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Hardware-Friendly Multiple Transform Selection
Module for the VVC Standard

Wassim Hamidouche, Member, IEEE, Pierrick Philippe, Sid Ahmed Fezza, Mounir Haddou, Fernando
Pescador, Senior Member, IEEE, and Daniel Menard

Abstract—The H.266/versatile video coding (VVC) standard is
the most recent ITU/ISO video coding standard finalized in July
2020. VVC includes several new coding tools at different levels
of the coding scheme. These coding tools enable a significant
bitrate saving of up to 50% for the same subjective video quality
than its predecessor H.265/high efficiency video coding (HEVC).
Among these tools, we can cite the multiple transform selection
(MTS) which selects at the encoder horizontal and vertical
transforms among three trigonometrical transforms, including
discrete cosine transform (DCT) type II, discrete sine transform
(DST) type VII and DCT type VIII. Unlike the DCT-II, the
DST-VII does not have efficient fast algorithmic implementation.
Moreover, the MTS increases the memory usage required to store
the coefficients of the three transforms. Consequently, this paper
targets an efficient approximation of the DST-VII kernel based on
the DCT-II and adjustment stage. The approximation of the DST-
VII is modeled as an integer optimization problem jointly mini-
mizing the error and the orthogonality of the approximate DST-
VII under sparsity constraint of the adjustment stage. The sparse
nonlinear optimizer (SNOPT) solver with an additional relaxation
constraint is used to solve the problem and find the best sparse
adjustment band matrices for different transform sizes. The
DCT-VIII is then computed from the approximate DST-VII with
pre/post processing operations involving only sign changes and
input/output reordering. The proposed approximation provides a
significant reduction in both arithmetic operations and memory
usage. Moreover, it preserves the coding gain brought by the
MTS under the VVC reference software. These advantages make
our solution suitable for energy-efficient hardware H.266//VVC
encoders and decoders deployed on consumer electronic devices.

Index Terms—Multiple transform selection, VVC, Transform
approximation, DCT, DST, Complexity reduction.

I. INTRODUCTION

THE new video applications together with emerging video
contents in high frame rate (HFR), high dynamic range
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(HDR) and omnidirectional 360◦ formats rise the need to
develop a new video coding standard with coding efficiency
beyond the H.265/high efficiency video coding (HEVC) stan-
dard. Joint video experts team (JVET) has launched a call for
proposal (CfP) for the development of a new video coding
standard called H.266/versatile video coding (VVC) [1], [2]
in 2017. H.266/VVC was finalized in July 2020 enabling
up to 50% of bitrate reduction with respect to H.265/HEVC
for the same subjective video quality [3], [4]. H.266/VVC
relies on the classical hybrid video coding structure combining
inter/intra predictions with transform coding. Several new
coding tools have been adopted during the standardization
process at different levels of the encoder, including frame
partitioning, intra/inter predictions, transform/quantization, in-
loop filters and entropy engine.

For instance, the multiple transform selection (MTS) has
been adopted in H.266/VVC, which allows the encoder to
select a couple of horizontal and vertical transforms from
predefined sets of transforms. These sets consist of kernels
among three trigonometrical transforms, namely discrete co-
sine transform (DCT) type II, discrete sine transform (DST)
type VII and DCT type VIII. In the rest of this chapter,
DCT and DST of types X and Y are denoted as DCT-X and
DST-Y, respectively. The used set of vertical and horizontal
transforms is defined based on intermediate coding parameters,
such as intra prediction mode and block size. MTS enables a
significant coding gain of 0.84% in all intra (AI) and 0.33%
in random access (RA) coding configurations [5]. This coding
efficiency is achieved at the expense of a slight increase
in the encoder complexity estimated to 115% [5] under the
H.266/VVC reference software (VTM-5.0). The coding gain
enabled by the MTS was even higher under the VTM-3.0
with 2.81% and 1.26% bit rate reductions [6] for AI and RA
configurations, respectively.

It has been shown in several studies [7]–[11] that the
hardware implementation of the MTS on field-programmable
gate array (FPGA) platform would require high logic and
memory resources. This would be a bottleneck for imple-
menting real time hardware VVC encoder and decoder on
FPGA/application-specific integrated circuit (ASIC) platforms
with limited logic and memory resources. Therefore, there
is a real need to provide a low complexity solution that
requires low logic resources while preserving the coding gain
of the MTS. The DCT-II has been well studied and optimized
with fast algorithmic implementations [12]–[14], while DST-
VII/DCT-VIII still need to be optimized for lightweight hard-
ware implementation [15], [16]. Moreover, hardware imple-
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mentation of the DCT-II is already integrated in the previous
generations of video coding standards.

This paper proposes to approximate the basis functions of
DST-VII using the basis functions of DCT-II and a sparse band
adjustment matrix A [17]. The DCT-VIII can be then linearly
derived from DST-VII without any additional complexity.
This approximation allows implementing the transformations
in low-resources devices used in consumer electronic applica-
tions.

