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Abstract—Multi-view data processing is an effective tool to
differentiate the levels of consumers on electronics. Recently,
the graph based multi-view clustering methods have attracted
widespread attention because they can obtain the relationships
of multi-view data points efficiently. However, there exist several
shortcomings on most existing graph based clustering methods.
Firstly, the mostly adopted Euclidean distance can not extract
the nonlinear manifold structure. Secondly, graph based methods
are mainly hard clustering methods, which means that each data
point belongs to only the one cluster exactly. Thirdly, the high-
dimension information between multiple views are not taken
into account. Thus, a low-rank tensor regularized graph fuzzy
learning (LRTGFL) method for multi-view data processing is
proposed. In LRTGFL, Jensen-Shannon divergence is adopted
to replace the Euclidean distance for obtaining more completely
nonlinear structures. In addition, fuzzy learning is adopted to
make graph clustering be a soft clustering method. Furthermore,
a tensor nuclear norm based on the tensor singular value
decomposition (t-SVD) is adopted to take advantage of the high-
dimension information. Then, alternating direction method of
multipliers (ADMM) is adopted to solve the LRTGFL model.
Finally, the effectiveness and superiority of LRTGFL are demon-
strated by comparing with various state-of-the-art algorithms on
eight real-world datasets.

Index Terms—Multi-view data processing, graph learning, low-
rank tensor, fuzzy clustering.

I. INTRODUCTION

D ISTINGUISHING the levels of consumers is of great
significance in the field of electronic consumption. By

classifying the consumers in different clusters, suppliers can
chance services and adjust products with a clear propose. How-
ever, the data of consumers which comes from multi-source
is inevitably characterized by high-dimensionality, diversity,
nonlinearity and complexity. Hence, multi-view clustering is
widely applied for multi-view data processing. Besides, it has
also attracted considerable attention on internet of things [1],
smart home [2], electronic product analysis [3] in field of
electronic consumption.

Graph based method is distinguished in clustering due to
its simplicity and effectiveness. [4] proposes a graph based
clustering method named clustering with adaptive neighbors
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(CAN). In CAN, the similarity matrix between data points is
assigned adaptively based on the local Euclidean distances.
The principle of CAN is effective and its structure is simply.
Thus CAN is considered as a basic model of graph clustering
since it is proposed.

With the popularity of CAN, many multi-view graph clus-
tering methods are proposed. In multi-view datasets, the
different views are generated by different ways or origin
from a same object. It means that multi-view datasets have
more information in variety aspects than single-view datasets.
Therefore, it is no doubt that multi-view graph based clustering
methods can always obtain more superior results than single-
view methods. The most typical and traditional multi-view
graph based clustering methods [5–7] obtain a unified graph
among the graph similarity matrices of all views first, then
some regularization or prior information is added on the
unified graph to extract more information and produce the final
clusters. However, they have several shortcomings as follows.
Firstly, Euclidean distance is always taken to measure the
relationships among data points. In Euclidean distance, each
data point contributes equally. In fact, the importance of data
points at different positions in the sample distribution should
be different. In theory, there exist lots of nonlinear manifold
structures in many cases on datasets [8]. It is obviously that
Euclidean distance can not extract the nonlinear relationships
well. Secondly, most existing graph clustering methods are
hard clustering methods. Thirdly, high-dimension information
between multiple views are not used sufficiently.

In this paper, a low-rank tensor regularized graph fuzzy
learning (LRTGFL) method for multi-view data processing
is proposed. Firstly, Jensen-Shannon divergence is adopted
to represent the relationships between data points instead of
traditional Euclidean distance. Jensen-Shannon divergence can
measure how much a given arbitrary distribution deviates from
the true distribution, and it can find the nonlinear manifold
structure between data points and help to obtain a better
graph. Secondly, fuzzy clustering is adopted in LRTGFL.
Fuzzy clustering can imply the grade of data points which the
cluster belongs. Besides, outliers or points which are farther
away from the cluster are easy to classify wrongly in hard
clustering. Different with hard clustering, outliers can be fuzzy
classified in soft clustering, and can be correctly classified
after some iterations of computation finally. Thirdly, a tensor
singular value decomposition (t-SVD) based tensor nuclear
norm is adopted in LRTGFL. Since the number of clusters
is much smaller than the number of sample in general, the
graph similarity matrices have the block diagonal structure. By
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Fig. 1. The flowchart of low-rank tensor regularized graph fuzzy learning (LRTGFL). Firstly, give a multi-view data X ∈ Rdv×N . Secondly, compute the
Jensen-Shannon divergence between xi and xj and obtain the divergence matrix D(v). Thirdly, make fuzzy clustering to get the membership matrix M (v).
Fourthly, −l1 norm is added to membership matrix for avoiding over sparse. Then, construct the similarity tensor Z by using similarity matrices as its lateral
slices. Furthermore, take the t-SVD based tensor nuclear norm to Z . Finally, compute the final affinity matrix by S = 1

V

∑v
v=1(∥Z(v)∥+ ∥Z(v)T ∥).

constructing the graph similarity tensor from graph similarity
matrices, the t-SVD based norm can be a low-rank tensor
constraint of it to take high-dimension information between
views. The flowchart of the proposed LRTGFL is shown in
Fig. 1.

The main contributions of this paper is summarized as
follows:

1) A low-rank tensor regularized graph fuzzy learning
method for multi-view data processing is proposed in
the paper. Nonlinear structures and high-dimension in-
formation are taken into account by adopting Jensen-
Shannon divergence and low-rank tensor representation
respective. Besides, fuzzy clustering is adopted to get a
superior clustering performance.

2) An efficient iterative optimization algorithm for LRT-
GFL based on the alternating direction method of mul-
tipliers is presented in the paper.

3) The proposed method is compared with various state-of-
the-art methods on eight real-world datasets. According
to the clustering performance and the visualization of
the experimental results, LRTGFL shows its superiority
over the other related clustering methods.

The remaining part of the paper is organized as follows. In
Section II, some related works of multi-view clustering are
reviewed. In Section III, some notations and preliminaries are
introduced briefly. In Section IV, LRTGFL model is proposed
and the optimization algorithm is given to solve it. In Section
V, the results of experiments which compared with various
state-of-the-art methods on eight real-world datasets are shown
to verify the superiority of LRTGFL. Finally, the conclusion
and outlook of future work are given in Section VI.

II. RELATED WORK

With the development of machine learning, there exist
kinds of multi-view clustering methods. They can be roughly
classified into four categories: nonnegative matrix factorization
based methods, subspace clustering methods, graph based
methods and the other categories.

The traditional nonnegative matrix factorization based clus-
tering is a biconvex optimization method [9, 10]. In traditional
nonnegative matrix factorization based multi-view clustering
method [11, 12], the high-dimension data matrix of each view
is decomposed into a basis matrix and a unified representation
or coefficient matrix. The structure of nonnegative matrix fac-
torization for clustering is clear, but it is difficult to explore the
hidden information. In recent, in order to dig more information
in datasets, multiple matrix factorization is proposed. Wang
et al. [13] propose a three-matrix factorization based method.
[14] proposes the deep matrix factorization which decomposes
the data matrix layer-by-layer. According to multiple matrix
decomposition, the characteristic hided in deep can be found
to get better clustering performance.

Multi-view subspace clustering methods cluster samples
into subspaces to find the relationship between data points
and clusters. Different with nonnegative matrix factorization,
the basis matrix is replaced by a dictionary matrix which is the
data matrix itself usually in subspace clustering. By applying
the self-representation method, subspace clustering improves
its performance. But it is still a significant problem that how to
take advantage of the information between views. [15] adopts
the Hilbert-Schmidt norm to guarantee the complementary
information between views. In fact, information from different
views on a object has both consistency and diversity. [16]
decomposes the representation matrix into consistency part
and specificity part. [17] attempts to harness the consistent
and diverse information by introducing a consistency term and
a exclusivity term respectively. The tensor approach plays an
important role in dealing with high dimensional and complex
data [18, 19]. Since exacting the high-dimension information
can get a deeper connections between multiple views, the
tensor based subspace clustering method is proposed. A ten-
sor based method is proposed by Zhang et al. [20] firstly.
However, Zhang’s method still adopts the matrix singular
value decomposition (SVD) to be a low-rank regularization
in fact. Xie et al. [21] introduce a tensor nuclear norm
based on tensor singular value decomposition (t-SVD) [22]
to multi-view subspace clustering. [23] proposes a multi-view
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subspace clustering method which takes the low-rank tensor
representation and considers the local manifold structure.

