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Energy- and Quality-aware Video Request Policy
for Wireless Adaptive Streaming Clients

César Dı́az, Antonio Fernández, Fernando Sacristán, and Narciso Garcı́a

Abstract—We present a straightforward, non-intrusive adap-
tive bit rate streaming segment quality selection policy which
aims at extending battery lifetime during playback while limiting
the impact on the user’s quality of experience, thus benefiting
consumers of video streaming services. This policy relies on the
relationship between the available channel bandwidth and the bit
rate of the representations in the quality ladder. It results from
the characterization of the energy consumed by smartphones
when running adaptive streaming client applications for different
network connections (Wifi, 4G, and 5G) and the modeling of the
energy consumed as a function of said relationship. Results show
that a significant amount of energy can be saved (10 to 30%) by
slightly modifying the default policy at the expense of a controlled
reduction of video quality.

Index Terms—Energy saving, video quality, adaptive stream-
ing, battery, wireless connection.

I. INTRODUCTION

ACCORDING to Cisco, the annual global IP traffic is
expected to reach 4.5 ZB by 2022, and IP video traffic

will cover 82% of it, mostly devoted to over-the-top (OTT) live
and on-demand video streaming [1]. In addition, the Motion
Picture Association of America (MPAA) reported that, during
2019, 75% of U.S. adults watched movies and television via
online subscription services [2]. Globally, their popularity has
increased to the point that the subscriptions to these platforms’
services outnumbered the rest of the alternatives, including
cable. The global number of subscriptions surpassed 863.9
million (an increase of 28% from the previous year), and its
growth is expected to continue.

Among the many consumer gadgets that support OTT media
services (handheld devices, desktop and portable computers,
streaming sticks, Set-Top Boxes, etc.), smartphones are the
most extended autonomous ones for many reasons: mobility,
high processing capability, the continuous improvement and
expansion of wireless technology and high-speed networks,
the massive adoption of HTTP/TCP-based adaptive bit rate
(ABR) techniques to stream video content, the proliferation
of applications that enable the access to unlimited collections
of videos, etc. As of today, there are 3.2 billion connected
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smartphones in the world [3], and they are the primary device
for viewing video for a 78.4% of digital video viewers [4].

However, mobile devices have the same defining disad-
vantage as any other everyday-use autonomous equipment:
a limited battery capacity [5]. As of mid-2019, commercial
smartphones’ battery capacity can get up to 5000 mAh. For
normal use, this represents a battery life of up to 60 hours [6].
However, video applications consume a large amount of en-
ergy, draining the battery up to ten times faster. Given the
explosion of smartphones for the consumption of audiovisual
content via ABR media apps, it seems reasonable to look
into how the functioning of the control policy that governs
its behavior and, more generally, the session context impact
on the consumed energy to extend the battery lifetime.

The sources of energy consumption in mobile video ap-
plications are: display, memory usage, decoding, and video-
related communications. The energy consumption of the dis-
play depends, besides on the hardware involved (e.g. screen
size, pixel density...), on the screen brightness, which is
adjusted manually or automatically generally considering the
environmental lighting, the characteristics of the content, and
the user’s preferences. The memory usage consumption is
proportional to the number of writing and reading operations
and so increases with the video bit rate. The impact of media
decoding in energy consumption depends on the selected
representation video resolution, codec, coding algorithm, and
type of decoder used, that is, hardware or software. Finally,
wireless communications represent a rather significant fraction
of the energy consumption. The longer the receiver is on, the
more energy will be consumed.

Many energy-saving or energy-aware strategies have been
proposed over the years addressing one or more of the above
mentioned factors with the aim of extending the battery
lifetime of such an essential consumer device. For the sake of
generalization and simplicity, which are key for the scalability
of the solution and rapid integration in consumer appliances,
we are interested in the ones related to the ABR delivery
paradigm that do not interfere with the quality ladder and
the integrity of the segments specified in the manuscript, the
user-selected smartphone settings, the running mode of the
device, or other elements unconnected to the streaming service
application itself. That is, this paper focuses on strategies
based on performing energy-aware adaptations or revisions of
the segment request policy of the client media player control
module. However, most of the proposals in the literature were
conceived for video delivery paradigms different from the
standard ABR technology, were designed to intervene in other
aspects of the communications chain, or are based on the mod-
ification of the functioning of standard software or protocols.
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In this sense, many of the works are related specifically to
traditional server-driven streaming, where they propose the
inclusion of transcoding mechanisms to save energy while
preventing quality drops, either based on joint source–channel
coding schemes [7], online video framerate variations [8], bit
rate truncation [9], or other techniques aiming at changing
the complexity of the streamed video [10], [11]. Others are
intrusive in the sense that they aim at modifying user-selected
running settings like the display brightness [12], [13], inter-
vene in the device hardware (e.g. CPU frequency [14], [15]),
core software (e.g. OS [16], or HTTP functioning [17]), or in
the transmission mean, through a smart allocation of resources
(e.g. bandwidth aggregation [18], data distribution [19], [20],
or transmission scheduling [21]). Among the ABR-oriented,
non-intrusive approaches, some lack completeness, as they do
not consider important parameters like the dynamics of the net-
work connection [22], or present excessively complex models
or heuristics to drive the client control policy [23], [24].

