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Abstract

Cryo-electron microscopy nowadays often requires the analysis of hundreds of thousands of 2-D 

images as large as a few hundred pixels in each direction. Here, we introduce an algorithm that 

efficiently and accurately performs principal component analysis (PCA) for a large set of 2-D 

images, and, for each image, the set of its uniform rotations in the plane and their reflections. For a 

dataset consisting of n images of size L × L pixels, the computational complexity of our algorithm 

is O(nL3 + L4), while existing algorithms take O(nL4). The new algorithm computes the expansion 

coefficients of the images in a Fourier–Bessel basis efficiently using the nonuniform fast Fourier 

transform. We compare the accuracy and efficiency of the new algorithm with traditional PCA and 

existing algorithms for steerable PCA.

Index Terms

Steerable PCA; group invariance; non-uniform FFT; denoising

I. Introduction

Principal component analysis (PCA) is widely used in image analysis and pattern 

recognition for dimensionality reduction and denoising. In particular, PCA is often one of 

the first steps [1] in the algorithmic pipeline of cryo-electron microscopy (cryo-EM) single 

particle reconstruction (SPR) [2] to compress and denoise the acquired 2D projection images 

in order to eventually determine the 3D structure of a macromolecule. The high level of 

noise in those images drastically deteriorates the performance of single-image based 

denoising methods, such as non-local means [3] and wavelet thresholding [4], and so the 

latter are outperformed by PCA. As any planar rotation of any given projection image is 
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equally likely to appear in the experiment, by either in-plane rotating the detector or the 

specimen, it makes sense to include all possible rotations of the projection images when 

performing PCA. The resulting decomposition, termed steerable PCA, consists of principal 

components which are tensor products of radial functions and angular Fourier modes [5], 

[6], [7], [8], [9]. Beyond cryo-EM, steerable PCA has many other applications in image 

analysis and computer vision [10].

The term “steerable PCA” comes from the fact that rotating the principal components is 

achieved by a simple phase shift of their angular part. The principal components are 

invariant to any in-plane rotation of the images, therefore finding steerable principal 

components is equivalent to finding in-plane rotationally invariant principal components.

In cryo-EM data processing, in addition to compression and denoising, steerable PCA is also 

useful in generating rotationally invariant image features (i.e. bispectrum-like features [11]). 

These are crucial for fast rotationally invariant nearest neighbors search used in efficient 

computation of class averages [11]. Rotational alignment between image pairs can also be 

computed more efficiently using the expansion coefficients in a steerable basis.

In this letter, we focus on the action of the group O(2) on digital images by in-plane rotating 

and possibly reflecting them. The idea of using group actions for constructing group 

invariant features and filters has been previously proposed in [12], [13]. This group 

theoretical framework has been applied to SO(3) and SU(1, 1) in [14], [15]. The 

representation of finite groups, such as the dihedral groups, has been used for computing the 

Karhunen-Loéve expansion of digital images in [16].

Various efficient algorithms for steerable PCA have been introduced [17], [8]. However, 

steerable PCA of modern cryo-EM datasets that contain hundreds of thousands of large 

images poses a computational challenge. Also, it is important to ensure that the steerable 

PCA algorithm is numerically accurate when the input images are noisy. In order to exploit 

the special separation of variables structure of the principal components in polar coordinates, 

most algorithms rely on resampling the images on a polar grid. However, the transformation 

from Cartesian to polar is non-unitary, and thus changes the statistics of the noise. In 

particular, resampling transforms uncorrelated white noise to colored noise that may lead to 

spurious principal components.

Recently, [9] addressed this issue by incorporating a sampling criterion into the steerable 

PCA framework and introduced an algorithm called Fourier-Bessel steerable PCA 

(FBsPCA). FBsPCA assumes that the underlying clean images (before being possibly 

contaminated with noise) are bandlimited and essentially compactly supported in a disk. 

This assumption holds, for example, for 2D projection images of a 3D molecule compactly 

supported in a ball. It also implies that the images can be expanded in an orthogonal basis 

for bandlimited functions, such as the Fourier-Bessel basis. In FBsPCA, the Fourier-Bessel 

expansion of each image is truncated into a finite series using a sampling criterion that was 

introduced by Klug and Crowther [18]. The sampling criterion ensures that the 

transformation from the Cartesian grid to the truncated Fourier-Bessel expansion is nearly 

unitary. Moreover, the covariance matrix built from the expansion coefficients of the images 
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and all their possible rotations has a block diagonal structure where the block size decreases 

as a function of the angular frequency. The computational complexity of FBsPCA is O(nL4) 

operations for n images of size L × L. Notice that, when n > L2, the computational 

complexity of traditional PCA is O(nL4 + L6), where the first term corresponds to forming 

the L2 × L2 covariance matrix and the second term corresponds to its eigen-decomposition. 

Although FBsPCA and PCA have a similar computational complexity, FBsPCA leads to 

better denoising as it takes into account all possible rotations and reflections. This makes 

FBsPCA more suitable than traditional PCA as a tool for 2D analysis of cryo-EM images 

[9]. With the enhancement of electron microscope detectors’ resolution, a typical image size 

of a single particle can easily be over 300 × 300 pixels. Thus, FBsPCA is still not efficient 

enough to analyze a large number of images of large size (i.e. large n and large L). The 

bottleneck for this algorithm is the first step that computes the Fourier-Bessel expansion 

coefficients, whose computational complexity is O(nL4).

