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Abstract

Tomographic image reconstruction is often formulated as a regularized weighted least squares 

(RWLS) problem optimized by iterative algorithms that are either inherently algebraic or derived 

from a statistical point of view. This paper compares a modified version of SIRT (Simultaneous 

Iterative Reconstruction Technique), which is of the former type, with a version of SQS 

(Separable Quadratic Surrogates), which is of the latter type. We show that the two algorithms 

minimize the same criterion function using similar forms of preconditioned gradient descent. We 

present near-optimal relaxation for both based on eigenvalue bounds and include a heuristic 

extension for use with ordered subsets. We provide empirical evidence that SIRT and SQS 

converge at the same rate for all intents and purposes. For context, we compare their performance 

with an implementation of preconditioned conjugate gradient. The illustrative application is X-ray 

CT of luggage for aviation security.

I. Introduction

Iterative X-ray CT image reconstruction algorithms are often categorized as being either 

algebraic or statistical, with the former typically based on solving a system of equations 

centered around a forward model of the imaging process, and the latter based on maximizing 

a likelihood of the measurements. We are interested in the case where the two are related. 

For example, Sauer and Bouman [1] showed that a second-order Taylor-series expansion of 

a Poisson log-likelihood leads to a weighted least-squares (WLS) problem. Separable 

quadratic surrogate (SQS) methods for optimizing Poisson log-likelihoods also lead to WLS 

inner minimization problems [2], [3]. In these formulations the WLS weights have statistical 

meaning related to the modeled variance of the projection data. We show that statistical 

weighting is easily incorporated into algebraic algorithms such as SIRT (Simultaneous 

Iterative Reconstruction Technique) and SART (Simultaneous Algebraic Reconstruction 

Technique) [4].

The paper makes two main contributions. First, we establish similarity of a version of SIRT 

modified for WLS use with a version of the statistically based SQS algorithm. SIRT and 
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SQS were shown previously to be similar in their basic unregularized forms [5], [6]. Here 

we show that they can solve the same Tikhonov regularized WLS problem using the same 

gradient descent approach, only with different diagonal preconditioners. Second, while SIRT 

is often relaxed by means of a user-defined step size [7], [8], SQS was not developed with 

relaxation in mind. We present a practical approach for selecting near-optimal step sizes for 

both algorithms. We extend the relaxation to apply also for ordered subsets (OS) which have 

become the de facto method for reducing the computational cost of iterative reconstruction 

in practice [9]. As part of this work, a scaling factor is introduced that accounts for potential 

imbalance among the subsets.

The SIRT and SQS algorithms considered are those commonly encountered in the current 

literature. For other versions of SIRT including the original algorithm and generalizations 

thereof, see [10]–[13]. A broad class of more contemporary SIRT-like algorithms can be 

found in [14]. Generalized versions of SQS are discussed in [2], [3]. We make no claims that 

the results presented in this paper apply to these alternative algorithms due to differences in 

their matrix set-up relative to ours. Comparison with the recently introduced acceleration of 

SQS based on Nesterov's momentum [15], which likely produces faster convergence than 

what is shown here, is likewise considered out-of-scope as a comparable version does not 

exist for SIRT. For context, we provide an empirical comparison with preconditioned 

conjugate gradient (PCG) which often converges quickly on well-behaved, unconstrained 

WLS problems.

The illustrative application is X-ray CT of luggage for aviation security for which imaging 

challenges include beam hardening and metal artifacts. Neither is explicitly addressed by the 

weighting and the regularization considered here although the effects of both are likely 

alleviated somewhat. We use the luggage data because the presence of dense objects and the 

noisy character of the data exacerbates any differences with respect to data-dependent 

convergence behavior for the algorithms compared.

II. Notation and Problem Definition

Let A = [aij] denote a non-negative m × n system matrix. Let W = diag{wi} denote an m × m 

diagonal statistical weighting matrix with positive diagonal entries wi. That is, we assume 

that rows for which wi = 0 have been removed from A and W with corresponding columns 

removed from W as well. Defined in greater detail below, let Q denote an η × n 

regularization matrix where typically η ≥ n.

The general form of the regularized WLS (RWLS) image reconstruction problem addressed 

in this paper is

(1a)

(1b)
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where  is shorthand for u′Wu, and x = [xj] and y = [yi] denote n × 1 and m × 1 vectors 

representing the unknown image and the log-normalized projection data, respectively. User-

defined hyperparameter β establishes a trade-off between the data term (left norm) and the 

regularizer term (right norm).

Matrix Q is usually chosen to stress structural characteristics of x that are undesirable. We 

focus on two common regularizes, namely, minimum norm for which , and 

first-order finite differences for which , where j denotes 

the set of lexicographical predecessor neighbors. The former compensates for the linear 

system solved being ill-conditioned. The latter penalizes image roughness thereby implicitly 

encouraging smoothness. Adoption of other quadratic regularizers is trivial. We assume that 

Q and A have disjoint null spaces so that the cost function in (1) is strictly convex and has a 

unique minimizer [16].

