
1

Convolutional Neural Networks for
Non-iterative Reconstruction of
Compressively Sensed Images

Suhas Lohit, Kuldeep Kulkarni, Ronan Kerviche, Pavan Turaga and Amit Ashok

Abstract—Traditional algorithms for compressive sensing recovery are computationally expensive and are ineffective at low
measurement rates. In this work, we propose a data driven non-iterative algorithm to overcome the shortcomings of earlier iterative
algorithms. Our solution, ReconNet, is a deep neural network, whose parameters are learned end-to-end to map block-wise
compressive measurements of the scene to the desired image blocks. Reconstruction of an image becomes a simple forward pass
through the network and can be done in real-time. We show empirically that our algorithm yields reconstructions with higher PSNRs
compared to iterative algorithms at low measurement rates and in presence of measurement noise. We also propose a variant of
ReconNet which uses adversarial loss in order to further improve reconstruction quality. We discuss how adding a fully connected layer
to the existing ReconNet architecture allows for jointly learning the measurement matrix and the reconstruction algorithm in a single
network. Experiments on real data obtained from a block compressive imager show that our networks are robust to unseen sensor
noise. Finally, through an experiment in object tracking, we show that even at very low measurement rates, reconstructions using our
algorithm possess rich semantic content that can be used for high level inference.

Index Terms—Compressive Sensing, Convolutional Neural Network, Generative Adversarial Network.
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1 INTRODUCTION

IMAGES and video data are now ubiquitous and computer
vision has grown tremendously with new applications

being developed continuously in health-care, defense etc.
Depending on the application, many constraints may arise
when we build devices and algorithms to be deployed
in the real world. In this paper, we focus on two such
constraints. Sensor costs can be prohibitively expensive in
certain imaging modalities. For example, in short-wave in-
frared (SWIR) and medium-wave infrared (MWIR) imaging,
the sensor cost can dominate the entire imaging system cost.
Bandwidth and power constraints arise in mobile devices,
surveillance applications, imagers in space probes etc. An
effective way of designing algorithms, while satisfying these
constraints to a large extent, is through compressive sensing.

Compressive Sensing (CS) is a signal acquisition
paradigm that integrates sampling and compression into
a single step performed by front end hardware. CS theory
tells us that one can acquire a small (relative to the ambient
dimension) number of measurements which are random
projections of a sparse signal and later reconstruct the
entire signal perfectly by solving an inverse problem [1].
In the case of natural images, sparsity or compressibility
of natural images in transform domains (such as wavelets)
is exploited for this purpose. This sub-Nyquist sampling
feature of CS is particularly attractive in applications where
sensing time (e.g. magnetic resonance imaging) or band-
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width (e.g. surveillance) is a constraint. One of the first
camera architectures to be developed based on CS is the
single pixel camera [2] and is commercially produced by the
InView Corporation1. This camera, as the name suggests,
consists of just one photodiode that operates at the required
wavelength and thus is suitable in applications like SWIR
imaging where the sensor cost can become prohibitive.
It is also worth mentioning that effort has been made
in miniaturizing compressive imagers for possible use in
mobile phones and other handheld devices, cf. [3]. Here,
the authors also show that such sensors can be more energy
efficient than their traditional counterparts.

In order to employ such a camera in computer vision for
image recognition, tracking etc., a natural pipeline emerges.
Once the image is reconstructed from the low-dimensional
CS measurements, existing computer vision algorithms can
be used without modification. However, iterative recon-
struction algorithms form a computational bottleneck in the
pipeline. It may take as much as 5 minutes to reconstruct a
single image of size 256×256 using one of these algorithms.
This is unacceptable in applications where inference needs
to be done in real-time. These algorithms are also ineffective
at low measurement rates below 0.1 for images, which is
where the advantages of CS are most evident in terms of
data reduction. Also, the sparsity level and the sparsifying
basis may need to be known by the user, which is usu-
ally an ad hoc choice. In this paper, we propose a new
reconstruction algorithm that overcomes these drawbacks
and is capable of yielding good quality images in real
time. Inspired by the recent success of deep Convolutional
Neural Networks (CNNs) in computer vision tasks such

1. http://inviewcorp.com/technology/compressive-sensing/
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as super-resolution [4], [5], semantic segmentation [6], [7]
etc., we design a novel architecture to map compressive
measurements of an image block to the reconstructed image
block. Once the architecture (and other hyper-parameters
such as the learning rate schedule) is fixed, our approach is
entirely data-driven which means that all parameters of the
network are learned end-to-end based on training data. We
now outline the main contributions of this paper.

Contributions

1) We propose a novel CS reconstruction algorithm, called
ReconNet, that is non-iterative and 3 orders of mag-
nitude faster than conventional iterative approaches.
Based on the loss function, we have two variants of Re-
conNet – ReconNet (Euc) trained using Euclidean loss
and ReconNet (Euc + Adv) trained using a combination
of Euclidean and adversarial loss.

2) We carry out extensive experiments on a standard test
dataset by simulating CS in software and show that our
algorithm produces superior quality reconstruction in
terms of PSNR at low measurement rates of 0.1 and
below, as well as in the presence of measurement noise.
We also compare the two variants and show that adding
adversarial loss results in sharper reconstructions and
improved PSNRs at higher measurement rates.

3) We demonstrate the robustness of our network to arbi-
trary sensor noise by showing high quality reconstruc-
tions from real CS measurements obtained using a scal-
able block compressive camera, although the network
is trained using a synthetic set.

4) The network complexity of ReconNet is concentrated in
the first fully connected layer which accounts for more
than 80% of the parameters at higher measurement
rates. We propose circulant layers as an alternative to
this layer which greatly reduces the number of weights.
We verify experimentally that even with a 95% reduc-
tion in the number of parameters in the first layer,
the drop in PSNR is within 2 dB for a wide range of
measurement rates.

5) Finally, we make the important observation that even
reconstructions at very low measurement rates of about
0.01 retain sufficient semantic content that allow for
effective high-level inference such as object tracking.

This paper is an extension of its preliminary version that
appeared in CVPR 2016 [8]. In Section 3.3.2, we modify
the loss function to include adversarial loss which gives
sharper reconstructions and higher PSNRs. In Section 6, we
describe joint learning of the measurement matrix and the
reconstruction algorithm and show supporting results. In
Section 8, circulant layers are used to reduce the network
complexity. In Sections 7 and 9, additional results on recon-
struction of real data and object tracking are presented based
on the new variants of ReconNet proposed here.

2 BACKGROUND AND RELATED WORK

We review relevant literature from compressive sensing,
computer vision and deep learning here.