The contributions of this work are summarized as follows:
• Model the approximation of the DST-VII as a continuous

constrained optimization problem. Then, this problem
is solved with a sparse non linear solver to derive the
adjustment matrices of integer values to approximate
DST-VII transform of different sizes N ∈ {16, 32, 64}.

• Implement an efficient, lightweight and hardware-friendly
solution for DST-VII and DCT-VIII approximations
based on the DCT-II kernel with low number of mul-
tiplications and low memory usage, while preserving
the coding gain of the MTS for consumer electronics
applications.

The rest of this chapter is organized as follows. Section II
first describes the MTS concept in the H.266/VVC standard,
then Section II-B reviews the existing fast algorithmic im-
plementations of the DCT-II and DST-VII transforms. The
approximation of DST-VII is expressed in Section III as a
continuous constrained optimization problem, which is solved
to derive the adjustment matrices of different sizes. The
performance of the proposed approximation is assessed in
Section IV in terms of complexity, memory usage and coding
efficiency under the VTM-3.0 software. Finally, Section V
concludes this chapter.

II. RELATED WORK

In this section, we first provide a background on trigono-
metrical transforms used in H.266/VVC, then their fast algo-
rithmic implementations are reviewed.

A. Trigonometrical transforms in H.266/VVC

In this section, we first give the definition of the three
trigonometrical transforms used in the H.266/VVC standard,
then we describe the concept of MTS in the recent video
encoders, especially H.266/VVC.

1) Transforms for video compression: The orthogonal basis
functions of the DCT-II transform are computed by (1)

CN2 i,j = γi

√
2

N
cos

(
π (i− 1) (2j − 1)

2N

)
, (1)

with γi =

{ √
1
2 i = 1,

1 i ∈ {2, . . . , N}.
The basis functions of DST-VII and DCT-VIII are given by

(2) and (3), respectively.

SN7 i,j =
2√

2N + 1
sin

(
π (2i− 1) j

2N + 1

)
(2)
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Fig. 1: First four basis of DCT-II, DCT-VIII and DST-VII for
N = 64.

CN8 i,j =
2√

2N + 1
cos

(
π(2i− 1) (2j − 1)

2 (2N + 1)

)
(3)

where (i, j) ∈ {1, . . . , N}2 are the two indices of the
transform matrix of dimension N ×N .

In the VVC standard, those basis functions are approximated
by an integer representation, where each coefficient is encoded
on β = 8 bits. Therefore, the transform coefficients are within
the interval [−2β−1 + 1, 2β−1] ∩ Z.

This paper is focused on the approximation of the DST-
VII transform. The DCT-VIII can then be linearly derived
from the DST-VII at no additional computational complexity,
involving only vector reflection matrix (ΓN ) and sign changes
matrix (ΛN ) as expressed in (4)

CN8 = ΛN · SN7 · ΓN , (4)

where CN8 and SN7 are the coefficients matrices of DCT-VIII
and DST-VII transforms, respectively, while matrices ΛN and
ΓN are computed by (5) and (6), respectively.

ΓNi,j =

{
1, if j = N − i+ 1,
0, otherwise, (5)

ΛNi,j =

{
(−1)i−1, if j = i,

0, otherwise , (6)

with i, j ∈ {1, 2, . . . , N}.
Figure 1 illustrates the four first basis of DCT-II, DCT-VIII

and DST-VII transforms.
2) Multiple transform selection: In the previous standard

H.265/HEVC, separable transforms has been widely inves-
tigated [18], [19]. This standard only considers DCT-II
along with DST-VII, used only for intra luma blocks of size
4×4 [20]. The transforms competition has then integrated
into the joint exploration model (JEM) software [21]. This
development generates five trigonometrical transform types
(DCT-II, V and VIII, and DST-I and VII) and enables a
significant increase in coding efficiency estimated to 3% of
bitrate reduction [21].

 . 
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Fig. 2: X is the input block of residuals, Y is the output
transformed block and MTS flag is the index of the selected set
of transforms. Note that DCT-VIII and DST-VII are applied
only on blocks of width and height lower than 64.

However, this improvement comes at the expense of both
memory increase (used for the coefficients of the transforms)
and complexity overhead required to test the transform candi-
dates. To reduce the complexity, subsets of transform candi-
dates are defined offline. Therefore, subsets of transforms are
tested considering the prediction configurations such as the
intra prediction mode and the block size [21].

The MTS in H.266/VVC relies only three transform types,
including DCT-II, DCT-VIII and DST-VII. As illustrated
in Figure 2, the MTS concept selects, for Luma blocks of
size lower than 64, a set of transforms that minimizes the
rate distortion cost among five transform sets and the skip
configuration. However, only DCT-II is considered for chroma
components and Luma blocks of size 64. The the MTS is
activated at the encoder with the sps mts enabled flag flag
defined at the sequence parameter set (SPS) level. Two other
flags are defined at the SPS level to signal whether implicit
or explicit MTS signalling is used for intra and inter coded
blocks, respectively. For the explicit signalling, used by default
in the common test conditions (CTC), the tu mts idx syntax
element signals the selected horizontal and vertical transforms
as specified in Table I. This flag is coded with truncated rice
(TRp) code with a rice parameter p = 0 and cMax = 4.

