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Numerical inversion of a broken ray transform

arising in single scattering optical tomography

Gaik Ambartsoumian and Souvik Roy

Abstract

The article presents an efficient image reconstruction algorithm for single scattering optical tomography (SSOT)

in circular geometry of data acquisition. This novel medical imaging modality uses photons of light that scatter

once in the body to recover its interior features. The mathematical model of SSOT is based on the broken ray (or

V-line Radon) transform (BRT), which puts into correspondence to an image function its integrals along V-shaped

piecewise linear trajectories. The process of image reconstruction in SSOT requires inversion of that transform. We

implement numerical inversion of a broken ray transform in a disc with partial radial data. Our method is based

on a relation between the Fourier coefficients of the image function and those of its BRT recently discovered by

Ambartsoumian and Moon. The numerical algorithm requires solution of ill-conditioned matrix problems, which

is accomplished using a half-rank truncated singular value decomposition method. Several numerical computations

validating the inversion formula are presented, which demonstrate the accuracy, speed and robustness of our method

in the case of both noise-free and noisy data.

Index Terms

Broken ray, optical imaging, reconstruction algorithms, single scattering tomography, singular value decompo-

sition, V-line transform.

I. INTRODUCTION

Optical tomography uses measurements of light that propagates and scatters inside a body to recover its

interior features. If the body part under investigation is optically thick, then the photons scatter multiple
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times before they are registered outside the body. As a result, the standard mathematical model used

in such imaging setups is the diffusion approximation of the radiative transport equation. The latter is

severely ill-posed, which leads to subpar quality of reconstructed images. In the optically thin bodies

(e.g. biological samples in optical microscopy), most of the photons fly through the object without any

scattering, and one can use models based on the regular Radon transform for image reconstruction. While

the quality of generated images in this setup is high, the thickness condition restricts its applicability to

essentially transparent objects. The middle ground between the two cases described above is the imaging

of objects with intermediate optical thickness. In this case, the input optical photons scatter at most once

inside the body and their intensity is measured after they leave it.

The mathematical model for image reconstruction in this single scattering optical tomography (SSOT)

is based on the inversion of an integral transform, which puts into correspondence to the image function its

integrals along V-shaped piecewise linear flight trajectories of scattered photons. This generalized Radon

transform is often called a broken-ray transform (BRT) or a V-line Radon transform (VRT).

SSOT was introduced in a series of influential articles [4], [5], [6] by L. Florescu, J. C. Schotland,

and V. Markel, where the authors considered that imaging modality in a rectangular slab geometry. We

refer the reader to those papers for details about the underlying physics of SSOT, its advantages over

traditional optical imaging modalities, and careful reduction of the radiative transport equation to the

integral geometric problem of inverting the BRT in the case of predominantly single scattering of photons.

In this paper we consider SSOT in a circular geometry of data acquisition, where the 2D image function

is supported in a disc (3D imaging can be accomplished by vertical stacking of 2D slices as in conventional

tomography). Similar to the approach introduced in [4], [5], [6] for slab geometry, here we consider the

photons entering the image domain normal to its boundary, travelling a certain distance towards the center

of the disc, and then scattering under a certain fixed angle. Notice, that we do not assume that the scattering

always happens under the same angle, but rather collect only the data that corresponds to such scattering

(e.g. using collimated detectors). As a result the BRT is measured along a two-parameter family of broken

rays, where one parameter defines the location of the light source, and the second one the distance from

the center of the disc to the scattering location (see Fig. 1). Thus, to recover the 2D image function in

the disc one needs to invert the BRT that depends on two variables in circular geometry.

The broken ray transform and its generalization to higher dimensions (called conical Radon transforms)

are a fairly recent topic of interest in integral geometry. Their significance grew only a few years ago
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due to their connections to SSOT and Compton scattering imaging. And while a handful of articles have

appeared in literature studying the properties and inversion of BRT in various data acquisition geometries

(e.g. see [1], [2], [8], [9], [11], [12], [13], [15], [19]), many theoretical and practical questions still remain

unanswered. In particular, in the case of the circular setup of data acquisition and fixed scattering angle,

only two results on BRT are known at this point. We discuss both of them in detail below.