Given this panorama, this work proposes the use of an
extremely simple, non-intrusive set of segment request modes
that override the decisions of the default policy to boost
energy savings of smartphones while impacting the user’s
experience as little as possible. Its simplicity and the fact that
its implementation is not device- or hardware-dependent looks
for a rapid implantation in smartphones with the objective
of potentially benefiting millions of users. The policy is the
outcome of the study of the impact of several variables
and the estimation of their weight in the smartphone energy
consumption. This has been done through the characterization
of three commercial smartphones using three wireless network
connections: Wifi, 4G, and 5G. Additionally, we have mod-
eled the behavior of the energy consumed by smartphones
versus the available channel bandwidth and the requested
representation bit rate, as the relationship between these two
turned out to be the most relevant factor affecting smartphone
energy consumption. The importance of this parameter was
not captured by reference works analyzing the efficiency of
handheld devices while performing video delivery from a more
general perspective, like that of Trestian et al. [25]. Finally,
based on the resulting model, we propose several energy-
saving modes, which represent different trade-offs between
saved energy and presented video quality.

The paper is structured as follows. Section II describes the
study of the impact of the ABR session-related variables on
the energy consumed by the handheld device. In Section III,
we include the model that relates the energy consumed with
the channel capacity, whereas in Section IV, we present
the energy-saving modes derived from that model. Finally,
conclusions are included in Section V.

II. STUDY OF THE IMPACT OF THE CONTEXT ON THE
ENERGY CONSUMPTION

We have carried out a study to identify the influence of sev-
eral high-level variables that are key on the overall energy that
the smartphone consumes during ABR sessions. In particular,
we have analyzed the impact of the following variables, which
are direct or indirect indicators of the video decoding perfor-
mance, the memory usage and the wireless communications

dynamics, on the energy consumption: device, type of network
connection, video codec, video resolution and bit rate (size)
of the segments.

To perform this analysis, we have conducted two separate
sets of experiments. They basically differ in the role given to
the network dynamics in the process, represented through the
relationship between the available bandwidth and the bit rate
of the representations to be downloaded.

So, in the first set, the impact of network conditions is
removed by using the maximum possible available bandwidth
in the network, which is much higher than the bit rate of
any of the available representations. In particular, we use a
IEEE 802.11ac Wifi standard-capable router, which enables
’real’ connection speeds of up to a few hundreds of Mbps
for single client devices. In this way, the time required to
download segments belonging to any of the representations is
significantly shorter than their length: in the order of tens to
hundreds of milliseconds for segments of 6 seconds.

In the second one, we do take into consideration the
available bandwidth, which affects the time it takes the client
to download the segments: the closer the channel bandwidth
and the selected representation bit rate are, the longer it takes
to download a segment belonging to that representation.

Nevertheless, in both sets of experiments, we guarantee that
the available bandwidth is always high enough to avoid buffer
underruns and thus video stalls.

A. Tests not considering network dynamics

First, we present the features of the first set of experiments.
Later on, we present and analyze the results that were obtained.

1) Features of the tests:
a) Content: The content used is the 3840p@24fps 12-

minute-long open short movie ’Tears of Steel’ [26], which
holds a 2.24:1 frame aspect ratio. The original sequence was
transcoded (preserving the framerate) and segmented for ABR
streaming (MPEG-DASH [27]), obtaining 8 representations
whose characteristics are detailed in Table I.

TABLE I
REPRESENTATIONS USED IN THE FIRST SET OF TESTS.

Codec Resolution
Equivalent bit rate preliminary
Resolution tests [Mbps]

AVC

428x182 240p 0.8
854x382 480p 3

1280x572 720p 8
1920x858 1080p 20

HEVC

428x182 240p 0.6
854x382 480p 2

1280x572 720p 4
1920x858 1080p 10

b) Setup and equipment: The setup consisted of three
smartphones, SP A, SP B, and SP C, connected to the internet
through an IEEE 802.11ac WiFi connection, an ABR player,
and an ABR server. The features of the smartphones are
presented in Table II.

The features of the setup were the following:



IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, VOL. XX, NO. X, OCTOBER 2020 3

TABLE II
SMARTPHONE SPECIFICATIONS.

Feature SP A SP B SP C

Processor 8x2.6 GHz 8x1.6 GHz
1x2.84 GHz

+ 4x1.78 GHz
+ 3x2.42 GHz

Battery capacity 3000 mAh 2350 mAh 3800 mAh
Resolution 1440x2560 720x1280 1080x2340
Screen size 5.1” 4.7” 6.39”

Pixel density 577 ppi 312 ppi 403 ppi
Hardware video

AVC/HEVC AVC/HEVC AVC/HEVC
decoding

Fig. 1. Battery drainage of SP B for different representations

• The energy measurement data was gathered via the
smartphone’s battery fuel gauge and an energy profiling
software, which allowed for a fine-enough estimation of
the energy consumed during the session. In particular, the
state of charge (SoC) of the battery, which only provided
integer values, was sampled every 30 seconds.