Graph based methods has attracted widespread attention
due to their clear structure and fast calculation speed. In
graph based methods, similarity matrices are constructed by
the distance between data to represent the relationship of data
points. Some graph based methods [5–7, 24] are working to
find a unified graph and construct adaptive weight between
multiple views. Auto-weighted algorithms make the cluster-
ing work easier and simplify the problem indeed. However,
eagerly to construct a unified graph has a shortcoming that it
extracts the information among views insufficiently. Therefore,
there exists several methods which attempt to extract the
connection between multiple views. Wang et al. [25] learn
the graph of each view and unified graph simultaneously to
get more information. Tang et al. [26] attempt to leverage
the complementary information between views by a algorithm
named diffusion process. Huang et al. [27] take both the
consistency and diversity of graph into account. Besides, high-
dimension information is adopted in some works [28–30].
t-SVD based nuclear norm is introduced to add low rank
constraint on graph similarity tensor for the high-dimension
relationships. In addition, there exists some methods which use
projection or nonlinear kernel to replace traditional Euclidean
distance for extracting nonlinear structure. Both Wang et al.
[31] and Gao et al. [32] project the original data into a low-
dimension subspace. Lin et al. [33] embed the original data
into a constructed data space nonlinearly. Ren et al. [34] adopt
a kind of nonlinear multiple kernel to replace the Euclidean
distance.

Except the above kinds of methods, there exists other vari-
ous multi-view clustering methods, e.g. network based meth-
ods [35], support vector machine (SVM) based methods [36],
self-supervised learning based methods [37], least squares
regression based methods [38], self-paced based methods [39].

III. NOTATIONS AND PRELIMINARIES

In the section, some notations and preliminaries are in-
troduced briefly. The lower case letters denote the scalars,
the bold lowercase letters denote the vectors, the bold cap-
ital letters denote matrices, and the bold calligraphy let-
ters denote tensors, e.g., x, x, X and X , respectively.
∥X∥F =

√∑
ij X

2
ij denotes the Frobenius norm of matrix,

and ∥X∥F =
√∑

ijk X
2
ijk denotes the Frobenius norm of

tensor. ∥X∥1 =
∑

ij |Xij | denotes the l1 norm of matrix.
∥X∥∗ denotes the matrix nuclear norm based on singular
value decomposition, and ∥X∥⊛ denotes the tensor nuclear
norm based on tensor singular value decomposition (t-SVD).
The Fast Fourier Transformation (FFT) of a tensor X along
the third dimension is denoted by X = fft(X , [ ] , 3), and
the Inverse Fast Fourier Transformation (IFFT) is denoted by
X = ifft(X , [ ] , 3).

Definition 1 (Tensor Singular Value Decomposition (t-SVD)
[22]). The t-SVD of a tensor X ∈ Rn1×n2×n3 is defined as

X = A ∗B ∗ CT (1)

where both A ∈ Rn1×n1×n3 and B ∈ Rn2×n2×n3 are
orthogonal tensor, C ∈ Rn1×n2×n3 is a f-diagonal tensor.

Definition 2 (t-SVD based Tensor Nuclear Norm [22]).
Given a tensor X ∈ Rn1×n2×n3 , the value of tensor nuclear
norm ∥X∥⊛ is the sum of the singular values on all frontal
slices of X :

∥X∥⊛ =

min{n1,n2}∑
i=1

n3∑
k=1

∥B(i, i, k)∥ (2)

where B is computed by the t-SVD X = A ∗B ∗ CT
.

IV. METHODOLOGY

A. Low-Rank Tensor Regularized Graph Fuzzy Learning
Model

Divergence is widely applied to measure the relationships
and extract nonlinear structures between data points. The
Kullback-Leibler (KL) divergence is a popular divergence in
machine learning. However, it is an asymmetric divergence. It
means that the divergence from xi to xj is not equal to the
divergence from xj to xi. In graph clustering, the similarity
matrix is hoped to be a symmetric matrix. Therefore, KL diver-
gence is not the best choice to replace the Euclidean distance.
Fortunately, the Jensen-Shannon divergence is symmetric to
be a better choice. If there exist two distributions P (i) and
Q(i), then Jensen-Shannon divergence of them is formulated
by

DJS(P (i)||Q(i)) =
∑
i

P (i)log
P (i)

M(i)
+Q(i)log

Q(i)

M(i)
, (3)

where M(i) = (P (i) +Q(i))/2.
When the divergence between data points xi and xj is large,

their similarly zij should be small. On the contrary, a smaller
divergence should be assigned a lager zij . Fuzzy clustering is
a soft clustering, which regards the fuzzy similarity matrix as
a suggestive matrix [40]. And it suggests the degree to which
points belong to a same cluster. Therefore, a graph based fuzzy
clustering method is proposed naturally:

min
Z(v)

V∑
v=1

N∑
i,j=1

DJS(x
(v)
i ||x(v)

j )z
(v)m
ij ,

s.t. z
(v)
ij ≥ 0,

(4)

where the V denotes the number of views, N denotes the
number of samples, m is the fuzzification factor, z(v)ij is the
similarity between x

(v)
i and x

(v)
j .

However, the similarity matrix Z(v) would be over sparse
in equation (4) which means that the optimal solution of Z(v)

in equation (4) is approaching to 0. In order to avoid over
sparse of Z(v), The −l1 norm is introduced:

min
Z(v)

V∑
v=1

N∑
i,j=1

DJS(x
(v)
i ||x(v)

j )z
(v)m
ij − r

V∑
v=1

∥Z(v)∥1,

s.t. z
(v)
ij ≥ 0,

(5)



4

where r is a balance parameter of the −l1 norm.
As the multi-view features are extracted from the same

objects, there exists consistency between views. Besides, the
number of clusters is much smaller than the number of samples
[21, 41]. Therefore the t-SVD based nuclear norm which uses
similarity matrices as the lateral slices represents low-rank
structure can help to obtain the high-dimension information
between views. By adding the t-SVD based nuclear norm, the
formula is as follows:

min
Z(v)

V∑
v=1

N∑
i,j=1

DJS(xi||xj)z
(v)m
ij − r

V∑
v=1

∥Z(v)∥1 + λ∥Z∥⊛,

s.t. z
(v)
ij ≥ 0,

(6)
where ∥Z∥⊛ is the tensor based nuclear norm, λ is a balance
parameter of it.

In order to balance the weight of divergence between data
points, a column normalization constraint is added to Z(v).
Thus the final objective function is formulated as follows:

min
Z(v)

V∑
v=1

N∑
i,j=1

DJS(x
(v)
i ||x(v)

j )z
(v)m
ij − r

V∑
v=1

∥Z(v)∥1 + λ∥Z∥⊛,

s.t.

N∑
i=1

z
(v)
ij = 1, z

(v)
ij ≥ 0,

(7)
where DJS(x

(v)
i ||x(v)

j ) denotes the Jansen-Shannon diver-
gence between xi and xj in v-th view, Z(v) is the similarity
graph matrix of v-th view, Z represents the similarity tensor
constructed by similarity graph matrices of all views, m
means the fuzzification factor, and both r and λ are balance
parameter.

B. Optimization
The nuclear norm ∥Z∥⊛ in the objective function (7)

is difficult to solve directly. Thus, an auxiliary tensor G
is introduced to solve the problem conveniently. Moreover,
the fuzzification factor is fixed as m = 2 to simplify the
optimization process:

min
Z(v),G

V∑
v=1

N∑
i,j=1

DJS(x
(v)
i ||x(v)

j )z
(v)2
ij − r

V∑
v=1

∥Z(v)∥1 + λ∥G∥⊛

s.t.

N∑
i=1

z
(v)
ij = 1, z

(v)
ij ≥ 0,Z = G.

(8)
Then, the augmented Lagrangian formulation of the problem

(8) is expressed as:

min
Z(v),G

V∑
v=1

N∑
i,j=1

DJS(x
(v)
i ||x(v)

j )z
(v)2
ij − r

V∑
v=1

∥Z(v)∥1 + λ∥G∥⊛

+
µ

2
∥Z − G +

Φ

µ
∥2F +

V∑
v=1

N∑
j=1

(η
(v)
j (z

(v)T
j 1− 1)− β

(v)
j z

(v)
j )

(9)

where Φ is a tensor, ηj ≥ 0 is a constant, βj ≥ 0 is a column
vector, they are all Lagrangian multipliers in the algorithm and
µ is the penalty parameter and satisfies µ ≥ 0.

