figures 5] and [6] show the box plots of the results for
comparison.

Due to the subjective and nondeterministic nature of the
results obtained by each participant, we compare the results
using box plots to ensure fair comparisons and provide more
details. It is clear from the figures that in contrast to manual
exploration, our strategy produces deterministic results. We
can observe from the results that for large apps, our strategy
can produce more accurate results than manual exploration
can. Regarding the numbers of unique states in Figure [3] it is
clear that our strategy can generate better results than can be
obtained through manual exploration in most cases. In fact, we
notice that manual exploration can also be effective for some
members of the exploration group, but only for small apps
with few states. For example, the best result achieved among
the participants for the number of nodes is much lower than
that achieved by our strategy for the CineMup app, as seen
in Figure [Sb] A similar situation is also clearly observed in
Figure [6b] for the number of edges discovered. For a small
application such as ChessLab TV, as seen in Figures [5a] and

TABLE I: APPS USED IN THE CASE STUDY

[1D [App [Source
1 CineMup https://github.com/daliife/Cinemup
2 ChessLab TV https://github.com/PabloEzequiel/Tizen/tree/master/ChessLabTV
3 MonitorDeLoterias https://github.com/brunohpmarques/monitordeloterias-tizentv
4 Memory game https://github.com/wissalKhalfi/Brain-Up---Tizen-smart-T V/tree/master/Memoryyyyyy

800-

14 80-

13

12

No# Unique Nodes
No# Unique Nodes
8

11

T T T T
Manual EvoCreeper Manual EvoCreeper

(c) Memory game (d) MonitorDeLoterias

Fig. 5: Comparing the number of unique nodes detected by EvoCreeper with the manual exploration

% 1.5 % 600
z z
Z 10 s
ES 3 400
£ 105 z
2
§ 10.0 3 0o
9. T T T T
Manual EvoCreeper Manual EvoCreeper
(a) ChessLab (b) CineMup
1
2,000
o 18 1,500
3 ?
g
o7 o 1,000
3 3
=z z

1 500-

SR

T
Manual

T T T
Manual EvoCreeper EvoCreeper

(a) ChessLab (b) CineMup

80 200-
70

” I 150

@ 3

o 60 @

il =

il o 100

§ 50 3 —
0 _1 I 50

T T T T
Manual EvoCreeper Manual EvoCreeper

(c) Memory game (d) MonitorDeLoterias

Fig. 6: Comparing the number of Edges detected by EvoCreeper with the manual exploration

[6al manual exploration can reveal as many states and edges as
automated exploration can in some cases. In fact, the success
of manual exploration depends on the participants knowledge
and experience with the app. While our strategy explored
each app without any prior knowledge about its operation,
the participants were able to explore the apps several times
before the recording the exploration logs.

We note that for some apps, the results of our strategy
are missing a few states relative to the results of manual
exploration. For instance, the output of our strategy is missing
two states and their related edges for the Memory game app,
as seen in Figures [3¢| and A few more nodes and edges
are missing relative to those found through manual exploration
for the Monitor de Loterias app, as seen in Figures [5d) and [6d}
This situation arises due to the nature of these two apps. Both
apps require some manual text entry at some stage during
operation. This explains the deficiency of our strategy in these
cases. In fact, even in the reverse engineering of desktop and
mobile apps, such situations are a critical concern because the
required text is specific to the particular app and may change
depending on the app itself. This difficulty can be addressed
by defining the text to be entered into each specific app.

Overall, manual exploration is feasible for model generation
for small apps; however, our strategy is the best choice for
small, medium and large apps when there are many states
to be explored. Additionally, manual exploration is neither a
realistic nor a practical method of model creation.

2) RQ2. Graph verification and correctness: To verify
the correctness of the graphs generated by our strategy, we
developed our automated verification method presented in

TABLE II: GRAPH VERIFICATION RESULTS BY ALGO-

RITHM E]
[ID [App [No. of not reachable path | Result |
1 CineMup 0 Pass
2 ChessLab TV 0 Pass
3 MonitorDeLoterias | 0 Pass
4 Memory game 0 Pass

Algorithm 2] This algorithm checks a graph for incomplete
and invalid paths and nodes. In fact, it simply checks the
validity of a directed graph generated by our strategy. Table
shows the results of this verification for each app used in
our experiments.