In [1] it was shown that if the support of the image function is sufficiently away from the circle of

“source-detector” positions (see the shaded area in Fig. 1), and BRT data is known for all β ∈ [0, 2π] and

t ∈ [−R,R], then the problem of inverting the BRT can be reduced to the problem of inverting a regular

Radon transform with straight lines passing through the support of image function. Here the negative

values of t refer to the broken rays that travel the distance R + |t| from the source to the scattering

point (i.e. pass through the center of the disc) and then change direction. Since the inversion of the

regular Radon transform is extremely well studied and has many efficient numerical implementations, the

approach described in [1] works well under the assumptions described above. However, those assumptions

are very limiting, especially the requirement of knowing BRT for all t ∈ [−R,R]. As it was mentioned

before, the distances that the photons travel in the body induce the number of times that they scatter.

Hence, it would be a substantial improvement if in the setup above one could recover the image function

just using BRT with t ∈ [0, R].

In [2] it was shown that the image function f(ρ, φ) can indeed be recovered from its BRT g(β, t) in

circular geometry using just t ∈ [0, R], β ∈ [0, 2π] and without the additional restriction on the support of

f required in [1]. The tradeoff is the complexity of the inversion process in this case. Albeit the analytical

inversion formula derived in [2] is exact, it is based on recovering the Fourier coefficients fn(ρ) of f

through the Fourier coefficients gn(t) of g using the Mellin transform and its inversion. The numerical

implementation of that formula is extremely complicated and was not done in [2].

In this paper, we numerically invert the BRT in the setup described above using the relations between

Fourier coefficients of f and g discovered in [2]. These relations are in the form of integral equations,

where the kernel depends on a ratio of the two variables. We solve those by adopting a numerical method

given in [18] and combining it with a truncated singular value decomposition to recover the Fourier

coefficients of f from the BRT data g.

The rest of the article is organized as follows. Section II gives the relevant theoretical background

recalling the integral equations relating fn(ρ) and gn(t) based on which the numerical simulations in this
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Fig. 1: A sketch of BRT in a disc and the notations. Each broken ray is parametrized by two variables:
β ∈ [0, 2π] describing the light source location A(β), and t ∈ [0, R]
describing the scattering point B(β, t). The detector measuring the intensity of scattered light is located
at C(β, t).

paper are performed. Section III describes the numerical algorithm for solving the integral equations. In

Section IV, we present the results of the numerical simulations. Section V concludes the paper with a

summary and final remarks.

II. THEORETICAL BACKGROUND

Let the function f(ρ, φ) be defined inside a disc D(0, R) of radius R centered at the origin, and let

θ ∈ (0, π/2) be a fixed angle. Let BR(β, t) denote the broken ray that emits from the point A(β) =

(R cos β,R sin β) on the boundary of D(0, R), travels the distance d = R − t along the diameter to the

point B(β, t), then breaks into another ray under the obtuse angle π − θ arriving at point C(β, t) (see

Fig. 1).

The broken ray transform of the function f is defined as the integral

Rf(β, t) =

∫
BR(β,t)

f ds, β ∈ [0, 2π], t ∈ [0, R], (1)

of f(ρ, φ) along the broken ray BR(β, t) with respect to linear measure ds.

The transform Rf(β, t) with radially partial data (i.e. t ∈ [0, R] instead of t ∈ [−R,R]) was first

considered in [2]. The authors of that paper presented an explicit inversion formula, which was based on

the relation between the Fourier coefficients of f and g = Rf , which we recall below.
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Expanding f(ρ, φ) and g(t, β) into a Fourier series, we obtain the following

f(ρ, φ) =
∞∑

n=−∞

fn(ρ)einφ, g(t, β) =
∞∑

n=−∞

gn(t)einβ.