B. Fast computation methods of DCT/DST

Fast computing algorithms for DCTs/DSTs have been pro-
posed in the literature. Most of them try to reduce the number
of multiplications and additions compared to the matrix multi-
plication required for N×N square matrix, N3 multiplications
and N2(N − 1) additions, i.e., O(N3) . This computational
complexity can be further reduced to O(N2.373) which is the
state-of-the-art lower bound [22]. Some of the DCTs/DSTs
offer symmetry, decomposition and recursion properties al-
lowing to design fast and low complexity algorithms. The 1D
transform of a residual vector x of size N×1 using the DST-
VII basis S7 is described in Equation (7)

y = SN7 · x. (7)

Table II gives the number of multiplications and additions
of the state-of-the-art fast implementations for both DCT-II
and DST-VII 1D transforms to process a vector x of size
N ∈ {8, 16, 32, 64}. The number of operations for is low

TABLE I: Primary transform signaling in VVC.

tu mts idx
Transform Direction

Horizontal Transform Vertical Transform

0 DCT-II DCT-II

1 DST-VII DST-VII

2 DCT-VIII DST-VII

3 DST-VII DCT-VIII

4 DCT-VIII DCT-VIII

compared to the naive multiplication for DCT-II while it
significantly increases for DST-VII.

Zhang et al. [23] have investigated three properties of
the DST-VII, exploring factorization to save multiplications.
These properties allow reducing the number of multiplications
by coefficients of the same absolute value within a basis
function (row) in only one multiplication operation. This tech-
nique enables reducing the number of operations required by
matrix multiplication without introducing any approximation.
Rezni [24] has explored the relation between DCT-II and DST-
VII transforms that enables their joint computation for certain
transform sizes. It has also been shown in [25] that DCT-II of
odd size is equivalent to computing the same length discrete
Fourier transform (DFT). Thus, the fast DFT algorithm can be
used to compute certain sizes of DCT-II and DST-VII trans-
forms. Park et al. [26] explore the equality property between
DST-VII and (2N+1)-point DFT to compute inverse/forward
N-point DCT-VII. The linear relationship between DST-VII
and DCT-VIII is then used to speedup the computation of
the DCT-VIII. The DCT-V is approximated using similar
properties by taking benefit of the relationship between DCT-
VI and (2N − 1)-point DFT, and the linear relation between
DCT-VI and DCT-V. The (2N + 1)-point and (2N − 1)-point
DFTs can efficiently be computed by Winograd fast Fourier
transform (FFT) [27] for DFTs with the powers of prime
lengths, while prime-factor FFT [28] is used for DFTs in
the lengths that are the multiplications of numbers in relative
prime.

The main contribution of this work is to propose and
implement approximations for DST-VII for large sizes blocks
(N > 8) that meet the following three main requirements:

• Lightweight solution reducing both the number of op-
erations than the existing in previous fast computing
algorithms proposed in [16], [23] and the memory usage
to store the transform coefficients.

• Hardware-friendly solution that leverages the existing
forward DCT-II and inverse DCT-II fast implementations
to preserve memory and logic resources.

• Increase the coding efficiency achieved by the MTS under
the VVC common test conditions (CTC) [29].

III. PROPOSED APPROXIMATION MODEL OF DST-VII

A. Model description

The DST-VII approximation is expressed as a constrained
optimization problem. The approximate DST-VII is expressed

 . 
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TABLE II: DCT-II and DST-VII performance analysis based on the number of multiplications and additions of the state of
the art proposed algorithms

Transforms N = 8 N = 16 N = 32 N = 64

Ref. + × All Ref. + × All Ref. + × All Ref. + × All

DCT-II [13] 29 11 40 [13] 81 31 112 [14] 209 80 289 [14] 192 513 707

DCT-II (HEVC) [20] 37 24 61 [20] 113 86 199 [20] 401 342 743 [20] 807 683 1490

DST-VII [15] 77 21 98 [16] 150 146 296 − − − − − −
DST-VII [23] − − [23] 155 127 282 [23] 718 620 1338 [23] 2331 2207 4538

DST-VII [26] 77 21 98 [26] 125 42 167 [26] 279 93 372 − − −
Matrix Multiplication − 56 64 120 − 240 256 496 − 992 1024 2016 − 4032 4096 8128

Proposed DST-VII (θ = 4) − 24 32 56 − 48 64 112 − 96 128 224 − 192 256 448

Proposed DST-VII (θ = 5) − 32 40 72 − 64 80 144 − 128 160 288 − 256 320 576

Proposed DST-VII (θ = 6) − 40 48 88 − 80 96 176 − 160 192 352 − 320 384 704

according to the DCT-II [30], [31], as follows

ŜN7 = ΛN ·
[
CN2
]T · ΓN ·AN , (8)

where ΛN ·
[
CN2
]T ·ΓN is equivalent to the DST-III transform,

ΛN and ΓN matrices are calculated using (5) and (6), respec-
tively, and AN being a sparse band matrix of size N × N .