Then, according to the alternating direction method of mul-
tipliers (ADMM) [42], the variables are updated as follows:

Update Z(v). With G, Φ and µ fixed, Z(v) is updated by

min
Z(v)

V∑
v=1

N∑
i,j=1

DJS(x
(v)
i ||x(v)

j )z
(v)2
ij − r

V∑
v=1

∥Z(v)∥1 + λ∥G∥⊛

+
µ

2
∥Z − G +

Φ

µ
∥2F +

V∑
v=1

N∑
j=1

(η
(v)
j (z

(v)T
j 1− 1)− β

(v)
j z

(v)
j )

(10)
The formula (10) can be solved by the closed-form solution

proposed in [4]. Moreover, it can be also solved as follows.
The problem (10) can be separated into N subproblems on
each view. Thus, the j-th subproblem is:

z
(v)∗
j = argmin

z
(v)
j

N∑
i=1

d
(v)
ij z

(v)2
ij − r

N∑
i=1

z
(v)
ij +

µ

2
z
(v)2
ij

− µz
(v)
ij (g

(v)
ij − ϕ

(v)
ij /2) + η

(v)
j (z

(v)T
j 1− 1)− β

(v)
j z

(v)
j

(11)
where the d

(v)
ij = DJS(x

(v)
i ||x(v)

j ). Then the vector form of
Eq. (11) can be written as:

z
(v)∗
j = argmin

z
(v)
j

∥z(v)
j −

µ(g
(v)
j −Φ

(v)
j /2) + r

µ+ 2d
(v)
j

∥22

+ η
(v)
j (z

(v)T
j 1− 1)− β

(v)
j z

(v)
j

= argmin
z
(v)
j

∥z(v)
j − h

(v)
j ∥22

+ η
(v)
j (z

(v)T
j 1− 1)− β

(v)
j z

(v)
j ,

(12)

where hj =
µ(g

(v)
j −Φ

(v)
j /2)+r

µ+2d
(v)
j

. Based on the KKT conditions,

we have: 
2z

(v)∗
ij − 2h

(v)∗
ij − η

(v)∗
j − β

(v)∗
ij = 0,

β
(v)∗
ij z

(v)∗
ij = 0,

β
(v)∗
ij ≥ 0

z
(v)∗
ij ≥ 0,

(13)

According to s
(v)T
j 1 = 1 , we get

η
(v)∗
j =

2− 2h
(v)∗T
j 1− β

(v)∗T
j 1

N
(14)

Then according to Eq. (14) and the complementary slack-
ness condition in Eq. (13), the solution of z(v)∗ij is:

z
(v)∗
ij = max

{
hij +

1− h
(v)∗T
j 1− (β

(v)∗T
j 1)/2

N
, 0

}
.

(15)
Update G. With Z(v), Φ and µ fixed, G is updated by

solving
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G∗ = argmin
G

λ∥G∥⊛ +
µ

2
∥Z − G +

Φ

2
∥2F (16)

The calculation of optimal solution for problem (16) is
in Fourier domain. G∗

is update by tensor tubal-shrinkage
operator [21]:

G∗
= A ∗ Jλ/µB ∗ CT

, (17)

where B is calculated by T = A∗B∗CT
, and T = Z+ Φ

2 .
In addition, Jλ/µB(i, i, j) = max{B(i, i, j)− λ

µ , 0}.
Update Φ and µ. With Z(v) and G fixed, Φ and µ is updated

by {
Φ∗ = Φ+ µ(Z − G),
µ∗ = min{γ ∗ µ, µmax},

(18)

where γ satisfies γ > 1. It is set as γ = 2 in the paper.
The optimization flowchart of the proposed LRTGFL is

summarized in Algorithm 1. The convergence condition is set
as follows:

max


∥Z(v)

k −G
(v)
k ∥∞,

∥Z(v)
k −Z

(v)
k−1∥∞,

∥G(v)
k −G

(v)
k−1∥∞,

 ≤ ϵ, (19)

where ϵ is a small positive parameter, and it is set as 10−7

in the paper.

Algorithm 1 LRTGFL for multi-view clustering

Input: Multi-view data X(1), X(2), · · · , X(V ), parameter r,
λ, and the initial value of Z(v)

0

1: Initialize: µ0 = 10−3, γ = 2, µmax = 108, ϵ = 10−7,
G0 = Z0, Φ0 = 0, and set the iterative number k = 1;

2: While not converged do
3: Update Z(v) by Eq. (15);
4: Update G by Eq. (17);
5: Update Φ, µ by Eq. (18);
6: Check the convergence condition in Eq. (19);
7: k = k + 1;
8: end while
9: Compute the affinity matrix S = 1

V

∑v
v=1(∥Z(v)∥ +

∥Z(v)T ∥);
Output: Affinity matrix S

C. Complexity Analysis
The complexity is consumed on updating Z(v) and G

mainly. The size of Z(v) is N × N , and the size of G is
N × N × V . To update Z(v), we need to solve V N sub-
problems. To update each z

(v)
ij , we need to calculate h

(v)∗T
j 1

and β
(v)∗T
j 1 in Eq. (15) which costs O(N). Thus we need

O(V N2) to update Z(v) in total. To update G, the FFT and
IFFT need to be calculated, which takes O(V N2log(N)). In
Fourier domain, the SVD of each frontal slice of T with size
N × N × V need to be calculated, which takes O(V 2N2).
Thus, the overall complexity is O(V N2(1 + log(N) + N)).
In general, there exists 1 < log(N) ≪ N , thus the overall
complexity is O(V N3) in an iteration.

V. EXPERIMENTS

A. Datasets

(a) ORL (b) Yale (c) UCI
Fig. 2. Samples of datasets. (a) ORL. (b) Yale. (c) UCI.

Eight common real-world multi-view datasets are adopted
in experiments. Their information are summarized on Table
I. Some samples of them are shown in Fig. 2. They are
introduced as follows briefly:

ORL1[43]: It is a face images dataset which includes 400
images of 40 different people with three views. Each category
of images are collected under different conditions.

Yale2: It is also a face images dataset with three views.
It includes 165 face images of 15 individuals under different
lighting condition and expression on face.

UCI3: It is a classical handwritten digits dataset. It includes
2000 samples of 10 classes digits from 0 to 9 with three views.

Handwritten: It is a handwritten digits dataset of 0 to 9
which contains 2000 samples in total with six views.

BBCsport and BBC4view4: Both BBCsport and BBC4view
are datasets which come from BBC news website on 5 types
of topic. BBCsport contains 544 documents in total and has
two views. BBC4view includes 685 documents and has four
views.

NGs5: NGs is a news dataset with 500 data samples with
three views which categorized into five clusters.

100leaves6: It includes 1600 samples of 100 kinds of plant
leaves. Three views are extracted including 64 dimensions
shape descriptor, 64 dimensions texture histogram and 64
dimensions fine scale margin.

B. Evaluation Metrics

The performance of clustering result is evaluated by six
popular evaluation metrics: accuracy (ACC), normalized mu-
tual information (NMI), adjusted rand index (AR), F-score,
Precision and Recall. For all metrics, higher value denotes
more predominant clustering performance.

C. Comparison Methods

Fourteen clustering methods are taken to compare with
the proposed LRTGFL, including three single-view clustering

1http://www.uk.research.att.com/facedatabase.html
2https://cvc.yale.edu/projects/yalefaces/yalefaces.html
3https://archive.ics.uci.edu/ml/datasets/Multiple+Features
4http://mlg.ucd.ie/datasets
5http://lig-membres.imag.fr/grimal/data.html
6https://archive.ics.uci.edu/ml/datasets/One-

hundred+plant+species+leaves+data+set
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TABLE I
INFORMATION OF REAL-WORLD MULTI-VIEW DATASETS.

Datasets Objective Samples Clusters View1 View2 View3 View4 View5 Views6

ORL Face images 400 40 4096d 3304d 6750d - - -
Yale Face images 165 15 4096d 3304d 6750d - - -
UCI Handwritten digit 2000 10 240d 76d 6d - - -
Handwritten Handwritten digit 2000 10 216d 76d 64d 6d 240d 47d
BBCsport News text 544 5 3183d 3203d - - - -
BBC4view News text 685 5 4659d 4633d 4665d 4684d - -
NGs News text 500 5 2000d 2000d 2000d - - -
100leaves Object 1600 100 64d 64d 64d - - -

methods (SSC7 [44], LRR8 [45], CAN [4]), a nonnegative ma-
trix factorization based method (MVCC9 [13]), four subspace
multi-view clustering methods (RMSC [46], LT-MSC [20],
MLRSSC10 [47], CSMSC11 [16]) and six graph based multi-
view clustering methods (MVGL12 [24], GSF13 [48], GMC14

[25], CGD15 [26], CGL16 [29], CDMGC17 [27]):

D. Performance Comparison

The clustering results on eight real world datasets are shown
in Table II and III. The experiments are running 10 times,
and the average and standard deviation are computing as
the performance results. Bold values and underlined values
represent the best and second-best results respectively.

On all of the eight datasets, LRTGFL performs best of
the six evaluation metrics. On ORL, CGL, UCI, 100leaves
and Handwritten, CGL performs second-best. On BBCsport,
CGD performs the second-best. On BBC4view, MLRSSC
performs the second-best. On NGs, LT-MSC performs second-
best. There are 10%, 15%, 4%, 5%, 6%, 12%, 1%, 2%
improvement for LRTGFL compared with the second-best
performance results on the ORL, Yale, UCI, Handwritten,
BBCsport, BBC4view, NGs and 100leaves respectively.