• No other apps run during the tests, besides the ones
required to make the device work in default mode.

• The reception virtual buffer size was set to 96 MB.
Moreover, new segments were requested only whenever
the buffer level was below 90% to avoid downloading
segments in bursts and so spread download intervals
uniformly over the session.

• The devices were placed near a Wifi access point, with
no obstacles between the device and the access point, to
guarantee radio signal power stability and so maximum
bandwidth during the tests.

• The screen brightness was set at 90% for both devices
and the speakers were turned off.
c) Procedure: We set up several sessions. During each

session, one of the 8 representations of the content was
requested and played on a continuous loop until the whole
battery drained and the smartphone shut off. Prior to each
experiment, the smartphone battery was fully charged and then
disconnected from any energy source.

d) Results: Fig. 1 shows the evolution of the SoC over
time during the continuous ABR session for smartphone B
for the different representations. The results of the rest of
the devices present analogous behaviors and thus are not
provided to save space. We can see that the evolution of the
SoC follows a fairly linear behavior throughout the session
for all representations. The slope of the line depends on
the values of the variables under study. In particular, the
energy consumption seems to be highly correlated with the
representation bit rate.

Given that the device and the connection are fixed and
also that all smartphones are capable of hardware-decoding
both AVC and HEVC, the differences between representations
with the same resolution and different codec are necessarily
due to the segment size. That is, data transmission has a
much greater impact on energy consumption than the rest
of the tested features, a statement that agrees with previous
studies [28]. Furthermore, for perceptually equivalent rep-
resentations, HEVC should be chosen over AVC to reduce
energy consumption, due its greater coding efficiency.

Additionally, considering the results, to minimize energy
consumption, the lowest quality should always be selected.
However, evidently, that would come at the cost of a significant
drop in Quality of Experience (QoE).

B. Tests considering network dynamics

In this set of tests, in light of the previous conclusions,
we have thoroughly analyzed the influence of the available
bandwidth, BW and the representation bit rate, Brep, on the
energy consumed by the smartphone during an ABR session.
In particular, we have focused the experiments on studying the
influence of the relationship between bandwidth and bit rate,
that we have called relative bandwidth (B̃W ). As mentioned
before, in these tests, we assume that the ABR algorithm al-
ways requests and downloads representations whose associated
bit rate is below the available channel bandwidth. Therefore:

B̃W =
BW

Brep
≥ 1 (1)

Moreover, in the same way as for the bandwidth, we define
the relative energy consumption of a target representation
(ẼC), for a given combination of factors (device, network
connection, and video codec) as:

ẼC =
ECrep

ECref
(2)

where ECrep is the average consumption for the representation
being tested, and ECref is the average energy consumed for
the representation with the lowest resolution and bit rate (240p
at 0.66 Mbps), which is used as reference. Both values result
from averaging all the measurements taken using the same
combination of factors (device, network connection, and video
codec) and for the above-mentioned representation. In this
way, we minimize any fuel gauge measurement errors. The
reference representation resolution and bit rate were selected
because they are low enough to minimize computational cost
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and network load, yet they still allow us to take into account
screen energy expenditure.

Since our ultimate goal is to minimize the energy consump-
tion while maximizing the QoE for some base conditions (that
is, for a fixed combination of device, network and codec), ẼC
can expose the dependency between the representation and
the channel bandwidth, regardless of the base conditions, thus
enabling a proper overall comparison.

1) Features of the tests:
a) Content: We also used ’Tears of Steel’ as source con-

tent. Again, the original sequence was transcoded (preserving
the framerate) and segmented for ABR streaming, obtaining in
this case 8 representations whose characteristics are detailed
in Table III. The target encoding bit rates for every resolution
are 0.66, 5, 10, 20 and 30 Mbps.

TABLE III
REPRESENTATIONS USED IN THE SECOND SET OF TESTS.

Codec Resolution
Equivalent bit rate preliminary
Resolution tests [Mbps]

AVC

428x182 240p

0.66, 5, 10, 20, 30
854x382 480p

1280x572 720p
1920x858 1080p

HEVC

428x182 240p

0.66, 5, 10, 20, 30
854x382 480p

1280x572 720p
1920x858 1080p

b) Setup and equipment: It consisted of the same three
smartphones (see Table II) connected to the internet through a
wireless connection (IEEE 802.11ac WiFi, 4G, and 5G NSA
-non-standalone mode-), an ABR player, and an ABR server
that can limit content delivery speed by request. Specifically,
we used the combinations of smartphones and connections
depicted in Table IV.

TABLE IV
COMBINATIONS OF SMARTPHONES AND CONNECTIONS.

