
EZcap: a novel wearable for real-time 
automated seizure detection from EEG 
signals 
Article 

Accepted Version 

Olokodana, Ibrahim L., Mohanty, Saraju P., Kougianos, Elias 
and Sherratt, Simon R. ORCID logoORCID: 
https://orcid.org/0000-0001-7899-4445 (2021) EZcap: a novel 
wearable for real-time automated seizure detection from EEG 
signals. IEEE Transactions on Consumer Electronics, 67 (2). 
pp. 166-175. ISSN 0098-3063 doi: 
https://doi.org/10.1109/TCE.2021.3079399 Available at 
https://centaur.reading.ac.uk/99181/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .

To link to this article DOI: http://dx.doi.org/10.1109/TCE.2021.3079399 

Publisher: IEEE 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


CentAUR 

Central Archive at the University of Reading 
Reading’s research outputs online



1

EZcap: A Novel Wearable for Real-Time
Automated Seizure Detection from EEG Signals

Ibrahim L. Olokodana, Student Member, IEEE, Saraju P. Mohanty, Senior Member, IEEE,
Elias Kougianos, Senior Member, IEEE, R. Simon Sherratt, Fellow, IEEE

Abstract—Epileptic seizures present a serious danger to the
lives of their victims, rendering them unconscious, lacking
control, and may even result in death only a few seconds
after onset. This gives rise to a crucial need for an effective
seizure detection method that is fast, accurate, and has the
potential for mass market adoption. Kriging methods have a
good reputation for high accuracy in spatial prediction, hence,
their extensive use in geostatistics. This paper demonstrates
the successful application of Kriging methods for an effective
seizure detection device in an edge computing environment by
modeling the brain as a spatial panorama. We hereby propose
a novel wearable for real-time automated seizure detection from
EEG signals using three different types of Kriging, namely,
Simple Kriging, Ordinary Kriging and Universal Kriging. After
multiple experiments with electroencephalogram (EEG) signals
obtained from seizure patients as well as those from their healthy
counterparts, the results reveal that the three Kriging methods
performed very well in accuracy, sensitivity and latency of
detection. It was found however, that Simple Kriging outperforms
the other Kriging methods with a mean seizure detection latency
of 0.81 sec, a perfect specificity, an accuracy of 97.50% and a
sensitivity of 94.74%. The results in this paper compare well
with other seizure detection models in the literature but their
excellent seizure detection latency surpasses the performance of
most existing works in seizure detection.

Index Terms—Smart Home, Smart Healthcare, Smart Wear-
able, Seizure Detection, Epilepsy, EEG Signal, Kriging Methods,
Edge Computing

I. INTRODUCTION

Epilepsy is among the most common neurological disorders
and it affects over 50 million people in the world without
any regard for race, age or gender [1]. People suffering from
epileptic seizures have higher mortality rate compared to the
wider population [2]. Most causes of death in epilepsy, apart
from the Sudden Unexpected Death in Epilepsy (SUDEP)
[3], can be prevented by early and accurate seizure detection,
immediately followed by quick intervention from caregivers.

Kriging methods have been used extensively in geostatistics
for spatial prediction. They exploit the covariance which exists
within the data points to determine an estimate with minimal
error [4]. Although Kriging enhances the accurate performance
of seizure detection model in this paper, the latency advantage
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is obtained through edge computing. Edge computing reduces
latency by placing computation and data source in close
proximity, which reduces the travel time from the source of
data to the processing area. This is why the EZcap in Fig. 1 is
situated directly on the head of the seizure patient where the
EEG signals to be examined come from.
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Fig. 1. Real-Time Seizure Detection for Rapid Response.

Fig. 1 depicts the merits of a timely seizure detection and the
possible outcome of an undetected seizure or a late detection
of seizure. The smart wearable EZcap on the subject’s head
is a portable device that will not hinder the patients’ mobility
so that seizure can be detected without restriction to a specific
place or time. The EEG signal processing prior to seizure
detection is carried out in the EZcap wearable that is situated
right on the head of the patient, leading to a fast detection of
seizure with low latency and a swift response by the assigned
care-givers to prevent the victim from fatal injuries. The cloud
shown in Fig. 1 is used as a means of data storage for use by
a physician or research scientists since its capacity is larger,
rather than its use for computation.