In this letter we introduce a fast Fourier-Bessel steerable PCA (FFBsPCA) that reduces the 

computational complexity for FBsPCA from O(nL4) to O(nL3) by computing the Fourier-

Bessel expansion coefficients more efficiently and accurately. This is achieved by first 

mapping the images from their Cartesian grid representation to a polar grid representation in 

the reciprocal (Fourier) domain using the non-uniform fast Fourier transform (NUFFT) [19], 

[20], [21], [22]. The polar grid representation enables to efficiently evaluate the Fourier-

Bessel expansion coefficients of the images by 1D FFT on concentric circles followed by 

accurate evaluation of a radial integral with a Gaussian quadrature rule. The overall 

complexity of computing the Fourier-Bessel coefficients is reduced to O(nL3) operations. 

The increased accuracy and efficiency in evaluating the Fourier-Bessel expansion 

coefficients are the main contributions of this letter.

We note that the Fourier-Bessel expansion coefficients can be computed in O(nL2 log L) 

operations using algorithms for rapid evaluation of special functions [23] or a fast analysis-

based Fourier-Bessel expansion [24]. However, such “fast” algorithms may only lead to a 

marginal improvement for two reasons. First, the break even point for them compared to the 

direct approach is for relatively large L such as L = 256 or larger. Second, forming the 

covariance matrix from the expansion coefficients still requires O(nL3) operations.

The letter is organized as follows: Section II contains the mathematical preliminaries of the 

Fourier-Bessel expansion, the sampling criterion, and the numerical evaluation of the 

expansion coefficients. The computation of the steerable principal components is described 

in Section III. We present the algorithm and give a detailed computational complexity 

analysis in Section IV. Various numerical examples concerning the computation time of 

FFBsPCA compared with FBsPCA and traditional PCA are presented in Section V. In the 

same section, we demonstrate the performance of FFBsPCA-based denoising using 

simulated cryo-EM projection images.

Reproducible research: The FFBsPCA is available in the SPR toolbox ASPIRE (http://

spr.math.princeton.edu/). There are two main functions: FBCoeff computes the Fourier 

Bessel expansion coefficients and sPCA computes the steerable PCA basis and the 

associated expansion coefficients.
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II. Fourier-Bessel Expansion of Bandlimited Images

We say that f has a band limit radius c if its Fourier transform

(1)

satisfies ℱ(f)(ξ1, ξ2) = 0, for . In our setup, a digital image I is obtained by 

sampling a squared-integrable bandlimited function f on a Cartesian grid of size L × L, that 

is, I(i1, i2) = f(i1Δ, i2Δ), where , and Δ is the pixel size.

For pixel size Δ = 1, the Nyquist-Shannon sampling theorem implies that the Fourier 

transform of I is supported on the square [−1/2, 1/2) × [−1/2, 1/2). In many applications, the 

support size is effectively smaller due to other experimental considerations, for example, the 

exponentially decaying envelope of the contrast transfer function in electron microscopy. 

Thus, we assume that the band limit radius of all images is . The scaled Fourier-

Bessel functions are the eigenfunctions of the Laplacian in a disk of radius c with Dirichlet 

boundary condition and they are given by

(2)

where (ξ, θ) are polar coordinates in the Fourier domain (i.e., ξ1 = ξ cos θ, ξ2 = ξ sin θ, ξ ≥ 

0, and θ ∈ [0, 2π));  is the normalization factor; Jk is the Bessel 

function of the first kind of integer order k; and Rk,q is the qth root of the Bessel function Jk. 

For a function f with band limit c that is also in L2(ℝ2) ∩ L1(ℝ2),

(3)

which converges pointwise. In Section II-A, we derive a finite truncation rule for the 

Fourier-Bessel expansion in Eq. (3).

A. Sampling Criterion

For digital implementations of Eq. (3), we must truncate it to a finite sum, namely to derive a 

sampling criterion for selecting k and q.

With the following convention for the 2D inverse polar Fourier transform of a function g(ξ, 

θ),
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(4)

the 2D inverse Fourier transform of the Fourier-Bessel functions, denoted , is 

given in polar coordinates as

(5)

The maximum of  in (5) is obtained near the circle  and 

 vanishes on concentric circles of radii  with q′ ≠ q. The smallest 

circle with vanishing  that encircles the maximum of  is of radius 

.

We assume that the underlying clean images (before being possibly contaminated with 

noise) are essentially compactly supported in a disk of radius R. Therefore, we should rule 

out Fourier-Bessel functions for which the maximum of their inverse Fourier transform 

resides outside a disk of radius R. Otherwise, those functions introduce spurious information 

from noise. Notice that if the maximum is inside the disk, yet the zero after the maximum is 

outside the disk, then there is a significant spillover of energy outside the disk. We therefore 

require the more stringent criterion that the zero after the maximum is inside the disk, 

namely

(6)

This sampling argument gives a finite truncation rule for the Fourier-Bessel expansion in Eq. 

(3), that is

(7)

For each k, we denote by pk the number of components satisfying Eq. (7). We also denote by 

 the total number of components, where kmax is the maximal possible value 

of k satisfying Eq. (7). The locations of Bessel zeros have been extensively studied, for 

example, in [25, p.517–521], [26, p.370], [27], [28], [29]. Several lower and upper bounds 

for Bessel zeros Rk,q were proven by Breen in [29], such as
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(8)

where aq is the qth zero of the Airy function, shown to satisfy

(9)

Using the lower bound for |aq| and the sampling criterion in Eq. (7), we have the following 

inequality for k and pk,

(10)

Breen also obtained

(11)

so we get another inequality for k and pk,

(12)

Combining Eqs. (10) and (12), we have the following lower and upper bounds for pk,

(13)

The bound for the highest angular frequency kmax is determined by setting pk = 1 in Eq. 