2.1 Compressive Sensing

As mentioned in Section 1, compressive sensing (CS) or
compressive sampling is a relatively new paradigm in signal
processing developed in the mid 2000s [1]. Here, we have
a linear signal acquisition model (performed by hardware)
as follows. For a signal x ∈ Rn, the measurement vector
obtained via CS, henceforth referred to as compressive
measurements, denoted by y ∈ Rm is given by

y = Φx, m << n, (1)

where Φ ∈ Rm×n is called the measurement matrix.
Recovering x from y is an inverse problem and not admit
a unique solution in general. Researchers have shown the-
oretically that as long as m = O(s log(n

s )), where s is the
number of non-zeros in x when expressed in a transform
domain Ψ and the entries of Φ are drawn from a sub-
Gaussian distribution such as a Gaussian, Bernoulli etc.,
it is possible to recover x from y perfectly [9], [10]. In
this paper, the data type of interest is natural images and
it is worth mentioning that natural images, although not
sparse, are ”compressible” in the wavelet domain. The re-
covery/reconstruction problem has received a great amount
of attention in the past decade and we briefly discuss the
main algorithms and their drawbacks next.

Iterative algorithms for reconstruction
Several algorithms have been proposed to reconstruct im-
ages from CS measurements. The earliest algorithms lever-
aged the traditional CS theory described above [9], [10], [11]
and solved the l1-minimization in Eq. 2 with the assumption
that the image is sparse in some transform-domain like
wavelet, DCT, or gradient.

min
x

||Ψx||1 s.t ||y −Φx||2 ≤ ε. (2)

However, such sparsity-based algorithms did not work
well, since images, though compressible, are not exactly
sparse in the transform domain. This heralded an era of
model-based CS recovery methods, wherein more complex
image models that go beyond simple sparsity were pro-
posed. Model-based CS recovery methods come in two
flavors. In the first, the image model is enforced explicitly
[12], [13], [14], [15], wherein in each iteration the image
estimate is projected onto the solution set defined by the
model. These models, often considered under the class of
‘structured-sparsity’ models, are capable of capturing the
higher order dependencies between the wavelet coefficients.
However, generally a computationally expensive optimiza-
tion is solved to obtain the projection. In the second, the
algorithms enforce the image model implicitly through a
non-local regularization term in the objective function [16],
[17], [18]. Recently, a new class of recovery methods called
approximate message passing (AMP) algorithms [19], [20],
[21] have been proposed, wherein the image estimate is
refined in each iteration using an off-the-shelf denoiser.

2.2 CNNs for per-pixel prediction tasks

Computer vision, amongst other fields, has undergone a
transformation since the re-introduction of convolutional
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neural networks (CNNs), now armed with a lot more la-
beled data (e.g. ImageNet), computational power (GPUs)
and algorithmic improvements (ReLu, Dropout) [22]. CNNs
have been particularly attractive and more powerful com-
pared to their connected counterparts because CNNs are
able to exploit the spatial correlations present in natural
images and each convolutional layer has far less learnable
parameters than a fully-connected layer and thus is less
prone to overfitting. CNNs learn high-level non-linear fea-
tures directly from data and have outperformed all other
algorithms (and even humans in some cases) for high level
inference problems like image recognition, face recognition
and object detection.

In addition to inference, there has been a great amount of
exciting research in areas like semantic segmentation [6], [7],
depth estimation [23], surface normal estimation [24] etc.,
where CNNs have outperformed all traditional methods.
In such an application, an input image is mapped to a
similar-sized output. Another related class of tasks which
is of interest here can be termed as inverse problems –
problems where the output is of a higher dimension than
that of the input. Example include automatic colorization
[25], 3D reconstruction a single image [26] and super-
resolution (SR) [4], [5]. For SR, the authors design a CNN,
SRCNN, that takes an input image that is upsampled using
bicubic interpolation and produces a super-resolved version
of the original image of a lower resolution. The network
architecture we design in this paper is inspired by SRCNN.
The reason for this is that the problem of CS reconstruction
can be seen as a generalization of SR. However, although
both CS recovery and SR can be cast as solving an inverse
problem y = Φx, they are not considered under the same
umbrella. The reason for this is discussed in more detail in
Section 3.

To summarize, we make the observation that any neural
network can be viewed as an algorithm that allows for
efficient learning of a non-linear mapping from the input to
the desired output. In our case, we push this notion to the
extent of learning the (necessarily non-linear) mapping from
CS measurements to the image. This is also significant since
2D CNNs have until now been mainly shown to be useful
for inputs which are images. CS measurements, however,
are typically random projections of the scene and do not
have the spatial correlational structure present in natural
images. Thus, they cannot be used directly as inputs to a 2D
CNN. In Section 3, we describe the architecture that aims at
resolving this apparent incompatibility.

2.2.1 Generative Adversarial Networks

In section 3.3.2, we discuss a modification of the loss func-
tion for ReconNet based on the recently popular Generative
Adversarial Network (GAN) framework. It has been shown
recently that for inverse problems such as image inpainting
[27], super-resolution [28] and surface normal estimation
[29], using a GAN framework yields sharper results, than by
using just Eucliden loss. This is simply due to the averaging
effect of Euclidean loss minimization. As described in the
papers by Goodfellow et al [30] and Radford et al. [31],
i.e., in the original formulation, a GAN learns to model
the image distribution where the image is represented as

a random variable R in an unsupervised fashion by learn-
ing a mapping from a small dimensional uniform random
variable, z (which we can sample easily) to the image. In a
GAN, two networks – a generator, G with parameters ΘG
and a discriminator, D, with parameters ΘD – are trained in
an alternating fashion. G is a neural network responsible for
generating an image for a given input. D is another neural
network which learns to classify between “real” images and
images output by the generator – “fake” images. During
training, D tries to minimize this classification error by
updating ΘD . At the same time, G tries to maximize the
loss of D by updating ΘG , thereby trying to “fool” D. The
mathematical form of the optimization is given by

min
ΘG

max
ΘD

ER[log(D(r))] + EZ [log(1−D(G(z)))] (3)

Theoretically, it has been shown that the above optimiza-
tion results in D being unable to classify better than chance
and G learning to model the data distribution and generate
”realistic” images.

2.3 Purely data-driven approaches to CS image and
video reconstruction using deep learning
Ali et al. [32] first presented a stacked denoising auto-
encoders (SDAs) based non-iterative approach for problem
of CS reconstruction. In the preliminary version of this paper
[8], we proposed a convolutional architecture, which has
fewer parameters, and is easily scalable to larger block-size
at the sensing stage. One of the drawbacks of the approaches
presented in both [32] and [8] is that the reconstructions
are performed independently on each block. It results in
the approaches not utilizing the strong dependencies that
exist between the reconstructions of different blocks. In
order to address this, Ali et al. [33] propose a network that
can operate on the CS measurements of the entire image,
while forcing the fully connected layer to be ΦT . Ali et
al. propose another method which learns to simultaneously
compute non-linear measurements and the reconstruction
layers using an autoencoder framework [34]. Yao et al. [35]
modify the ReconNet architecture [8] by adding residual
connections and present improved reconstruction perfor-
mance. Dave et al. [36] show that by enforcing an image
prior which captures long term spatial dependencies, one
can recover better quality reconstructions than the iterative
counterparts. Chakrabarti [37], instead of using random
measurements, proposes to learn the measurement matrix in
conjunction with the non-iterative reconstruction network.
The success of the deep learning approaches in compressive
recovery problem has not been limited to the image recon-
struction problem. Researchers have shown that they can be
applied to the CS video recovery problems as well [38], [39].