In general, single-view methods can not achieve the per-
formance of multi-view clustering methods. It is obviously
that multi-view methods can obtain more information from
multiple views.

All of LT-MSC, CGL and the proposed LRTGFL are tensor
based clustering methods. LT-MSC still use the SVD nuclear
norm based on matrix, but both CGL and LRTGFL take the
tensor based SVD nuclear norm and get the high-dimensional
information from all views. Therefore, CGL and LRTGFL
perform better than LT-MSC in total.

MVGL, GSF, GMC, CGD, CGL, CDMGC and the proposed
LRTGFL are all graph based methods. Both MVGL and GSF

7http://www.ccis.neu.edu/home/eelhami/codes.htm
8https://sites.google.com/site/guangcanliu/
9https://github.com/vast-wang/Clustering
10https://github.com/mbrbic/Multi-view-LRSSC
11https://github.com/XIAOCHUN-CAS/Consistent-and-Specific-Multi-

View-Subspace-Clustering
12https://github.com/kunzhan/MVGL
13https://github.com/dugzzuli/Graph-structure-fusion-for-multiview-

clustering
14https://github.com/cshaowang/gmc
15https://github.com/ChangTang/CGD
16https://github.com/guanyuezhen/CGL
17https://github.com/huangsd/CDMGC

are committed to find a global graph. GMC, CGD and CDMSC
take some consistent or divergent information between views
into account. Both CGL and LRTGFL adopt a tensor nuclear
norm which can use high-dimension information between
views. Therefore, CGL and LRTGFL performs better than
the others. In addition, LRTGFL adopts Jensen-Shannon di-
vergence and fuzzy learning which can extract the nonlinear
structure in data. Thus it can obtain the connections between
data points effectively and correctly.

E. Comparison of Visualization

The visualization of the final affinity matrix generated by
similarity matrix or representation matrix is shown in Fig.
3. RMSC and CSMSC are subspace methods, and all of the
others are graph based methods. In Fig. 3, white color denotes
large values, and black color denotes smaller values. The final
affinity matrix of LRTGFL is clearer and the diagonal block
structures are completer compared with the others. It indicates
that there are more correct connections of graph in LRTGFL.

In Fig. 4, visualization of the clustering performance on
UCI is shown. By using the function t-SNE on Matlab,
the visualization of the unified graph of each method is
generated. Since both CGL and LRTGFL have low-rank tensor
regularization on similarity graph tensor, they perform more
superior than the others. Besides, it can be seen that LRTGFL
reveals the clearest structure of each cluster and has the lowest
misclasssfications. Furthermore, because of the strategy of
fuzzy clustering, the distance between different clusters is the
farthest and the distance between data points in same clusters
is lowest of LRTGFL. Thus, LRTGFL is the most superior
clustering method of them.

F. Parameter Analysis

For the fuzzification parameter m, we set m = 2 in all
experiments. In the experiments of LRTGFL, r and λ need to
be tuned. The grid search method is adopted for tuning the
parameters, and both r and λ are selected from the sets of
[0.005, 0.01, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10] in the experiments.
ACC values and NMI values of LRTGFL on eight real world
datasets with different parameter settings is shown in Fig.
5 and Fig. 6 respectively. Moreover, ORL, Yale, UCI and
100leaves are images datasets and both BBCsport and NGs
are text datasets. From Fig. 5 and Fig. 6, it is easy to know
that the parameters are less sensitive in images datasets than
text datasets.
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Fig. 3. Visualization of the final affinity matrix on UCI of different methods. (a) RMSC. (b) MVGL. (c) CSMSC. (d) GSF. (e) GMC. (f) CGD. (g) CGL. (h)
CDMGC. (i) LRTGFL.
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Fig. 5. ACC values of the proposed method on real world datasets with different parameter settings. (a) ORL. (b) Yale. (c) UCI. (d) Handwritten. (e)
BBCsport. (f) BBC4view. (g) NGs. (h) 100leaves.
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Fig. 6. ACC values of the proposed method on real world datasets with different parameter settings. (a) ORL. (b) Yale. (c) UCI. (d) Handwritten. (e)
BBCsport. (f) BBC4view. (g) NGs. (h) 100leaves.
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TABLE II
CLUSTERING RESULTS (MEAN±STANDARD DEVIATION).

Datesets Method ACC NMI AR F-score Precision Recall

ORL

SSC 0.6783 ± 0.0147 0.8150 ± 0.0065 0.5430 ± 0.0116 0.5539 ± 0.0113 0.5231 ± 0.0113 0.5887 ± 0.0132
LRR 0.7023 ± 0.0123 0.8336 ± 0.0073 0.5849 ± 0.0187 0.5949 ± 0.0182 0.5577 ± 0.0212 0.6376 ± 0.0177
CAN 0.5575 ± 0.0000 0.7628 ± 0.0000 0.2131 ± 0.0000 0.2418 ± 0.0000 0.1496 ± 0.0000 0.6306 ± 0.0000

RMSC 0.7385 ± 0.0130 0.8686 ± 0.0066 0.6501 ± 0.0146 0.6585 ± 0.0143 0.6205 ± 0.0168 0.7017 ± 0.0144
LT-MSC 0.8068 ± 0.0211 0.9170 ± 0.0077 0.7530 ± 0.0233 0.7589 ± 0.0227 0.7170 ± 0.0280 0.8063 ± 0.0190
MVCC 0.3225 ± 0.0000 0.5981 ± 0.0000 0.1417 ± 0.0000 0.1746 ± 0.0000 0.1027 ± 0.0000 0.5806 ± 0.0000
MVGL 0.6000 ± 0.0000 0.8117 ± 0.0000 0.2529 ± 0.0000 0.2803 ± 0.0000 0.1725 ± 0.0000 0.7467 ± 0.0000

MLRSSC 0.6948 ± 0.0212 0.8552 ± 0.0086 0.6005 ± 0.0218 0.6104 ± 0.0212 0.5548 ± 0.0254 0.6790 ± 0.0231
CSMSC 0.7867 ± 0.0114 0.9029 ± 0.0048 0.7208 ± 0.0136 0.7275 ± 0.0132 0.6834 ± 0.0196 0.7781 ± 0.0111

GSF 0.8000 ± 0.0000 0.9074 ± 0.0000 0.7149 ± 0.0000 0.7219 ± 0.0000 0.6639 ± 0.0000 0.7911 ± 0.0000
GMC 0.6765 ± 0.0024 0.8697 ± 0.0023 0.4814 ± 0.0120 0.4972 ± 0.0115 0.3693 ± 0.0127 0.7611 ± 0.0038
CGD 0.6900 ± 0.0000 0.8341 ± 0.0000 0.5138 ± 0.0000 0.5278 ± 0.0000 0.4131 ± 0.0000 0.7306 ± 0.0000
CGL 0.8670 ± 0.0093 0.9284 ± 0.0026 0.8106 ± 0.0086 0.8150 ± 0.0084 0.7974 ± 0.0113 0.8334 ± 0.0063

CDMGC 0.6450 ± 0.0000 0.8388 ± 0.0000 0.2693 ± 0.0000 0.2961 ± 0.0000 0.1821 ± 0.0000 0.7928 ± 0.0000
LRTGFL 0.9408 ± 0.0189 0.9849 ± 0.0049 0.9389 ± 0.0185 0.9403 ± 0.0181 0.9148 ± 0.0251 0.9675 ± 0.0112

Yale

SSC 0.5909 ± 0.0135 0.6467 ± 0.0105 0.4035 ± 0.0149 0.4413 ± 0.0141 0.4240 ± 0.0124 0.4602 ± 0.0171
LRR 0.5145 ± 0.0101 0.5433 ± 0.0110 0.3015 ± 0.0125 0.3425 ± 0.0117 0.3367 ± 0.0118 0.3524 ± 0.0116
CAN 0.4909 ± 0.0000 0.5486 ± 0.0000 0.2331 ± 0.0000 0.2959 ± 0.0000 0.2202 ± 0.0000 0.4509 ± 0.0000

RMSC 0.5491 ± 0.0152 0.5936 ± 0.0058 0.2622 ± 0.0157 0.3198 ± 0.0125 0.2505 ± 0.0196 0.4453 ± 0.0171
LT-MSC 0.7352 ± 0.0029 0.7636 ± 0.0065 0.5895 ± 0.0154 0.6156 ± 0.0141 0.5914 ± 0.0203 0.6421 ± 0.0081
MVCC 0.4182 ± 0.0000 0.4614 ± 0.0000 0.1512 ± 0.0000 0.2276 ± 0.0000 0.1542 ± 0.0000 0.4339 ± 0.0000

MLRSSC 0.5394 ± 0.0000 0.3753 ± 0.0000 0.3389 ± 0.0000 0.4206 ± 0.0000 0.6069 ± 0.0000 0.3301 ± 0.0000
CSMSC 0.6473 ± 0.0206 0.6957 ± 0.0055 0.4923 ± 0.0073 0.5252 ± 0.0069 0.4943 ± 0.0057 0.5604 ± 0.0095