(13), resulting in

(14)

Equation (13) implies that as the angular frequency k increases, the number of components 

pk decreases. Moreover, using the lower and upper bounds for pk and kmax in Eqs. (13) and 

(14), we derive that the total number of selected Fourier-Bessel basis functions is between 

8(cR)2 and 4π(cR)2. When c is the largest possible band limit, i.e. , the number of basis 

functions is between 2R2 and πR2, where the latter is approximately the number of pixels 

Zhao et al. Page 6

IEEE Trans Comput Imaging. Author manuscript; available in PMC 2016 August 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



inside a disk of radius R. Also, whenever c = O(1) and R = O(L), we get that p = O(L2) and 

kmax = O(L).

Because the bandlimited function f is assumed to be essentially compactly supported, the 

infinite expansion in Eq. (3) is approximated by the finite expansion

(15)

where Pc,R is the orthogonal projection from L2(Dc) (the space of L2 functions supported on 

a disk of radius c), to the space of functions spanned by a finite number of Fourier-Bessel 

functions that satisfy (7).

B. Numerical Evaluation of Fourier–Bessel Expansion Coefficients

Previously in [9], the evaluation of the expansion coefficients ak,q of Eq. (15) was done by 

least squares. Let Ψ be the matrix whose entries are evaluations of the Fourier-Bessel 

functions at the Cartesian grid points, with rows indexed by the grid points and columns 

indexed by angular and radial frequencies. Finding the coefficient vector a as the solution to 

 requires the computation of Ψ*I, which takes O(pL2) = O(L4) operations, 

because p = O(L2). In general a = (Ψ*Ψ)−1Ψ*I, but here Ψ*Ψ is approximately the identity 

matrix, due to the orthogonality of the Fourier-Bessel functions.

We introduce here a method that computes the expansion coefficients ak,q in O(L3) 

operations instead of O(L4). The expansion coefficients in Eq. (15) are given analytically by

(16)

We evaluate the last integral numerically using a quadrature rule that consists of equally 

spaced points in the angular direction and a Gaussian quadrature rule in the radial direction, 

that is, using the nodes, ξ1(j, l) = ξj cos(2πl/nθ), ξ2(j, l) = ξj sin(2πl/nθ), j = 1, …, nξ, l = 0, 

…, nθ − 1 (see Fig. 1). The values of nξ and nθ depend on the compact support radius R and 

the band limit c and are derived later in the letter. To use this quadrature rule, we need to 

sample the Fourier transform of f at the quadrature nodes. This is approximated by the 

Fourier coefficients of the image I (consisting of samples of f on a Cartesian grid) at the 

given quadrature nodes, namely by the Fourier coefficients

(17)
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which can be evaluated efficiently using the the nonuniform discrete Fourier transform. The 

angular integration in Eq. (16) is then sped up by 1D FFT on the concentric circles, followed 

by a numerical evaluation of the radial integral with a Gaussian quadrature rule.

As the samples on each concentric circle are equally-spaced, the natural quadrature weights 

for the angular integral are , with the nodes taken at  for l = 0, …, nθ − 1. The 

angular integration using one-dimensional FFT on each concentric circle thus yields

(18)

The radial integral is evaluated using the Gauss-Legendre quadrature rule [30, Chap. 4], 

which determines the locations of nξ points  on the interval [0, c] and the associated 

weights w(ξj). The integral in Eq. (16) is thus approximated by

(19)

Since I is real valued and J−k(x) = (−1)kJk(x), we get that  and thus we only need 

to evaluate coefficients with k ≥ 0.

The procedure for numerical evaluation of the Fourier-Bessel expansion coefficients is 

illustrated in Fig. 1. In practice, we have observed that using nξ = 4cR and nθ = 16cR results 

in highly-accurate numerical evaluation of the integral in Eq. (16).

If our image can be expressed in terms of the truncated Fourier-Bessel expansion in Eq. (15), 

the approximation error in the radial integral comes from the numerical evaluation of the 

integrals

(20)

where the approximation error using nξ points is

(21)

Asymptotically, a Bessel function behaves like a decaying cosine function with frequency 

 for  [26],
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(22)

For a fixed nξ, the largest approximation error occurs when k = 0 and q1 = q2 = p0, since 

 is the most oscillatory function within the band limit. The Nyquist rate of 

 is  and we need to sample at Nyquist rate, or higher. 

Therefore, we choose nξ = ⌈4cR⌉. Fig. 2a justifies this choice as the error decays 

dramatically to 10−17 before nξ = ⌈4cR⌉.

To choose nθ, we computed the root mean squared error (RMSE) in evaluating the 

expansion coefficients for simulated images composed of white Gaussian noise with various 

R and nθ, while c = 1/2.We oversampled on the radial lines by nξ = ⌈10cR⌉ and the ground 

truth for the angular integral in Eq. (16) was computed by Eq. (18) via oversampling in the 

angular direction by nθ = 60cR. We observe that when nθ ≥ 16cR, the estimation error for 

the Fourier-Bessel expansion coefficients becomes negligible (see Fig. 2b). Notice that Eq. 

(14) implies that kmax < 2πcR. The corresponding Nyquist rate is bounded by 4πcR.We 

therefore sample at a slightly higher rate of nθ = 16cR to ensure numerical accuracy.

Now that we are able to numerically evaluate ak,q with high accuracy, we can study the 

spectral behavior of the finite Fourier-Bessel expansion of the images. We define a as the 

vector that contains the expansion coefficients ak,q computed in Eq. (19) and denote by T* 

the transformation that maps an image I to its finite Fourier-Bessel expansion coefficients 

through Eqs. (17), (18) and (19), that is,

(23)

Ideally we would like T* to be a unitary transformation, that is T*T = I, so that the 

transformation from the images to the coefficients preserves the noise statistics. 