The rest of this paper is organized as follows: Section
II is a review of related works in consumer electronics for
smart healthcare. Section III discusses contributions of the
current paper. Section IV describes a high level view of
the proposed EZcap seizure detector. Section V presents the
motivation for the choice of Kriging in seizure detection.
Section VI is a brief discussion on Kriging methods and
their theoretical perspective. Our proposed embedded logical
architecture for the EZcap seizure detector is described in
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section VII. Experiments and results are stated in Section VIII
while Section IX discusses the conclusion and future works.

II. RELATED WORKS IN CONSUMER ELECTRONICS FOR
SMART HEALTHCARE

A. Existing Consumer Electronics for Smart Healthcare

Consumer electronics development for smart healthcare has
received a big boost in the last decade. Proliferation of sensors,
advancements in battery technology, availability of data,and
increase in computational power have all contributed to the
success. Table I summarizes the main categories of consumer
electronics that have been proposed in the last ten years. The
categories include fall detection, biosignal acquisition, stress
and nutrition, disease monitoring, security and others.

A threshold system involving the use of a cardiotachometer
and accelerometer for fall detection in senior citizens was
proposed in [5]. The device was tested on 30 different subjects
and recorded a decent accuracy and sensitivity of 97.50%
and 96.80% respectively. A reduction in fall detection time
by 38% is achieved by using a hybrid of electrocardiography
(ECG) and the global positioning system (GPS) together with
a proposed multi-thread method [6].

Smart acquisition of biosignals is an important aspect of
smart healthcare and the Internet of Medical Things (IoMT).
An Application Specific Integrated Circuit (ASIC)-based wire-
less biosignal acquisition consumer electronic device using
Radio Frequency Identification (RFID) at an Ultra High Fre-
quency (UHF) has been presented in [7]. A different approach
involving the use of a smartwatch with local differential
privacy to collect health data was proposed in [8].

Stress and nutrition are both related in the sense that stress
can result in eating disorders. The combined effect of stress
and improper nutrition can cause psychosomatic diseases. iLog
was proposed as a consumer electronic device for providing
information on an individual’s emotional state with respect to
his or her eating behavior [9], whereas Stress-Lysis detects the
level of stress in a subject as proposed in [10].

Electrocardiography (ECG), Electroencephalography (EEG)
and Photoplethysmography (PPG) have all been incorporated
into consumer electronics for disease monitoring and manage-
ment in recent years. An ECG-based consumer electronic de-
vice was proposed for the monitoring of arrhythmia disease in
[11]. A detailed review of ECG-based cardiovascular disease
monitoring was presented in [12]. A PPG-based approach for
heart rate monitoring was proposed in [13], while EEG-based
disease monitoring devices have been proposed in [14].

B. Mass Market Consumer Devices for Seizure Detection

Table II shows existing seizure detection devices suitable
for mass market consumer use, and their basic features as
compared to this current work.

Neuro-Detect [14] uses a combination of Hjorth Parameter
features and a Deep Neural Network (DNN) in a hardware-
in-the-loop consumer electronic design for seizure detection.
EEG signals were first processed using the Discrete Wavelet
Transformation (DWT) before features were extracted. While
Neuro-Detect reported a decent performance, its use of Deep

Neural Network (DNN) which requires the use of many hyper-
parameters may result into high seizure detection latency.

eSeiz proposed the use of a signal rejection algorithm
(SRA) by extracting hyper-synchronous pulses from EEG
signals through a voltage level detector (VLD) [16]. The signal
rejection algorithm works based on a threshold system in
which signals below the threshold are rejected. A seizure is
flagged if the amount of hyper-synchronous pulses exceeds
the set threshold. The eSeiz consumer electronic proof of
concept recorded a decent performance with very good power
consumption. However, the reported seizure detection latency
is more than 4 times the seizure detection latency in this
current work. It also reported a specificity that is about 2.5%
lower than what is recorded in this work. Furthermore, it
is not clear how the eSeiz will respond to variations in
signal complexities over time or a spontaneous surge in signal
parameters since it uses a predetermined threshold value.

C. Existing Research on EEG based Seizure Detection

Many efforts on seizure detection in the literature focus on
classification performance metrics like sensitivity, specificity
and accuracy with limited interest on the computing environ-
ment [17]–[19]. A few researchers acknowledged the relevance
of latency and added it as one of the metrics for measuring
the performance of their proposed seizure detection model
[16]. Machine learning algorithms are popularly used for the
classification of seizure signals in many existing works, the
most common being Artificial Neural Network (ANN) [18],
Support Vector Machines (SVM) [17] and κ-Nearest Neighbor
(κ-NN) [20].