3 RECONNET

In this section, we describe in detail the network architec-
ture and other implementation details. Figure 1 shows the
overview of the proposed algorithm. Each image is divided
into non-overlapping whose CS measurements are obtained
separately. We need to reconstruct each image block from its
compressive measurements. Then, the block reconstructions
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Fig. 1: This shows the overview of the proposed non-iterative CS reconstruction algorithm: ReconNet. The architecture that
we use for all the experiments operates using block CS. A scene is divided into blocks of size 33× 33 and CS measurments
of each block is passed through the ReconNet to obtain the reconstructed image patch. As a post-processing step, the image
thus obtained is passed through BM3D denoiser to get rid of the blocky artifacts.

are arranged to form an image and passed through an
off-the-shelf denoiser to remove the blocky artifacts and
produce the final reconstruction.

Although our network architecture was inspired by SR-
CNN [4], [5], the input in our case is a one-dimensional
vector of CS measurements without any spatial structure,
unlike an image in the case of SRCNN. Thus, in order to
employ a CNN for reconstruction, we need to first resolve
this incompatibility. One way to work around this problem
is to seek inspiration from the SRCNN pipeline where an
initial high resolution image is first obtained using bicubic
interpolation and is used as the input to 3-layer CNN which
produces the final super-resolved image. In our case, we
could use an initial image estimate obtained using one of
the many iterative approaches and then use the network to
refine it to produce the final reconstruction. Although this
is straightforward conceptually, the question of how many
iterations of the algorithm to run to get the initial image
estimate is hard to answer. While increasing the number of
iterations improves the initial estimate, it also increases the
run-time, thus moving away from the goal of fast imple-
mentation. On the other hand, too few iterations yield poor
estimates. Therefore, we opt for a better and a more elegant
solution – to use a fully connected layer at the beginning in
order map the CS measurement vector to a two-dimensional
array that may serve as an initial image estimate. However,
all the parameters of the network are learned end-to-end.
The presence of the fully connected layer, is also the main
reason why we need to operate block-wise instead of trying
to reconstruct the whole image in directly. If we were to do
the latter, the number of parameters in the fully connected
layer would be too large to store the weights and would be
very vulnerable to overfitting. We discuss alternatives to the
fully connected layer later in Section 8.

3.1 ReconNet Unit Architecture

The input to the network is a vector of size m × 1 denoted
by Φx, where Φ is the measurement matrix and x is the
vectorized image block of size n × 1 such that m << n.
In all the experiments, we set the block-size to be 33 × 33,

33
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33
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33

33
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+ ReLu

1 x 1 

Conv

+ ReLu

7 x 7 

Conv

+ ReLu33

ReconNet Unit

Fig. 2: Each ReconNet Unit consists of 3 convolutional layers
with ReLU non-linearity. Using appropriate zero-padding,
the size of each feature map is always kept constant and
equal to the block size.

(n = 1089) since this size gives a good trade-off between
reconstruction quality and network complexity.

The first layer is a fully connected layer that takes
compressive measurements as input and outputs a feature
map of size 33 × 33. This feature map is then input to a
series of ‘ReconNet units’. Each ReconNet unit consists of
three convolutional layers as shown in Figure 2. ReLU non-
linearity is employed. Using appropriate zero-padding, all
feature maps produced by all convolutional layers are set to
size 33× 33, which is equal to the block size.

The first convolutional layer uses kernels of size 11× 11
and generates 64 feature maps. The second convolutional
layer uses kernels of size 1 × 1 and generates 32 feature
maps. The third convolutional layer uses a 7× 7 kernel and
generates a single feature map. The output of the third layer
of the last ReconNet unit is also the output of the network.

Once all the blocks of an image have been reconstructed,
the entire image is input to a denoiser to reduce blocky
artifacts that arise as a result of block-wise processing. We
choose BM3D [40] as the denoiser since it is fast and yields
good results.

3.2 Training Data
Ground Truth: We uniformly extract patches of size 33×33
from 91 natural images (these are the same images used
for training in [4] and can be found on this website 2)
with a stride equal to 14 to form a set of 21760 patches.

2. mmlab.ie.cuhk.edu.hk/projects/SRCNN/SRCNN train.zip

mmlab.ie.cuhk.edu.hk/projects/SRCNN/SRCNN_train.zip


5

We retain only the luminance component of the extracted
patches (during the test phase, in order to reconstruct RGB
images, we replicate same network to recover the individual
channels). These image blocks form the desired outputs or
the ground truth of our training set. Experiments indicate
that this training set is sufficient to obtain very competitive
results compared to existing CS reconstruction algorithms.

Input data: To train our networks, we need CS measure-
ments corresponding to each of the extracted image blocks.
To this end, we simulate noiseless CS as follows. For a given
measurement rate, we construct a measurement matrix, Φ
by first generating a random Gaussian matrix of appropriate
size, followed by orthonormalizing its rows. Then, we apply
y = Φx to obtain the set of CS measurements, where x is the
vectorized version of the luminance component of an image
block. Thus, an input-label pair in the training set can be
represented as (Φx,x). We train networks for four different
measurement rates (MR) = 0.25, 0.10, 0.04 and 0.01. Since,
the total number of pixels per block is n = 1089, the number
of measurements n = 272, 109, 43 and 10 respectively.

3.3 Loss Function
In this section, we describe to two variants of ReconNet
based on the loss function used in training.

3.3.1 Euclidean Loss
The first variant of ReconNet employs the Euclidean loss i.e.,
the average reconstruction error over all the training image
blocks, given by

L(Θ) =
1

B

B∑
i=1

||f(yi,Θ)− xi||2, (4)

and is minimized by adjusting the parameters (weights
and biases) in the network, Θ using mini-batch gradient
descent with backpropagation. B is the total number of
image blocks in one batch of the training set, xi is the ith

patch and f(yi,Θ) is the network output for ith patch.
We set the batch size, B = 128 for all the networks. For
each measurement rate, we train two networks, one with
random Gaussian initialization for the fully connected layer,
and one with a deterministic initialization, and choose the
network which provides the lower loss on a validation set.
For the network with deterministic initialization, the jth

weight connecting the ith neuron of the fully connected
layer is initialized to be equal to ΦT

i,j . In each case, weights
of all convolutional layers are initialized using a random
Gaussian with a fixed standard deviation. The learning
rate is determined separately for each network using a
linear search. Through experiments, we have found that
two ReconNet units (6 convolutional layers in total) produce
good performance. Adding further ReconNet units does not
produce a significant boost in reconstruction quality and
adds to network complexity. All networks are trained on an
Nvidia Tesla K40 GPU using Caffe [41] for about a day each
even though the reconstruction errors converges quickly to
the final value within few hours. For testing, we choose
the best network by using a validation set. We refer to this
network as ReconNet (Euc), which uses Gaussian matrix for
sensing and only the Euclidean loss function.