Numerically, we observe that the majority of the eigenvalues of T*T are 1 and the smallest 

eigenvalues are also close to 1 (see blue solid line in Fig. 3). The transformation T* is close 

to unitary because it is a numerical approximation of an expansion in an orthogonal basis 

(Fourier-Bessel), and the sampling criterion prevents aliasing. In Fig. 3, the eigenvalues of 

Ψ*Ψ are also plotted for comparison. It can be observed that T*T has fewer eigenvalues that 

deviate from 1. Although the Fourier-Bessel functions are orthogonal as continuous 

functions, their discrete sampled versions are not necessarily orthogonal, hence Ψ*Ψ 
deviates from the identity matrix. The fact that T*T is closer to the identity than Ψ*Ψ 
implies that the numerical evaluation of the expansion coefficient vector a as T*I is more 

accurate than estimating it as Ψ*I.We compare the numerical accuracy explicitly with an 

example. We choose a signal f that satisfies  for c = 0.5 and R = 30, ak,q 

= 1, for k = 1 and q = 5, and otherwise, ak,q = 0. The evaluation method from [9] is applied 

here in Fourier space. It first evaluates discrete samples of ℱ(f) and the Fourier-Bessel basis 
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on a Cartesian grid of size 2R × 2R, and then projects the discrete samples onto the basis. 

The root mean squared error (RMSE) is 7.2 × 10−5 and the maximum absolute error is 4.0 × 

10−4. Using the numerical evaluation in Eq. (19), we get that RMSE = 1.2 × 10−16 and the 

maximum absolute error is 2.7 × 10−15.

Computing the polar Fourier transform of an image of size L × L on a polar grid with nξ × 

nθ points in Eq. (17) is implemented efficiently using NUFFT [19], [20], [21], [22], whose 

computational complexity is O(L2 log L + nξnθ). Since nθ = 16cR = O(L) and nξ = 4cR = 

O(L), nξ × nθ = O(L2) and the complexity of the discrete polar Fourier transform is O(L2 log 

L). The complexity of the 1D FFTs in Eq. (18) is O(nξnθ log nθ), because there are nξ 
concentric circles with nθ samples on each circle. Both nξ and nθ are of O(L), so the total 

complexity of the 1D FFTs is also O(L2 log L). Evaluating Eq. (19) (the quadrature rule for 

the radial integral in Eq. (16)) for all k and q requires a total of O(L3) operations using a 

direct method, because there are O(L2) basis functions to integrate, and each function is 

integrated using O(L) quadrature points. However, this complexity can be reduced to O(L2 

log L) using a fast Bessel transform [23], [24]. In summary, the computational complexity of 

computing the Fourier-Bessel expansion coefficients of an image of size L × L is O(L3) 

operations, or O(L2 log L) using a “fast” transform.

III. Steerable Principal Components

Given a dataset of n images , we denote by fi the underlying bandlimited function that 

corresponds to the i’th image Ii. Under the action of the group O(2), the function fi is 

transformed to , where α ∈ [0, 2π) is the counter-clockwise rotation angle and β 

denotes reflection and takes values in {+, −}. More specifically,  and 

. The images  and  are obtained by sampling  and 

 respectively.

The Fourier transform of fi commutes with the action of the group O(2), namely, 

, and 

. The transformation of the images 

under rotation and reflection can be represented by the transformation of their Fourier-

Bessel expansion coefficients in Eq. (3). Under counter-clockwise rotation by an angle α, 

 is given by

(24)

Therefore a planar rotation introduces a phase shift in the expansion coefficients. Under 

rotation and reflection,
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(25)

namely, the expansion coefficient  changes to .

If we augment the collection of bandlimited functions  by all possible rotations and 

reflections, the Fourier transform of the sample mean of the augmented collection, denoted 

fmean, becomes,

(26)

Using the properties in Eqs. (24) and (25), we have

(27)

As expected, the sample mean is radially symmetric, because  is only a function of ξ but 

not of θ.

The rotationally invariant covariance kernel ((ξ, θ), (ξ′, θ′)) built from Fourier 

transformed functions with all their possible in-plane rotations and reflections is defined as

(28)

From Eq. (27) it follows that if we express ℱ(fi) and ℱ(fmean) in terms of the Fourier-Bessel 

basis and the associated expansion coefficients, subtracting the sample mean is equivalent to 
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subtracting  from the coefficients , while keeping other coefficients 

unchanged. Therefore, we first update the zero angular frequency coefficients by 

, and then

(29)

where

(30)

δk,k′ comes from the integral over α∈ [0, 2π). The covariance matrix in Eq. (30) is positive 

semi-definite and block diagonal because the non-zero entries of C correspond only to k = k
′. Since the images are well approximated by the subspace spanned by a finite number of 

Fourier-Bessel basis functions (see Eq. (15)), C(k,q),(k′,q′) are close to zero when (k, q) or (k
′, q′) do not satisfy the sampling criterion in Eq. (7). Therefore, we have a finite matrix 

representation C of . Moreover, it suffices to consider k ≥ 0, because C(k,q),(k,q′) = 

C(−k,q),(−k,q′). Thus, the covariance matrix in Eq. (30) can be written as the direct sum 

, where C(k) is by itself a sample covariance matrix of size pk × pk, given by,

(31)

Let us denote by A(k) the matrix of expansion coefficients, obtained by putting the 

coefficients  for all q and all i into a matrix, where the columns are indexed by the image 

number i and the rows are indexed by the radial index q. The coefficient matrix A(k) for k ≠ 

0 is of size pk × n and the covariance matrix for k ≠ 0 is,
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(32)

where A* is the conjugate transpose . The case k = 0 is special because the 

expansion coefficients satisfy , and so A(0) is a matrix of size p0 × n and

(33)