Other methods which are not based on EEG have been used
as well for seizure detection. These methods employ the use of
gyroscopes and accelerometers in wearable forms on the wrist
or any other strategic part of the body to capture abnormal
limb movement and unusual body vibrations during a seizure
crisis [21], [22]. A major disadvantage of this approach is that
normal activities such as dancing or sports could be confused
for an epileptic vibration. Gaussian Process modeling was used
in [23] for seizure detection in neonates but not in an edge
computing paradigm.

In our previous work [24], Kriging methods have been
explored for real-time seizure detection. However, in this
extended version of our previous paper, a wearable design
using Kriging methods for real-time seizure detection in an
edge computing paradigm is proposed. This current work
improves on the reliability and performance of our previous
work by incorporating a hybrid system that comprises of
both Kriging models and abnormal motion detection. In this
case, seizure is only confirmed when the Kriging model flags
a seizure and the motion sensor detects an abnormal body
motion at the same time. Furthermore, in addition to the
external escalation strategy, our new design also includes an
alarm buzzer to create a local awareness that someone is in
danger whenever there is a seizure attack.



3

TABLE I
EXISTING CONSUMER ELECTRONICS FOR SMART HEALTHCARE IN IEEE TRANSACTIONS ON CONSUMER ELECTRONICS.

Category References Implementation Method Proposed Significance
Fall Detection [5], [6] Use of smart sensors such as the accelerometer, Global

Positioning System (GPS) and cardiotachometer to-
gether with a threshold system or multi-thread method
to segregate a fall incidence from a normal activity.

To assist seniors who are generally vul-
nerable and susceptible to a fall get help
in time.

Signal Acquisition [7], [8] Design of an application specific integrated circuit
(ASIC) with radio frequency identification (RFID) at an
Ultra High Frequency (UHF) or the use of smartwatch
in an enhanced privacy environment achieved with local
differential privacy (LDP).

Remote collection of bio signals for a
smart healthcare system.

Health Monitoring [11]–[13], [15] Use of Electrocardiography (ECG), Electroencephalog-
raphy (EEG) and Photoplethysmography (PPG) tech-
nologies to design consumer electronic products to
monitor and manage diseases such as arrhythmia,
epileptic seizures and so on.

To prevent death or severe injuries
through early intervention and proper dis-
ease management.

Stress and Nutrition [9], [10] Design of consumer electronic products using multiple
sensors that are used to capure data that are analyzed
to estimate stress levels in a subject or predict the
nutritional value in a given meal.

Stress level detection and nutritional bal-
ancing.

TABLE II
EXISTING CONSUMER ELECTRONICS FOR SEIZURE DETECTION.

Existing
Work

Extracted Features Classification
Model

Latency

Neuro-
Detect [14]

Hjorth Parameters Deep Neural Net-
work (DNN)

Not
reported

eSeiz [16] Hyper-synchronous
pulses

Signal Rejection
Algorithm (SRA)

Relatively
low latency

Proposed
EZcap

Fractal Dimension,
Entropy and Hjorth
Complexity

3D Kriging Mod-
els

Very low la-
tency

III. NOVEL CONTRIBUTIONS OF THE CURRENT PAPER

A. The Problem Addressed in the Current Paper

Is it feasible to exploit the capacity of the brain to be
represented as a spatial map in creating an effective seizure
detection solution? In addition, assuming the brain can suc-
cessfully take the form of a spatial map, will the success of
Kriging in geostatistics be transferable to seizure detection? If
the answer to this is yes, what Kriging method will be best
suited for optimal performance in a smart wearable design
using edge computing principles? The following sections of
this paper address these research questions.

B. The Challenges in Solving the Problem

It is difficult to collect custom data-sets that will take
full advantage of the properties of Kriging with respect to
seizure detection because of the strict regulations in place for
collecting human or animal data directly from the subjects.
This leaves many researchers with the option of using publicly
available data-sets which have been previously collected by
qualified teaching hospitals [25]. The time complexity of
conventional Kriging applications is also of concern but this
was dealt with in this work by using only an already trained
Kriging model on the edge device. Another challenge is the

susceptibility of the collected EEG signals to noise. Security
in the Internet of medical (IoMT) things needs to be addressed
as well [26].