We define

K1
n

(
t̂
)

= −einψ̄(t̂) ×
1− t̂ cos

[
ψ̄
(
t̂
)]

+ t̂2 sin
[
ψ̄
(
t̂
)]

sin θ√
1−t̂2 sin2 θ√

1 + t̂2 − 2t̂ cos
[
ψ̄
(
t̂
)] (2)

and

K2
n

(
t̂
)

= (−1)neinψ(t̂) ×
1 + t̂ cos

[
ψ
(
t̂
)]

+ t̂2 sin
[
ψ
(
t̂
)]

sin θ√
1−t̂2 sin2 θ√

1 + t̂2 + 2t̂ cos
[
ψ
(
t̂
)] , (3)

where

ψ̄
(
t̂
)

= 2θ − ψ
(
t̂
)

and ψ
(
t̂
)

= arcsin
(
t̂ sin θ

)
+ θ.

The relation between the nth Fourier coefficient of the function f and the nth Fourier coefficient of the

broken ray transform gn is then given below by the integral equation

gn(t) =

∫ R

t

fn(ρ)dρ+

∫ t

t sin θ

fn(ρ)K1
n

(
t

ρ

)
dρ+

∫ R

t sin θ

fn(ρ)K2
n

(
t

ρ

)
dρ. (4)

The absolute values of kernels K1
n and K2

n have simple geometric meanings. To explain that, let us split

the longer branch BC of the broken ray BR(β, t) to two parts: L1 from the scattering point B(β, t) to

the point of the broken ray closest to the origin, and L2 from the point closest to the origin to the point

C(β, t). Then the second multiplier (written as a fraction) in the definition of Ki
n represents the ratio

ds/dρ between the elementary increments of distance ds along Li and the corresponding increment of

the polar radius dρ.

We now need to solve the integral equation (4). Using the fact that

fn(ρ) = 0, ∀ρ > R,
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(4) can be rewritten as

gn(t) =

∫ R

t

fn(ρ)dρ+

∫ t

t sin θ

fn(ρ)K1
n

(
t

ρ

)
dρ

+

∫ R

t sin θ

fn(ρ)K2
n

(
t

ρ

)
dρ

=

∫ R

t sin θ

fn(ρ)Kn

(
t

ρ

)
dρ,

(5)

where

Kn

(
t̂
)

=

 K1
n

(
t̂
)

+K2
n

(
t̂
)
, if 1 < t̂ < 1/ sin θ,

1 +K2
n

(
t̂
)
, if 0 ≤ t̂ ≤ 1

(6)

and K1
n

(
t̂
)
, K2

n

(
t̂
)

are given by (2) and (3).

Notice, that t̂1 = 1/ sin(θ) corresponds to the point of the broken ray that is the closest to the origin,

while t̂2 = 1 corresponds to the the scattering point B on L1 and its symmetric point on L2. Formulas

(2) and (3), as well as the geometric interpretation given above, show that the function Kn(t̂) is infinitely

smooth on the interval [0, t̂1), except at point t̂2, where it has a jump discontinuity of size 1/ cos(θ)− 1.

One can also notice that, Kn(t̂) blows up to infinity as t̂ approaches t̂1 (due to
√
t̂1 − t̂ in the denominator),

but that singularity is integrable.

Let us rewrite equation (5) as follows

gn(t) =

∫ R

t sin θ

fn(ρ) Kn

(
t

ρ

)
dρ. (7)

A simple change of variables t = eτ and ρ = er will transform it to a convolution type integral equation

Gn(τ) =

lnR∫
τ+ln sin θ

Fn(r) kn(τ − r) dr, (8)

where Gn(τ) = gn(eτ ), Fn(r) = erfn(er), and kn(x) = Kn(ex).