We compute the eigenvalues  and eigenvectors  of 

the covariance matrices C(k). Because  and C are related through Eq. (29) and C is block 

diagonal as in Eq. (30), ((ξ, θ), (ξ′, θ′)) is well approximated by 

, where Ψ(k) contains Fourier-Bessel functions with 

angular frequency k. Equation (29) reveals that the eigenfunctions of , which are the 

steerable principal components, can be expressed as linear combinations of the Fourier-

Bessel functions with the coefficients given by the eigenvectors of the matrix C,

(34)

Therefore the radial parts of the steerable principal components

(35)

are linear combinations of the Bessel functions within the same angular frequency. The 

associated expansion coefficients for Ii are

(36)

The computational complexity for forming the matrix C(k) is . The complexity for 

eigendecomposition of C(k) is , since the size of the covariance matrix is pk × pk. 

Using the upper and lower bounds for pk in Eq. (13) and assuming c = O(1) and R = O(L), 

we get  and . Therefore, the complexity for forming the 

covariance matrix C is  and the complexity of its full 

eigendecomposition is . Equations (32) and (33) show that instead of 
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constructing the covariance matrices C(k) to compute the principal components, we can 

perform singular value decomposition (SVD) on the coefficient matrix A(k) directly and take 

the left singular vectors as the principal components. The computational complexity for full 

rank SVD on A(k) is  and the total complexity of SVD of all coefficient matrices is 

.

IV. Algorithm and Computational Complexity

The new algorithm introduced in this letter is termed fast Fourier-Bessel steerable PCA 

(FFBsPCA). The algorithm is composed of two steps. In the first step, Fourier-Bessel 

expansion coefficients are computed according to Algorithm 1. The input to the algorithm 

includes an image dataset, the band limit c, and the compact support radius R. The second 

step (Algorithm 2) takes the Fourier-Bessel expansion coefficients from Algorithm 1 as 

input and computes the steerable PCA radial functions and the expansion coefficients of the 

images in the new steerable basis. Algorithm 2 is the same as the corresponding part of the 

algorithm in [9].

Algorithm 1

Fast Fourier-Bessel Expansion

Require: n images I1, …, In sampled on a Cartesian grid of
    size L × L with compact support radius R and band limit c.

  1: (Precomputation) Select (k, q)’s that satisfy the sampling
criterion of Eq. (7). Fix nξ = ⌈4cR⌉ and nθ = ⌈16cR⌉.

  2:
(Precomputation) Find nξ Gaussian quadrature points and

weights on the interval [0, c] and evaluate ,
j = 1, …, nξ, for all selected (k, q)’s.

  3: Compute F(Ii) (Eq. (17)) on a polar grid of size nξ × nθ
by NUFFT for each i = 1, …, n.

  4:

For each F(Ii), compute  using Eqs. (18) and (19).

  5:

return  for all selected (k, q)’s.

The analysis of the computational complexity of FFBsPCA is as follows. The 

precomputation that generates all radial basis functions requires O(L3) operations because 

there are O(L2) basis functions, each of which is sampled over O(L) points. Computing the 

Fourier-Bessel expansion coefficients  in Eq. (19) for all images takes O(nL3) operations 

(or O(nL2 log L) with a fast Bessel transform) as discussed in Section II-B.

The complexity of constructing the covariance matrix C and computing its full 

eigendecomposition is O(nL3 + L4) as described in Section III. Another method for 

computing the principal components is by SVD of the coefficient matrices.
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Algorithm 2

Steerable PCA

Require: Fourier-Bessel expansion coefficients  for n
    images and the maximum angular frequency kmax.

  1:
Compute the coefficient vector of the mean image

. Then, set .

  2: for k = 0, 1, …, kmax do

  3:       Construct the coefficient matrix A(k).

  4:
      Compute the covariance matrix C(k), its eigenvalues

      , and eigenvectors,

      ; or perform SVD of A(k) and take the

      left singular vectors .

  5:       Compute the radial eigenvectors fk,l(ξj) for j = 1,
      …, nξ using Eq. (35).

  6:
      Compute the expansion coefficients of the images in

      the new steerable basis  using Eq. (36).

  7: end for

  8:

return For all (k, l), , fk,l, and 
i = 1, …, n.

Full rank SVD on all coefficient matrices requires O(nL3) floating point operations (see 

Section III).

To generate the new steerable basis, we take linear combinations of the Bessel functions as 

in line 5 of Algorithm 2, which takes O(L4) operations. Computing the steerable PCA 

expansion coefficients  for i = 1 …, n (line 6 in Algorithm 2) requires O(nL3) operations 

by taking linear combinations of the Fourier-Bessel expansion coefficients as in Eq. (36). 

Therefore the total computational complexity of FFBsPCA is O(nL3 + L4).

The complexity of FBsPCA introduced in [9] is O(nL4). Thus, FFBsPCA is faster than 

FBsPCA. For PCA, when the number of images is smaller than the number of pixels in the 

compact support disk, we form XTX and compute its eigendecomposition and the 

complexity is O(n2L2 + n3). However, as the number of images grows, the complexity of 

PCA switches to O(nL4 + L6) since it becomes more efficient to compute the 

eigendecomposition of XXT. Therefore the computational complexity of traditional PCA, 

without taking into account all rotations and reflections is O(min{n2L2 + n3, nL4 + L6}). 

When n > O(L), FFBsPCA is more efficient than the traditional PCA.