C. The Solution Proposed in the Current Paper

This paper proposes Kriging methods in a mobile and
portable wearable design called EZcap for real-time seizure
detection based on edge computing using the premise that the
brain is capable of being modeled as a spatial map that is
fitted for Kriging application. Three Kriging methods were
explored in this work in order to identify the one that is
most suitable for detecting seizure in real time, in an edge
computing environment.

D. The Novelty of the Solution Proposed

Our specific modeling of the brain as a spatial representation
that is suitable for Kriging application as it relates to seizure
detection is novel. To the best of our knowledge, this is a
pioneering work on the application of Kriging methods in
a wearable configuration for real-time detection of epileptic
seizures using edge computing design methodologies. The
mean seizure detection latency reported in this work is less
than one second, far surpassing the performance of many
existing seizure detection models. Furthermore, our hybrid
approach of combining abnormal motion detection and the
empirical Kriging application to strengthen the effectiveness
of our proposed seizure detector is novel, to the best of our
knowledge.

IV. EZCAP: A NOVEL WEARABLE FOR RAPID SEIZURE
DETECTION AND NOTIFICATION IN EDGE COMPUTING

EZcap is proposed as a light-weight consumer electronics
device for early detection of seizure based on edge computing
using a novel software-hardware interaction, as shown in Fig.
2. The hardware part of EZcap consists of an edge processing
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unit (EPU), motion sensor, buzzer and a display unit such
as a liquid crystal display (LCD), while the battery and
communication components are concealed under the hood. The
software part consists of the EEG signal processing and feature
extraction algorithms, as well as a Kriging model that has been
trained to identify seizure signals.

Kriging Models in 
an Edge Processor Buzzer

Motion 
Sensor

EZcap
Module

EEG
Electrodes

Seizure State

EEG Data

To 
IoMT-Edge 
IoMT-Cloud

Display

Fig. 2. Conceptual schematic of the proposed EZcap.

The motion sensor complements the EEG-based seizure
detection using the Kriging model by sensing the abnormal
movements of the body which are associated with a seizure
attack. The buzzer acts as a local crisis alarm to alert persons in
the closest radius of a patient in danger. The display unit shows
the seizure status of the patient in real time and the power
level of the device. Once a seizure is detected, apart from the
local crisis alarm that is automatically activated, notifications
are also forwarded to the physician and other caregivers in
the vicinity of the patient. In addition, EEG data from the
patient are consistently stored in the cloud for future patient-
specific analysis. Seizure is only confirmed when the Kriging
model detects a seizure and the motion sensor simultaneously
senses an abnormal motion. This novel hybrid approach further
strengthens the effectiveness of our proposed system. A user
experience research conducted on the use of mobile EEG
technologies shows a high acceptance rate after an initial
discomfort in the first few minutes of wearing it [27]. This
proves that the proposed EZcap has a high prospect as a mass
market consumer device for seizure detection.

A detailed architecture of the EZcap seizure detector is
illustrated in Fig. 3. The sensed EEG signals are processed
locally (at the edge) by the EPU which determines the seizure
state of the subject. Concurrently, all collected data along with
their analysis are stored to the cloud for future reference as
well as improved training. The EPU makes a determination
on seizure state based on the EEG signals and the input of
the motion sensor. Depending on the Kriging analysis and the
input of the motion sensor, the system determines whether a
seizure has occurred or whether there is suspicion of a seizure.
In these cases, a buzzer sounds to alert caregivers and the LCD
flashes a warning message. In all cases, the seizure state along
with associated data is stored in the cloud.

Processing data at the edge is highly effective, mainly
because more data are now manufactured at the user edge
of the network than any other time in the past, owing to
the multiplication of sensors and sensing mechanisms [28].

EEG 

Electrodes

Seizure 

State

Motion 

Sensor

EEG 

Signals

Buzzer
LCD

Edge Processing 

Unit (EPU)

IoMT Edge

IoMT 

Cloud

Subject’s Brain

Seizure 

Confirmed

Weird 

Motion?

Seizure 

Detected?
Yes Yes

Seizure 

Suspected

No No

Fig. 3. Proposed architecture of EZcap seizure detector.