Preconditioned gradient descent (PGD) solves RWLS problem (1) by means of the iterative 

update

(2)

where relaxation parameter α defines the step size, D is a preconditioning matrix, and k 

denotes iteration. Algebraic expansion reveals that PGD-RWLS is a Richardson Iteration for 

solving a linear system of equations; cf. [17] for definition and mathematical properties. 

That is,

(3)

Convergence is guaranteed for an arbitrary choice of initial estimate x(0) if

(4)

with the fastest convergence rate obtained for

(5)

where λmax and λmin denote the largest and smallest eigenvalues of matrix D A′W A + βDQ
′Q whose eigenvalues are all assumed to be strictly positive.

The remainder of the paper is devoted to derivation, analysis, and comparison of Richardson 

Iterations for SIRT and SQS that solve RWLS problem (1) using near-optimal α values. 

Well-established properties for eigenvalues are used extensively without reference, cf. [18], 

[19]. The shorthand notation M = M1 + βM2 where M1 = D A′W A and M2 = DQ′Q will be 
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used for convenience. The smallest and largest eigenvalues of matrix M corresponding to 

the particular algorithm studied will be expressed as λmin(M) and λmax(M), with the explicit 

reference to M dropped when the matrix in question is obvious.

III. Method: SIRT-RWLS

A. Algorithm Derivation

Define the diagonal m × m and n × n matrices representing the inverse row and column sums 

of A, respectively, by R = diag{1/ri} and C = diag{1/cj}, where ri = Σj aij, and cj = Σi aij. 

We assume that the column sums cj of A are positive, so by design C is positive definite. In 

other words, every pixel being reconstructed is intersected by one or more rays1.

The classical SIRT iteration for “solving” Ax = y is

(6)

This iteration is equivalent to gradient descent with diagonal preconditioner C of the 

“geometrically weighted” LS cost function . Weighting by R means that 

minimization of the residual errors is per unit length, allowing rays that intersect larger 

portions of the field of view to tolerate larger errors than rays that intersect smaller portions. 

However, statistical weighting is preferable to geometric weighting for noisy data.

Adding the gradient of the regularizer to (6) leads to a version of SIRT that solves the 

following minimization problem [8]:

(7)

Note use of an R-norm here. Next we modify SIRT using a simple variable transformation 

so that it solves RWLS problem (1) which is based on a W-norm. Let u ≜ Ax − y and ũ ≜ 

Mu. Choosing M ≜ W R−1 implies that  where R̃ = M−1R. More specifically, 

let Ã = [ãij] and ỹ = [ỹi], where ãij ≜ wiriaij and ỹi ≜ wiriyi. Let the diagonal matrices 

corresponding to the row and column sums of Ã be R̃ ≜ diag {1/r̃i} and C̃ ≜ diag {1/c̃j} 

where  and c̃j ≜ Σjãij. The SIRT-like iteration for “solving” Ãx = y with 

quadratic regularization is then obtained by left-multiplying the normal equations associated 

with the variable transformed version of (7) by C̃, followed by matrix splitting of the form C̃ 

Ã′R̃Ã = I – (I – C̃ Ã′R̃Ã). The resulting modified SIRT iteration is given by

(8)

1This assumption may not hold for certain helical CT geometries with padded end slices. Generalizing SIRT to such geometries could 
be interesting future work.
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The choice of α is discussed in the next two subsections, first for the unregularized case and 

then when regularization is applied.

Using the identities Ã′R̃ Ã = A′W A and Ã′R̃ỹ = A′W y, SIRT is expressed in terms of the 

original problem variables as follows:

(9)

In other words, this modified SIRT algorithm is a Richardson Iteration that solves RWLS 

problem (1) using relaxed gradient descent with C̃ as a diagonal preconditioner. Note that

(10)

where 1 denotes a vector of n ones corresponding to the number of columns of A. Because C̃ 

merely serves as a preconditioner, it is amenable to substitution. Indeed, Section IV presents 

a SIRT-like derivation of the SQS algorithm for a different choice of C̃.

B. Step size for unregularized case

Assuming that A has full column rank and wi > 0, then Ã′R̃ Ã = A′W A is symmetric positive 

definite. It therefore follows that C̃ Ã′R̃ Ã has strictly positive eigenvalues because it is 

similar to the symmetric positive definite matrix S A′W AS where S = C̃1/2. Optimal step 

size α* given by (5) thus applies for unregularized SIRT. Obtaining values for λmax and λmin 

with respect to C̃ A′W A is addressed next. (See [20]–[22] for convergence analyses.)