3.3.2 Euclidean + Adversarial Loss

Here, we describe the second variant of ReconNet by
incorporating the GAN framework for CS reconstruction
similar to [27]. See Section 2.2.1 for an overview of GANs
and notation. In our case, ReconNet acts as G. We build
D that takes as input either the reconstructed block from
ReconNet (”fake”) or the desired block (”real”) and outputs
the probability of the input being a real image block. The
loss function of D is the sum of two cross-entropy losses
shown below:

LD =
1

B

B∑
i=1

(LCE(D(xi), 1) + LCE(D(G(yi)), 0)). (5)

The first loss term measures how well D is able to
classify the real images while the second loss term measures
its ability to classify the fake images generated by ReconNet,
i.e, G. Following the same notation as before, yi denotes the
ith input training CS measurement vector and xi denotes
the ground truth 33 × 33 image block associated with it.
LCE() is the cross-entropy loss commonly used in binary
classification, given by

LCE(ĉ, c) = −c log ĉ+ (1− c) log (1− ĉ) (6)

The loss for G i.e., ReconNet is a linear combination of
the Euclidean loss (from Equation 4) and the adversarial
loss:

LG =
λrec
B

B∑
i=1

||G(yi)− xi||2 +
λadv
B

B∑
i=1

LCE(D(G(yi)), 1)

(7)
The protocol for initializing and training the G portion

is the same as in the case of Euclidean loss (see Section
3.3.1). However, we use just one ReconNet unit in this case
as the reconstruction quality does not improve and also
becomes harder to train due to the presence ofD in addition
to G. Since G is fixed, the remaining hyperparameters that
need to be determined are the values of λrec, λadv and
the structure of D, which is another, much smaller, CNN.
These hyperparameters were determined by measuring the
reconstruction performance on the validation set for differ-
ent settings. We use a D with the following architecture.
It has 3 convolutional layers and each layer generates four
feature maps of size 4 × 4 filters. At the end of the third
convolutional layer, a fully connected layer maps the feature
maps to a single probability value. Dropout with probability
equal to 0.5 is used for this layer. λrec and λadv are set
to 1 and 0.0001 respectively. Adam optimizer is used for
learning [42]. The learning rates for G and D are set to
10−3 and 10−5 respectively and the momentum is set to
0.9. The training of these networks is done in an alternating
fashion using TensorFlow [43]. We update ΘG twice for
every update of ΘD since this leads to faster convergence.
Training is carried out for 105 iterations which means that
ΘG are updated 2 × 105 times and ΘD are updated 105

times. We refer to this network as ReconNet (Euc + Adv),
which uses Gaussian matrix for sensing and the Euclidean
+ adversarial loss function.



6

4 SYNTHETIC EXPERIMENTS

In this section, we conduct extensive experiments on sim-
ulated CS data, and compare the performance of ReconNet
with state-of-the-art CS image recovery algorithms, both in
terms of reconstruction quality and time complexity.

Baselines We compare both variants of our algorithm de-
scribed in Section 3 with three iterative CS image recon-
struction algorithms, TVAL3 [44], NLR-CS [18] and D-AMP
[21]. We use the code made available by the respective
authors on their websites. Parameters for these algorithms,
including the number of iterations, are set to the default
values. Since the reconstruction is performed block-wise,
blocky artifacts arise. We use BM3D [40] denoiser to reduce
these artifacts since it gives a good trade-off between time
complexity and reconstruction quality. The code for NLR-
CS provided on author’s website is implemented only for
random Fourier sampling. The algorithm first computes an
initial estimate using a DCT or wavelet based CS recovery
algorithm, and then solves an optimization problem to get
the final estimate. Hence, obtaining a good estimate is criti-
cal to the success of the algorithm. However, using the code
provided on the author’s website, we failed to initialize the
reconstruction for random Gaussian measurement matrix.
Similar observation was reported by [21]. Following the
procedure outlined in [21], the initial image estimate for
NLR-CS is obtained by running D-AMP (with BM3D de-
noiser) for 8 iterations. Once the initial estimate is obtained,
we use the default parameters and obtain the final NLR-CS
reconstruction.

We also compare with [32] which presents an SDA
based non-iterative approach to recover from block-wise CS
measurements. Here, we compare our algorithm with our
own implementation of SDA, and show that our algorithm
outperforms SDA.

For fair comparison, we denoise the image estimates
recovered by baselines as well. The only parameter to be
input to the BM3D algorithm is the estimate of the standard
Gaussian noise, σ. To estimate σ, we first compute the
estimates of the standard Gaussian noise for each block in
the intermediate reconstruction given by σi =

√
||yi−Φxi||2

m ,
and then take the median of these estimates.

4.1 Reconstruction of simulated CS data

For our simulated experiments, we use a standard test set of
11 grayscale images, compiled from two sources 3 4. Figure 3
shows the test images. We conduct both noiseless and noisy
block-CS image reconstruction experiments at four different
measurement rates 0.25, 0.1, 0.04 and 0.01. We train two sets
of networks – The first set of networks is ReconNet Variant 1
trained with just Euclidean loss. The second set is ReconNet
variant 2 trained with Euclidean + adversarial loss.

Reconstruction from noiseless CS measurements
For a given test image, to simulate noiseless block-wise CS,
we first divide the image into non-overlapping blocks of size

3. https://web.archive.org/web/20160403234531/http://dsp.rice.
edu/software/DAMP-toolbox

4. http://see.xidian.edu.cn/faculty/wsdong/NLR Exps.htm

33× 33, and then compute CS measurements for each block
using Equation 1. For each measurement rate, the sensing
matrix used is the same random Gaussian measurement
matrix as was used to generate the training data for the
network corresponding to this measurement rate in Section
3.2. The PSNR values in dB for both reconstructions before
passing through the denoiser (indicated by w/o BM3D) as
well as final denoised versions (indicated by w/ BM3D) for
all the measurement rates are presented in Table 1. It is clear
from the PSNR values that both variants of our algorithm
outperforms traditional reconstruction algorithms at low
measurement rates of 0.1, 0.04 and 0.01. Also, the degrada-
tion in performance with lower measurement rates is more
graceful. Further, in Figure 4, we show the final reconstruc-
tions of parrot and house images for various algorithms at
measurement rate of 0.1 compared to ReconNet (Euc). From
the reconstructed images, one can notice that our algorithm,
as well as SDA, are able to retain the finer features of the
images while other algorithms fail to do so. NLR-CS and
DAMP provide poor quality reconstruction. Even though
TVAL3 yields PSNR values comparable to our algorithm, it
introduces undesirable artifacts in the reconstructions.

For visual comparison between ReconNet (Euc) and
ReconNet (Euc + Adv), see first and second columns of
Figure 6. We observe that at higher measurement rates of
0.25 and 0.10, there is improvement in reconstruction of the
test set with ReconNet (Euc + Adv) over ReconNet (Euc)
both in terms of PSNR (∼1 dB increase) and visual quality.
The reconstructed blocks are sharper than those obtained
in the case of Euclidean loss. At lower measurement rates of
0.04 and 0.01, the PSNR values decrease for ReconNet (Euc +
Adv) when compared to ReconNet (Euc). However, we can
observe that more detail is preserved and the reconstructed
images tend to be sharper when adversarial loss is used, in
all cases.