Mitigated deployment cost, reduced latency and portability are
some of the merits resulting in the increasing acceptance of
the edge computing paradigm. These merits are even more
meaningful when life is threatened, as it is for an epileptic
seizure situation. Apart from accuracy, three important features
that are present in our proposed edge computing solution to
seizure detection are portability, affordability and low latency.
A seizure detection solution should be portable in order not
to restrict the mobility of the patient to a confined space. It
should be affordable to enable low-income areas of the world,
who are the most impacted with the seizure disorder, access
to the solution. It should also have low latency as this would
help neutralize the threat to the patient’s life during a seizure
attack.

V. KRIGING MOTIVATION - THE BRAIN ENVISIONED AS A
SPATIAL MAP SUITABLE FOR SPATIAL DATA PROCESSING

We conceptualize the brain as a spatial panorama that is
ideal for the application of spatial data processing techniques
such as Kriging for solving the seizure detection problem due
to the following reasons:

1) The brain can be modeled as a multi-layered spatial
entity with ceaseless dynamic activities [29]. It is further
indicated that multiple similarities exist between the
mapping of the brain and the geographical information
system (GIS) mapping.

2) It has been discovered that some cellular activities in
the hippocampal area of the brain generate maps for
navigation and recognition [30]. It was stated in [25]
that a part of the collected EEG readings from some
patients of epilepsy were collected from the brain’s
hippocampus.

3) Kriging produces very good performance even on
datasets that are relatively small compared to most
machine learning methods which rely heavily on high
data volume for a decent performance. This is important
because of the challenges involved in collecting large
amounts of biomedical datasets.

4) Kriging estimates are often accompanied by an estima-
tion variance which is a measure of the credibility of
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the given estimate. There is an estimation variance for
each Kriging estimate which clearly reveals whether the
Kriging model worked well for that specific location or
not.

5) Kriging models are very reliable and accurate despite
not requiring many hyperparameters [?]. They are also
robust to certain spontaneous events such as unexpected
compromise in data quality or feature sets inconsistency
[31].

Fig. 4 compares the spatial map of the brain (Fig. 4(b)) to a
typical geographical map (Fig. 4(a)). Both are similar in terms
of having multiple locations on which spatial continuity can
be established or evaluated. Fig. 4(b) represents the map of the
brain and its lobes which are comparable to geolocations of
the earth. Kriging [32] is a geospatial technique popularly used
for predictive estimation in spatial statistics where locations
with known values of certain quantities are used to estimate
the unknown values at the neighboring locations. The black
and red circles shown in Fig. 4(b) represent the brain sites
with unknown and known values of the considered variable,
respectively. The broken lines are a measure of the spatial
correlation within the sampled sites. Studies have shown that
although seizures may emanate from a particular site in the
brain, they can be spatially spread out to other areas of the
brain [23]. Consequently, some locations with known variable
values have seizures while others do not. It might therefore be
feasible to estimate the specific locations of the brain that are
seizure-inflicted. Nevertheless, the primary focus of this paper
is to establish the effectiveness of Kriging models for seizure
detection.

VI. KRIGING METHODS - A THEORETICAL PERSPECTIVE

The word “Kriging” was coined in honor of Daniel Krige
who was instrumental to the development of geostatistical
mining [33]. Kriging hinges on spatial continuity, a function
of correlation over a given distance. This means that closer
locations are better correlated than farther locations. Three
major steps are involved in the Kriging process. First is
the estimation of spatial continuity via the semi-variogram
which shows variations in quantities with respect to distance,
the second step is the model fitting on the semi-variogram
generated in the first step while the final estimation using the
fitted model is achieved in the third stage [34].

Fig. 5 shows various types of Kriging [33]. The three
major types of Kringing, which are Simple Kriging, Ordinary
Kriging, and Universal Kriging are the focus of this work.

A. The Semi-variogram

The semi-variogram is a scatter plot with points representing
the average variation among a group of paired locations having
the same separating distance that is called lag vector h [34].
The semi-variogram is generated according to the following
formula:

γ(h) =
1

2N(h)

N(h)∑
i=1

(Z(xi)− Z(xi + h))
2
, (1)

where γ(h) is the semi-variogram at a specific lag vector h
between a pair of points, N(h) represents the total count of lag
vectors h for each point on the semi-variogram while Z(xi)
represents a Gaussian process on the sampled observations
x1,x2, ...,xi at various locations.