The spectral radius of a non-negative matrix is bounded by its smallest and largest row 

sums. Since C̃ Ã′ and R̃A are both non-negative and stochastic, so is their product C̃ Ã′R̃Ã = 

C̃ A′W A. The row sums of a stochastic matrix all equal 1. Therefore, λmax = 1, which 

implies 1 ≤ α* ≜ 2/(1 + λmin) < 2. Fig. 1 illustrates this relationship. Empirical comparisons 

of residual norms for typical 2D and 3D tomography problems have consistently shown that 

using α = 1.99 requires half as many iterations to achieve the same residual error as α = 1.00 

[7]. This behavior indicates λmin ≪ 1. While the value of λmin is difficult to establish, we 

can find a conservative bound to use in its place. The trace of an n × n matrix equals the sum 

of its eigenvalues. The smallest eigenvalue can be no more than the average of all 

eigenvalues. Hence,

(11)

C. Step size for regularized case

We now examine selection of optimal step size α* for the regularized case. We use the fact 

that C̃(A′W A + βQ′Q) is similar to S(A′W A + βQ′Q)S where S remains defined as before. 

To simplify the notation, let M = M1 + βM2 where M1 = S A′W AS and M2 = SQ′QS. Note 

that M1 and M2 are both Hermitian matrices.
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The sum of two positive semi-definite matrices is nonetheless positive definite, if they have 

different null spaces. This is the case for M1 and M2. Optimal step size α* thus remains 

given by (5) when regularization is applied. We must therefore determine the values of 

λmax(M) and λmin(M). As previously shown [8], this is easily done for minimum norm 

regularization where Q = I. However, for finite difference regularization where Q ≠ I, this is 

challenging. Instead, we derive bounds that lead to guaranteed convergence while keeping 

optimality in mind.

Applying Weyl's inequalities for the sum of Hermitian matrices:

(12a)

(12b)

and

(13a)

(13b)

SIRT converges to the RWLS minimizer x* if (4) holds. Using the upper bound on λmax(M) 

given by (12) as well as the upper bound on λmin(M) given by (13) would be valid but might 

be overly conservative. As an alternative, we combine the upper bound on the former with 

the lower bound on the latter to obtain a step size estimate that satisfies (4) and thus ensures 

convergence. That is,

(14)

We analyze the similarity of α̃* to α* next by considering two extreme cases.

Case 1: Suppose λmax(M) and λmin(M) both take on their lower bounds. Then α̃* 

underestimates α* by the factor

We see that near-optimality is achieved when either of two conditions are met, namely, 

λmin(M2) ≈ λmax(M2) or βλmax(M2) ≪ λmax(M1). Sub-optimality results to a greater or 

lesser degree when neither of these conditions hold.

Case 2: Conversely, suppose λmax(M) and λmin(M) both take on their upper bounds. Then 

α̃* overestimates α* by the factor
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Note that although α̃* may exceed α*, it is still a valid step size for SIRT. Near-optimality is 

again achieved when either of two conditions are met, this time λmin(M2) ≈ λmax(M2) or 

2βλmax(M2) ≪ λmax(M1). Sub-optimality results to a greater or lesser degree when neither 

of these conditions hold.

Restating (14) in terms of the original problem variables we get

(15)

Where

Whether applied to 2D or 3D reconstruction, minimum norm regularization yields

(16a)

(16b)

For finite difference regularization, we first note that a multiplicative equivalent to Weyl's 

inequalities follows from the relation between (maximum) eigenvalues and matrix norms, 

namely,

where ‖Q′Q‖1 denotes the maximum absolute column sum. In 2D, for a first-order 

neighborhood a typical row of Q′Q has one entry valued 4 and four entries valued −1, 

leading to ‖Q′Q‖1 = 8, In 3D, one entry is valued 6 and six entries are valued −1, leading to 

‖Q′Q‖1 = 12. Extending to other neighborhoods is trivial. Combined with singularity of Q′Q 
carrying through to C̃Q′Q, we thus have that

(17a)
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(17b)

where N is 2 or 3 corresponding to the problem dimensionality.

To summarize, RWLS image reconstruction by means of SIRT as given by (9) is carried out 

by applying weighting to the system matrix and the log-normalized data. Near-optimal step 

size α* is obtained by substituting (16) or (17) into (15) and using (11). That is,

(18)

where ν1 = ν2 = 1 for minimum-norm regularization and ν1 = 4N and ν2 = 0 for N-

dimensional finite difference regularization. Computing the trace term requires the 

equivalent effort of one combined forward and back-projection.

IV. Method: SQS-RWLS

A. Algorithm Derivation

Although SQS was presented originally for non-quadratic log-likelihoods like the Poisson 

model [2], it is equally applicable to RWLS problems like (1) [15], [23], where W is the 

reciprocal of the (modeled) variance of yi. The SQS approach to solving such problems 

traditionally has been derived using surrogate functions [2], [23], based on the work of De 

Pierro [24], [25]. Here we present a different “SIRT-like” derivation for the RWLS case that 

leads to near-optimal relaxation.