N-point
input

Adjustment
 stage

N-point
output

Inverse 
DCT-II

Fig. 3: Approximate forward DST-VII transform.

The inverse approximate DST-VII, used at the decoder side,
involves the use of forward DCT-II[

ŜN7

]T
=
[
AN
]T · ΓN · CN2 · ΛN . (9)

The approximation workflows of the forward DST-VII and
inverse DST-VII are illustrated in Figures 3 and 4, respectively.
This approximate DST-VII Ŝ7 and its transpose, initially
proposed in [30], reduce its computational complexity since it
involves the DCT-II (Table II) and a multiplication by a band
matrix A. Therefore, the complexity of this approximation is
equal to the complexity of the DCT-II plus the complexity
of the multiplication by the band matrix A, which depends
on the maximum number of non-zero coefficients by row θ.
The complexity of the multiplication by the matrix A in terms
of numbers of multiplications and additions are given by θ N
and (θ − 1)N , respectively. In this proposal, three values of
non-zero coefficients by row are considered θ = {4, 5, 6}.
These three values offer a good trade-off between complexity
reduction and coding efficiency.

Table II demonstrates that number of operations in terms
of both additions and multiplications required for the three
configurations of the approximate DST-VII is lower than the
operations used in DST-VII fast implementations for large
transform size (i.e., N > 16). Moreover, this architecture
is suitable for hardware implementation since the logic and
memory resources of DCT-II transform can be reused to
calculate DST-VII and DCT-VIII transforms.

The proposed approach consists in minimizing the weighted
least-squares error between the approximate version Ŝ7 and the
original oneDST-VII S7

E(A) =
N∑
i=1

ωi

N∑
j=1

(
SN7 i,j − ŜN7 i,j

)2
, (10)

where ωi is a weight vector of size N representing the

N-point
input

Adjustment
 stage

N-point
output

Forward
DCT-II

Fig. 4: Approximate inverse DST-VII transform.

relative importance of the frequency components. When the
ωi is constant equal to 1, the error function corresponds to the
squared Frobenius norm.

The approximate DST-VII transform Ŝ7 must meet two
constrains related to the matrix A, which are sparsity and
orthogonality. This last requirement is an important property
of the transform core since it enables the use of its transpose
in inverse transform to recover the original signal (energy
conservation). The orthogonality of the adjustment matrix A
can be expressed by (11)

O(A) = ||AN · [AN ]T − IN ||22, (11)

where IN is the identity matrix of size N×N and ||·||2 stands
for the Euclidean norm. Therefore, the objective function of
this constrained optimization problem can be expressed with
a Lagrangian multiplier λ as follows

minimize
A

E(AN ) + λ O(AN ). (12)

This objective function aims at minimizing the trade-off be-
tween error E(A) and orthogonality O(A) of the approximate
DST-VII Ŝ7, where this trade-off is tuned by the Lagrangian
parameter λ. The optimal solution of the optimization problem
of (12) consists in the matrix A? that leads to the original
DST-VII S7 expressed by (13).

A? = ΓN · CN2 · ΛN · SN7 , (13)

with E(A?) and O(A?) terms are both equal to zero.

 . 
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However, this optimal solution is not appropriate because it
neither obtain integer values and neither reveal a sparse prop-
erty, leading to fewer arithmetic operations. Then, consider the
A? matrix with values multiplied by 2β (with β the bit-depth
set to 7 bits) and rounded to the nearest integer. An example
of the A? matrix for N = 8 A?8,8 is provided in (14).

127 11 −6 4 −2 2 −1 0
−10 125 20 −10 6 −4 2 −1

6 −16 122 30 −13 7 −4 1
−4 10 −22 118 39 −15 7 −2
4 −8 14 −27 114 47 −15 4
−3 7 −11 18 −32 110 53 −10
3 −6 10 −15 23 −38 109 47
−2 4 −7 10 −15 22 −39 118


(14)

The most significant absolute values (highlighted in (14)) of
the matrix are around the diagonal and lower absolute values
are located at lower-left and upper-right. This property of the
adjustment matrix A is stronger for adjustment matrices of
higher sizes N ∈ {16, 32, 64}.