GSF 0.6242 ± 0.0000 0.6964 ± 0.0000 0.4856 ± 0.0000 0.5188 ± 0.0000 0.4898 ± 0.0000 0.5515 ± 0.0000
GMC 0.6645 ± 0.0000 0.6892 ± 0.0000 0.4410 ± 0.0000 0.4801 ± 0.0000 0.4188 ± 0.0000 0.5624 ± 0.0000
CGD 0.6121 ± 0.0000 0.6553 ± 0.0000 0.4490 ± 0.0000 0.4846 ± 0.0000 0.4566 ± 0.0000 0.5164 ± 0.0000
CGL 0.7515 ± 0.0000 0.7737 ± 0.0000 0.6254 ± 0.0017 0.6488 ± 0.0016 0.6336 ± 0.0010 0.6647 ± 0.0023

CDMGC 0.7091 ± 0.0000 0.7399 ± 0.0000 0.3950 ± 0.0000 0.4406 ± 0.0000 0.3560 ± 0.0000 0.5782 ± 0.0000
LRTGFL 0.8582 ± 0.0544 0.9068 ± 0.0234 0.8043 ± 0.0567 0.8167 ± 0.0530 0.7913 ± 0.0644 0.8445 ± 0.0434

UCI

SSC 0.7423 ± 0.0000 0.7175 ± 0.0000 0.6313 ± 0.0000 0.6619 ± 0.0000 0.6496 ± 0.0000 0.6898 ± 0.0000
LRR 0.6792 ± 0.0025 0.7480 ± 0.0042 0.6354 ± 0.0039 0.6757 ± 0.0038 0.6084 ± 0.0017 0.7599 ± 0.0119
CAN 0.8290 ± 0.0000 0.8931 ± 0.0000 0.8157 ± 0.0000 0.8353 ± 0.0000 0.7811 ± 0.0000 0.8976 ± 0.0000

RMSC 0.9337 ± 0.0000 0.8676 ± 0.0000 0.8587 ± 0.0000 0.8278 ± 0.0000 0.8713 ± 0.0000 0.8743 ± 0.0000
LT-MSC 0.7985 ± 0.0086 0.7699 ± 0.0093 0.7177 ± 0.0131 0.7463 ± 0.0118 0.7333 ± 0.0111 0.7598 ± 0.0125
MVCC 0.4450 ± 0.0000 0.5022 ± 0.0000 0.3010 ± 0.0000 0.3751 ± 0.0000 0.3519 ± 0.0000 0.4016 ± 0.0000
MVGL 0.8400 ± 0.0000 0.8633 ± 0.0000 0.7826 ± 0.0000 0.8057 ± 0.0000 0.7558 ± 0.0000 0.8626 ± 0.0000

MLRSSC 0.8180 ± 0.0000 0.7748 ± 0.0000 0.7243 ± 0.0000 0.8327 ± 0.0000 0.8229 ± 0.0000 0.7479 ± 0.0000
CSMSC 0.8821 ± 0.0016 0.8041 ± 0.0013 0.7650 ± 0.0026 0.7886 ± 0.0023 0.7830 ± 0.0025 0.7942 ± 0.0021

GSF 0.5365 ± 0.0000 0.6032 ± 0.0000 0.2871 ± 0.0000 0.3905 ± 0.0000 0.2680 ± 0.0000 0.7193 ± 0.0000
GMC 0.6170 ± 0.0000 0.7688 ± 0.0000 0.5604 ± 0.0000 0.6133 ± 0.0000 0.5075 ± 0.0000 0.7853 ± 0.0000
CGD 0.8250 ± 0.0000 0.8212 ± 0.0000 0.7418 ± 0.0000 0.7680 ± 0.0000 0.7515 ± 0.0000 0.7853 ± 0.0000
CGL 0.9688 ± 0.0447 0.9537 ± 0.0138 0.9445 ± 0.0422 0.9502 ± 0.0376 0.9432 ± 0.0571 0.9582 ± 0.0146

CDMGC 0.7085 ± 0.0000 0.8029 ± 0.0000 0.6827 ± 0.0000 0.6716 ± 0.0000 0.5783 ± 0.0000 0.8808 ± 0.0000
LRTGFL 0.9980 ± 0.0000 0.9948 ± 0.0000 0.9956 ± 0.0000 0.9960 ± 0.0000 0.9960 ± 0.0000 0.9960 ± 0.0000

Handwritten

LRR 0.5483 ± 0.0001 0.5824 ± 0.0000 0.4333 ± 0.0010 0.4916 ± 0.0001 0.4752 ± 0.0001 0.5093 ± 0.0010
CAN 0.7245 ± 0.0000 0.7711 ± 0.0000 0.6415 ± 0.0000 0.6820 ± 0.0000 0.6020 ± 0.0000 0.7865 ± 0.0000

RMSC 0.9048 ± 0.0001 0.8230 ± 0.0016 0.8039 ± 0.0018 0.8235 ± 0.0016 0.8197 ± 0.0017 0.8273 ± 0.0015
LT-MSC 0.9021 ± 0.0142 0.8384 ± 0.0120 0.8060 ± 0.0214 0.8254 ± 0.0792 0.8006 ± 0.0199 0.8281 ± 0.0186
MVGL 0.8610 ± 0.0000 0.9097 ± 0.0000 0.8381 ± 0.0000 0.8554 ± 0.0000 0.7935 ± 0.0000 0.9297 ± 0.0000

MLRSSC 0.7005 ± 0.0000 0.6566 ± 0.0000 0.6140 ± 0.0000 0.7075 ± 0.0000 0.7145 ± 0.0000 0.6157 ± 0.0000
CSMSC 0.9100 ± 0.0001 0.8422 ± 0.0000 0.9149 ± 0.0001 0.8335 ± 0.0001 0.8297 ± 0.0001 0.8372 ± 0.0001

GMC 0.8820 ± 0.0000 0.9050 ± 0.0000 0.8502 ± 0.0000 0.8658 ± 0.0000 0.8264 ± 0.0000 0.9093 ± 0.0000
CGD 0.8560 ± 0.0000 0.8911 ± 0.0000 0.8354 ± 0.0000 0.8530 ± 0.0000 0.7916 ± 0.0000 0.9247 ± 0.0000
CGL 0.9770 ± 0.0000 0.9495 ± 0.0000 0.9496 ± 0.0000 0.9546 ± 0.0000 0.9540 ± 0.0000 0.9552 ± 0.0000

CDMSC 0.8460 ± 0.0000 0.9103 ± 0.0000 0.8318 ± 0.0000 0.8498 ± 0.0000 0.7931 ± 0.0000 0.9152 ± 0.0000
LRTGFL 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000

On Table II and Table III, the parameters of the proposed
LRTGFL are set as follows. We set r = 0.01 and λ = 1 in
ORL, r = 0.1 and λ = 10 in Yale, r = 0.05 and λ = 5 in
UCI, r = and λ = in Handwritten, r = 0.005 and λ = 10 in
BBCsport, r = and λ = in BBC4view, r = 0.05 and λ = 1
in NGs, r = 0.5 and λ = 5 in 100leaves, respectively.

Table IV and Table V show the p-values between the
proposed LRTGFL and other clustering methods. LRTGFL
significantly outperforms the most of the others on most of
the datasets.

G. Ablation Analysis

In this section, the effectiveness of different components
in LRTGFL is verified by ablation experiments, i.e., the
Jensen-Shannon divergence, t-SVD based nuclear norm and
fuzzification.

a)The effectiveness of the Jensen-Shannon divergence
In order to verify the effectiveness of the Jensen-Shannon

divergence, the Jensen-Shannon divergence is replaced by the
Euclidean distance in this case. For convenience, this ablate
method is called as low-rank tensor regularized graph fuzzy
learning with Euclidean distance (LRTGFL-ED). The objective
function of LRTGFL-ED is as follows:
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TABLE III
CLUSTERING RESULTS (MEAN±STANDARD DEVIATION).