The idea is to first specify an appropriate system of equations of the form Bx = d such that 

applying the classical SIRT algorithm (6) to that system solves RWLS problem (1) and then 

add relaxation. As noted earlier, classical SIRT solves a geometrically weighted LS problem 

rather than the statistical WLS problem, so it requires a judicious choice of B and d to 

coerce SIRT into working as desired here.

We first use variable transforms akin to those used in (8) to rewrite RWLS cost function (1) 

in a stacked form, namely,

(19)

Where
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and Q̂ = P−1Q, P ≜ diag {1/pk}, pk ≜ Σj |qkj|, and 0 denotes, as appropriate, a vector of zeros 

whose length is the number of rows of Q or matrices of zeros whose dimensions correspond 

to the number of rows and columns of R̃ and P.

The generalization of SIRT to extend beyond non-negative matrices by using such absolute 

sums has been published previously [20], [26]. That generalization is needed here because Q 
has negative elements for finite difference regularizers. It is easily shown that R̂ = diag 

{1/r̂i} where the absolute row sums of B are r̂i = Σj |bij|. Denoting the absolute column sums 

via Ĉ = diag {1/ĉj} where ĉj = Σi|bij|, the classic SIRT method for “solving” Bx = d is given 

by

Using the identities B′ R̂B = A′W A + βQ′ Q and B′ R̂d = A′W y, we can express this 

iteration using the original problem variables while also introducing relaxation:

(20)

Remarkably, iteration (20) with α = 1 is exactly the usual SQS iteration (cf. [23, eqn. (17)]) 

for minimizing RWLS problem (1). The convergence proof for SQS is normally based on 

the fact it decreases Ψ(x(k)) monotonically [27]. One can also see that convergence follows 

from the fact that λmax(ĈB′ R̂B) = λmax(Ĉ(A′W A + βQ′ Q)) ≤ 1 by arguments similar to 

those in [7, eqn.(6)].

We see that the SQS version of SIRT in (20) is also preconditioned gradient descent. The 

“denominator” elements of preconditioner Ĉ are given by

(21)

For 2D and 3D minimum norm regularization, use of Q = I implies that pk = 1 and Σk|qkj| pk 

= 1 leading to ĉj = c̃j + β. For first-order finite difference regularization, each row of Q has at 

most one entry valued 1 and one entry valued −1 such that pk ≤ 2. In 2D, each column of Q 
has at most two entries valued 1 and two entries valued −1 while in 3D there are at most 

three of each. Thus, Σk|qkj|pk ≤ 4N leading to ĉj ≤ c̃j + 4Nβ where N again refers to the 

problem dimensionality. For the experimental results presented in Section VI, we used a 

simple implementation based on ĉj = c̃j + 4Nβ. This choice is exact for periodic boundary 

conditions and is a value upper bound otherwise.

To summarize, SIRT-RWLS iteration (9) and SQS-RWLS iteration (20) are identical for 

solving RWLS problem (1), except that SIRT uses C̃ and SQS uses Ĉ to precondition the 

relaxed gradient descent.
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B. Step size for unregularized case

Without regularization, SIRT-WLS and SQS-WLS are identical. The latter can thus be 

relaxed using the same method developed for the former in Section III which typically 

results in α* = 1.99.

C. Step size for regularized case

When regularization is applied, the optimal step size is given by

(22)

Where

We develop the needed eigenvalue bounds next.

With respect to Λ(ĈA′WA), we apply the transformation Ĉ = ŜC̃ where Ŝ ≜ diag {ŝj} and ŝj 

≜ c̃j/ĉj to write λmax(ĈA′WA) = λmax(ŜC̃A′WA) ≤ λmax(Ŝ). We thus have that,

where ŝmax ≜ maxj ŝj and

The bounds for Λ(ĈQ′ Q) are established using derivations from the previous section. For 

minimum norm regularization,

(23a)

(23b)

while for finite difference regularization,

(24a)
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(24b)

Combining the above, we obtain the following near-optimal step size α* expression:

(25)

where w1 = w2 = 1 for minimum-norm regularization and w1 = 4N and w2 = 0 for N-

dimensional finite difference regularization.

The similarity of step size expressions (18) for SIRT-RWLS and (25) for SQS-RWLS is 

striking. Which of the two algorithms has the fastest convergence rate depends on the 

relation between α̃*C̃ and α̂*Ĉ since these terms constitute the only difference between 

them. Note that α̃*C̃ ≈ α̂*Ĉ when c̃j ≫ w1β since ĉj = c̃j + w1β. We expect this mild 

condition to be met for most applications.

V. Ordered subsets

Typically SIRT and SQS establish the low-frequency components of an image faster than 

the high-frequency components. Ordered subsets (OS) is a well-known, albeit heuristic 

technique for accelerating convergence in early iterations [9]. The idea is to partition the 

projection data and the corresponding system matrix rows and successively perform updates 

using these subsets. To simplify the development of OS-SIRT below, we assume 

partitioning is done in such a way that each subset includes a view of all pixels2.