We can clearly see that for all apps, the graphs were
generated correctly, and the algorithm could not find any
invalid paths with a missing state or edge.

3) RQ3. Performance comparison of EvoCreeper with man-
ual: Another critical objective of this study was to assess
the performance of our strategy compared to that of manual
exploration. As mentioned previously, we measured the time
required for manual exploration for each participant indi-
vidually by calculating the difference between the start and
end times of exploration from the log. Figure [/| shows the
corresponding results for each app.

It is clear from Figure [/| that the exploration times varied
among the participants. As mentioned previously, the ex-
ploration time may change from one participant to another
depending on the usability of the app and that participants
knowledge of the app. To ensure fair comparisons and obtain

25+

20+

154

10+

Time (Mins)

5=

T T
Manual EvoCreeper

(a) ChessLab
25+

204
15+
10+
=

T
Manual

Time (Mins)

T
EvoCreeper

(c) Memory game

80+
L
. 604
M)
£ .
= 40
o
£
= 20+
[r——
0 T T
Manual EvoCreeper
(b) CineMup
80+
_ 604 e
M)
£
= 40+
o
£
|_
20+
[r——
0 T T
Manual EvoCreeper

(d) MonitorDeLoterias

Fig. 7: Comparing the exploration time by EvoCreeper with the manual exploration

more details about the results, we used box plots to present the
findings. While the participants times vary, the corresponding
range of variation is much lower for our strategy, as can be
clearly seen from the low interquartile ranges in Figure

It is clear from Figure that for a medium-size app, the
time required by our strategy is less than the median time
required by the participants. For some of the other apps, as
seen in Figures [/a] and our strategy even takes less time
than the best time recorded by any participant.

For large apps such as CineMup, for which the results are
shown in Figure our strategy takes more time due to the
large number of states to explore. In fact, this time is much
higher than the worst time taken for manual exploration among
the participants. However, this time is reasonable with respect
to the accuracy and completeness of the generated graph. We
note from Figure [6b] that the number of unique nodes found by
our EvoCreeper strategy is much higher than the best result
achieved by any participant. Specifically, our strategy found
727 unique states in approximately 64 minutes of exploration
time, whereas the best group member found 348 unique states
in approximately 50 minutes of exploration time.

V1. THREATS TO VALIDITY

Like any empirical and experimental study, the validity of
the evaluation and case studies presented in this paper is not
without any threats. In fact, there are a few factors that may
affect the validity of the presented results. We have attempted
to eliminate each of these factors, as described below.

The comparison with the results of manual exploration
of the apps could pose an internal threat to validity. As
mentioned earlier, research in the area of smart TV apps is
in an early stage. Hence, we could not find another reverse

engineering tool against which to compare our algorithm.
Here, the manual exploration is a well-known approach that
is normally used for different testing purposes (e.g., [35]-
[37]). However, manual exploration is subjective and could
be affected by participants biases. We mitigated this threat
by considering many participants in our experiment. We also
presented the results as box plots to visualize the best, worst,
and median results.

A possible threat can be identified regarding the simulation
of the smart TV apps on an emulator instead of executing
them on a real device. However, for app exploration, there
is no significant difference between the actual device and the
emulator. Here, we were simply creating a model, and we do
not expect any differences in the model between the two cases
because it is a platform-independent model.

Another threat could be posed with regard to the recruitment
of students for the experiment. When an app is given to
an experienced professional software engineer or smart TV
app developer, for instance, the generated model could be
completed in a slightly shorter time. As mentioned previously
in the discussion of the results, the usability of an app and prior
knowledge about it could affect the exploration time and the
model completeness. We attempted to mitigate these factors by
illustrating the app workflow to each student. Additionally, we
provided sufficient time for the students to learn and explore
the apps before the experiment. Each student was also able
to run the experiment several times and report the best time
achieved. However, many other human factors may affect the
results, and indeed, eliminating these factors is an essential aim
of our strategy. Automating the model generation process will
eliminate the influence of human factors and, consequently, the
subjectivity of the results. Even with our mitigation strategies,
the results show that our automated black-box strategy is

superior. For a user who does not have any information about
the app being explored, we would expect worse results than
those presented in this paper.