In this work, adjustment band matrix that minimizes the
trade-off between error and orthogonality is looked for with
the constraint of A to include few integer values different
from zero. The discrete constrained optimization problem is
presented in (15).

minimize
A

E(AN ) + λ O(AN ),

subject to ANi,j = 0, ∀ j > i+ bθ/2c,
ANi,j = 0, ∀ j ≤ i− dθ/2e,
i, j ∈ {1, . . . , N}2,
ANi,j ∈ Z ∩ [−2β + 1, 2β ],

λ ∈ R+

(15)

It has been shown in [32] that the DST-VII is optimal in
terms of energy packing for image intra-predicted residuals.
Indeed, these residuals have an auto-correlation matrix which
is a tri-diagonal matrix Rx of size N×N expressed by (16).

RNx i,i = b,

RNx i,i+1 = c,

RNx j−1,j = a,

RNx N,N = b− α,

(16)

with (a, b, c, α) = (−1, 2,−1, 1) and 1 ≤ i < N , 1 < j ≤ N .

The eigenvalue-vectors of the matrix Rx are the basis of
the DST-VII transform [33]. The matrix Rx is expressed as
follows:

RNx =



2 −1 0 0 . . . 0 0 0
−1 2 −1 0 . . . 0 0 0
0 −1 2 −1 . . . 0 0 0
...

...
...

...
...

...
...

...
0 0 0 −1 . . . −1 0 0
0 0 0 0 . . . 2 −1 0
0 0 0 0 . . . −1 2 −1
0 0 0 0 . . . 0 −1 1


N×N

.
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Fig. 5: The weight coefficients used for the approxi-
mate DST-VII transform optimization for different sizes
N ∈ {16, 32, 64}.

Therefore, for the approximation of the DST-VII, the rel-
ative importance of the approximation basis with the eigen-
values of the matrix Rx is proposed to weight This approach
gives more relevance to the lower frequency range where an
important part of the signal energy stands. According to [34],
the eigenvalues are computed by (17)

ωi = b+ 2
√
a c cos

(
2 i π

2N + 1

)
, i = 1, . . . , N. (17)

Figure 5 illustrates the weights ωi assigned to the basis
functions in the optimization of the approximate DST-VII
transform for different kernel sizes N ∈ {16, 32, 64}.

B. Constrained optimization problem

This constrained integer optimization problem is non lin-
ear and non convex. We might use genetic algorithms or
integer programming [35] to solve this problem. However,
such approaches may be complex and take long time to
converge towards an optimal solution. Also, an exhaustive
search would result in calculating large number of combi-
nations of (2β+1 + 1)θ N . Thus, our choice went to use
the sparse nonlinear optimizer (SNOPT) solver [36]. This
latter is based on sparse sequential quadratic programming
(SQP) with limited-memory quasi-Newton approximations to
the Hessian of the Lagrangian. The SQP programming is
effective for solving constrained optimization problems with
smooth nonlinear functions in the objective and constraints.
We consider the problem as non linear problem with an
objective function and a set of equality constraints. We add
another relaxation constraint which ensures that the non-zero
coefficients of the matrix A are within the integer subset
Ai,j ∈ Z ∩ [−2β + 1, 2β ]

N∑
i=1

N∑
j=1

|sin(π ANi,j)| = 0. (18)
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Fig. 6: Error E(A?) versus orthogonality O(A?) performance in dB of the proposed solution for different λ values.

To make sure that the SNOPT solver converges to a valid so-
lution and not towards a local optimum, we randomly initialize
the solver with different initial solutions. The solver converges
to a similar solution whatever the initial solution. This does
not assert that the solver converges to the optimal solution,
but the obtained solution can be reached from different initial
solutions. The problem was expressed with a mathematical
programming language (AMPL) [37] that supports the SNOPT
solver. The optimization program was then carried out on the
NEOS server, which is a free internet-based service for solving
numerical optimization problems [38], [39].

C. Error and orthogonality performance

To assess the performance of the proposed solution, we
plot the error E(A∗) versus the orthogonality O(A∗) for
different values of the Lagrangian multiplier λ. The error
and orthogonal metrics are expressed in logarithmic scale
computed as follow

Ē(A∗) = 10 log10

(
E(A∗)/N2

)
,

Ō(A∗) = 10 log10

(
O(A∗)/N2

)
.

(19)

Figure 6 illustrates the performance in terms of orthog-
onality and error of the DST-VII approximated with the
adjustment matrix of real coefficients (Figures 6a, 6c, 6e) and
then constrained to integer coefficients with the additional
constraint in (18) (Figures 6b, 6d, 6f). We can notice from
Figures 6a, 6c, 6e that different λ values enables deriving
solutions with different trade-off between orthogonality and
error. Moreover, considering more non-zero coefficients by

row enables achieving a more efficient solution in both or-
thogonality and error at the expense of higher complexity.
However, the integer constraint decreases the performance,
especially in terms of orthogonality. We can notice that the
proposed solution with only five non zeros coefficients θ = 5
reaches a better trade-off between error and orthogonality
compared to solutions obtained with θ = 6 for different
transform sizes.