Datesets Method ACC NMI AR F-score Precision Recall

BBCsport

SSC 0.7346 ± 0.0016 0.4830 ± 0.0017 0.4364 ± 0.0026 0.5777 ± 0.0018 0.5496 ± 0.0025 0.6087 ± 0.0010
LRR 0.8915 ± 0.0000 0.8023 ± 0.0000 0.8328 ± 0.0000 0.8730 ± 0.0000 0.8667 ± 0.0000 0.8793 ± 0.0000
CAN 0.7004 ± 0.0000 0.6479 ± 0.0000 0.4532 ± 0.0000 0.6261 ± 0.0000 0.4724 ± 0.0000 0.9280 ± 0.0000

RMSC 0.8952 ± 0.0000 0.8264 ± 0.0000 0.8414 ± 0.0000 0.8797 ± 0.0000 0.8706 ± 0.0000 0.8889 ± 0.0000
LT-MSC 0.5656 ± 0.0365 0.3290 ± 0.0289 0.2588 ± 0.0736 0.5007 ± 0.0344 0.3724 ± 0.0593 0.7901 ± 0.0599
MVCC 0.8585 ± 0.0000 0.8127 ± 0.0000 0.7931 ± 0.0000 0.8462 ± 0.0000 0.7863 ± 0.0000 0.9160 ± 0.0000
MVGL 0.9688 ± 0.0000 0.9044 ± 0.0000 0.9155 ± 0.0000 0.9358 ± 0.0000 0.9294 ± 0.0000 0.9423 ± 0.0000

MLRSSC 0.8143 ± 0.0000 0.7361 ± 0.0000 0.7511 ± 0.0000 0.8116 ± 0.0000 0.7963 ± 0.0000 0.8275 ± 0.0000
CSMSC 0.9485 ± 0.0000 0.8490 ± 0.0000 0.8645 ± 0.0000 0.8970 ± 0.0000 0.8927 ± 0.0000 0.9014 ± 0.0000

GSF 0.7574 ± 0.0000 0.7946 ± 0.0000 0.6131 ± 0.0000 0.7272 ± 0.0000 0.5880 ± 0.0000 0.9258 ± 0.0000
GMC 0.7390 ± 0.0000 0.7954 ± 0.0000 0.6099 ± 0.0000 0.7207 ± 0.0000 0.5728 ± 0.0000 0.9714 ± 0.0000
CGD 0.9743 ± 0.0000 0.9126 ± 0.0000 0.9305 ± 0.0000 0.9472 ± 0.0000 0.9421 ± 0.0000 0.9523 ± 0.0000
CGL 0.9449 ± 0.0000 0.8553 ± 0.0000 0.8597 ± 0.0000 0.8919 ± 0.0000 0.9286 ± 0.0000 0.8579 ± 0.0000

CDMGC 0.7371 ± 0.0000 0.7911 ± 0.0000 0.5969 ± 0.0000 0.7187 ± 0.0000 0.5697 ± 0.0000 0.9712 ± 0.0000
LRTGFL 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000

BBC4view

SSC 0.6467 ± 0.0000 0.3678 ± 0.0000 0.3733 ± 0.0000 0.5240 ± 0.0000 0.4722 ± 0.0000 0.6361 ± 0.0000
LRR 0.7088 ± 0.0016 0.4945 ± 0.0024 0.4606 ± 0.0017 0.5926 ± 0.0013 0.5681 ± 0.0011 0.6193 ± 0.0016
CAN 0.4175 ± 0.0000 0.2284 ± 0.0000 0.0787 ± 0.0000 0.4134 ± 0.0000 0.2669 ± 0.0000 0.9163 ± 0.0000

RMSC 0.7299 ± 0.0000 0.5275 ± 0.0000 0.4646 ± 0.0000 0.5897 ± 0.0000 0.5918 ± 0.0000 0.5876 ± 0.0000
LT-MSC 0.7270 ± 0.0088 0.5633 ± 0.0053 0.5668 ± 0.0047 0.6654 ± 0.0039 0.6564 ± 0.0027 0.6464 ± 0.0049
MVCC 0.7620 ± 0.0000 0.5996 ± 0.0000 0.6277 ± 0.0000 0.7175 ± 0.0000 0.6978 ± 0.0000 0.7383 ± 0.0000
MVGL 0.7007 ± 0.0000 0.5852 ± 0.0000 0.5019 ± 0.0000 0.6488 ± 0.0000 0.5159 ± 0.0000 0.8741 ± 0.0000

MLRSSC 0.9328 ± 0.0000 0.8857 ± 0.0000 0.8341 ± 0.0000 0.8874 ± 0.0000 0.8093 ± 0.0000 0.8506 ± 0.0000
CSMSC 0.8788 ± 0.0000 0.7047 ± 0.0000 0.7303 ± 0.0000 0.7935 ± 0.0000 0.7946 ± 0.0000 0.7923 ± 0.0000

GSF 0.3883 ± 0.0000 0.2641 ± 0.0000 0.1219 ± 0.0000 0.3678 ± 0.0000 0.3081 ± 0.0000 0.4563 ± 0.0000
GMC 0.6905 ± 0.0000 0.5536 ± 0.0000 0.4748 ± 0.0000 0.6301 ± 0.0000 0.4999 ± 0.0000 0.8519 ± 0.0000
CGD 0.8861 ± 0.0000 0.7227 ± 0.0000 0.7688 ± 0.0000 0.8268 ± 0.0000 0.7730 ± 0.0000 0.8887 ± 0.0000
CGL 0.8628 ± 0.0000 0.7071 ± 0.0000 0.7134 ± 0.0000 0.7773 ± 0.0000 0.8178 ± 0.0000 0.7407 ± 0.0000

CDMGC 0.4818 ± 0.0000 0.3788 ± 0.0000 0.1572 ± 0.0000 0.4539 ± 0.0000 0.3024 ± 0.0000 0.9092 ± 0.0000
LRTGFL 0.9912 ± 0.0000 0.9676 ± 0.0000 0.9798 ± 0.0000 0.9845 ± 0.0000 0.9890 ± 0.0000 0.9801 ± 0.0000

NGs

SSC 0.5840 ± 0.0000 0.4699 ± 0.0000 0.3513 ± 0.0000 0.5064 ± 0.0000 0.4201 ± 0.0000 0.6372 ± 0.0000
LRR 0.5240 ± 0.0000 0.3671 ± 0.0000 0.2256 ± 0.0000 0.4205 ± 0.0000 0.3314 ± 0.0000 0.5750 ± 0.0000
CAN 0.3300 ± 0.0000 0.3115 ± 0.0000 0.0947 ± 0.0000 0.3749 ± 0.0000 0.2403 ± 0.0000 0.8517 ± 0.0000

LT-MSC 0.9900 ± 0.0000 0.9652 ± 0.0000 0.9750 ± 0.0000 0.9799 ± 0.0000 0.9798 ± 0.0000 0.9801 ± 0.0000
MVCC 0.8560 ± 0.0000 0.7466 ± 0.0000 0.7137 ± 0.0000 0.7713 ± 0.0000 0.7599 ± 0.0000 0.7831 ± 0.0000
MVGL 0.9080 ± 0.0000 0.8097 ± 0.0000 0.7742 ± 0.0000 0.8199 ± 0.0000 0.8024 ± 0.0000 0.8383 ± 0.0000

MLRSSC 0.7080 ± 0.0000 0.7660 ± 0.0000 0.6752 ± 0.0000 0.8851 ± 0.0000 0.8300 ± 0.0000 0.6980 ± 0.0000
CSMSC 0.9840 ± 0.0000 0.9461 ± 0.0000 0.9603 ± 0.0000 0.9682 ± 0.0000 0.9681 ± 0.0000 0.9683 ± 0.0000

GSF 0.5960 ± 0.0000 0.4409 ± 0.0000 0.3517 ± 0.0000 0.4945 ± 0.0000 0.4452 ± 0.0000 0.5562 ± 0.0000
GMC 0.9820 ± 0.0000 0.9392 ± 0.0000 0.9554 ± 0.0000 0.9623 ± 0.0000 0.9642 ± 0.0000 0.9643 ± 0.0000
CGD 0.9780 ± 0.0000 0.9253 ± 0.0000 0.9457 ± 0.0000 0.9565 ± 0.0000 0.9564 ± 0.0000 0.9565 ± 0.0000
CGL 0.9320 ± 0.0000 0.8143 ± 0.0000 0.8373 ± 0.0000 0.8696 ± 0.0000 0.8688 ± 0.0000 0.8704 ± 0.0000

CDMGC 0.7760 ± 0.0000 0.8287 ± 0.0000 0.7126 ± 0.0000 0.7798 ± 0.0000 0.6616 ± 0.0000 0.9494 ± 0.0000
LRTGFL 0.9940 ± 0.0000 0.9832 ± 0.0000 0.9851 ± 0.0000 0.9881 ± 0.0000 0.9879 ± 0.0000 0.9882 ± 0.0000

100leaves

SSC 0.4513 ± 0.0095 0.6985 ± 0.0040 0.3052 ± 0.0051 0.3121 ± 0.0050 0.2963 ± 0.0059 0.3297 ± 0.0061
LRR 0.6149 ± 0.0091 0.7993 ± 0.0031 0.4866 ± 0.0104 0.4917 ± 0.0102 0.4705 ± 0.0137 0.5150 ± 0.0086
CAN 0.6437 ± 0.0000 0.8362 ± 0.0000 0.3495 ± 0.0000 0.3584 ± 0.0000 0.2458 ± 0.0000 0.6613 ± 0.0000