Smartphone A Smartphone B Smartphone C
Wifi Yes Yes Yes
4G No No Yes
5G No No Yes

The Wifi and 4G connections were used with a bandwidth
limiter software to be able to set specific B̃W values. In
particular, for every representation, we considered two kinds
of measurements. In the first one, the connections were not
controlled or limited artificially, but the bandwidth fluctuated
freely. In this way, we were able to generate easily many B̃W
points within a wide range of values. In the second scenario,
the bandwidth was set to the bit rate of the representation, that
is, B̃W ≈ 1. So, we were able to obtain relative bandwidth
points close to the minimum limit. Finally, only the first
scenario was implemented for the 5G connection.

A broader scenario was considered for the energy consump-
tion test to gather an ample set of measures. Thus, different
device locations for different sessions were used in indoor
measurements involving a WiFi connection to be able to obtain

abundant B̃W points in the whole range. On the other hand,
for the 4G-related tests, the device was in an outdoor location
to guarantee signal coverage, while trying to achieve the same
diversity of conditions than in the WiFi connections. Finally,
for the 5G-related tests, the device was located outdoors and
very close to one of the 5G antennas available at the time of
the experimentation to guarantee signal reception.

c) Procedure: We set up a large number of sessions.
For each session, one of the 8 representations of the content
was requested and played, resulting in a new measurement. It
is important to note that the average current values referred
here include only the energy consumed by the smartphone on
account of the ABR session. Any other energy spent by the
rest of the processes is not considered in these figures.

d) Results: Figure 2a depicts the impact of the available
channel bandwidth on the average current (in mA) for all
the combinations of device, connection, resolution, codec and
bit rate considered in the tests. Every color includes the
results for all the combinations sharing device, connection
and codec. As can be observed, there is a strong correlation
between representation bit rate, device, type of connection,
and the energy consumed by the device. Indeed, it can be
seen that the device hardware is decisive in the energy it
consumes. Moreover, regarding device and connection, the
one consuming the lowest on average is the SP A using Wifi,
followed by SP C using Wifi. Then comes SP B using Wifi
and, closely, SP C using 4G. Finally, on the top of energy
expenditure we find the SP C using 5G. Thus, using the
SP C 5G radio access to download segments seems to be
energetically inefficient, specially having also the 4G radio
access, which consumes barely half the energy. The reason
to that is that the discontinuous reception (DRX) mode is
not implemented in 5G and so the receiver is never turned
off, even if there is no data to transfer. Therefore, lacking an
implementation of this reception mode, we advise in favor of
using 4G or Wifi when available to save energy.

The figure also shows that the results follow no clear
patterns with respect to the absolute values for channel band-
width. Hence, the latter are not reliable enough sources to
properly evaluate the impact of the network dynamics on the
energy that the device uses under a given combination of
elements (device, codec, connection). Therefore, we use the
relative ones defined above: B̃W and ẼC. Moreover, using
relative values is also more interesting for determining a repre-
sentation selection policy that minimizes energy consumption
while maximizing visual quality, for a specific ABR session.

So, in Figure 2b, we can find the same data as in Figure 2a,
however this time expressed in terms of B̃W and ẼC. Using
this new format, patterns become clearer, enabling a proper
analysis and the possibility to draw robust conclusions.

In particular, the figure shows that the energy consumed by
the device to download, decode, and present some content
decreases exponentially with the relationship between the
bandwidth available in the channel and the bit rate of the
representation that is requested. Indeed, the more available
bandwidth in relation to the bit rate of the segments, the
less time it takes the client to obtain those segments, and
therefore the less energy is consumed. On the other hand, if
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Fig. 2. Average current consumed vs average available bandwidth

B̃W gets closer to 1, the energy consumed can be between
50% and 100% higher when compared with the minimum
average current for the codec, network and device. Therefore,
B̃W is key in determining the impact of the ABR session in
the energy consumed by the device.

In addition, observing the previous figures, several dynamics
can be pointed out. First, if the bit rate is fixed for a given
combination of device, connection, and codec, the impact of
resolution is negligible on energy consumption. Therefore,
selecting a version of the video with a lower resolution will
not help the implementation of a energy-saving mode. Second,
if the video resolution is fixed for a given combination of
device, connection, and codec, the impact of bit rate on
energy consumption is quite noticeable. The greater the size of
the segments downloaded (better representation), the greater
the average consumption. Therefore, selecting a version of
the video with a lower bit rate does make sense as part of
the strategy to save energy. Furthermore, this action would
result in increasing the relative bandwidth, hence decreasing
further the average consumption of the device during the ABR
session. Third, for a given combination of device, connection,
resolution and bit rate, the codec that is used does not affect
much the energy spent by the smartphone. This result confirms
that it is always better to select HEVC over AVC, as it
compresses content more efficiently, which translates into
smaller segments and so into energy savings.

In light of the experiments, in order to reduce energy
consumption while impacting as little as possible in the user’s
QoE, it is advisable neither to select representations whose bit
rate is too low nor too close to the available bandwidth. The
operation points in between represent trade-off points between
QoE and battery life to be considered. The exact points to
target will be defined by the different energy-saving modes.
To properly define these modes, we have first modeled the
relative energy consumed by a smartphone as a function of the
relative bandwidth. This is described in the following section.