Although quite distinct from one another when originally presented, the terms SIRT [10] 

and SART [28] are now used interchangeably in the literature. SIRT updates the image 

using all projections whereas SART uses one projection at a time. In that sense, SART can 

be viewed as an OS version of SIRT where each subset consists of a single projection. 

Variants thereof where multiple projections are grouped to form subsets have been studied 

for both algorithms, e.g., [29], [30].

In this paper, we use the ordered subsets approach taken for SQS [23]. Each full iteration 

uses the gradients of M partial cost functions of the form

where the m-subscripts indicate that only data for the mth subset is used. Letting k = nM + m 

denote the mth sub-iteration of the nth full-iteration, the relaxed, preconditioned 

(incremental) gradient descent algorithms considered can be written as

2This assumption may not always hold for OS with helical CT.

Gregor and Fessler Page 11

IEEE Trans Comput Imaging. Author manuscript; available in PMC 2015 October 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(26)

where OS-SIRT and OS-SQS correspond to αD = α̃*C̃ and αD = α̂*Ĉ, respectively. The 

preconditioners are not altered as a result of the subsets.

In practice, the subset balance condition ∇Ψ(x) ≈ M∇Ψm(x) will hold only approximately 

and the iterates approach a limit cycle rather than converging to a minimizer. When the 

subset imbalance is mild but non-negligible, OS-SIRT and OS-SQS may exhibit sub-optimal 

convergence rates due to step size estimates α̃* and α̂* being too aggressive. To 

compensate, we introduce a scaling factor that reduces the step size based on a measure of 

the imbalance. Specifically, we quantify and use the degree to which the term 

 associated with (26) deviates from Λ(DA′W A) which plays a central 

role in the step size computations.

Consider (temporarily) computing subset specific step size estimates based on matrices for 

the individual subsets. That is,

(27)

where  is the only unknown entity.

In a manner similar to when developing relaxation for SQS-RWLS, let D = SmCm where 

 and . Furthermore, let  where  denotes 

column sums of Am akin to (10). Then 

 where . Also, 

. Rather than introducing a trace based 

bound for the right hand side eigenvalue, we use the approximation 

. These considerations, along with the definition 

of  to eliminate the subset dependency, lead us to define the following 

generic OS-PGD step size estimate

(28)

For OS-SIRT, replacing D by C̃ results in the step size estimate

(29)

where .

For OS-SQS, replacing D by Ĉ results in the step size estimate
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(30)

where .

When the subsets are well-balanced, SM ≈ 1 and the step size is comparable to the one 

developed before considering ordered subsets. When the subsets are mildly imbalanced, the 

use of SM results in a smaller value for the step size. For large enough M, the subsets will be 

imbalanced to the point where neither OS-SIRT nor OS-SQS will come sufficiently close to 

x*. The only viable remedy for this case is to use fewer subsets.

We close this section by reminding the reader that ordered subsets do not guarantee 

convergence, unless one gradually decreases the relaxation parameter [31]. The proposed 

rescaling of the step sizes for OS-SIRT and OS-SQS is equally heuristic. We neither claim 

that the rescaling results in convergent algorithms nor do we claim that convergence will not 

occur in practice without it. The most important contribution of the above developments is 

perhaps scaling factor SM and its use for indicating subset imbalance.

VI. Experimental Results

A. Comparing SIRT and SQS

We implemented SIRT-RWLS and SQS-RWLS as described above and empirically 

compared their convergence rates. The data consisted of luggage scans obtained as part of a 

U.S. Department of Homeland Security sponsored project managed by ALERT at 

Northeastern University (Boston, MA) [32]. Several suitcase-like containers were scanned 

using an Imatron C300 fifth-generation electron-beam X-ray CT scanner. We used two of 

these data sets denoted DS1 and DS2. After data rebinning, the system was modeled as a 

third-generation equiangular fan-beam geometry having a circular source trajectory covering 

216 degrees over 864 view angles that were 0.25 degrees apart and 864 detectors spanning a 

range of 41.3 degrees corresponding to a pitch of approximately 0.048 degrees. The source-

to-isocenter distance was 675 mm while the isocenter-to-detector distance was 900 mm 

yielding 2.33 × magnification. Polynomial beam hardening correction was applied. We 

reconstructed 512 × 512 images using isotropic 0.928 mm wide pixels. Pixels outside a 

circular support region having radius 475 mm were excluded from consideration. Modeled 

on area intersection the resulting 746,496 × 204,836 system matrix A contained 

approximately one billion non-zero elements. Weight matrix W was formed by partly 

reversing the log-normalization of the projection data, i.e., wi = exp(−yi). The beam intensity 

was unknown and assumed constant which may be inaccurate.