RMSC 0.7849 ± 0.0102 0.9121 ± 0.0053 0.7214 ± 0.0125 0.7241 ± 0.0124 0.6864 ± 0.0117 0.7664 ± 0.0151
LT-MSC 0.7284 ± 0.0203 0.8674 ± 0.0089 0.6333 ± 0.0231 0.6369 ± 0.0229 0.6059 ± 0.0262 0.6714 ± 0.0202
MVCC 0.2713 ± 0.0000 0.6445 ± 0.0000 0.2108 ± 0.0000 0.2224 ± 0.0000 0.1417 ± 0.0000 0.5159 ± 0.0000
MVGL 0.7062 ± 0.0000 0.8432 ± 0.0000 0.2795 ± 0.0000 0.2093 ± 0.0000 0.1824 ± 0.0000 0.7100 ± 0.0000

MLRSSC 0.5256 ± 0.0000 0.4092 ± 0.0000 0.3823 ± 0.0000 0.4401 ± 0.0000 0.7723 ± 0.0000 0.4032 ± 0.0000
CSMSC 0.6019 ± 0.0111 0.7916 ± 0.0047 0.4766 ± 0.0109 0.4817 ± 0.0108 0.4592 ± 0.0109 0.5066 ± 0.0115

GSF 0.6762 ± 0.0000 0.8418 ± 0.0000 0.4895 ± 0.0000 0.4956 ± 0.0000 0.3929 ± 0.0000 0.6710 ± 0.0000
GMC 0.8690 ± 0.0034 0.9436 ± 0.0001 0.7915 ± 0.0059 0.7936 ± 0.0113 0.7306 ± 0.0113 0.8687 ± 0.0037
CGD 0.7737 ± 0.0000 0.9007 ± 0.0000 0.6790 ± 0.0000 0.6826 ± 0.0000 0.5767 ± 0.0000 0.8361 ± 0.0000
CGL 0.9583 ± 0.0107 0.9800 ± 0.0020 0.9368 ± 0.0120 0.9375 ± 0.0119 0.9213 ± 0.0203 0.9544 ± 0.0034

CDMGC 0.8612 ± 0.0000 0.9372 ± 0.0000 0.5377 ± 0.0000 0.5437 ± 0.0000 0.3918 ± 0.0000 0.8876 ± 0.0000
LRTGFL 0.9614 ± 0.0062 0.9913 ± 0.0015 0.9564 ± 0.0063 0.9564 ± 0.0062 0.9568 ± 0.0103 0.9821 ± 0.0040

min
Z(v)

V∑
v=1

N∑
i,j=1

∥x(v)
i − x

(v)
j ∥22z

(v)m
ij − r

V∑
v=1

∥Z(v)∥1 + λ∥Z∥⊛,

s.t.

N∑
i=1

z
(v)
ij = 1, z

(v)
ij ≥ 0,

(20)
b)The effectiveness of t-SVD based nuclear norm
The t-SVD based nuclear norm is deleted to verify its

effectiveness in this ablate method. This ablate method is
called as graph fuzzy learning (GFL). The objective function
of GFL is as follows:

min
Z(v)

V∑
v=1

N∑
i,j=1

DJS(x
(v)
i ||x(v)

j )z
(v)m
ij − r

V∑
v=1

∥Z(v)∥1,

s.t.

N∑
i=1

z
(v)
ij = 1, z

(v)
ij ≥ 0,

(21)
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TABLE IV
p-VALUES BETWEEN THE PROPOSED LRTGFL AND OTHER CLUSTERING METHODS.

Datesets Method ACC NMI AR F-score Precision Recall

ORL

SSC 3.2671e-17 1.2556e-21 4.2495e-19 4.2724e-19 3.3613e-15 7.7572e-23
LRR 7.3335e-16 3.7292e-19 1.6529e-19 1.6203e-19 1.6429e-17 2.8437e-18
CAN 2.6985e-13 1.8521e-16 7.2953e-16 8.2958e-16 7.1078e-15 7.8534e-15

RMSC 5.5614e-15 1.1005e-18 4.2792e-18 4.3675e-18 1.8001e-15 3.0516e-19
LT-MSC 1.5930e-11 2.1310e-13 3.0790e-13 2.9819e-13 2.7915e-12 6.6616e-13
MVCC 3.6675e-15 1.2575e-18 3.1351e-16 3.6294e-16 4.1652e-15 2.2629e-15
MVGL 7.7539e-13 1.7360e-15 1.2117e-15 1.3813e-15 9.3466e-15 3.5008e-13
CSMSC 9.3745e-13 1.2028e-18 7.4439e-16 7.7779e-16 3.1030e-14 1.2254e-18

GSF 2.0981e-09 2.3896e-12 2.8094e-11 2.8392e-11 1.5689e-10 2.6314e-12
GMC 4.2222e-12 6.3787e-18 2.5358e-20 4.1339e-20 9.6991e-18 7.8728e-15
CGD 1.2138e-11 6.0111e-15 8.9478e-14 9.4480e-14 3.1608e-13 1.8598e-13
CGL 4.8894e-08 1.9898e-14 5.8428e-11 5.8304e-11 8.1930e-09 7.3300e-15

CDMGC 2.7639e-12 8.0016e-15 1.5063e-15 1.7183e-15 1.0498e-14 2.8653e-12

Yale

SSC 2.9893e-08 2.3079e-13 7.0520e-10 6.6975e-10 1.0851e-08 9.6048e-12
LRR 2.9893e-08 2.3079e-13 7.0520e-10 6.6975e-10 1.0851e-08 9.6048e-12
CAN 5.1406e-09 3.4816e-12 1.4593e-10 1.8256e-10 4.5241e-10 3.6871e-10

RMSC 5.4035e-09 1.4639e-12 2.7556e-11 5.8983e-11 7.0238e-11 6.0675e-12
LT-MSC 5.2955e-05 2.5836e-09 3.1027e-07 3.1628e-07 1.6610e-06 7.3310e-08
MVCC 5.4035e-09 1.4639e-12 2.7556e-11 5.8983e-11 7.0238e-11 6.0675e-12
MVGL 1.1315e-07 7.1564e-11 4.4544e-09 4.6695e-09 1.5855e-08 1.6856e-09
CSMSC 1.2045e-07 8.7700e-11 2.2479e-08 2.2412e-08 1.2577e-07 2.3153e-09

GSF 2.6557e-07 4.0644e-10 2.5709e-08 2.5769e-08 1.2594e-08 5.0716e-09
GMC 8.7133e-07 3.0100e-10 8.1248e-09 8.7917e-09 1.9866e-08 7.0918e-09
CGD 1.7167e-07 8.2656e-11 9.8807e-09 9.9150e-09 5.0746e-08 1.8588e-09
CGL 1.5981e-04 2.2475e-08 3.6195e-06 3.5038e-06 2.8556e-05 3.4673e-07

CDMGC 1.1697e-05 3.1795e-09 2.8296e-09 3.3022e-09 5.0318e-09 1.1775e-08

UCI

SSC 1.7574e-28 2.0810e-26 4.4404e-28 4.2884e-28 3.6424e-28 5.2618e-28
LRR 1.7706e-20 1.9393e-17 3.6683e-19 8.3655e-19 9.4607e-23 3.2662e-13
CAN 0 1.9175e-253 0 9.2941e-138 0 4.2788e-265

RMSC 2.3798e-23 1.4840e-25 1.6726e-23 5.0851e-23 5.0851e-23 4.4047e-24
LT-MSC 7.8528e-14 5.7468e-14 1.8581e-13 1.8865e-13 7.1012e-14 5.2352e-13
MVCC 0 1.6937e-233 0 0 0 8.1063e-208
MVGL 1.0803e-137 2.3951e-194 7.3585e-139 0 0 4.9462e-137
CSMSC 3.7928e-18 6.0701e-21 4.1289e-19 4.0293e-19 6.3929e-19 2.3633e-19

GSF 6.9811e-142 2.1769e-171 2.8800e-146 1.1838e-145 2.2551e-146 3.5382e-273
GMC 0 1.1688e-245 0 3.7631e-141 4.1852e-142 1.9854e-271
CGD 0 2.8508e-136 1.5173e-139 0 2.1234e-139 4.7696e-271
CGL 0.0552 5.8495e-06 0.0041 0.0039 0.0171 1.8622e-05

CDMGC 0 1.8870e-233 0 1.6662e-140 0 1.6078e-138

Handwritten

LRR 8.0311e-28 4.1986e-26 3.6880e-26 3.9456e-26 1.2883e-26 1.4391e-25
CAN 0 1.6303e-137 0 1.9920e-140 2.6450e-141 0

RMSC 1.5741e-19 8.0998e-20 5.9176e-20 5.8177e-20 9.4312e-20 3.6048e-20
LT-MSC 4.2540e-09 1.1035e-10 3.6757e-10 3.6463e-10 4.2707e-10 3.0822e-10
MVGL 0 3.7427e-134 8.6591e-138 0 9.6943e-139 0
CSMSC 1.3040e-21 1.3306e-24 2.7777e-22 2.7237e-22 4.9832e-22 1.3609e-22

GMC 0 2.0314e-202 0 3.8174e-142 1.6239e-142 1.2640e-141
CGD 2.4901e-137 0 0 2.0706e-137 0 0
CGL 3.6806e-130 6.1891e-134 0 8.0789e-133 7.2105e-133 9.0662e-133

CDMGC 1.3608e-137 5.5997e-132 3.1518e-135 1.6989e-137 9.5250e-139 0

c)The effectiveness of fuzzification
In this case, fuzzification factor is set as 1 to verify the

effectiveness of fuzzification. This ablate method is called
as low-rank tensor regularized graph learning (LRTGL). The
objective function of NLRTGL is as follows:

min
Z(v)

V∑
v=1

N∑
i,j=1

DJS(x
(v)
i ||x(v)

j )z
(v)
ij − r

V∑
v=1

∥Z(v)∥1 + λ∥Z∥⊛,

s.t.