Another threat is related to the fact that some smart TV
apps use different remote control keys other than Left, Right,
Up, Down, OK and Back. In some cases, this could influence
the completeness of the model. However, this fact does not
affect the reliability of the present experiment because the
participants were restricted by the logging mechanism in the
emulator to creating the manual models of the apps by using
the Left, Right, Up, Down, OK and Back keys only. The extra
keys on a remote control device are typically app-specific keys
and may not strongly affect the general model. Instead, they
are likely to affect the model completeness because some states
and edges could be missing.

Finally, for apps that depend on cloud content, the model
may change over time. This could lead to differences in the
model between one time and another. Hence, two different
participants may generate two different but valid models for
the same app on two different days. We mitigated this threat
by ensuring that the participants created their models at the
same time. In fact, this threat reflects another benefit of our
strategy. Using EvoCreeper will enable the user to create up-
to-date models for apps at different points in time without
requiring manual effort.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have presented our strategy for au-
tomatically reverse engineering smart TV apps considering
interaction via a remote control device. This strategy involves
navigating a given smart TV app to explore its Ul states
without knowing the internal structure of the app code (i.e., it
is a black-box strategy). The strategy can extensively explore
the states and transitions in a given app and then generate
a directed graph model. We have implemented our strategy
in a tool called EvoCreeper that works with the emulator in
the Tizen SDK framework. We have evaluated our strategy
using four medium-size and large apps. The evaluation results
demonstrate the effectiveness and good performance of our
strategy. The strategy can be used to detect states that would
go undetected through manual efforts. The generated models
could be used in various stages of app development for quality
improvement, testing, identifying missing states, assessing the
user experience and understanding of a given app by providing
a visualization of the states and transitions, and even more.

There are many opportunities for future research. An im-
mediate step forward is to use the models generated via the
presented strategy to test various apps and identify new faults.
Additionally, we are planning to use this strategy for the smoke
testing of smart TV applications. Part of this process will be
to design an algorithm for generating path-based test cases
from such a generated model. Another important direction of
research that we are planning for the future is to investigate
model generation for gaze-based interaction with smart TV

apps.

[1]
[2]

W
[t

[5]
[6]
[7]

[8]

[9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

REFERENCES

K. Jung, “The prospect of smart tv service,” Information and Commu-
nications Magazine, vol. 28, no. 3, pp. 3-7, 2011.

A. Villas-Boas, “Business Insider: Samsung’s latest TVs will
control your smart home,” 2016, [Online; accessed 27-
October-2017]. [Online]. Available: http://www.businessinsider.com/

samsungs-new-smart-tvs- will-control- your-smart-home-2016- 1

Global smart tv market. [Online]. Available: https://bit.ly/2HxnMkL

C. Chen and Y. Lin, “Study on the interactive interface design of gaze
input smart tv,” in IEEE Int. Conf. Applied System Invention (ICASI),
April 2018, pp. 196-199.

Mautilus smart tv sdk. [Online]. Available: https://www.mautilus.com
Smart tv alliance. [Online]. Available: http://www.smarttv-alliance.org
M. Murgrabia. (2017) Design considerations for vewd app store
applications. [Online; accessed 5-December-2017]. [Online]. Available:
https://bit.1y/21iNb30

B. S. Ahmed and M. Bures, “Testing of smart tv applications: Key
ingredients, challenges and proposed solutions,” in Future Technologies
Conf. (FTC) 2018, K. Arai, R. Bhatia, and S. Kapoor, Eds. Cham:
Springer International Publishing, 2019, pp. 241-256.

K. Sabina, “Defining a testing platform for smart tv applications,”
Bachelor Thesis, Helsinki Metropolia University of Applied Sciences,
January 2016.

X. Yuan, M. B. Cohen, and A. M. Memon, “Gui interaction testing:
Incorporating event context,” IEEE Trans. Softw. Eng., vol. 37, no. 4,
pp. 559-574, Jul. 2011.

J. A. Saddler and M. B. Cohen, “Eventflowslicer: A tool for generating
realistic goal-driven gui tests,” in Proc. 32nd IEEE/ACM Int. Conf.
Automated Software Engineering, ser. ASE 2017. Piscataway, NJ, USA:
IEEE Press, 2017, pp. 955-960.