Assume that f is an infinitely differentiable function compactly supported in A(ε, R) (the annulus

centered at the origin, with inner radius ε > 0 and exterior radius R). Then equation (7) can be considered

for t ∈ [ε/ sin(θ), R], where ε > 0 is an arbitrarily small number. As a result, (8) becomes a convolution

type integral equation, where Fn is infinitely differentiable and compactly supported, and kn is locally

integrable and compactly supported. Such an equation can be solved by taking a Fourier transform of

both sides, dividing by the Fourier transform of the kernel, and taking an inverse Fourier transform. As

a result, we get the following
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Theorem II.1 (Existence and uniqueness of solution). Let f be a C∞ function with support inside the

annulus A(ε, R). Then equation (7) has a unique solution fn(t) ∈ C∞([ε, R]).

The smoothness of fn follows from the smoothness of f and uniqueness of the solution of (7). Since

ε > 0 in the theorem above can be taken arbitrarily small, in our numerical experiments described below

we can assume the hypothesis of the theorem is satisfied simply by using a discretization that avoids the

broken ray passing through the origin.

III. NUMERICAL ALGORITHM

In this section, we describe the numerical scheme used to solve the integral equation (7).

A. Fourier coefficients of the broken ray Radon data in the angular variable

The function g(t, β) is real-valued in the angular variable β. One could perform the standard FFT on

the discrete sequence of values {g(t, βN)}N . However, there is a computationally more efficient way of

performing the FFT on such a real-valued function. Here the real data of length N is split into two equal

halves and a complex data of length N/2 is created. On this complex data, FFT is performed and then

converted back to FFT of real data. Therefore, for large N , almost half of the arithmetic operations can be

saved by performing the FFT on N/2 complex numbers instead of treating the real sequence as consisting

of N complex numbers.

Thus we compute the modified discrete fast Fourier transform (FFT) of g(t, β) in β for a fixed t ∈ [0, R]

based on the Cooley-Tukey algorithm (see [16]) as follows

1) Let {β1, β2, · · · , βN} be a discretization of β, where N is even. We break the array g(t, βk) for

1 ≤ k ≤ N into two equal length arrays for odd and even numbered indices. Thus, we define

A = {g(t, β2j−1)} and B = {g(t, β2j)} for j = 1, 2, · · · , N/2.

2) Next we create a complex array hct(j) = A(j) + iB(j), j = 1, 2, · · · , N/2.

3) We now perform a discrete FFT on hct to get ĥct(n), n = 1, 2, · · · , N/2.
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4) Thus the Fourier series of g in the β variable is given as follows

gn(t) =



1
2

{(
ĥct(n) + ĥct(

N
2
− n+ 2)

)
−i
(
ĥct(n)− ĥct(N2 − n+ 2)

)
· e

2πi(n−1)
N

}
,

for n = 1, · · · , N
2

+ 1

ĥct(N − n+ 2), n = N
2

+ 2, · · · , N.

(9)

B. Trapezoidal product integration method

Using the values of gn(t) obtained in the previous section, we want to solve the integral equation (7).

Under the assumptions of Theorem II.1 and using the method of Mellin transforms, the authors in [2]

provide an analytical inversion formula for the broken ray transform with radially partial data. However,

that exact inversion formula is numerically unstable. One of the reasons for the instability is the fact

that the function Kn(t̂) is unbounded in the neighborhood of the point 1/ sin(θ). And while its Mellin

transform is well-defined as an improper integral, its numerical computation is highly unstable. Therefore,

we approach the numerical inversion problem by solving (7) directly. We use the so-called trapezoidal

product integration method proposed in [18], [20]. We briefly sketch this method below.

Let M be a positive integer and tl = lh, l = 0, . . . ,M and h = R/M be a discretization of [0, R].

Choose i ∈ {0, . . . ,M}. Thus from (7) we have

gn(ti) =

∫ R

ti sin θ

fn(ρ)Kn

(
ti
ρ

)
dρ, (10)

We choose an index l such that

tl ≤ ti sin θ < tl+1.