Table III provides the error and orthogonality scores ob-
tained for different λ values. We also provide the error and
orthogonality scores of the integer DST-VII considered in
the VTM reference software. The proposed solution may
reach any trade-off between error and orthogonality of the
approximate DST-VII. Moreover, the selected couple of error-
orthogonality highlighted in black triangle in Figures 6b,
6d and 6f for θ = 5 are selected to assess their coding
performance in the VTM software under the CTC, and low
quantization parameter (QP) (high bitrate) configurations.

Figure 7 illustrates the 16 first basis functions of the DST-
VII computed by (2), DST-VII used in the VVC test model
(VTM) and the proposed approximate DST-VII computed
by (8). While the basis functions of the DST-VII and DST-
VII used in the VTM are perfectly overlapping, those of
the proposed approximate DST-VII are very close to the
orthogonal DST-VII basis. This shows the accuracy of the
proposed approximation with basis function very close to
DST-VII used in the VTM.
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Fig. 7: The first 16 basis functions of DST-VII, DST-VIII VTM and the proposed DST-VII for N = 32.

TABLE III: Performance of the approximate DST-VII based on error Ē(A∗) and orthogonality Ō(A∗) in dB for different
Lagrangian parameters and θ = 5.

Transforms N = 16 N = 32 N = 64

λ Ē(A∗) Ō(A∗) λ Ē(A∗) Ō(A∗) λ Ē(A∗) Ō(A∗)

DST-VII 22.57 −39.11 −53.11 6.72 −42.41 −53.72 41.38 −43.62 −59.55
DST-VII 41.38 −38.66 −54.02 254.85 −40.65 −56.91 254.85 −43.24 −60.74
DST-VII 5273.28 −37.42 −54.54 5273.28 −39.52 −57.30 59526.76 −41.90 −61.26
DST-VII VTM − −59.56 −57.64 − −60.14 −58.32 − −65.10 −63.36

IV. RESULTS AND ANALYSIS

A. Experimental setup

The proposed approximation has been integrated in the
reference software VTM version 3.0. The approximation is
applied only on DST-VII and DCT-VIII of large sizes N =
{16, 32, 64}. The performance of the proposed solution are
assessed in this section in terms of Bjøntegaard delta rate (BD-
BR) [40] with respect to the anchor VTM-3.0, in addition,
the complexity in number of multiplications/additions and
memory required to store the transform coefficients are mea-
sured. The BD-BR is computed over the test video sequences
defined in the VVC CTCs over four QPs ∈ {22, 27, 32, 37}.
The CTCs video sequences are grouped into seven classes as
follows: A1 (3840×2160), A2 (3840×2160), B (1920×1080),
C (832×480), D (416×240), E (1280×720), and F (832×480
to 1920 × 1080). These classes feature different frame rates,
bit depths, motions, textures and spatial resolutions. Classes
A to E include natural scene sequences and class F contains

specific screen content sequences.
The run time complexity reduction (CR) of the encoder and

decoder is computed by (20).

CR =
1

4

∑
QPi∈{22,27,32,37}

TP (QPi)

TA(QPi)
100%, (20)

where TP and TA are the run times in second of the modified
encoder/decoder with the approximate transforms and the
anchor, respectively.

B. Complexity performance

Table II gives the complexity of the proposed approximation
of DST-VII, for three values of θ, in terms of number of
multiplications and additions. Compared with the state of the
art solutions depicted in Table II, we can notice that the
proposed solution provides the lowest number of multipli-
cations/additions for both 4 and 5 non-zero coefficients per
row (θ = 4, 5) whatever the transform size. The number

 . 
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TABLE IV: Performance (%) in terms of BD-BR and run time complexity reduction (CR) of approximate DST-VII and
DCT-VIII (MTS enabled only for intra blocks).

Class All Intra Main 10 Random Access Main 10 Low Delay B Main 10
BD-BR (%) CR (%) BD-BR (%) CR (%) BD-BR (%) CR (%)

Y U V Enc. Dec. Y U V Enc. Dec. Y U V Enc. Dec.
A1 −0.01 −0.18 −0.08 96 80 −0.15 −0.48 −0.46 102 97 − − − − −
A2 0.14 0.10 0.03 96 84 0.03 0.08 0.06 101 98 − − − − −
B 0.12 0.06 0.08 96 83 0.05 0.00 −0.17 101 98 0.04 −0.35 −0.10 101 101
C 0.07 −0.02 −0.06 97 89 0.05 0.05 0.24 100 100 0.05 0.36 0.10 101 102
E 0.13 0.04 0.13 96 86 − − − − − 0.15 0.26 0.24 100 97
Av. 0.09 0.01 0.02 96 85 0.01 −0.07 −0.07 101 98 0.07 0.04 0.05 101 100
D 0.07 0.08 0.00 96 91 0.01 −0.23 −0.03 100 100 0.05 −0.02 0.43 101 100
F 0.07 0.16 0.14 96 92 0.05 0.22 0.28 100 98 0.12 0.46 0.34 101 102

TABLE V: Performance (%) in terms of BD-BR and run time CR of approximate DST-VII and DCT-VIII (MTS enabled for
both intra and inter blocks).