L. T. Long, N. T. Binh, and I. Parissis, “A new test modeling language
for interactive applications based on task trees,” in Proc. 4th Symp.
Information Communication Technology, ser. SoICT ’13. New York,
NY, USA: ACM, 2013, pp. 285-293.

P. Mehlitz, O. Tkachuk, and M. Ujma, “Jpf-awt: Model checking gui
applications,” in Proc. 26th IEEE/ACM Int. Conf. Automated Software
Engineering, ser. ASE ’11. Washington, DC, USA: IEEE Computer
Society, 2011, pp. 584-587.

B. S. Ahmed, M. A. Sahib, and M. Y. Potrus, “Generating combinatorial
test cases using simplified swarm optimization (sso) algorithm for
automated gui functional testing,” Eng. Sci. Technol., vol. 17, no. 4,
pp. 218 — 226, 2014.

A. Memon, I. Banerjee, and A. Nagarajan, “Gui ripping: Reverse
engineering of graphical user interfaces for testing,” in Proc. 10th
Working Conf. Reverse Engineering, ser. WCRE *03. Washington, DC,
USA: IEEE Computer Society, 2003, pp. 260—.

B. N. Nguyen, B. Robbins, I. Banerjee, and A. Memon, “Guitar: an
innovative tool for automated testing of gui-driven software,” Automat.
Softw. Eng., vol. 21, no. 1, pp. 65-105, 2014.

P. Aho, T. Kanstrn, T. Rty, and J. Rning, “Chapter two - automated
extraction of gui models for testing,” ser. Advances in Computers,
A. Memon, Ed. Elsevier, 2014, vol. 95, pp. 49 — 112.

D. Amalfitano, A. R. Fasolino, P. Tramontana, B. D. Ta, and A. M.
Memon, “Mobiguitar: Automated model-based testing of mobile apps,”
IEEE Software, vol. 32, no. 5, pp. 53-59, 2015.

A. Mesbah, A. van Deursen, and S. Lenselink, “Crawling ajax-based web
applications through dynamic analysis of user interface state changes,”
ACM Trans. Web, vol. 6, no. 1, pp. 3:1-3:30, Mar. 2012.

A. Gimblett and H. Thimbleby, “User interface model discovery: To-
wards a generic approach,” in Proc. 2nd ACM SIGCHI Symp. Engineer-
ing Interactive Computing Systems, ser. EICS *10. New York, NY,
USA: ACM, 2010, pp. 145-154.

J. Kim, S. Kim, S. Park, and J. Hong, “Home appliances controlling
through smart tv set-top box with screen-mirroring remote controller,”
in Int. Conf. ICT Convergence (ICTC), Oct 2013, pp. 1009-1012.

J. Kim, E. Jung, Y. Lee, and W. Ryu, “Home appliance control frame-
work based on smart tv set-top box,” IEEE Trans. Consum. Electron.,
vol. 61, no. 3, pp. 279-285, Aug 2015.

C. Fan, Y.-K. Wang, and J.-R. Chen, “Home sleep care with video
analysis and its application in smart tv,” in [EEE 3rd Global Conf.
Consumer Electronics (GCCE), Oct 2014, pp. 42-43.

M. R. Cabrer, R. P. D. Redondo, A. F. Vilas, J. J. P. Arias, and J. G.
Duque, “Controlling the smart home from tv,” IEEE Trans. Consum.
Electron., vol. 52, no. 2, pp. 421-429, May 2006.

http://www.businessinsider.com/samsungs-new-smart-tvs-will-control-your-smart-home-2016-1
http://www.businessinsider.com/samsungs-new-smart-tvs-will-control-your-smart-home-2016-1
https://bit.ly/2HxnMkL
https://www.mautilus.com
http://www.smarttv-alliance.org
https://bit.ly/2IiNb30

[25]

[26]

[27]

[28]

[29]

(30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

D. Vavilov, A. Melezhik, and I. Platonov, “Healthcare application of
smart home user’s behavior prediction,” in IEEE Int. Conf. Consumer
Electronics (ICCE), Jan 2014, pp. 323-326.

S. Y. Chun and C. Lee, “Applications of human motion tracking: Smart
lighting control,” in IEEE Conf. Computer Vision Pattern Recognition
Workshops, June 2013, pp. 387-392.