III. ENERGY CONSUMPTION VS CHANNEL CAPACITY
MODEL

We have modeled the average relative energy consumed
by the smartphones as a function of the relative bandwidth
to propose more suitable energy-saving modes and evaluate

their outcomes more precisely. To that end, we have used an
exponential function to fit the available data:

ẼC = a · exp(−b · B̃W ) + c (3)

For practical reasons, this curve is later on shifted to ensure
that the asymptote is ẼC = 1. Thus, c = 1.

Figure 3 shows the different combinations of device, net-
work connection and codec considered in this work. The
bottom-most curve includes the exponential fitting curve con-
sidering the whole collection of data points, regardless of the
combination, to be used as the basis of the proposed energy-
saving modes. For all combinations, there is a zoom of the
graphs for the range of values of B̃W between 1 and 10 is also
included, since this is the main area of interest. All the graphs
show the same behavior, regardless of the combination. They
only differ somewhat in the specific values of the consumed
energy for given relative bandwidth points. Hence, the same
type of curve can be used for all of them, only changing
slightly the values of the curve. The models emphasize that
if the available bandwidth is scarce, yet enough compared to
the bit rate of the requested quality, the mobile device can
consume more that 50% more energy compared to the situation
where the bandwidth is several times greater than the requested
bit rate. In the other end, ẼC values are below 1.1 (roughly
the same level of consumption) for B̃W is higher than a point
between 4 and 7, approximately, depending on the combina-
tion. Although there are some variations regarding the exact
numbers, this general tendency is valid for any combination
of device and network. Only for the 5G-related data points
the tendency is somewhat different. The lack of DRX in the
receiver for this type of wireless connection ostensibly reduces
the differences between measurements along the x-axis, visibly
flattening the associated fitting curve and separating these
points from the overall one.

In addition, Table V presents the values of a, b and c for
each curve, as well as several coefficients that show the corre-
lation between the data points and the curve: the coefficient of
determination (R2), the Pearson correlation coefficient (PCC),
and the Spearman’s rank correlation coefficient (SROCC). As
can be seen, the value of the correlation coefficients vary
slightly from combination to combination, showing that the
exponential curves fit the data points better in some cases than
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Ẽ
C

Fit. SP B AVC Wifi

Fit. SP B HEVC Wifi

Fit. SP B AVC+HEVC Wifi

SP B AVC Wifi

SP B HEVC Wifi

2 4 6 8 10

B̃W

1.0

1.2

1.4

1.6

1.8

2.0

Ẽ
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Fig. 3. Left: curve fitting of the average relative current consumed (ẼC) vs average relative available bandwidth (B̃W ) for different combinations of device,
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TABLE V
FITTING CURVE VALUES (a, b, AND c), AND CORRELATION COEFFICIENTS (R2 , PCC, AND SROCC) FOR ALL COMBINATIONS OF SMARTPHONE,

NETWORK CONNECTION AND CODEC, AND FOR ALL THE DATA POINTS CONSIDERED SIMULTANEOUSLY (OVERALL RESULTS).

Smartphone
Network

Codec
Fitting curve

R2 PCC SROCC
connection a b c

SP A Wifi (IEEE 802.11ac)
AVC 0.653 0.452 1.000 0.759 0.871 0.883

HEVC 0.890 0.628 1.000 0.754 0.868 0.834
AVC+HEVC 0.704 0.480 1.000 0.724 0.851 0.803

SP B Wifi (IEEE 802.11ac)
AVC 0.947 0.329 1.000 0.711 0.843 0.830

HEVC 0.863 0.256 1.000 0.744 0.863 0.863
AVC+HEVC 0.911 0.308 1.000 0.728 0.853 0.826

SP C

Wifi (IEEE 802.11ac)
AVC 0.828 0.524 1.000 0.804 0.897 0.942

HEVC 0.825 0.476 1.000 0.811 0.900 0.937
AVC+HEVC 0.826 0.499 1.000 0.786 0.887 0.919

4G
AVC 1.121 0.468 1.000 0.721 0.849 0.820

HEVC 1.021 0.356 1.000 0.852 0.923 0.816
AVC+HEVC 1.051 0.406 1.000 0.769 0.877 0.826

5G (NSA)
AVC 0.238 0.500 1.000 0.832 0.912 0.948

HEVC 0.167 0.373 1.000 0.791 0.889 0.903
AVC+HEVC 0.229 0.489 1.000 0.807 0.898 0.915

Overall 1.154 0.677 1.000 0.665 0.815 0.828

in others. However, the values are high for all the combinations
and the case that considers all the data points, which is used
as a reference for the energy-saving modes proposed next.