FFBsPCA is easily adapted for parallel computation. The computation of Fourier-Bessel 

expansion coefficients in Algorithm 1 can run on multiple workers in parallel, where each 

worker is allocated with a subset of the images and Fourier-Bessel radial basis functions. In 

Zhao et al. Page 15

IEEE Trans Comput Imaging. Author manuscript; available in PMC 2016 August 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



addition, in Algorithm 2, the radial eigenfunctions and the steerable PCA expansion 

coefficients can also be efficiently computed in parallel for each angular index k.

V. Numerical Experiments

We compare the running times of FFBsPCA, FBsPCA and traditional PCA, where the latter 

is computed without the images’ in-plane rotations and reflections. The algorithms are 

implemented in MATLAB on a machine with 60 cores, running at 2.3 GHz, with total RAM 

of 1.5TB.

We first simulated n = 24, 000 images with different radii of compact support R, while the 

band limit is fixed at c = 1/2. For small R, since FFBsPCA performs polar Fourier 

transformation, it appears slightly slower than FBsPCA. However when R increases, 

FFBsPCA is computationally more efficient (see Tab. I). We next fixed the size of the 

images while using R = 150 and c = 1/2, and varied the number of images n. Table II shows 

that the running time of FBsPCA and FFBsPCA grows linearly with n.

To show that our new algorithm can handle large datasets efficiently, we simulated a large 

dataset with 105 images of size 300 × 300 pixels. The images consist entirely of Gaussian 

noise with mean 0 and variance 1. We assume that the compact support in the image domain 

is R = 150 and the band limit in Fourier domain is c = 1/2. In Table III, the total running 

time is divided into three parts: precomputation, Fourier-Bessel expansion (Algorithm 1), 

and steerable PCA (Algorithm 2). Fourier Bessel expansion took about 24 minutes, during 

which 91% of the time was spent on mapping images to polar Fourier grid, where we used 

the software package [22] downloaded from https://www-user.tu-chemnitz.de/potts/nfft/

potts/nfft/. Numerical evaluation of the angular integration by 1D FFT and the radial 

integration by a direct method took 6.4% and 2.6% of the time respectively. Steerable PCA 

took 42 seconds.

In our third experiment, we simulated n = 105 clean projection images from a reconstructed 

volume of a human mitochondrial large ribosomal subunit, downloaded from the electron 

microscopy data bank [32] (EMDB-2762). The original volume in the data bank is of size 

320 × 320 × 320 voxels. We preprocessed the volume such that its center of mass is at the 

origin and cropped out a volume of size 240 × 240 × 240 voxels that contains the particle. 

Each projection image is of size 240 × 240 pixels. We simulated both the vanishing behavior 

of the CTF at low frequencies and the blurring effect due to the Gaussian envelope of the 

CTF. This was done by convolving the images with the inverse Fourier transform of

(37)

where f is the frequency, λ is the wavelength of the electron beam, z is the defocus, and a is 

the phase of the CTF introduced by microscope. This stems from the analytic form of the 

CTF given by sin(πλzf2 + a) exp (−Bf2). For the simulations we chose λ = 0.0197Å, z = 2.5 

µm, a = 0.1rad, and B = 100Å2. Our clean images (see Fig. 4a) are the projection images 
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filtered by the filter in Eq. (37) and they were then corrupted by additive white Gaussian 

noise at SNR= 1/30, corresponding to noise variance of σ2 = 9 (see Fig. 4b).

We estimated the radius of compact support of the particle in real domain and the band limit 

in Fourier domain from the noisy images in the following way. We first subtracted the mean 

image of the dataset from each image. Then we computed the 2D variance map of the 

dataset averaged in the angular direction, to get the mean radial variance (see Fig. 5a). At 

large r, the mean radial variance levels off at 9, which corresponds to the noise variance. We 

subtracted the noise variance from the estimated mean radial variance and computed the 

cumulative variance by integrating the mean radial variance over r with a Jacobian weight 

rdr. The fraction of the cumulative variance reaches 99.9% at r = 98, and therefore R was 

chosen to be 98. In the Fourier domain, we computed the angular average of the mean 2D 

power spectrum. The curve in Fig. 5b also levels off at the noise variance when ξ is large. 

We used the same method as before to compute the cumulative radial power spectrum. The 

fraction reaches 99.9% at ξ = 0.196, therefore the band limit is chosen to be c = 0.196.

The radial functions of the top nine principal components are shown in Fig. 6. Each radial 

function is indexed by k and l, where k determines the angular Fourier mode and l is the 

order of the radial function within the same k. Taking the tensor product of the radial 

functions and their corresponding angular Fourier modes gives the two dimensional 

principal components in Fourier domain. It took about 9 minutes in total to get the steerable 

PCA radial components and the associated expansion coefficients. In particular, Fourier-

Bessel expansion coefficients were computed in 9 minutes and the steerable PCA took 12 

seconds.

We computed the traditional PCA and FBsPCA on the same dataset in real image domain 

(see Fig. 8 for PCA components), which took 60 minutes and 16 minutes respectively. In 

order to compare the principal components computed by FFBsPCA with those computed by 

traditional PCA, we take the inverse Fourier transform of the FFBsPCA components. We do 

not compute the inverse polar Fourier transform directly, since such a transform is ill-

conditioned. Instead, since the FFBsPCA components are linear combinations of the 

Fourier-Bessel functions as in Eq. (34), we evaluate the steerable principal components on a 

Cartesian grid in real space using the linear combinations of , given by Eq. (5). 

Those principal components are shown in Fig. 7. Some of the top sixteen principal 

components computed from traditional PCA and FFBsPCA look very similar, for example, 

the first three and the last four principal components (see Fig. 7 and Fig. 8). Because the gap 

between the eigenvalues of the traditional PCA is very small for the components in the 

middle two rows of Fig. 8, those components become degenerate and therefore look 

different from the corresponding components in Fig. 7.