(If there exists no such l satisfying tl ≤ ti sin θ, we choose l = 0). We then approximate (10) as

gn(ti) =

∫ R

tl

fn(ρ)Kn

(
ti
ρ

)
dρ. (11)

In the sub-interval [tk, tk+1], we approximate fn(ρ)Kn

(
ti
ρ

)
by a linear function taking the values fn(tk)Kn

(
ti
tk

)
and fn(tk+1)Kn

(
ti
tk+1

)
at the endpoints tk and tk+1, respectively. This is given by

fn(ρ) Kn

(
ti
ρ

)
≈fn(tk)Kn

(
ti
tk

)
tk+1 − ρ

h
+ fn(tk+1)Kn

(
ti
tk+1

)
ρ− tk
h

. (12)
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Hence

gn(ti) ≈
M−1∑
k=l

∫ tk+1

tk

fn(tk)Kn

(
ti
tk

)
tk+1 − ρ

h
+ fn(tk+1)Kn

(
ti
tk+1

)
ρ− tk
h

dρ

=
M−1∑
k=l

fn(tk)Kn

(
ti
tk

)
h

2
+ fn(tk+1)Kn

(
ti
tk+1

)
h

2
.

(13)

Thus
M−1∑
k=0

ai,kfn(tk) = gn(ti) i = 1, · · · ,M, (14)

where

ai,k =



h

2
Kn

(
ti
tk

)
, k = l,M,

hKn

(
ti
tk

)
, l < k < M,

0, otherwise.

(15)

The following theorem states the error estimate for the numerical solution of the integral equation (7),

which can be proved using the arguments given in [14, Thm. 7.2], once we choose the point of discontinuity

t = 1 as a nodal point.

Theorem III.1 (Error Estimates). Let f exact
n be the C3 solution of (7) in [0, R] and fn be the solution to

(14). Then

‖f exact
n − fn‖2 = O(h2), (16)

where ‖·‖2 represents the discrete version of the continuous L2 norm in [0, R] (see for e.g., [3, Ch. 4]).

Equation (14) can be written in matrix form as

AnFn = g̃n, (17)

where

Fn =


fn(t1)

...

fn(tM)

 , gn =


gn(t1)

...

gn(tM)

 . (18)

The matrix An is defined as

An(i, k) = ai,k, (19)

where ai,k is given by (15). To solve (14), we need to invert the matrices An. It turns out that the matrices
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Fig. 3: Relation between condition number of An,r and the error in 2-norm for the original matrix An,
respectively for n = 10, 50, 100, 130. The dots in the figure correspond to half-rank approximations.

An are ill-conditioned. Fig. 2 shows the condition number of An for different values of n. It is well known

that numerically inverting a matrix with condition number r leads to a loss of r digits of accuracy (see

[10]). From Figure 2, we see that the condition numbers of An is greater than 106 for almost all values of

n. Thus for the inversion of An, we use the Truncated Singular Value Decomposition (TSVD) (see [10])

to solve the matrix equation (17).

C. Truncated singular value decomposition (TSVD)

To solve (17), we first compute the SVD of An. This is given by An = UDV T , where U and V are

orthogonal matrices whose columns are the eigenvectors of AnATn and ATnA respectively. The matrix D
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is a diagonal matrix consisting of the singular values of ATnAn, which represents the square root of the

eigenvalues of ATnAn in descending order represented by σr. We set

An,r = UDrV
T and A−1

n,r = V D−1
r UT

where Dr and D−1
r are diagonal matrices with diagonal entries

(Dr)ii =


Dii if i ≤ r

0 otherwise.

(D−1
r )ii =


1
Dii

if i ≤ r

0 otherwise.

Then the matrices An,r approximates An for 1 ≤ r ≤M . r is the rank of the matrix An,r (see [10]). We

define the matrix 2-norm or the spectral norm of a matrix A of order n as follows

‖A‖2 = max
|x|2 6=0

|Ax|2
|x|2

, (20)

where x ∈ Rn and |x|2 = (
∑n

i=1 x
2
i )

1/2.