B. The Semi-variogram Model

This is used to fit a curve on the semi-variogram scatter
plot. Fig. 6 is a taxonomy of different types of semi-variogram
models.

The selection of a semi-variogram model depends on the
kind of spatial relationship existing in the semi-variogram
scatter plot [34]. The Gaussian semi-variogram model was the
favored choice for this work due to the underlying Gaussian
properties of the recorded EEG time-series. The Gaussian
semi-variogram model is expressed mathematically as follows:

γ(h) =


C

[
1− exp

(
− h2

a2

)]
h > 0

0 h = 0

(2)

In the above expression, C represents the total variance con-
tribution known as the sill and a is the horizontal component
of the sill known as the range.

C. Kriging Estimate

This is the final estimation at locations with unknown values
using the semi-variogram model that was fitted earlier. Kriging
places weights on the link between pair locations, proportional
to their auto-correlation. Hence, it is sometimes called Best
Linear Unbiased Estimator (BLUE) [35].

The three basic types of Kriging differ based on their
assumption regarding the global mean (µz) for the intrinsic
Gaussian process Z(x). Simple Kriging assumes a known
constant mean, Ordinary Kriging assumes an unknown but
constant global mean while Universal Kriging assumes a
varying global mean [32].

The other types of Kriging (Fig. 5) have at least one of the
above global mean assumptions.

The covariance C(h) of a location pair is derived as follows
from the semi-variogram model [4]:

C(h) = C(0)− γ(h), (3)

where C(0) represents the sill.
Multiplying the covariance for each known location pair by

specific weights results in a system of equations:

Cn×n · λn×1 = cn×1, (4)

where Cn×n is the covariance matrix for known location pairs,
cn×1 represents a covariance vector of every point in relation
to the unknown, λn×1 represents a weight vector and n is the
total number of points.

We therefore have,

λn×1 = (Cn×n)
−1

cn×1. (5)
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(a) A geographical map showing correlation among multiple locations.
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(b) Map of the brain showing seizure regions and spatial correlation.

Fig. 4. Schematic representation of the brain as a spatial map.
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Fig. 5. The different types of Kriging methods.
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Fig. 6. Semi-variogram models

The Kriging estimate y(xo) is then finally obtained by multi-
plying the weight vector (Eqn. 5) with the residual R(xi) as
shown below:

y(xo) =

n∑
i=1

λiR(xi), (6)

where

R(xi) =

n∑
i=1

(Z(xi)− µz) (7)

VII. PROPOSED NOVEL KRIGING-BASED SEIZURE EARLY
DETECTOR

The proposed EZcap seizure detector has a novel logical
block that is situated inside the edge processing unit (EPU)
shown in Fig. 2.

The proposed novel logical architecture of our Kriging-
based early seizure detector as shown in Fig. 7 is comprised of
the signal de-noising unit; the feature extraction block which
consists of the Hjorth complexity unit, fractal dimension unit
and the singular value decomposition (SVD) entropy unit; the
variogram estimation unit; the Kriging estimation unit and the
seizure status unit.

Signal
Denoising 

Unit

Hjorth
Complexity 

Unit

Fractal
Dimension 

Unit

SVD
Entropy 

Unit

Variogram 
Estimation 

Unit

Kriging
Estimation 

Unit

Seizure
Status Unit

Feature Extraction Block

IoMT Edge

IoMT Cloud

Fig. 7. Proposed embedded architecture of EZcap seizure detector.

The signal de-noising unit removes noise, especially due
to artifacts and physiology, from the EEG signals collected
from the subject using a discrete wavelet transform (DWT)
soft thresholding technique. Three unique features are then
extracted from the clean EEG signal in the feature extraction
block. These features are processed in the Hjorth complexity
unit, fractal dimension unit and the SVD entropy unit. Upon
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extraction of the features, the vectorized features are passed
to the variogram estimation unit, which generates the semi-
variogram, and subsequently to the Kriging estimation unit
for the final processing to obtain a seizure outcome. Further
details on the semi-variogram and Kriging estimation are
presented in Section VIII. The seizure status unit presents the
subject’s seizure state and relocates the outcome to the external
IoMT cloud for further processing and storage. Activities in
the IoMT cloud may include communication with emergency
services, personal physician and family members or related
individuals in order to trigger a prompt and effective rescue
of the subject who might be suffering from an epileptic seizure
crisis.