SIRT and SQS were both initialized using filtered back-projection for x(0). We ran 256 

iterations of each algorithm for each experiment. Comparisons were based on values of 

Ψ(x(k)). We performed OS reconstructions for M = 1, 2, 4, 8, 16, and 32. Non-negativity was 

imposed on the image after each subiteration using gradient projection. Reconstructions 

were computed for a wide range of β values. We report results for β = 1.0 as that value 

produced images that were clearly regularized but not overly so.
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Figures 2 and 3 show β = 1.0 and β = 5.0 reconstructions respectively for DS1 using SIRT 

and minimum norm regularization and DS2 using SQS and finite difference regularization. 

The intensity values represent modified Hounsfield units (MHU) for which air has a value of 

0 while water has a value of 1000. The images were cropped to 350 × 430 to save space. 

DS1 is corrupted by a metal streak artifact that cuts into the water container. DS2 suffers 

even more from both metal streak and metal shading artifacts. These types of corruptions are 

not uncommon for luggage data although the particular data used here was purposely chosen 

to be challenging. More importantly, the images produced by SIRT and SQS are 

indistinguishable from one another. For the minimum norm regularized images of DS1, the 

numerical difference is within ±0.01 MHU. For the finite difference regularized images of 

DS2, the numerical difference is within ±0.10 MHU. Similar results were obtained for DS1 

using finite difference regularization and DS2 using minimum norm regularization.

Table I lists minimum and maximum column sum values for C̃ as used by SIRT to compute 

LS and WLS solutions. Data weighting is seen to lower especially the minimum values. 

With the maximum values remaining large, α̃* ≈ α̂*. Due to the minimum values being 

lowered quite substantially, Ĉ ≤ C̃ meaning some pixels will be updated more slowly by 

SQS than by SIRT. The degree to which that creates a difference in convergence rates is 

studied below.

Table II provides eigenvalue bounds for the data and regularizer terms associated with SIRT 

reconstruction based on minimum norm (MN) and finite difference (FD) regularization for 

SIRT. Table III provides the similar numbers for SQS. The largest eigenvalue of the data 

term equals 1 for SIRT by design and approximately does so for SQS because ŝmax = max 

c̃j/ĉj ≈ 1. We can therefore infer that the conservative upper bound used for the smallest 

eigenvalue of the data term in both cases is at least three orders of magnitude smaller than 

the largest eigenvalue indicating SIRT and SQS are tasked with solving very poorly 

conditioned problems. We also see that the eigenvalue bounds for the regularizer terms are 

substantially smaller than those for the data terms.

The above observations indicate that near-optimal step size values, i.e., α ≈ 2/(1 + ε), should 

be achievable. Tables IV and V list the actual step sizes computed for OS-SIRT and OS-

SQS along with the S̃
M and ŜM scaling factors. For M = 1, near-optimal step sizes were 

indeed produced for both SIRT and SQS. Increasingly smaller step sizes resulted for larger 

values of M due to data dependent subset imbalances becoming more significant. SIRT and 

SQS behaved the same in this regard.

We computed step size estimates for non-regularized WLS reconstructions and found them 

to be comparable to those listed in Tables IV and V. Regularization thus had negligible 

impact on α̃* and α̂*. We also computed step size estimates for pure LS reconstructions. 

These were all closer to 2 than the RWLS estimates but did decrease for larger value of M. 

This does not indicate a problem with the system model. Rather, it is related to physical 

characteristics of the system geometry, such as the rays being much wider at one end than at 

the other, causing pixel coverage to be both location and view dependent. Combined with a 

shortscan source trajectory, the larger angular strides associated with larger values of M 
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invariably induce subset column sum differences. This in turn results in a larger value of the 

SM scaling factor which causes the step size estimate to decrease.

While all OS-SIRT and OS-SQS configurations were found to be convergent, Ψ(x(k)) values 

for M = 16 and 32 were larger than those for M = 8 indicating convergence to a limit cycle. 

We suspect the reason for this behavior is related to the aforementioned data variations. The 

statistical weighting considered in this paper is not intended to handle such systematic data 

inconsistencies.

Figures 4 and 5 show Ψ(x(k)) for OS-SIRT applied to DS1 and OS-SQS applied to DS2, 

respectively, using M = 1 and M = 8 as well α = 1.00 and α = α*. The axes are scaled to best 

show configuration differences. This includes the x-axes being linear and the y-axes 

logarithmic. The plots for M ≤ 8 show similar convergence behavior, while the plots for M ≥ 

16 confirm the previously mentioned fast convergence to a sub-optimal Ψ value. Data set 

DS1 is noisy but cleaner and thus likely more internally consistent than DS2. This is 

reflected in the final Ψ value for DS1 being substantially lower than that of DS2.

Figures 6 and 7 provide scatter plots of OS-SIRT versus OS-SQS for the combinations of M 

and α mentioned above. A correlation coefficient of 1.00 was computed for all plots 

indicating that applying OS-SQS to DS1 and OS-SIRT to DS2 would produce identical plots 

to those shown in Figs. 4 and 5.