Performance in the presence of noise:

We demonstrate that our algorithm is robust to Gaussian
noise by performing reconstruction from noisy CS measure-
ments. We use ReconNet (Euc) for all the experiments here
and we expect the same trends to follow for other variants
as well. We perform this experiment at three measurement
rates - 0.25, 0.10 and 0.04. We emphasize that we do not
train separate networks for different noise levels but use
the same networks as used in the noiseless case. In order
to simulate the noisy CS process, we add standard ran-
dom Gaussian noise of increasing standard deviation to the
noiseless CS measurements (from the previous section) of
each block. In each measurement rate, we test the algorithms
at three levels of noise corresponding to σ = 10, 20, 30
(3.9%, 7.8% and 11.7% of the dynamic range (0-255) respec-
tively), where σ is the standard deviation of the Gaussian
noise distribution. The reconstructions obtained from the
algorithms are denoised using BM3D. The mean PSNR for
various noise levels for different algorithms at different
measurement rates are shown in Figure 5. It can be observed
that our algorithm beats all other algorithms at high noise
levels. This shows that the method proposed in this paper is
extremely robust to all levels of noise.

https://web.archive.org/web/20160403234531/http://dsp.rice.edu/software/DAMP-toolbox
https://web.archive.org/web/20160403234531/http://dsp.rice.edu/software/DAMP-toolbox
http://see.xidian.edu.cn/faculty/wsdong/NLR_Exps.htm
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(a) Boats (b) Barbara (c) Cameraman (d) Foreman (e) House (f) Lena

(g) Monarch (h) Peppers (i) Parrots (j) Fingerprint (k) Flintstones

Fig. 3: Standard test set images. Note that all images are of size 256 × 256 ( 64 non-overlapping 33 × 33 blocks) except
Fingerprint and Flintstones which are 512× 512 ( 256 non-overlapping 33× 33 blocks)

Ground Truth
Parrot

House

NLR-CS
PSNR: 14.1562 dB

PSNR: 14.7976 dB

TVAL3
PSNR: 23.1616 dB

PSNR: 26.3154 dB

D-AMP
PSNR: 21.6421 dB

PSNR: 24.7059 dB

SDA
PSNR: 22.3468 dB

PSNR: 26.0677 dB

Ours
PSNR: 23.2287 dB

PSNR: 26.6573 dB

Fig. 4: Comparison of reconstruction performance of various algorithms in terms of PSNR (in dB) and visual quality at MR
= 0.1 and no noise for Parrot and House images. Clearly, our algorithm outperforms all the iterative algorithms. SDA also
yields competetive results. The zoomed in portions show that finer structures are better retained in our case.

4.2 Gains in Time Complexity

In addition to competitive reconstruction quality, for our
algorithm without the BM3D denoiser, the computation is
real-time and is about 3 orders of magnitude faster than tra-
ditional reconstruction algorithms. To this end, we compare
various algorithms in terms of the time taken to produce
the reconstructions of a 256 × 256 image from noiseless CS
measurements at various measurement rates. For traditional
CS algorithms, we use an Intel Xeon E5-1650 CPU to run
the implementations provided by the respective authors.
For ReconNet, we report computational time for both the
CPU implementation of Caffe on Intel Xeon E5-1650 as
well as the GPU implementation on an inexpensive mid-
range Nvidia GTX 980 GPU. Note that, for our algorithm,
we use a network with two ReconNet units. The average
time taken for the all algorithms of interest are given in

table 2. Depending on the measurement rate, the time taken
for block-wise reconstruction of a 256 × 256 on the GPU
for our algorithm is about 145 to 390 times faster than
TVAL3, 1400 to 2700 times faster than D-AMP, and 14782
to 15660 times faster than NLR-CS. In the case of CPU
implmenation, the speed-ups are 5.6 to 15 times faster, 52.9
to 105.2 times faster and 569 to 600 times faster compared
to TVAL3, D-AMP and NLR-CS respectively. It is important
to note that the speedup achieved by our algorithm is not
solely because of the utilization of the GPU. It is because
unlike traditional CS algorithms, our algorithm being CNN
based relies on much simpler convolution operations, for
which very fast implementations exist. More importantly,
the non-iterative nature of our algorithm makes it amenable
to parallelization. SDA, also a deep-learning based non-
iterative algorithm shows significant speedups over tradi-
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Image
Name Algorithm MR = 0.25 MR = 0.10 MR = 0.04 MR = 0.01

w/o BM3D w/ BM3D w/o BM3D w/ BM3D w/o BM3D w/ BM3D w/o BM3D w/ BM3D

Monarch

TVAL3 [44] 27.77 27.77 21.16 21.16 16.73 16.73 11.09 11.11
NLR-CS [18] 25.91 26.06 14.59 14.67 11.62 11.97 6.38 6.71
D-AMP [21] 26.39 26.55 19.00 19.00 14.57 14.57 6.20 6.20

SDA [32] 23.54 23.32 20.95 21.04 18.09 18.19 15.31 15.38
ReconNet
(Euc) [8] 24.31 25.06 21.10 21.51 18.19 18.32 15.39 15.49

ReconNet
(Euc + Adv) 25.83 25.16 21.74 21.94 17.81 18.05 13.99 14.14

Fingerprint

TVAL3 22.70 22.71 18.69 18.70 16.04 16.05 10.35 10.37
NLR-CS 23.52 23.52 12.81 12.83 9.66 10.10 4.85 5.18
D-AMP 25.17 23.87 17.15 16.88 13.82 14.00 4.66 4.73

SDA 24.28 23.45 20.29 20.31 16.87 16.83 14.83 14.82
ReconNet

(Euc) 25.57 25.13 20.75 20.97 16.91 16.96 14.82 14.88

ReconNet
(Euc + Adv) 26.19 24.49 21.21 21.08 16.97 16.67 14.78 14.89

Flintstones

TVAL3 24.05 24.07 18.88 18.92 14.88 14.91 9.75 9.77
NLR-CS 22.43 22.56 12.18 12.21 8.96 9.29 4.45 4.77
D-AMP 25.02 24.45 16.94 16.82 12.93 13.09 4.33 4.34

SDA 20.88 20.21 18.40 18.21 16.19 16.18 13.90 13.95
ReconNet

(Euc) 22.45 22.59 18.92 19.18 16.30 16.56 13.96 14.08

ReconNet
(Euc + Adv) 24.98 24.38 20.57 20.36 16.71 16.85 13.84 14.02

House

TVAL3 32.08 32.13 26.29 26.32 20.94 20.96 11.86 11.90
NLR-CS 34.19 34.19 14.77 14.80 10.66 11.09 4.96 5.29
D-AMP 33.64 32.68 24.84 24.71 16.91 17.37 5.00 5.02

SDA 27.65 27.86 25.40 26.07 22.51 22.94 19.45 19.59
ReconNet

(Euc) 28.46 29.19 26.69 26.66 22.58 23.18 19.31 19.52

ReconNet
(Euc + Adv) 30.28 30.92 26.37 27.19 22.00 22.58 18.93 19.17

Mean
PSNR

TVAL3 27.84 27.87 22.84 22.86 18.39 18.40 11.31 11.34
NLR-CS 28.05 28.19 14.19 14.22 10.58 10.98 5.30 5.62
D-AMP 28.17 27.67 21.14 21.09 15.49 15.67 5.19 5.23