Class Random Access Main 10 Low Delay B Main 10
BD-BR (%) CR (%) BD-BR (%) CR (%)

Y U V Encoder Decoder Y U V Encoder Decoder

A1 −0.24 −0.28 −0.33 105 96 − − − − −
A2 −0.01 0.05 0.07 103 96 − − − − −
B 0.01 0.03 −0.03 103 96 −0.16 0.03 −0.05 107 101
C 0.01 0.14 0.29 101 95 −0.04 −0.07 0.18 104 102
E − − − − − −0.03 0.54 −0.11 107 103

Av. −0.04 0.00 0.01 103 96 −0.09 0.13 0.01 106 102

D 0.04 −0.19 0.03 100 96 0.00 −0.29 0.10 102 101
F 0.08 0.20 0.32 102 97 −0.11 −0.04 0.28 105 101

of operations of the approximation includes the complexity
of the DCT-II and the complexity required to perform the
multiplication by the sparse band matrix A, which mainly
depends on the number of non-zero coefficients per row θ.

The proposed approach is especially more efficient for large
transform sizes reaching for θ = 5, 37%, 68%, 84% and
92% of multiplication savings with respect to naive matrix
multiplication for transform sizes N = 8, 16, 32 and 64,
respectively. The computation of DCT-VIII can be derived
on hardware platform from the DST-VII involving only sign
changes and input/output reordering without any additional
computational complexity.

C. Coding performance

Firstly, it is important to emphasize that the Bjøntegaard
delta rate (BD-BR) gains of the MTS under the VTM-3.0
are 2.81% and 1.26% in AI and RA coding configurations,
respectively [6]. Table IV gives the performance of the pro-
posed approximation for θ = 5 in terms of both BD-BR
and codec run time complexity with respect to the anchor
VTM-3.0. The non-zero integer coefficients of the selected
adjustment matrices are provided in Appendix A for θ = 5
and N = 16, 32. The coding and complexity results are
provided for three coding configurations including AI, RA
and low delay B (LDB) when MTS is enabled only for intra
blocks. We can note that including 64 × 64 DST-VII and
DCT-VIII in the approximate MTS enables slight coding gain
for high resolution video sequences (A1) especially in inter

configuration that uses more large blocks. However, slight
coding loss lower than 0.2 % in average is observed for other
resolutions. This limited coding loss is mainly caused by the
accurate proposed approximations of the DST-VII and DCT-
VIII.

The coding and complexity performance of our approxi-
mation are depicted in Table V for LDB and RA coding
configurations when the MTS is enabled on both intra and
inter blocks. The gains enabled by the large DST-VII and
DCT-VIII is even higher when the MTS is enabled for inter
blocks, especially for high resolution video A1. For other
video classes, the coding performance remains similar to the
anchor.

Regarding the encoding run time complexity, the encoding
time is slightly higher with the approximation since the large
transform size 64 × 64 for both DST-VII and DCT-VIII are
enabled only in modified VTM and they are restricted to
maximum size of 32×32 in the anchor. At the decoder side, the
decoding run time is decreased thanks to the approximations
of the DST-VII and DCT-VIII.

Table VI gives the BD-BR loss achieved by the proposed
approximation at low QP configuration: QP ∈ {1, 5, 9, 13}.
This measure is important to assess the performance of the
proposed solution at high bitrate where more high frequency
coefficients are encoded. The reported BD-BR scores show
that the coding loss remains limited below 0.2% for Luma
component.

Figure 8 illustrates frames #1 (intra) and #4 (bi-predicted)

 . 
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(a) #1, QP 22, PSNR=40.81 dB (b) #1, QP 27, PSNR=39.60 dB (c) #1, QP 32, PSNR=38.56 dB (d) #4, QP 37, PSNR=37.29 dB

(e) #4, QP 22, PSNR=40.21 dB (f) #4, QP 27, PSNR=39.06 dB (g) #4, QP 32, PSNR=37.77 dB (h) #4, QP 37, PSNR=36.26 dB

Fig. 8: Visual illustration of frames #1 (Intra) and #4 (bi-predicted) of BasketballDrive video (1080p) encoded at four QPs
with the proposed MTS approximation solution.

TABLE VI: Performance (%) in terms of BD-BR and run
time CR of approximate DST-VII and DCT-VIII in low QP
configuration QP ∈ {1, 5, 9, 13} (MTS enabled only for intra
blocks).