There is in other words, no difference between the convergence rates of SIRT 
and SQS for the data tested—To more clearly illustrate the speed-up produced by 

relaxation, Figs. 8 and 9 plot the ratio of the interpolated number of iterations of the slower 

curve relative to the number of iterations needed to reach the same value of the faster curve. 

The two top plots show that the relaxed versions of OS-SIRT and OS-SQS decrease Ψ close 

to α̃* and α̂* times faster than when using α = 1.00 for the first 32 iterations for which 

speed-up factors were computed. This speed-up clearly indicates that the proposed step size 

estimates for SIRT, namely, (18) and (29), and SQS, namely, (25) and (30), are very 

effective. The two bottom plots reconfirm that subset imbalances cause both OS-SIRT and 

OS-SQS to quickly approach a near-final value of Ψ whereafter only slow progress is made 

in reducing it. Ideally, the speed-up would be constant at 8 corresponding to the number of 

subsets used.

B. Comparison with Conjugate Gradient

SIRT-RWLS and SQS-RWLS are stationary iterative methods that repeatedly apply a 

gradient based “correction” to the current estimate of the solution. As shown above, 

convergence is governed by the largest and smallest eigenvalues of the underlying iteration 

matrix. Conjugate gradient (CG), on the other hand, is a Krylov subspace method [17] that 

iteratively forms an increasingly larger basis for which an approximation to the solution is 

found that minimizes the cost function in that subspace. Convergence depends on the full 

eigenvalue spectrum and is proportional to the square root of the number of iterations 

needed by SIRT [14]. Preconditioning (PCG) may accelerate the convergence rate further.
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To compare the behavior of the proposed relaxed versions of SIRT and SQS with PCG when 

applied to RWLS problem (1), we implemented the Polak-Ribiére CG algorithm along with 

a Jacobi preconditioner [33], [34]. Enforcing non-negativity on the solution was not 

considered as such a constraint is difficult to efficiently incorporate into a CG algorithm due 

to the need for conjugacy preservation among the basis vectors, c.f. [35]. All algorithms 

were regularized using β = 1.0. OS-SIRT and OS-SQS were executed for M = 8.

Figure 10 shows PCG-RWLS reconstructions for DS1 using minimum norm regularization 

and DS2 using finite difference regularization. The corresponding SIRT-RWLS and SQS-

RWLS reconstructions look similar to those in Figs. 2 and 3. The difference images reveal 

that high density objects and edges exhibit the greatest degree of disparity. As indicated by 

Figs. 11 and 12, cost function Ψ(x(k)) has converged to a lower value for PCG-RWLS than 

for SIRT-RWLS and SQS-RWLS. While the images of the former kind thus are “more 

optimal” than those of the latter, one could argue that they are qualitatively less desirable 

due to their noisier appearance and the Gibbs-like ringing which can be seen to accentuate 

object edges as well as the metal streak artifacts.

Figures 11 and 12 show that OS-SIRT and OS-SQS converge faster than both CG and PCG 

during the early iterations, only to be overtaken when limit cycle behavior sets in. CG is 

seen to converge more slowly than PCG, but eventually reaches the same limit value due to 

data inconsistencies causing PCG to stall out. The cost function limit values are lower than 

those in Figs. 4 and 5 due to non-negativity not being enforced.

For reconstructions based on 256 iterations, a speed-up factor of 16 should be expected. 

After the first 32 iterations when limit cycle behavior has not yet become an issue, OS-SIRT 

and OS-SQS are seen to have converged to about the same value of Ψ(x(k)) as the CG 

algorithm. This correlates with the speed-up factors of 2 and 8 shown to be achieved for the 

proposed near-optimal relaxation and the use of eight ordered subsets. For cleaner data, OS-

SIRT and OS-SQS could be run for more subsets in which case they would converge faster 

than shown here, possibly to the point where they converge as fast as the PCG algorithm. 

While the convergence rate for PCG could be improved using a more sophisticated 

preconditioner, the design and implementation thereof is by no means easy. Combined with 

their ability to effortlessly incorporate non-negativity, OS-SIRT and OS-SQS thus appear to 

form viable alternatives to PCG for solving RWLS problems.

VII. Conclusion

We have shown that SIRT can be modified to solve a true WLS problem, i.e., without the 

otherwise inherent geometric weighting. We have also shown that such a version of SIRT 

and a commonly used version of SQS solve the same Tikhonov regularized WLS problem 

using the same gradient descent approach except for their (diagonal) preconditioning and 

step size. We developed practical methods for selecting the step sizes for both algorithms. 

Empirical results suggest these step sizes to achieve near-optimal relaxation across a wide 

range of data. We proposed a heuristic adjustment to the step size estimates that accounts for 

imbalances when using ordered subsets. The convergence rates for SIRT and SQS were 

found to be indistinguishable.
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We compared the proposed relaxed OS-SIRT and OS-SQS algorithms with an 

implementation of PCG. Non-negativity was not applied due to associated implementation 

complications for PCG. We found OS-SIRT and OS-SQS to converge faster than PCG 

during the early iterations. However, OS-SIRT and OS-SQS eventually succumbed to limit 

cycle behavior due to data inconsistencies, resulting in PCG achieving a lower final value of 

the cost function. A qualitative comparison of the associated images did not support a lower 

cost function value corresponding to a more desirable image. OS-SIRT and OS-SQS thus 

appear to form viable alternatives to PCG for solving RWLS problems.