The condition number of the truncated matrix An,r is defined to be κ(An,r) =
σ1

σr
. Moreover, the error

in approximation of A by An,r is defined as ‖A− An,r‖2 and is given by ‖A− An,r‖2 = σr+1.

Fig. 3 shows the relation between the condition number of the truncated matrix An,r and the error

‖A−An,r‖2. A high rank approximation would render the condition number of An,r to be large, whereas

a low rank approximation would lead to loss of information resulting in incomplete reconstruction. In this

paper, we have taken half-rank approximations, that is, r = M
2

.

IV. NUMERICAL RESULTS

We now validate the numerical algorithm proposed in Sec. III for the broken ray Radon transforms given

in (1). We discretize φ ∈ [0, 2π] into 150 equally spaced grid points. For discretization of ρ ∈ [0, R − ε]

(we chose ε = 0.001), we consider 150 and 400 equally spaced grid points. In all cases we chose R = 1.

We organize this section as follows. In Sec. IV-A, we describe the procedure of generating the Radon

data. In Sec. IV-B, we demonstrate our algorithm on two test cases, and analyze the visual features of the

reconstructed images. A detailed description of artifacts appearing in the reconstructions is given in Sec.
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IV-C. Finally, in Sec. IV-D, we provide the computational times taken for the simulations and evaluate

the relative L2 error percentage between the actual and the reconstructed images.

A. Generating the Radon data

The first step to validate the numerical algorithm described in Sec. III is to generate the Radon data.

We divide our domain D(0, R) into 150× 150 pixels. The phantom f to be reconstructed is represented

by the information present in the pixels. In the next step, we fix t and β, as defined in Sec. II and

consider the measure of intersection of the broken ray BR(β, t) with a pixel. Multiplying the values of

the measures obtained with the values in the pixels and then summing up over all pixels gives us the

Radon data Rf(β, t).

B. Test Cases

We now proceed to the test cases to validate our numerical algorithm. The computations are done in

MATLAB 7.14.0.739, on a Intel I7 3.1 GHz. quad core processor with 6 GB RAM.

1) Test Case 1 - Disk containing origin: Fig. 4a shows a phantom represented by a disk centered

at (0.05, 0) with radius 0.15, thus, containing the origin. Fig. 4b and 4c show the reconstructions with

θ = π/6 for 150 and 400 equally spaced discretizations in ρ, respectively. Fig. 5a and 5b show the

reconstructions with θ = π/4 for 150 and 400 discretizations in ρ respectively. We see that the phantom

is reconstructed fairly well. Not only there is a proper recovery of the shape and the location of the

phantom, the values are also well approximated. The visible artifacts along the circle of radius R sin θ

and at the origin are discussed later in Sec. IV-C.
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Fig. 4: Results for broken ray transform data with breaking angle θ = π/6, for a phantom represented by
a disk. Figure 4a represents the actual phantom. Figures 4b, 4c show the reconstructed images with 150
and 400 equally spaced discretizations, respectively.
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Fig. 5: Results for broken ray transform data with breaking angle θ = π/4, for a phantom represented by
a disk as shown in Figure 4a. Figures 5a, 5b show the reconstructed images with 150 and 400 equally
spaced discretizations, respectively.
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Fig. 6: Results for broken ray transform data with breaking angle θ = π/6 and with 5% multiplicative
Gaussian noise, for a phantom represented by a disk as shown in Figure 4a. Figures 6a, 6b show the
reconstructed images with 150 and 400 equally spaced discretizations, respectively.
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Fig. 7: Results for broken ray transform data with breaking angle θ = π/6, for a phantom represented by
a disk as shown in Figure 4a. Figure 7a shows the reconstruction with rank r = M/8. Figure 7b shows the
reconstruction with r = M/1.5. Figure 7a reveals incomplete reconstruction due to loss of data, whereas
Figure 7b reveals blow-off in the solution.