N∑
i=1

z
(v)
ij = 1, z

(v)
ij ≥ 0,

(22)
Tables VI shows the comparison of LRTGFL, LRTGFL-ED,

GFL and LRTGL on eight real datasets. It is obvious that all
of the Jensen-Shannon divergence, t-SVD based nuclear norm
and fuzzifization improve the performance of LRTGFL. t-SVD
based nuclear norm can expose the high-dimension informa-

tion between views. It is most influential in ORL, UCI, Hand-
written, NGs and 100leaves. In fact, it promotes to find the
relationships between views thus it enhance the performance of
the algorithm greatly on all of the eight datasets. Fuzzification
acts on each view and makes the algorithm more softer to
reduce misclassification. It performs most influentially in Yale,
BBCsport and BBC4view. Jenson-Shannon divergence can
obtain more nonlinear structures in data and it is better than
Euclidean distance in the experiments, but it might not adjust
to all views of a dataset. Thus compared with the other two
components, the Jensen-Shannon divergence corresponds to a
relatively small boost to the algorithm.

VI. CONCLUSION

In the paper, a graph fuzzy learning method for multi-
view data processing is proposed. Firstly, the Jensen-Shannon
divergence is adopted to represent the distance between data
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TABLE V
p-VALUES BETWEEN THE PROPOSED LRTGFL AND OTHER CLUSTERING METHODS.

Datesets Method ACC NMI AR F-score Precision Recall

BBCsport

SSC 1.2718e-21 6.0294e-24 1.6320e-22 5.9872e-23 8.1598e-22 7.8563e-25
LRR 1.6348e-133 3.2686e-138 0 0 0 1.2229e-136
CAN 0 7.9752e-141 0 4.6410e-141 0 6.5190e-132

RMSC 0 1.4607e-142 1.0461e-137 0 6.5238e-137 2.5657e-136
LT-MSC 3.3008e-11 8.0811e-14 1.4645e-10 5.4911e-12 9.3079e-11 1.5056e-06
MVCC 0 0 0 1.3771e-137 7.1399e-139 3.1685e-135
MVGL 0 4.2802e-136 0 3.5719e-134 0 9.3446e-134
CSMSC 0 1.6254e-137 4.3131e-137 0 1.7964e-133 3.8413e-133

GSF 2.2735e-139 1.0235e-139 3.4125e-141 0 1.9398e-141 5.6678e-133
GMC 1.1783e-139 6.5571e-139 2.5792e-141 0 1.3988e-141 0
CGD 1.3388e-130 1.1387e-132 1.7475e-134 0 0 0
CGL 7.1952e-131 4.7794e-138 3.1504e-137 0 7.0615e-132 2.8028e-137

CDMGC 0 8.7900e-140 0 0 1.3108e-141 2.4605e-128

BBC4view

SSC 0 9.8468e-192 0 1.0189e-141 2.5188e-142 9.8360e-141
LRR 8.4714e-22 3.2366e-22 7.5618e-24 9.7140e-24 1.1250e-24 9.7358e-23
CAN 0 5.7669e-187 1.2611e-152 2.0027e-145 0 0

RMSC 1.1668e-139 4.57552e-218 5.0594e-145 2.8441e-141 2.6937e-141 3.0022e-141
LT-MSC 7.9686e-15 1.9088e-18 5.6241e-19 8.7967e-19 5.6284e-20 5.1475e-18
MVCC 3.7983e-139 9.1618e-261 0 0 4.4027e-140 2.3476e-139
MVGL 0 5.4524e-248 0 0 5.5779e-142 0
CSMSC 2.3135e-136 1.6597e-268 0 0 1.6711e-138 0

GSF 0 1.3927e-192 1.9619e-152 1.0034e-145 0 0
GMC 3.2952e-140 8.5835e-256 3.1019e-142 7.5025e-141 4.1369e-142 7.0745e-135
CGD 2.1675e-133 9.6455e-258 8.0012e-139 1.0988e-137 6.4761e-139 1.4904e-135
CGL 0 1.1468e-236 9.8114e-140 9.4126e-139 0 0

CDMGC 5.5974e-145 9.5139e-176 1.4650e-149 1.9857e-142 0 0

NGs

SSC 2.0250e-141 1.3777e-140 7.8400e-146 4.7501e-142 1.0816e-142 8.1916e-141
LRR 0 3.5600e-161 0 0 2.9285e-143 1.8860e-141
CAN 0 3.1859e-120 1.4044e-152 0 3.9023e-209 1.1696e-267

RMSC 1.0782e-21 1.0364e-22 8.0787e-25 1.1476e-22 3.5172e-26 1.6304e-17
LT-MSC 0 1.0180e-217 5.9027e-127 4.3211e-126 1.3610e-245 3.7145e-179
MVCC 3.6522e-137 1.8570e=231 0 0 1.1579e-271 7.6928e-271
MVGL 0 2.2009e-229 0 6.1809e-138 4.7203e-270 1.7307e-137
CSMSC 0 3.1859e-150 1.4044e-152 0 3.9023e-209 1.1696e-267

GSF 0 2.0314e-202 0 3.8174e-142 1.6239e-142 1.2640e-141
GMC 0 6.7920e-251 0 1.3966e-127 6.0151e-254 2.5867e-130
CGD 0 4.7441e-222 0 0 2.1874e-131 2.0409e-131
CGL 4.8972e-134 1.2137e-245 1.9726e-137 7.4065e-134 1.3813e-136 1.6687e-266

CDMGC 5.9616e-139 1.4813e-197 7.9943e-140 0 1.8184e-274 3.2740e-132

100leaves

SSC 1.8235e-25 6.4991e-22 2.7213e-32 2.8121e-32 4.2752e-25 3.5220e-30
LRR 4.5444e-23 3.1252e-23 1.0731e-23 9.4466e-24 1.5232e-23 3.5454e-22
CAN 6.3489e-17 9.8245e-20 2.1583e-19 2.2401e-19 6.3057e-18 1.0563e-18

RMSC 1.7568e-17 2.6853e-13 7.2612e-17 7.3128e-17 1.4973e-20 5.9326e-13
LT-MSC 2.5560e-12 3.1642e-12 6.2044e-13 6.1154e-13 1.8264e-13 8.1080e-13
MVCC 5.8892e-20 7.0285e-23 3.3832e-20 3.5452e-20 1.7715e-18 3.6619e-20
MVGL 4.5585e-16 1.4091e-19 8.0825e-20 8.4890e-20 2.8497e-18 4.6536e-18
CSMSC 7.8887e-21 1.8560e-18 5.0902e-23 5.0453e-23 4.39943e-26 8.8734e-19

GSF 1.6767e-16 1.3664e-19 2.2864e-18 2.3317e-18 5.5053e-17 1.3943e-18
GMC 5.4477e-16 1.3190e-21 3.1788e-22 3.1899e-22 3.0220e-19 6.8613e-23
CGD 7.2308e-15 1.2360e-16 2.4745e-16 2.5074e-16 2.3264e-15 1.2577e-15
CGL 0.6058 8.5711e-11 4.6924e-04 4.6681e-04 0.1322 2.7619e-12

CDMGC 2.0398e-12 1.2778e-15 6.0853e-18 6.2815e-18 5.4129e-17 6.2753e-14

points to extract nonlinear structure. Besides, fuzzy is added
to the similarity graph matrices to make the clustering softer.
Furthermore, a low-rank tensor constraint is taken to use
high-dimension information. The experiments on real-world
datasets which compared with fourteen state-of-the-art meth-
ods demonstrated the superiority of the proposed LRTGFL.
Besides, ablation study verifies the effectiveness of the com-
ponents in LRTGFL.

The paper first introduces fuzzy into multi-view graph
learning, and obtains a excellent performance. It points out
that optimization with flexible fuzzification factor should be
considered to make a softer graph clustering method in future
work.
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