In our simulation, each noisy projection image I is obtained by contaminating the clean 

image Ic with additive white Gaussian noise of variance σ2 = 9. Given the noise level, we 

would like to automatically select the appropriate principal components to compress and 

denoise the noisy images. Since the transformation T* is nearly unitary, the coefficient 

matrices can be modeled approximately as , where ε(k) is white Gaussian 
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noise with variance σ2 and  is the coefficient matrix for the clean images. In the case 

when there is no signal, that is , all eigenvalues of the covariance matrix C(k) from 

Eqs. (32) and (33) converge to σ2 as n goes to infinity, while pk is fixed. When , 

components with eigenvalues larger than σ2 correspond to the underlying clean signal. In the 

non-asymptotic regime of a finite number of images, the eigenvalues of the sample 

covariance matrix from white Gaussian noise spread around σ2. The empirical density of the 

eigenvalues can be approximated by the Marčenko-Pastur distribution with parameter γk, 

where  and  for k > 0 and the eigenvalues of C(k) are supported on , 

with . The principal components corresponding to eigenvalues larger 

than  correspond to signal information beyond noise level. Therefore, with the estimated 

noise variance σ̂2, we denote by  the eigenvalues of the covariance 

matrix C(k), and select the components with eigenvalues

(38)

Various ways of selecting principal components from noisy data have been proposed. We 

refer to [33] for an automatic procedure for estimating the noise variance and the number of 

components beyond the noise level. For the simulated ribosomal subunit projections images, 

there are 966 steerable principal radial components above the threshold in Eq. (38), whereas 

considerably fewer principal components (391) with the traditional PCA were selected.

Moreover, we filter the expansion coefficients to get better denoising. To first order 

approximation, when n ≫ pk, the noise simply shifts all eigenvalues upward by σ2 and this 

calls for soft thresholding of the sample covariance eigenvalues: (λ − σ2)+. To correct for 

the finite sample effect, we can apply more sophisticated shrinkage to the eigenvalues, such 

as the methods proposed in [34], [35]. Specifically, we applied the shrinkage method in [34] 

to the coefficients computed by FFBsPCA, FBsPCA, and PCA. Because we were able to use 

more principal components with FFBsPCA, we recovered finer details of the clean 

projection images, comparing Fig. 10c and Fig. 10f.

In addition to using data-adaptive bases, we also used a non-isotropic directional multiscale 

transform, i.e., Curvelet transform [36] with complex block thresholding and cycle spinning, 

to denoise the images. An example of a denoised image using PCA, Curvelet, FBsPCA, and 

FFBsPCA is shown in Fig. 9. The steerable PCA basis captures the variance of the clean 

dataset with fewer components than non-adaptive bases, such as Fourier-Bessel basis or 

Curvelets (see Fig. 11).

We computed the mean squared error (MSE) and Peak SNR (PSNR) to quantify the 

denoising effects in Tab. IV and Tab. V. Comparing with the traditional PCA, FFBsPCA 

reduced the MSE by more than 25% and increased the PSNR by over 1.3 dB. When the 

images are of low SNR, Curvelets are unable to outperform data adaptive bases, such as 
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PCA, FBsPCA and FFBsPCA (see Tab. IV and Tab. V). This experiment shows that 

FFBsPCA is an efficient and effective procedure for denoising large image datasets.

Finally, we show that steerable PCA denoising is robust to small shifts. We simulated clean 

data with random shifts in the ±x and ±y directions with maximum shifts equal to 0 

(centered images), 5, 10, 15, and 20 pixels. The clean images are corrupted with additive 

white Gaussian noise of variance 9. As shown in Tab. VI, the denoising performance using 

FFBsPCA (measured in PSNR) is almost unaffected. The denoising results for centered 

images in Tab. V and Tab. VI are slightly different because we used different support sizes to 

evaluate PSNRs.

VI. Conclusion

In this letter we presented a fast Fourier-Bessel steerable PCA method that reduces the 

computational complexity with respect to the size of the images so that it can handle larger 

images. The complexity of the new algorithm is O(nL3 + L4) compared with O(nL4) of the 

steerable PCA introduced in [9]. The key improvement is through mapping the images to a 

polar Fourier grid using NUFFT and evaluating the Fourier-Bessel expansion coefficients by 

angular 1D FFT and accurate radial integration.

This work has been mostly motivated by its application to cryo-EM single particle 

reconstruction. Besides compression and denoising of the experimental images required for 

2D class averaging [11] and common-lines based 3D ab-initio modeling, FFBsPCA can also 

be applied in conjunction with Kam’s approach [37] that requires the covariance matrix of 

the 2D images [38]. The method developed here can also be extended to perform fast 

principal component analysis of a set of 3D volumes and their rotations. For this purpose, 

the Fourier-Bessel basis is replaced with the spherical-Bessel basis, and the expansion 

coefficients can be evaluated by performing the angular integration using a fast spherical 

harmonics transform [39] followed by radial integration.

Our numerical experiments show that an adaptive basis is necessary for denoising images 

with very low SNR. Steerable PCA is able to recover more signal components than PCA and 

achieves better denoising results. It is definitely possible to improve the denoising obtained 

by just using steerable PCA. For example, we can have more sophisticated dictionary 

denoising schemes, in which part of the dictionary is made of the steerable principal 

components and another part of the dictionary is made of wavelets. As these methods require 

the computation of steerable PCA, computing steerable PCA fast would be useful also for 

more advanced denoising schemes.