VIII. EXPERIMENTAL RESULTS AND THEIR ANALYSIS

A. EEG Dataset and Extracted Features

The dataset for this work [25] has been used for many
seizure detection research projects [17], [20]. It consists of
five sets A to E. Set A consists of healthy signals while set E
comprises the seizure EEG signals. These are the two sets used
in this work. Sets B, C and D are healthy and inter-ictal signals.
Each set contains 100 EEG segments which were sampled at
173.61 Hz.

Three features were extracted from the EEG signals. They
are Fractal Dimension, Hjorth Complexity and Singular Value
Decomposition (SVD) Entropy. While two of the features
model the location coordinates, the other feature being Fractal
Dimension models the quantity of interest that will be esti-
mated. The mathematical expressions of the features are given
in Eqns. 8 to 11.

Fractal Dimension =
loge(n)

loge(n) + loge

(
n

n+0.4Nδ

) , (8)

where n is number of data points in the EEG sequence or
simply length of the sequence and Nδ represents the number
of alternating pair of signs in the inherent binary sequence.

Hjorth Complexity =
Mobility

(
dx(t)
dt

)
Mobility(x(t))

. (9)

In the above expression, Mobility is calculated as follows:

Mobility =

√√√√√var

(
dx(t)

dt

)
var(x(t))

, (10)

In the above expression, x(t) and t are the voltage amplitude
and corresponding time, respectively. Singular Value Decom-
position (SVD) Entropy is calculated as:

SV D Entropy =

M∑
i=1

σ̄i log2(σ̄i), (11)

where M is the number of singular values of an embedded
matrix and σ̄1, σ̄2,..., σ̄M are the normalized singular values
of the embedded matrix.

Fig. 8 shows the distribution of the EEG segments as data
points using the extracted features. The figure roughly shows
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Fig. 8. Feature representation of EEG dataset using color map.

two categories through a simple observation of the colors
of the data points except for a few outliers which may be
attributed to some residual noise in the data-set. This reveals
the spatial continuity in the data-set and proves the quality
of the selected features. It also serves as an initial validation
of our three-dimensional modeling of the seizure detection
problem towards the application of Kriging.

B. Training the Kriging Models

The EEG segments in the data-set were randomly split into
two, according to the 80/20 rule [36]. The larger part is the
training set while the other part is reserved for testing. The
training follows the outlined process in section VI. We first
obtain the semi-variogram of the training set using Eqn. 1 and
then fit the semi-variogram using the Gaussian semi-variogram
model in Eqn. 2. Fig. 9(a) and 9(b) are the semi-variogram
plot and the fitted semi-variogram plot of the training set,
respectively.

The covariance matrix used to generate the Kriging weights
is extracted from the fitted semi-variogram. The Kriging
estimates of the fractal dimensions are then finally calculated
by multiplying the Kriging weights with the residuals (Eqn.
6). The resulting Kriging estimates are resolved to one of
two states as either healthy (represented by “0”) or ictal
(represented by “1”).

C. Performance Metrics for Edge Computing Paradigm based
Seizure Detection

After obtaining the seizure states from the Kriging esti-
mates, the performance of the three Kriging methods under
consideration were computed and compared based on accu-
racy, sensitivity, specificity, F1-score and latency metrics using
edge computing principles. The models were trained on a
workstation because of the third order time complexity of
Kriging and then ported to an edge device for the actual real-
time detection of seizure. Table III shows the performance
comparison of the different Kriging methods.

From the presented results in Table III, Simple Kriging and
Ordinary Kriging produced equal performance at 99.7% and
95.4% Confidence Intervals (CI). However, Simple Kriging
surpassed the performance of Ordinary Kriging at 68.2%
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Fig. 9. Modeling of the semi-variogram for Kriging prediction.

TABLE III
COMPARING KRIGING PERFORMANCES FOR SEIZURE DETECTION AT

DIFFERENT CONFIDENCE INTERVALS (CI)

C. Int. (CI) Kriging Models Accuracy Sensitivity Specificity
Simple Kriging 97.50% 94.74% 100.00%

99.7% CI Ordinary Kriging 97.50% 94.74% 100.00%
Universal Kriging 80.00% 89.47% 71.43%
Simple Kriging 92.50% 94.74% 90.48%

95.4% CI Ordinary Kriging 92.50% 94.74% 90.48%
Universal Kriging 80.00% 89.47% 71.43%
Simple Kriging 90.00% 89.47% 90.48%

68.2% CI Ordinary Kriging 87.50% 84.21% 90.48%
Universal Kriging 80.00% 89.47% 71.43%

CI. Universal Kriging came behind across every confidence
interval that was considered. This could be due to Universal
Kriging’s superior complexity compared to the other two
methods, given the limited size of the dataset, which is
common in biomedical signal processing.