IV. ENERGY-SAVING MODES

A. Proposed modes

Based on the previous model and results, we propose that
the client selects the representation of the segment to be down-
loaded considering the following definitions and expressions.
Let Rrep = B1, . . . , BNrep be the set of representation bit
rates in the quality ladder, where B1 is the bit rate of the
lowest quality representation and BNrep

is the bit rate of the
highest quality representation. Also, let Srep be the subset of
Rrep including all the bit rates lower than or equal to BW/γ,
where γ is used to determine the intensity of the selected
policy to save energy. Thus, we define 4 modes for γ:

• Light: γ = 1.5. It aims for savings of around 10%.
• Medium: γ = 2. It aims for savings of around 20%.
• Strict: γ = 4. It aims for savings of around 30%.
• Adaptive: it switches from mode Light to Medium and

from Medium to Strict depending on the battery SoC.
Thus, γ is a control parameter which can be used by designers
to create new energy-saving modes that more closely fit the
requirements or objectives of a specific ABR implementation.

The dashed lines in the zoomed regions in Figure 3 represent
the first three modes. For the sake of comparison, the greatest
energy saving that could be achieved given the results and
model is close to 40%, but the video quality that could be
offered would be too low, and so it is not considered.

Finally, the bit rate that is selected, Brep is:

Brep =

{
maxBi ∈ Srep, if Srep ̸= ∅
B1, if Srep = ∅

(4)

That is, the selected representation is the one with the
maximum bit rate that meets the condition imposed by the

mode. If the channel capacity is particularly low, the mode
is rather strict, and the quality ladder is not well defined,
Srep can contain very few representations or even be empty
(in that case, the lowest bit rate in Rrep is selected). Under
these circumstances, the effectiveness of the mode might be
compromised, resulting in no significant energy savings.

TABLE VI
REPRESENTATIONS (HEVC-ENCODED) USED IN THE EXPERIMENTS.

Resolution
Equivalent bit rate
Resolution [Mbps]

428x182 240p 0.65
854x382 480p 1.25

1024x458 576p 2.0
1280x572 720p 2.5
1440x644 960p 3.5
1920x858 1080p 5

2560x1144 1200p 7.5
2880x1286 1440p 10
3440x1536 1600p 15
3840x1714 2160p 20

B. Implementation

1) Features of the experiments: We have tested the four
proposed energy-saving modes and compared them to one
another and to the case where the energy-saving mode is
off (it is either not implemented or not switched on). The
results are provided in terms of the average energy consumed
and the average image quality shown with respect to the case
where the energy-saving mode is off and so the representation
whose bit rate is closest to the available bandwidth is the
one requested. The former is presented as the percentage of
the energy consumed if the energy-mode is off. The latter is
presented as the difference between the image quality provided
if the energy-mode is off and the one obtained selecting each
of the modes. This difference is measured by means of three
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Fig. 4. (a) Requested representation and (b) energy consumed as a percentage of the one consumed when the best possible representation is requested
(energy-saving mode off). In this example, the channel bandwidth varies randomly every minute and remains steady between changes.

very popular image quality metrics: PSNR, SSIM [29], and
VMAF [30] (v0.6.1 applying phone model [31]).

The modes were tested simulating five channel behaviors.
A channel behavior is defined as a set of values indicating the
capacity of the channel (i.e. the available bandwidth) during
consecutive periods of time equal to the length of the segments
(6 seconds). To generate the behaviors, the channel capacity
was set to take one of the following values during each period:
1, 4, 7, 10, 13, 16, 19, and 22 Mbps. The channel behaviors
used in the experiments were the following:

• High capacity channel: constant BW = 22 Mbps.
• Medium capacity channel: constant BW = 13 Mbps.
• Low capacity channel: constant BW = 4 Mbps.
• Staircase capacity channel: the available bandwidth is

increased in 3 Mbps from one period of time to the next
until it reaches the maximum. Afterwards, the capacity
is decreases in the same amount until it reaches the
minimum. Then, it starts over.

• Random capacity channel: the available bandwidth is
selected randomly out of the available values every ten
periods of time. During these periods, it remains constant.

The last two channels are intended to test the performance
of the modes under mobility conditions, as this is a key aspect
in wireless communications. Basically, mobility means rises
and drops in the signal power received by the smartphone.
Those variations translate into channel capacity fluctuations
over time, a behavior that is fully captured by the two scenarios
represented by the above-mentioned channels.

We have generated more representations than in previous
experiments to increase the granularity and therefore enable
a finer adaptation to the changing capacity of the channel to
provide more accurate results and a clearer analysis. Thus, the
original content was HEVC-encoded to produce 10 represen-
tations with different associated resolution and bit rate. The
resulting values are presented in Table VI. The tests simulate
an ABR session of 3 hours. So, the content is played 15 times
and there are 360 segments.

To illustrate the control policy of the client depending on
the energy-saving strategies, Figure 4 depicts one instance of a
channel with a random behavior. On the left, it shows the avail-
able bandwidth throughout the session and the representation
that is requested and downloaded, and later on decoded and

presented to the user for the different energy-saving modes.
On the right, it presents the energy consumed for the different
strategies as a percentage of the one consumed if the energy-
saving mode is off.