E. Erkan, H. R. Ozcalk, and S. Ylmaz, “Designing a smart security
camera system,” in Proc. 23rd Signal Processing Communications
Applications Conf. (SIU), May 2015, pp. 1705-1708.

K. Cui, K. Zhou, H. Song, and M. Li, “Automated software testing based
on hierarchical state transition matrix for smart tv,” IEEE Access, vol. 5,
pp. 6492-6501, 2017.

P. Ammann and J. Offutt, Introduction to software testing. Cambridge
University Press, 2016.

N. Li, F. Li, and J. Offutt, “Better algorithms to minimize the cost of
test paths,” in Software Testing, Verification and Validation (ICST), 2012
IEEE Fifth International Conference on. IEEE, 2012, pp. 280-289.
A. Dwarakanath and A. Jankiti, “Minimum number of test paths for
prime path and other structural coverage criteria,” in IFIP International
Conference on Testing Software and Systems. Springer, 2014, pp. 63—
79.

F. Sayyari and S. Emadi, “Automated generation of software testing path
based on ant colony,” in Technology, Communication and Knowledge
(ICTCK), 2015 International Congress on. 1EEE, 2015, pp. 435-440.
M. Bures, T. Cerny, and M. Klima, “Prioritized process test: More effi-
ciency in testing of business processes and workflows,” in International
Conference on Information Science and Applications. Springer, 2017,
pp. 585-593.

V. Arora, R. Bhatia, and M. Singh, “Synthesizing test scenarios in uml
activity diagram using a bio-inspired approach,” Computer Languages,
Systems & Structures, 2017.

P. Raappana, S. Saukkoriipi, I. Tervonen, and M. V. Mntyl, “The effect
of team exploratory testing — experience report from f-secure,” in [EEE
Int. Conf. on Software Testing, Verification and Validation Workshops
(ICSTW), April 2016, pp. 295-304.

T. D. Hellmann and F. Maurer, ‘“Rule-based exploratory testing of
graphical user interfaces,” in Agile Conf., Aug 2011, pp. 107-116.

M. Bures, K. Frajtak, and B. S. Ahmed, “Tapir: Automation support of
exploratory testing using model reconstruction of the system under test,”
IEEE Trans. on Reliability, vol. 67, no. 2, pp. 557-580, June 2018.

Bestoun S. Ahmed obtained his B.Sc. degree in
Electrical and Electronic Engineering from the Sala-
haddin University-Erbil in 2004, his M.Sc. degree
from University Putra Malaysia (UPM) in 2009, and
his Ph.D. degree from University Sains Malaysia
(USM), Software Engineering, in 2012. He spent
one year doing his post doctoral research in the
Swiss Al Lab IDSIA, Switzerland. Currently, he is a
senior lecturer at the department of mathematics and
computer science, Karlstad University, Sweden and
also a part time assistant professor at the department

of computer science, Czech Technical University in Prague. His main re-
search interest include Combinatorial Testing, Search Based Software Testing
(SBST), Applied Soft Computing, and quality assurance of smart devices and
IoT systems.

Miroslav Bures received his Ph.D. at Czech Tech-
nical University in Prague, Faculty of Electrical
Engineering, where he currently works as a re-
searcher and a senior lecturer in software testing and
quality assurance. His research interests are model-
based testing (process and work flow testing, data
consistency testing) efficiency of test automation,
and quality assurance methods for Internet of Things
solutions, reflecting specifics of this technology. He
is a member of Czech chapter of the ACM, CaSTB,
and ISTQB Academia work group.

	I Introduction
	II Background and Related Work
	III Our Model Construction Strategy
	IV Proof of Concept
	V Empirical Evaluation
	V-A Experimental Objects
	V-B Experimental Procedure
	V-C Model-Checking Algorithm
	V-D Results
	V-D1 RQ1. State detection comparison of EvoCreeper and manual exploration
	V-D2 RQ2. Graph verification and correctness
	V-D3 RQ3. Performance comparison of EvoCreeper with manual

	VI Threats to Validity
	VII Conclusion and Future Work
	References
	Biographies
	Bestoun S. Ahmed
	Miroslav Bures