To demonstrate the robustness of our algorithm, we also tested it for inverting the Radon data with 5%

multiplicative Gaussian noise. Fig. 6a and 6b show the reconstructions for 150 and 400 equally spaced

discretizations in ρ, respectively. We again note the good recovery in both cases.

To justify the rationale behind half-rank approximations, we tested the algorithm with rank approxima-

tions r = M/8 and r = M/1.5. The results are shown in Figures 7a and 7b respectively. This suggests

rank approximations too far away from half-rank approximations can either lead to loss of data or lead

to blow-offs which results in improper reconstruction.
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(a) (b)

(c)

Fig. 8: Results for broken ray transform data with breaking angle θ = π/6, for a set of phantoms. Figure
8a represents the actual set of phantoms. Figure 8b shows the reconstructed image with 400 equally spaced
discretizations. Figure 8c shows the reconstructed image with 5% multiplicative Gaussian noise.

2) Test Case 2 - Combined set of phantoms: In this test case, we consider a set of phantoms represented

by a combination of disks with varying intensities and at different locations and a square frame as shown

in Fig. 8. Fig. 8b shows the reconstruction with θ = π/6 for 400 equally spaced discretizations in ρ. Fig.

8c shows the reconstruction with 5% multiplicative Gaussian noise.

We see in Fig. 8b and Fig. 8c that inside the disc of radius sin θ, we have good reconstructions even

with coarser discretizations. Outside the disc of radius sin θ, we see blurred reconstructions. This is due

to lack of stability which will be described next in Sec. IV-C.

C. Stability and Artifacts

It is a well established fact that image reconstruction in limited data tomography suffers from various

types of artifacts. The two most common ones are the blurring of the true singularities of the original
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object, and the appearance of false singularities that did not exist in the original image (“streak artifacts”)

(e.g. see [7], [17]). Here we explain the nature of each of these artifacts, and discuss their appearance in

our reconstructed images.

In problems of inverting generalized Radon transforms that integrate a function along smooth curves,

one can use standard results of microlocal analysis to predict which parts of the object’s (true) singularities

will be recovered stably, and which parts will be blurred. In simple words, one can expect to recover

stably only those singularities that can be tangentially touched by the integration curves available in

the Radon data (e.g. see [21] and the references there). However, if the generalized Radon transform

integrates the image function along non-smooth trajectories, one may be able to do better than that. For

example, SSOT in slab geometry produces images of excellent quality using broken rays with basically

two (angular) directions (e.g. see [5], [8]), due to the fact that the integration trajectories can have the

scattering “corner” at every point of the image domain. In our setup, the reconstructions do not benefit

from the presence of corners. The phantom edges do blur if none of the linear pieces of the broken rays

touch them tangentially (e.g. see the two discs away from the origin in Fig. 8 (b) and (c)). The rigorous

mathematical study of the “stabilization due to corners” or lack of it is not an easy task and is subject of

current research by the authors and their collaborators.

The artifacts of second type appear due to the abrupt cut of the (incomplete) Radon data. For example,

in limited angle CT the integrals of the image function are available only along lines with limited angular

range (e.g. in [−π/4, π/4] instead of full range [0, 2π]). Then the recovered image may have streak artifacts

along lines that have the angular parameters equal to the endpoints of the available limited range. In the

CT example above those would be the lines with angular parameters equal to −π/4 and π/4 (see [7]

for more details and a great exposition of this material). In our case, the abrupt cut of the data Rf(β, t)

happens in two places, when t = 0 and t = R. The first one gives rise to a visible artifact at the origin,

since t = 0 corresponds to rays that break at the origin. The broken rays that correspond to t = R are

chords of the disc that pass at distance Rs = R sin θ from the origin (see Fig. 1). The envelope of all

these chords is the circle of radius Rs, along which we have a strong streak artifact in each reconstructed

image.