Table VII reflects the impact of the proposed modes on the
average image quality presented to the user and the average en-
ergy consumed as a percentage of the one consumed if the best
representation possible is always selected. It includes both the
absolute and differential values to facilitate the inspection. As
expected, the energy saved if the light strategy is implemented
is around 10%, the savings obtained for the medium mode are
about 20% and the ones in the case of the strict strategy are
close to 30%. The reason why they do not reach the target
percentages on average is twofold. The first one has to do
with the limited number of qualities in the quality ladder. This
leads to situations where, when the available bandwidth varies,
the representation that is requested might be not that close
to the targeted bit rate for the strategy in operation, with the
corresponding impact on energy and quality. As the granularity
increases, this effect is reduced. On the other hand, as the
bandwidth goes down, the number of representation that can be
selected is reduced, and thus all the strategies tend to request
more similar bit rates, regardless of their original targets. This
effect exacerbates when the bandwidth is particularly low and
only the lowest representation is eligible. In this case, all
the strategies cannot be implemented to any extent and the
resulting energy consumption and video quality equal those
of the off-mode. This effect can be seen several times along
the session shown in Figure 4.

Regarding the average quality of the video provided to the
user, as expected, we can see that it decreases as the energy-
saving mode becomes more severe. However, it does not drop
in the same degree for the different channel behaviors. Dif-
ferences are more pronounced as the capacity of the channel
decrease. In this sense, as a reference, it is worth noticing that
VMAF differences (∆VMAF) below 6 points are typically
not perceived by most viewers [30]. These results agree with
those of previous studies [32] and indicate that it is more
advantageous to apply more severe energy-saving modes when
the capacity of the channel is high, as it will impact only
slightly the quality of the video presented to the users. As the
available bandwidth decreases, switching to a worse quality
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TABLE VII
IMPACT OF THE DIFFERENT STRATEGIES ON THE AVERAGE IMAGE QUALITY PRESENTED TO THE USER (MEASURED VIA PSNR, SSIM AND VMAF)

AND THE AVERAGE ENERGY CONSUMED AS A PERCENTAGE OF THE ONE CONSUMED IF THE BEST REPRESENTATION IS ALWAYS SELECTED. BOTH THE
ABSOLUTE AND DIFFERENTIAL VALUES WITH RESPECT TO THE ONES OBTAINED WHEN THE ENERGY-SAVING MODE IS OFF ARE PRESENTED.

Channel energy-saving mode Energy consumed (%) PSNR ∆PSNR SSIM ∆SSIM VMAF ∆VMAF

High capacity

Off 100.0 43.2 - 0.9987 - 100.0 -
Light 81.42 41.7 1.5 0.9976 0.0011 99.79 0.21

Medium 81.42 41.7 1.5 0.9976 0.0011 99.79 0.21
Strict 68.40 39.9 3.3 0.9946 0.0041 97.02 2.98

Adaptive 77.08 41.0 2.2 0.9966 0.0021 98.87 1.13

Medium capacity

Off 100.0 41.7 - 0.9976 - 99.79 -
Light 91.77 41.0 0.7 0.9967 0.0009 99.10 0.70

Medium 81.06 39.9 1.8 0.9946 0.0030 97.02 2.77
Strict 69.94 37.5 4.2 0.9857 0.0119 88.80 10.99

Adaptive 77.35 39.0 2.8 0.9916 0.0060 94.28 5.51

Low capacity

Off 100.0 38.8 - 0.9912 - 93.72 -
Light 90.75 37.5 1.3 0.9857 0.0055 88.80 4.91

Medium 81.42 34.5 3.0 0.9617 0.0240 72.09 16.71
Strict 73.20 31.6 5.9 0.9150 0.0706 51.51 37.29

Adaptive 84.87 33.9 3.6 0.9541 0.0316 70.80 18.00

Staircase

Off 100.0 38.2 - 0.9864 - 92.73 -
Light 89.14 37.6 0.6 0.9845 0.0019 91.19 1.54

Medium 85.16 37.3 0.8 0.9833 0.0031 90.20 2.52
Strict 72.51 35.1 3.0 0.9675 0.0189 79.65 13.08

Adaptive 82.23 36.5 1.6 0.9784 0.0081 86.96 5.76

Random

Off 100.0 38.7 - 0.9884 - 94.15 -
Light 88.93 38.2 0.5 0.9870 0.0014 93.12 1.02

Medium 84.61 38.0 0.7 .9864 0.0020 92.60 1.55
Strict 72.28 36.3 2.4 0.9775 0.0109 85.07 9.08

Adaptive 82.02 37.4 1.4 0.9836 0.0048 90.25 3.89

has a greater impact on the video quality and so it is advisable
to apply lighter modes.

V. CONCLUSION

This work presents a lightweight, non-intrusive segment
quality selection policy aiming at extending battery lifetime
of smartphone during ABR streaming sessions. The proposed
technology, which is device- and connection-independent, can
potentially benefit millions of consumers of video streaming
applications in mobility scenarios, who could see the consump-
tion of energy of their consumer device significantly reduced.