Fig. 10 is a histogram plot of the F1 scores of the Kriging
methods on the seizure detection task. It further corroborates
the superiority of Simple Kriging method over others, espe-
cially at 68.2% CI with Ordinary Kriging as a close second.

68.2% CI 95.4% CI 99.7% CI
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Fig. 10. Kriging performance comparison using F1-scores and confidence
intervals.

Table IV lists the latency performances of the Kriging
models on the edge hardware. Simple Kriging again has
the lowest mean detection latency of 0.81s while Universal
Kriging has the highest latency of 16.25s. The mean detection

latency was calculated as an average of ten trials for each
Kriging method.

TABLE IV
COMPARING MEAN DETECTION LATENCY OF KRIGING MODELS IN AN

EDGE COMPUTING PARADIGM

Kriging Models Detection Latency (s)
Simple Kriging 0.81
Ordinary Kriging 0.86
Universal Kriging 16.25

Table V shows the comparison of our proposed seizure
detector to other existing works in the literature. The latency
performance of our model is clearly superior to that of the
other works in the literature with a marginal compromise in
accuracy. However, the marginal lapse in accuracy is com-
pensated by the presence of the motion sensor in our design.
The motion sensor detects any abnormal body movement and
triggers an alarm in case the model misses a seizure.

IX. CONCLUSION AND FUTURE WORK

The effectiveness of Kriging methods in a wearable de-
sign for real time seizure detection in an edge computing
paradigms has been explored here by modeling the brain
as a three-dimensional spatial representation that is similar
to a geographical landscape suitable for the application of
Kriging. Three Kriging models were evaluated across various
metrics. Simple Kriging shows the best performance, Ordinary
Kriging comes very close but Universal Kriging was quite
far behind. In addition to the performance of our proposed
seizure detector, the encouraging acceptance rate of mobile
EEG technologies among users shows that EZcap is highly
promising as a mass market consumer electronic device for
seizure detection.

The work presented here has great potential of benefiting
consumers with epilepsy in future consumer electronic de-
vices. The authors intend to further explore the potentials of
Simple Kriging for more efficient and time-sensitive seizure
detection and prediction wearable designs. Incorporation of
drug-delivery mechanisms into the seizure detector to provide
seizure control and early detection in a unified system in
IoMT is a future research [41]. We also plan to explore
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TABLE V
COMPARING RESULTS WITH EXISTING WORKS IN THE LITERATURE.

Published Works Extracted Features Classification Algorithm Accuracy Sensitivity Specificity Detection Latency
Shoeb, et al. [37] Spectral, temporal and

spatial features.
Support Vector Machine
(SVM)

NA 96.00% 0.083 per hr 4.2 sec.

Zandi, et al. [38] Regularity, energy & com-
bined seizure indices

Cumulative Sum
(CUSUM) thresholding

NA 91.00% 0.33 per hr 9 sec.

Altaf, et al. [39] Digital hysteresis Linear Support Vector
Machine (LSVM)

NA 95.70% 98.00% 1 sec.

Vidyaratne, et al. [40] Fractal dimension, spa-
tial/temporal features

Relevance Vector Ma-
chine (RVM)

99.80% 96.00% 0.1 per hr 1.89 sec.

Sayeed, et al. [16] Hyper-synchronous pulses Signal Rejection Algo-
rithm (SRA)

NA 96.90% 97.50% 3.6 sec.

Olokodana et al. [35] Petrosian fractal dimen-
sion

1D Kriging Model 100.00% 100.00% 100.00% 0.85 sec.

Current Paper Fractal dimension, Hjorth
complexity & Entropy

3D Kriging Model 97.50% 94.74% 100.00% 0.81 sec.

integration of some advanced security features to our proposed
medical device as it is IoMT-enabled and can be part of
large scale Internet-of-Everything (IoE) or healthcare Cyber-
Physical Systems (H-CPS) [26], [42].
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