D. Computational Times and Relative L2 error

We now demonstrate the computational efficiency of our developed algorithm by demonstrating the

computational times taken and the relative L2 error percentage of reconstruction. The latter is measured
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only inside the disc of radius Rs with punctured origin to account for errors away from streak artifacts.

All measurements are done for the reconstructions obtained in Sec. IV-B.

We define the relative L2 error percentage inside the punctured disc of radius Rs as follows:

Relative L2 error percentage =
‖frec − fex‖2

‖fex‖2

∗ 100%,

where fex = fex(xi, yj) and frec = frec(xi, yj), i, j = 1, · · · ,M represents the discretized matrix for the

exact function and the reconstructed function respectively, ‖f‖2 = 1
M2

√∑M
i=1

∑M
j=1 f

2
ij and f = f(xi, yj),

where (xi, yj) lies inside the punctured disc of radius Rs.

The reconstruction of the function f can be divided into two phases

1) Pre-processing step.

2) Inversion algorithm step.

In the pre-processing step, we compute the inverse of the matrix An given in (17) for n = 1, . . . , N/2 + 1

using the half-rank truncated SVD inversion technique described in Section III-C. The inversion algorithm

step consists of the Fourier transform of the Radon data, computing the solution fn for each n, evaluating

f using the inverse Fourier transform and finally displaying the results.

Phantom Grid PP IA Error %

Test case 1 150 33.4 sec 1.1 sec 35.8
Test case 1

(with noise)
150 35.1 sec 1.2 sec 36.5

Test case 1 400 283.4 sec 7.6 sec 22.8

Test case 1 800 2988.8 sec 35.3 sec 15.8

Test case 2 150 33.7 sec 1.4 sec 39.2

TABLE I: Time taken for the pre-processing step and inversion algorithm for reconstructions with various
parameters. PP stands for the pre-processing step and IA stands for the inversion algorithm step.

Table I presents the computational times for the various experiments performed. It can be seen that the

computational time depends on the number of radial discretizations of ρ rather than the type of transforms

or support of the reconstructed function f . We can see from Table I, that the computational time taken

for the pre-processing step is quite large. But since this step is independent of data, given the number of

angular discretizations N , this step is computed once, stored in memory and can be used for inversion of

any kind of Radon data. This makes the inversion procedure quite fast which can be seen from the time

taken for the inversion algorithm step running at less than a minute even for 800 discretizations.
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To estimate the computational complexity of our algorithm, we present below the number of operations

for various components in the inversion process.

1) The evaluation of the modified forward FFT for each of the M values of ρ requires
1

2
O(N logN)

floating point operations (flops).

2) The next step involves the computation of the truncated SVD for N/2 frequencies. For each such

frequency, we require O(M3) flops.

3) In the next step, we perform the multiplication of the pseudoinverse matrix with the data to compute

the Fourier coefficients of the numerical solution. This requires O(M2) flops for each of the N/2

Fourier coefficients.

4) Finally, we perform the inverse FFT of the obtained Fourier coefficients to get the numerical

reconstruction for M values of ρ. It requires O(N logN) flops.

If the number of discretizations for ρ and β are of the same order, i.e. M is of order N , then the total

number of flops for the inversion process is of order O(N4).

V. SUMMARY

We have developed a numerical algorithm for inversion of the broken ray transform in a disk from

radially partial data. Our algorithm uses half of the data that the previously known numerical inversions of

BRT in the disc used. Given the limitations on the distance that a photon can fly without scattering more

than once, our approach allows to double the thickness of objects that can be imaged using single scattering

optical tomography. The numerical algorithm requires solution of ill-conditioned matrix problems, which

is accomplished using a truncated SVD method. The matrices and the SVD can be constructed in a pre-

processing step which can be re-used repeatedly for subsequent computations. This makes our algorithm

particularly fast and efficient. We tested our algorithm on phantoms with jump discontinuities both with

and without noise, and it produced high quality reconstructions. The objects in the image were well

distinguished, and the recovered intensities of the objects were close to their actual values.
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