In particular, we propose several modes resulting from var-
ious trade-offs between energy consumption saving and video
quality reduction. These modes derive from an exhaustive
study analyzing and weighting the impact of several features
(device, network connection, bit rate, video resolution...) on
the energy spent by the device and the subsequent modeling
of the energy consumption as a function of the relationship
between the varying channel capacity and the bit rate of the
representations in the quality ladder, as such relationship was
found to impact highly on the amount of energy spent by
the device along the session. The values that differed the
most from said generalized model were those related to the
5G connection, a situation caused by the lack of DRX in
the receiver for this type of wireless connection and that is
expected to change when this mode is finally implemented in
all commercial handheld devices.

Experiment results show the benefits of implementing such
the proposed policy, whose exact outcome figures rely on the
targeted energy saving and the QoE drop that can be tolerated.
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[15] Q. Tang, A. M. Groba, E. Juárez, and C. Sanz, “Closed-loop power-
control governor for multimedia mobile devices,” IEEE Trans. Consum.
Electron., vol. 63, no. 2, pp. 153–161, May 2017.

[16] A. M. Groba, P. J. Lobo, and M. Chavarrı́as, “Closed-loop system to
guarantee battery lifetime for mobile video applications,” IEEE Trans.
Consum. Electron., vol. 65, no. 1, pp. 18–27, Jan. 2019.

[17] S. G. Lee, J. Park, and H. Kim, “A user-side energy-saving video
streaming scheme for lte devices,” IEEE Commun. Lett., vol. 19, no. 6,
pp. 965–968, 2015.

[18] L. Zou, R. Trestian, and G. Muntean, “E3doas: Balancing qoe and
energy-saving for multi-device adaptation in future mobile wireless
video delivery,” IEEE Trans. Broadcast., vol. 64, no. 1, pp. 26–40, 2018.

[19] M. Zhao, B. Jia, J. Wang, M. Wu, and H. Yu, “Performance optimiza-
tion on dynamic adaptive streaming over http in multi-user mimo lte
networks,” IEEE Trans. Mobile Comput., vol. 17, no. 12, pp. 2853–
2867, 2018.

[20] Y. Go, O. C. Kwon, and H. Song, “An energy-efficient http adaptive
video streaming with networking cost constraint over heterogeneous
wireless networks,” IEEE Trans. Multimedia, vol. 17, no. 9, pp. 1646–
1657, 2015.

[21] Y. Yang, W. Hu, X. Chen, and G. Cao, “Energy-aware cpu frequency
scaling for mobile video streaming,” IEEE Trans. Mobile Comput.,
vol. 18, no. 11, pp. 2536–2548, 2019.

[22] S. Petrangeli, P. Van Staey, M. Claeys, T. Wauters, and F. De Turck,
“Energy-aware quality adaptation for mobile video streaming,” in 12th
Int. Conf. Netw. and Service Manag. (CNSM), Oct. 2016, pp. 253–257.

[23] J. Koo, J. Yi, J. Kim, M. A. Hoque, and S. Choi, “Seamless dynamic
adaptive streaming in lte/wi-fi integrated network under smartphone
resource constraints,” IEEE Trans. Mobile Comput., vol. 18, no. 7, pp.
1647–1660, 2019.

[24] S. Jo, W. Yoo, and J. Chung, “Video Quality Adaptation for Extended
Playback Time on Mobile Devices With Limited Energy,” IEEE Com-
mun. Lett., vol. 22, no. 6, pp. 1260–1263, Jun. 2018.

[25] R. Trestian, A. Moldovan, O. Ormond, and G. Muntean, “Energy
consumption analysis of video streaming to Android mobile devices,”
in IEEE Netw. Operations and Manag. Symp., Apr. 2012, pp. 444–452.

[26] Blender Foundation, “Tears of steel,” https://mango.blender.org/, Ac-
cessed: 2020-06-10.

[27] ISO/IEC 23009-1:2019, “Dynamic adaptive streaming over HTTP
(DASH) — Part 1: Media presentation description and segment formats,”
2019.

[28] M. A. Hoque, M. Siekkinen, J. K. Nurminen, and M. Aalto, “Dissecting
mobile video services: An energy consumption perspective,” in 2013
IEEE 14th Int. Symp. ”A World of Wireless, Mobile and Multimedia
Netw.” (WoWMoM), 2013, pp. 1–11.

[29] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: from error visibility to structural similarity,” IEEE
Trans. Image Process., vol. 13, no. 4, pp. 600–612, 2004.

[30] Z. Li, A. Aaron, I. Katsavounidis, A. Moorthy, and M. Manohara,
“Toward A Practical Perceptual Video Quality Metric,”
https://medium.com/netflix-techblog/toward-a-practical-perceptual-
video-quality-metric-653f208b9652, Accessed: 2020-07-20.

[31] Netflix, “VMAF - Video Multi-Method Assessment Fusion,”
https://github.com/Netflix/vmaf, Accessed: 2020-06-10.
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