SDA 24.72 24.55 22.43 22.68 19.96 20.21 17.29 17.40
ReconNet

(Euc) 25.54 25.92 22.68 23.23 19.99 20.44 17.27 17.55

ReconNet
(Euc + Adv) 27.11 26.90 23.22 23.48 19.65 20.00 16.66 16.90

TABLE 1: PSNR values in dB for four test images as well as the mean PSNR values for the entire test set using different
algorithms at different measurement rates. At low measurement rates of 0.1, 0.04 and 0.01, both variants of our algorithm
yields superior quality reconstructions than the traditional iterative CS reconstruction algorithms, TVAL3, NLR-CS, and
D-AMP. It is evident that the reconstructions are very stable for our algorithm with a decrease in mean PSNR of only 8.37
dB as the measurement rate decreases from 0.25 to 0.01, while the smallest corresponding dip in mean PSNR for classical
reconstruction algorithms is in the case of TVAL3, which is equal to 16.53 dB. The supplement contains additional results.

tional algorithms at all measurement rates.
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Fig. 5: The figure shows the degradation of performance
of various algorithms as the measurement rate and noise
level in the CS measurements are increased. Our algorithm
exhibits a more graceful trend compared to the iterative
apporaches and outperforms them at low MRs and high
noise levels.

Algorithm MR=0.25 MR=0.10 MR=0.04 MR=0.01
TVAL3 2.943 3.223 3.467 7.790

NLR-CS 314.852 305.703 300.666 314.176
D-AMP 27.764 31.849 34.207 54.643

ReconNet (CPU) 0.5249 0.5258 0.5284 0.5193
ReconNet (GPU) 0.0213 0.0195 0.0192 0.0244

SDA (GPU) 0.0042 0.0029 0.0025 0.0045

TABLE 2: Time complexity (in seconds) of various algo-
rithms (without BM3D) for reconstructing a single 256×256
image. By taking only about 0.02 seconds at any given
measurement rate, ReconNet can recover images from CS
measurements in real-time, and is 3 orders of magnitude
faster than traditional reconstruction algorithms.

5 EFFICIENT TRAINING STRATEGY FOR NEW
MEASUREMENT MATRIX

In Section 3.2, a new network was trained from scratch
for each MR. However, it may not be practical to train a
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entirely new network just to operate a slightly different MR
or with a different Φ at the same MR. In this section, we
show that for a new Φ of a desired measurement rate, one
does not need to train the network from scratch, and that
it may be sufficient to follow a suboptimal, yet effective
and computationally light training strategy outlined below,
ideally suited to practical scenarios.

We adapt the convolutional layers (C1-C6) of a pre-
trained network for the same or slightly higher MR, hence-
forth referred to as the base network, and train only the first
fully connected (FC) layer with random initialization for
1000 iterations (or equivalent time of around 2 seconds on
a Titan X GPU), while keeping C1-C6 fixed. The network
used here is ReconNet (Euc) and we expect similar trends
for other variants. The mean PSNR (without BM3D) for the
test set at various MRs, the time taken to train models and
the MR of the base network are given in Table 3. From the

New Φ MR 0.1 0.08 0.04 0.01
Base network MR 0.25 0.1 0.1 0.25
Mean PSNR (dB) 21.73 20.99 19.66 16.60

Training Time (seconds) 2 2 2 2

TABLE 3: Networks for a new Φ can be obtained by training
only the FC layer of the base network at minimal computa-
tional overhead, while maintaining comparable PSNRs.

table, it is clear that the overhead in computation for new
Φ is trivial, while the mean PSNR values are comparable to
the ones presented in Table 1. One can obtain better quality
reconstructions at the cost of more training time if C1-C6
layers are also fine-tuned along with FC layer.

6 LEARNING THE MEASUREMENT MATRIX

Until now we have considered CS reconstruction where
the measurements are acquired with a predefined sensing
matrix – a random Gaussian matrix. However, with a small
addition to the the ReconNet framework, we show that it is
possible to jointly, in a single network, learn the measure-
ment matrix (Φ) as well as the reconstruction algorithm.
The earlier framework describes a network that map the
input CS measurements to the output image block. Here,
we attach an additional fully connected layer in the front
that maps an input image of size 33 × 33 to a vector of
dimension m. Thus the input-desired output pair in the
training set is (x,x). This can be seen as a variation of the
autoencoder, with the constraint in the architecture that the
”encoder” part of the network must be a single linear layer.
This constraint arises because of the nature of the single
pixel camera which can only capture linear projections of the
scene. After training, the weights of the first fully connected
layer correspond to the (locally) optimal measurement ma-
trix, and the all the following layers form the reconstruction
network.

As before, we train two sets of networks: ReconNet (Euc,
learn Φ) – jointly learning Φ and reconstruction algorithm
using only Euclidean loss and ReconNet (Euc + Adv, learn
Φ) – jointly learning Φ and reconstruction algorithm using
Euclidean + adversarial loss. The training set consists of
21760 image patches from the same set of 91 images. Since
we are learning Φ as well as the reconstruction network,
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Fig. 6: The figures show reconstruction results for the
“Parrot” and “house” images at two measurement rates of
0.1 and 0.04 from measurements obtained using different
variants of ReconNet. We can clearly observe that learning
the measurement matrix as well as using adversarial loss
while training produce superior quality reconstruction (both
independently and together) at both measurement rates
when compared to the basic version of ReconNet. MM refers
to the measurement matrix.

each image patch in the training set forms both the input
and the desired output image patch. Table 4 shows the mean
PSNR obtained on the test set using variants of ReconNet
with the learned Φ compared to ReconNet with the random
Gaussian Φ. We observe a significant gain in terms of PSNR
at the lower measurement rates – 2.83 dB, 3.15 dB and
2.17 dB at MR = 0.10, 0.04 and 0.01 respectively without
using adversarial loss. With adversarial loss, the gains are
3.25 dB, 3.33 dB and 2.4 dB at MR = 0.10, 0.04 and 0.01
respectively. Figure 6 illustrates the differences in visual
quality obtained for the Parrot and House images at two
different measurement rates of 0.1 and 0.04 for all four
variants of ReconNet. Clearly, more detail is preserved in
the case of learned Φ and using adversarial loss further
sharpens reconstructions.

7 RECONSTRUCTION OF REAL DATA FROM COM-
PRESSIVE IMAGER

The previous section demonstrated the superiority of our
algorithm over traditional algorithms for simulated CS mea-
surements. Here, we show that our networks trained on sim-
ulated data can be readily applied for real world scenario
by reconstructing images from CS measurements obtained
from our block SPC. We compare our reconstruction results
with other algorithms.
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Loss function and
Measurement Matrix Type

MR = 0.25 MR = 0.10 MR = 0.04 MR = 0.01
w/o BM3D w/ BM3D w/o BM3D w/ BM3D w/o BM3D w/ BM3D w/o BM3D w/ BM3D

Euclidean
with Gaussian Φ

25.54 25.92 22.68 23.23 19.99 20.44 17.27 17.55

Euclidean + Adversarial
with Gaussian Φ

27.11 26.90 23.22 23.48 19.65 20.00 16.66 16.90

Euclidean
with learned Φ

26.59 26.44 25.51 25.73 23.14 23.51 19.44 19.74

Euclidean + Adversarial
with learned Φ

30.53 29.42 26.47 25.94 22.98 23.00 19.06 19.31

TABLE 4: This table shows the mean reconstruction PSNR on the test set for different variations of ReconNet i.e., with
different loss functions and measurement matrices (Φ). We see that the PSNR improves significantly at all measurement
rates when a the measurement matrix is changed from a Gaussian matrix to a jointly learned one (Section 6). We also
observe that at higher measurement rates of 0.25 and 0.10, using adding adversarial loss to Euclidean loss (7) while
training improves PSNR by about 1 dB in the case of a Gaussian Φ and about 3 dB when Φ is learned.