Finally, we remark that the Fourier-Bessel basis can be replaced in our framework with other 

suitable bases, for example, the 2D prolate spheroidal wave functions (PSWF) on a disk 

[40]. The 2D prolates also have a separation of variables form which makes them convenient 

for steerable PCA. A possible advantage of using 2D prolates is that they are optimal in 

terms of the size of their support.
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Fig. 1. 
Pictorial summary of the procedure for computing the Fourier-Bessel expansion coefficients. 

The original image (top left) is resampled on a polar Fourier grid (Eq. (17)) using NUFFT 

(top right and bottom right) followed by 1D FFT (Eq. (18)) on each concentric circle. The 

evaluation of the radial integral (Eq. (19)) gives the expansion coefficients ak,q. The bow-tie 

phenomenon illustrated in bottom-left was discussed in [31].
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Fig. 2. 
(a) Error, as a function of nξ, in the numerical evaluation of the integral G(0, p0, p0) in Eq. 

(20). (b) Error, as a function of nθ, in the evaluation of the integral in Eq. (16).
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Fig. 3. 
Eigenvalues of T*T and Ψ*Ψ, where T* and Ψ* are the truncated Fourier-Bessel 

transforms using numerical integration and least squares respectively. These are also the 

spectra of the population covariance matrices of transformed white noise images. Most 

eigenvalues are close to 1, indicating that the truncated Fourier-Bessel transform is almost 

unitary. Thus white noise remains approximately white.
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Fig. 4. 
Simulated projection images of the human mitochondrial large ribosomal subunit. Image 

size is 240 × 240 pixels.
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Fig. 5. 
Estimating R and c from n = 105 simulated noisy projection images of a human 

mitochondrial large ribosomal subunit. Each image is of size 240 × 240 pixels. (a) Mean 

radial variance of the images. The curve levels off at about σ2 = 9 when r ≥ 98. The radius of 

compact support is chosen as R = 98. (b) Mean radial power spectrum. The curve levels off 

at σ2 = 9 when ξ ≥ 0.196. The band limit is chosen as c = 0.196.
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Fig. 6. 
FFBsPCA principal radial functions in Fourier domain. The dataset contains n = 105 

simulated human mitochondrial large ribosomal subunit projection images corrupted by 

additive white Gaussian noise with SNR= 1/30. Image size is 240 × 240 pixels, R = 98, c = 

0.196. Each radial function is labeled with angular index k, radial order l, and eigenvalue λ.
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Fig. 7. 
FFBsPCA principal components (eigenimages in real domain) corresponding to Figure 6.
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Fig. 8. 
Traditional PCA principal components in real image domain for the same dataset used in 

Figures 6 and 7.
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Fig. 9. 
Denoising simulated projection images. (a) clean clean projection image, (b) noisy noisy 

projection image with SNR= 1/30, (c) denoised projection image using traditional PCA, (d) 

denoised projection image using Curvelet transform, complex block thresholding and cycle 

spinning, (e) denoised image using FBsPCA, and (f) denoised image using FFBsPCA.
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Fig. 10. 
Enlarged view of 100 × 100 pixels box at the center of the images in Figure 9.
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Fig. 11. 
Cumulative variance of FFBsPCA, Fourier-Bessel and Curvelet expansion coefficients of 

simulated clean ribosome projection images as in Fig. 4a.
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TABLE I

Running Times (in seconds) as a Function of R for n = 2.4 × 104, c = 1/2, and L = 2R

R PCA FBsPCA FFBsPCA

30 8 7 51

60 214 50 87

90 1,636 168 148

120 1,640 413 234

150 1808 757 371

180 1,988 1,437 657

210 2,106 2,274 695

240 2,188 3,827 892
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TABLE II

Running Times (in Minutes) as a Function of n for Image Size 300 × 300 pixels (L = 300), with R = 150 and c 
= 1/2

n (×103) PCA FBsPCA FFBsPCA

1 0.05 1.2 1.1

2 0.1 2.1 1.3

4 0.3 3.5 1.8

8 1.3 4.3 2.4

16 9.8 8.7 4.6

32 59.1 17.9 8.0

64 424.7 35.7 14.4

128 653.7 74.2 30.6
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TABLE III

Timing for FFBsPCA on a Large Dataset With n = 105 Images. Each Image is of Size 300 × 300 Pixels, R = 

150 and c = 1/2. We Computed the Full Eigendecomposition in Algorithm 2

Steps Time (sec)

Precomputation 7

NUFFT and Fourier-Bessel Expansion 1,438

Steerable PCA 42

Total 1487
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TABLE IV

MSE of Denoised Images Using PCA, Curvelets, FBsPCA and FFBsPCA, all Computed Using Pixels Within 

R = 98

MSE (10−5)

Curvelet PCA FBsPCA FFBsPCA

Image 1 1.38 1.10 0.77 0.77

Image 2 1.63 1.29 0.95 0.96

Image 3 1.58 1.17 0.85 0.85
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TABLE V

PSNR of Denoised Images Using PCA, Curvelets, FBSPCA and FFBSPCA, All Computed Using Pixels 

Within R = 98

PSNR (dB)

Curvelet PCA FBsPCA FFBsPCA

Image 1 18.10 19.06 20.62 20.63

Image 2 17.90 18.93 20.26 20.23

Image 3 18.68 19.99 21.35 21.35
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TABLE VI

FFBsPCA Denoising of Images With Maximum Shifts of 0, 5, 10, 15, and 20 pixels. PSNRs Are Computed 

With Pixels Within R = 110. The Estimated Compact Support R Increases With Maximum Shift

PSNR (dB)

max shifts (pixels) R (pixels) Image 1 Image 2 Image 3

0 98 21.61 21.16 22.34

5 99 21.53 21.26 22.32

10 102 21.42 21.13 22.11

15 107 21.59 21.31 22.18

20 110 21.31 21.30 22.07
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