Class All Intra Main 10 Random Access Main 10
BD-BR (%) CR (%) BD-BR (%) CR (%)

Y U V Encoder Decoder Y U V Encoder Decoder

A1 0.13 0.2 0.20 97 100 0.11 0.29 0.39 99 100
A2 0.15 0.17 0.16 95 97 0.15 0.17 0.16 99 101
B 0.17 0.25 0.25 98 101 0.08 0.13 0.16 100 100
C 0.09 0.13 0.15 97 101 0.06 0.08 0.09 99 101
E 0.17 0.31 0.27 96 99 − − − − −
Av. 0.14 0.21 0.20 97 100 0.10 0.16 0.19 99 100

D 0.09 0.14 0.14 97 101 0.03 0.12 0.09 100 101
F 0.08 0.16 0.09 98 100 0.00 0.0 −0.01 100 101

TABLE VII: Memory usage for different transform types in
number of coefficients (each coefficient is stored in 8 bits).

Block size 4 8 16 32 64 Total

DCT-II [20] 16 64 86 342 1366 1874

DST-VII [23] 16 64 256 1024 4096 5456
Proposed DST-VII θ = 4 16 64 64 128 254 462
Proposed DST-VII θ = 5 16 64 80 160 320 640
Proposed DST-VII θ = 6 16 64 96 192 384 752

of BasketballDrive video sequence (1080p50) encoded with
the approximate MTS at four QPs. We can notice the high
visual quality of the decoded images even at high QP with
similar coding visual artifacts as the anchor.

D. Memory usage

Table VII gives the memory required to store the coeffi-
cients of DCT-II using butterfly fast algorithm and the DST-
VII computed with different fast algorithms including matrix
multiplication [23] and approximation proposed in [31]. The
proposed solution reduces the memory used to store the coeffi-
cients to approximate DST-VII compared to the factorization-
based solution proposed in [23]. In fact, the proposed solution
requires to storage only the DCT-II coefficients and those of

the sparse adjustment matrices at different sizes. This advan-
tage is convenient for area-efficient hardware implementations
supporting DCT-II, DST-VII and DCT-VIII.

V. CONCLUSION

In this paper, the authors have investigated the approxima-
tion of the DST-VII and DCT-VIII transforms to reduce the
complexity and memory required to implement the VVC MTS
block, especially on hardware platforms with limited logic
and memory resources. Unlike the DCT-II, the DST-VII does
not have efficient fast algorithmic implementation and it relies
on naive matrix multiplication. The proposed approximation
aims to leverage the well known DCT-II transform with low
complexity pre- and post-processing operations. The approx-
imation of the DST-VII has been modeled as a constrained
optimization problem jointly minimizing error and orthogo-
nality of the approximate DST-VII under sparsity constraint
of the pre-processing stage. This integer optimization problem
is solved by the SNOPT solver with an additional relaxation
constrains to compute coefficients in the discrete domain.

The proposed approximation has been integrated in the
VVC reference software VTM-3.0 and assessed in terms of
complexity in number of required additions/multiplications,
coding efficiency and memory usage. The obtained results
showed that the proposed approximation achieved a signifi-
cant multiplication saving up to 92% with respect to matrix
multiplication for large transform size N = 64. Moreover,
the coding gains brought by the MTS are preserved, while
the required memory to store the transform coefficients is
significantly reduced.

This approximation is very interesting to implement the
H.266/VVC decoder in consumer electronic devices with very
limited resources in term of power consumption and memory
usage. The proposed algorithm can be easily integrated in an
ASIC to implement an efficient H.266/VVC decoder.
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APPENDIX A
16/32-POINT SELECTED ADJUSTMENT MATRICES WITH

θ = 5

The following matrix gives the non-zero coefficients of
the adjustment matrix A?16×16, where the matrix diagonal is
highlighted in gray.

 . 
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

128 4 −1 0 0
−4 128 8 0 0
1 −8 127 10 −1
1 −10 127 14 0
2 −14 126 16 1
2 −16 126 16 1
1 −16 125 24 −1
2 −23 123 26 1
6 −25 124 19 2
3 −19 125 21 2
1 −21 124 24 3
2 −24 123 27 3
2 −27 121 31 5
4 −31 119 35 2
0 4 −34 117 39
0 0 9 −38 122


The following matrix gives the non-zero coefficients of

the adjustment matrix A?32×32, where the matrix diagonal is
highlighted in gray.

128 2 0 0 0
−2 128 3 0 0
0 −3 128 4 0
0 −4 128 5 0
0 −5 128 7 0
0 −7 128 8 0
0 −8 127 9 0
0 −9 127 11 1
0 −11 127 12 1
1 −12 127 14 1
1 −14 126 15 1
1 −15 126 16 1
1 −16 126 16 1
1 −16 126 18 1
1 −18 125 20 2
1 −20 125 21 2
2 −21 124 22 2
2 −22 124 23 2
2 −23 123 25 3
2 −25 123 26 3
3 −26 122 27 3
3 −27 122 28 3
3 −28 121 29 4
3 −29 121 30 4
4 −30 120 32 5
4 −32 119 34 5
5 −34 118 34 5
5 −34 118 36 6
5 −36 117 37 6
6 −37 117 36 6
0 6 −36 116 41
0 0 6 −41 121


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