7.1 Scalable Optical Compressive Imager Testbed

Here we employ a compressive imaging system implemen-
tation [45], [46], which is scalable with respect to field of
view and/or resolution and avoids limitations inherent in
a single-pixel implementation [2]. Scalability is achieved
via a block wise measurement approach. The compressive
imaging system is implemented via two imaging arms and
a discrete mirror device (DMD) as shown in Figure 7. The
DMD is an array of electronically controllable bi-stable mir-
rors of 10.8µm pitch, which modulates the incoming light
intensity field with 8 bits gray-scale transmission patterns.
The first arm of the system images the object or scene
onto the DMD surface, mapping in to an area of about
262 × 262 micro-mirror element (or about 2.85mm). The
second images the DMD plane onto a detector array, which
is 1/3” 640 × 480 CCD with a pixel pitch/size of 7.4µm
operating at 12-bit quantization. Given the object, the DMD
and the sensor planes that optical conjugates, the block of
modulated patterns are each mapped to a small number of
contiguous detectors whose outputs are digitally combined
to return a single measurement per block. Thus the blocks
and their mapping to group of detectors essentially behave
like parallel Single Pixel Cameras (SPC). In this architecture,
the modulation patterns on the DMD are generated by
unfolding each row of the projection matrix Φ, which are
temporally scanned to acquire all the measurements, in
parallel for all blocks.

It is important to highlight that one of the underlying
challenges of implementing such a compressive imaging
hardware is to ensure the correct calibration of the system,
i.e. to minimize the deviation from the actual physical
system measurement model to the idealized (and usually
simplified) one. With this testbed, the we have partly auto-
mated this arduous calibration process. We employ uniform
white object and display a series of known transmission
patterns on the DMD to localize and identify the pixels of
the sensor associated with a particular block. We refer to [45]
and [46] for more details about this calibration process. This
calibration process thus dynamically discovers the distorted
mapping between the DMD plane and the sensor plane and
also measures the bias and scaling non-uniformities across
the blocks. Finally, the target images are shown on a display
facing the imaging arm and the system, which are pre-
corrected for the gamma correction applied by the display
panel.

Fig. 7: Compressive imager testbed layout with the object
imaging arm in the center, the two DMD imaging arms are
on the sides.

7.2 Reconstruction experiments
We use the set up described above to obtain CS measure-
ments for each of the blocks (of size 33 × 33) in the scene.
Operating at MR’s of 0.1 and 0.04, we implement the 8-bit
quantized versions of two kinds of measurement matrices:

1) Orthogonalized random Gaussian matrices used to
train networks in Section 3.2 and Section 3.3.2

2) Learned measurement matrices, from Section 6 and
Section 3.3.2. In this case, the measurement matrices are
implemented by the camera hardware by programming
the DMD and the outputs are the CS measurements that
are fed into the second layer of the trained networks
directly.

It is to be noted that the CS measurements are input to
the corresponding networks trained on the simulated CS
measurements; no further training is done on the real
data. Using these measurements we test four variants of
ReconNet – two kinds of measurement matrices (Gaussian
or learned) and two kinds of loss functions(Euclidean or
Euclidean + Adversarial Loss). Figures 8a and 8b show the
reconstruction results MR = 0.10 and 0.04 respectively. The
first and second columns show the reconstructions obtained
using D-AMP and TVAL3 which are iterative algorithms.
The next four columns show the results obtained using
the four variants of ReconNet. It can be observed that
our algorithm (all four variants) yields reconstructions that
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preserve more detail compared to the iterative approaches,
thus demonstrating that our algorithm is robust to unseen
sensor noise. For ReconNet, learning the measurement ma-
trix improves results significantly. Using adversarial loss
in addition to Euclidean loss while training yields sharper
results as in the case of simulated CS data. Also, the degra-
dation in reconstruction quality when measurement rate is
reduced is less in the case of ReconNet than the iterative
algorithms.

8 REDUCING MEMORY FOOTPRINT WITH CIRCU-
LANT LAYERS

A drawback of the architecture presented in Section 3.1 is
the large size of the first fully connected (FC) layer that maps
the CS measurements to a 2D array. As a numerical example,
consider ReconNet operating at an MR = 0.1 with a block
size of 33 × 33. Then, the FC layer contains 109 ∗ 1089 =
118701 weights. By comparison, the rest of the layers are
all convolutional and contain a total of 22720 parameters. In
this section, we discuss ways to reduce the complexity of
this layer.

In inference applications using deep learning such as
image recognition, CNN architectures usually employ one
or two fully connected layers at the end to map the convo-
lutional feature maps to probability distributions over the
class labels. Depending on the size of the feature maps,
the number of classes etc., these FC layers tend to be large
(relative to the rest of the network). Recent research has
shown that we can reduce the complexity of these layers
from O(d2) to O(d) without any loss in performance. One
particular paper is that of Cheng et al [47] which replaces
the fully connected layer – represented by a weight matrix
without any constraints on the weights – with a circulant
layer where the weight matrix is constrained to be circu-
lant matrix. They proceed to show that in spite of a large
reduction in the number of parameters, the performance of
the network largely remains the same and in some cases,
even performs better! They also discuss how to efficiently
compute the output of such a layer using FFTs. In this paper,
we propose this layer as an alternative for the first fully
connected layer.

A circulant matrix C ∈ Rd×d is completely defined by a
vector c = (c0, c1, ..., cd−1) as follows:

C = circ(c) =


c0 cd−1 . . . c2 c1
c1 c1 . . . c3 c2
...

...
. . .

...
...

cd−1 cd−2 . . . c1 c0

 . (8)

It can be shown that for an input x ∈ Rd, the output
y ∈ Rd of a circulant layer can be computed efficiently using

y = Cx = c ~ x = F−1(F(c) ◦ F(x)), (9)

where ~ represents circular convolution and ◦ is the
element-wise multiplication operator. F and F−1 repre-
sent Fourier and inverse Fourier transforms respectively.
We have implemented this layer in TensorFlow [43] which
computes the gradients using automatic differentiation.

In our case, the input vector x ∈ RM has a dimension
less than that of the output of the first layer which is a vector

with dimension equal to the number of pixels (N ) in the
block. Thus, in order to use the circulant layer instead of an
FC layer, we will append N −M zeros to each input x and
hence, C ∈ RN×N and c ∈ RN. Therefore, the number of
weights in the first layer of ReconNet can be reduced from
MN to N by employing a circulant layer instead of an FC
layer. For MR = 0.10, this corresponds to a 99.1% reduction
in parameters for the first layer.