While SIRT cannot be extended to handle non-quadratic regularizers, SQS was designed 

with these in mind. Compelling future work includes the possibility of introducing 

relaxation of such an extension. Comparison with acceleration based on Nesterov's 

momentum [15] would be interesting in that context.
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Fig. 1. 
The value for optimal step size α* quickly approaches 2 as eigenvalue λmin of C̃ A′ W A 
drops below 1.

Gregor and Fessler Page 20

IEEE Trans Comput Imaging. Author manuscript; available in PMC 2015 October 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
DS1 reconstructions using minimum norm regularization: (a) SIRT-RWLS using β = 1.0 and 

(b) SIRT-RWLS using β = 5.0. Image intensity levels truncated to 0-1800 MHU.
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Fig. 3. 
DS2 reconstructions using finite difference regularization: (a) SQS-RWLS using β = 1.0 and 

(b) SQS-RWLS using β = 5.0. Image intensity levels truncated to 0-1800 MHU.
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Fig. 4. 
Cost function Ψ(x(k)) plots for application of OS-SIRT to data set DS1 using minimum norm 

regularization.
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Fig. 5. 
Cost function Ψ(x(k)) plots for application of OS-SQS to data set DS2 using finite difference 

regularization.
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Fig. 6. 
Scatter plots of OS-SIRT versus OS-SQS for DS1 reconstructions using minimum norm 

regularization.
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Fig. 7. 
Scatter plots of OS-SIRT versus OS-SQS for DS2 reconstructions using finite difference 

regularization.
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Fig. 8. 
OS-SIRT speed-up factors for data set DS1 using minimum norm regularization. Top: α = 1 

versus α = α*. Bottom: M = 1 versus M = 8.
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Fig. 9. 
OS-SQS speed-up factors for data set DS2 using finite difference regularization. Top: α = 1 

versus α = α*. Bottom: M = 1 versus M = 8.
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Fig. 10. 
PCG-RWLS reconstructions: (a) DS1 using minimum norm regularization, (b) DS2 using 

finite difference regularization, (c) DS1 difference between PCG-RWLS and SIRT-RWLS 

and (d) DS2 difference between PCG-RWLS and SQS-RWLS. Image intensity levels 

truncated to 0-1800 MHU for (a) and (b). Difference image intensity levels truncated to 

±1000 MHU for (c) and (d).
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Fig. 11. 
Cost function Ψ(x(k)) plots for application of OS-SIRT, CG and PCG to data set DS1 using 

minimum norm regularization.
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Fig. 12. 
Cost function Ψ(x(k)) plots for application of OS-SQS, CG and PCG to data set DS2 using 

finite difference regularization.
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Table I
SIRT Column Sum Statistics

Both-LS DS1-WLS DS2-WLS

maxj c̃j 666,140 412,423 321,432

minj c̃j 304,479 3,941 1,026

IEEE Trans Comput Imaging. Author manuscript; available in PMC 2015 October 16.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Gregor and Fessler Page 33

Table II
SIRT Eigenvalue Bounds

Data Reg. Λ(C̃ A′ W A) Λ(C̃Q′Q)

DS1 MN 1.000903 0.000256

DS1 FD 1.000903 0.002030

DS2 MN 1.000933 0.000977

DS2 FD 1.000933 0.007794
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Table III
SQS Eigenvalue Bounds

Data Reg. Λ(Ĉ A′ W A) Λ(ĈQ′Q)

DS1 MN 1.000901 0.000256

DS1 FD 1.000884 0.002026

DS2 MN 1.000930 0.000976

DS2 FD 1.000908 0.007733
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Table IV

OS-SIRT Step Size α̃* as Function of M.

DS1 (MN) DS2 (FD)

M S̃M α̃* S̃M α̃*

1 1.0000 1.9977 1.0000 1.9977

2 1.0094 1.9792 1.0094 1.9792

4 1.0263 1.9466 1.0262 1.9467

8 1.0525 1.8982 1.0524 1.8983

16 1.1240 1.7776 1.1239 1.7777

32 1.3654 1.4636 1.3653 1.4636
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Table V

OS-SQS Step Size α̂* as Function of M.

DS1 (MN) DS2 (FD)

M ŜM α̂* ŜM α̂*

1 1.0000 1.9827 1.0000 1.9829

2 1.0053 1.9723 1.0052 1.9727

4 1.0158 1.9520 1.0154 1.9530

8 1.0433 1.9011 1.0428 1.9021

16 1.1106 1.7868 1.1103 1.7874

32 1.2859 1.5449 1.2854 1.5456
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