However, for higher measurement rates, this leads to
significant under-fitting since the number of trainable pa-
rameters becomes small. We observed empirically that we
can increase the reconstruction quality by using multiple
circulant layers as the first layer instead of just one. At the
output of the first layer, we have multiple feature maps from
the circulant layers which are combined into a single tensor.
Thus, the convolutional layer that follows this layer must
be modified. If the number of circulant layers is γ, then
each filter in the following convolutional layer are of size
11 × 11 × γ. This is only a modest increase in parameters
for this layer compared to the 11 × 11 × 1 filters which we
would need in the case of a fully connected layer or a single
circulant layer.

We evaluate this by training networks at four measure-
ment rates using ReconNet (Euc) as the network architec-
ture. We increased the number of circulant layers from 1
to a value γ such that the reduction in the parameters of
the first layer is no less than 95% when compared to using
a fully connected layer at the same measurement rate. The
training and testing sets are same as in the previous sections.
Table 5 shows the mean PSNR obtained for the test set using
ReconNet using circulant layer instead of an FC layer. We
observe that the reduction in PSNR is within 2 dB at most
measurement rates even with 95% reduction in parameters
of the first layer.

9 REAL-TIME HIGH LEVEL VISION USING COM-
PRESSIVE IMAGERS

It is now clear that our CS reconstruction algorithm is non-
iterative, real-time and capable of producing good quality
reconstruction results, over a broad range of measurement
rates. In this section, we demonstrate that despite the ex-
pected degradation in PSNR as the measurement rate is de-
creased to an extremely low value of 0.01 (10 measurements
for a 33×33 block), our algorithm still yields reconstructions
where rich semantic content is still retained. As stated
earlier, in many resource-constrained inference applications
the goal is to acquire the least amount of data required to
perform effective high-level image understanding.

To demonstrate how CS imaging can applied in such
scenarios, we present an example proof of concept real-
time high level vision application - object tracking. To this
end, we simulate frame-wise video compressive imaging
at measurement rates of 0.01 and 0.10 by obtaining block
CS measurements of each frame on 15 publicly available
videos [48] (BlurBody, BlurCar1, BlurCar2, BlurCar4, Blur-
Face, BlurOwl, Car2, CarDark, Dancer, Dancer2, Dudek,
FaceOcc1, FaceOcc2, FleetFace, Girl2) used to benchmark
tracking algorithms. Then, we perform object tracking on-
the-fly as we recover the frames of the video using all the
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Fig. 8: The figure shows reconstruction results for 2 images whose measurements are collected using our block SPC. The
results are for two measurement rates (a) 0.10 and (b) 0.04. The iterative methods in first and second columns use a
Gaussian Φ. The next four columns shows the reconstructions obtained using different variants of ReconNet based on
the loss function used in training and whether or not Φ was learned. “MM” and Φ both stand for measurement matrix,
“Euc Loss” stands for Euclidean loss and “Adv Loss” stands for adversarial loss. Clearly, all variants of ReconNet perform
better than both TVAL3 and D-AMP. Both learning the measurement matrix and using adversarial loss tend to make
reconstructions sharper and less noisy.

variants of ReconNet without the denoiser. For object track-
ing we use a state-of-the-art algorithm based on kernelized
correlation filters [49]. We call this pipeline, ReconNet+KCF.
For comparison, we conduct tracking on original videos as
well. We use the default values of the tracking algorithm in
all cases. Figure 9 shows the average precision curve over
the 15 videos, in which each datapoint indicates the mean
percentage of frames that are tracked correctly for a given
location error threshold. Using a location error threshold of
20 pixels, the average precision over 15 videos for variants of
ReconNet+KCF at MR = 0.01 is between 68.14% and 77.46%.
At MR = 0.10, we obtain impressive tracking performance
between 79.49% and 84.89 % for different variants. By com-
parison, tracking on the original videos yields an average
precision value of 84.9%. Learning the measurement matrix

gives a significant boost of about 8 and 5 percentage points
at MR = 0.01 and 0.10 respectively.

The effect of loss function is more nuanced. Euclidean +
Adversarial loss seems to decrease tracking performance at
MR = 0.10 with any measurement matrix and at MR = 0.01
with a Gaussian measurement matrix by about 3 percentage
points over a large range of location error thresholds when
compared to just Euclidean loss. However, we observe
the opposite in the case of MR = 0.01 using a learned
measurement matrix. Here, Euclidean + Adversarial loss
outperforms Euclidean loss by about 3 percentage points.
ReconNet + KCF operates at around 10 Frames per Second
(FPS) for a video with frame size of 480× 720 to as high as
56 FPS for a frame size of 240× 320.
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MR No. of
Circulant Layers

% Reduction in Parameters
in the First Layer

Mean PSNR using circulant layers Mean PSNR using an FC layer
without BM3D with BM3D without BM3D with BM3D

0.25 1 99.63 20.92 21.31 25.54 25.9213 95.22 23.52 23.89

0.10 1 99.08 20.3 20.71 22.68 23.235 95.41 21.24 21.65

0.04 1 97.67 18.83 19.18 19.99 20.442 95.34 19.11 19.48
0.01 1 90 16.51 16.77 17.27 17.55

TABLE 5: Comparison of mean PSNR (in dB) of reconstruction of the test set using a one or more circulant layers instead
of a fully connected layer as the first layer of ReconNet. We see that the reduction in PSNR using circulant layers is within
2 dB even with 95% reduction in parameters in the first layer. (The entries in the last two columns are from Table 1)
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Fig. 9: The figure shows the variation of average precision with location error threshold for ReconNet+KCF and original
videos. Clearly, semantic content required for object tracking is retained even in reconstructions at MR = 0.01

10 CONCLUSION

In this paper we have described ReconNet – a non-iterative
algorithm for CS image reconstruction based on CNNs. The
advantages of this algorithm are two-fold – it can be easily
implemented while making it 3 orders of magnitude faster
than traditional iterative algorithms essentially making re-
construction real-time and it provides excellent reconstruc-
tion quality retaining rich semantic information over a large
range of measurement rates. We have also discussed novel
ways to improve the basic version of our algorithm. We have
proposed learning the measurement matrix jointly with the
reconstruction network as well as training with adversarial
loss based on recently popular GANs. In both cases, we have
shown significant improvements in reconstruction quality
over a range of measurement rates. Using the ReconNet +
KCF pipeline, efficient real-time tracking is possible using
CS measurements even at a very low measurement rate
of 0.01. This also means that other high-level inference
applications such as image recognition can be performed us-
ing a similar framework i.e., ReconNet + Recognition from
CS measurements. We hope that this work will generate
more interest in building practical real-world devices and
applications for compressive imaging.

APPENDIX A
ADDITIONAL RESULTS

In Table 1, we presented the peak signal to-noise ratio
(PSNR) values for 4 of the 11 test images. Here, the PSNR
values (in dB) for the remaining 7 test images for various
measurement rates are presented in Table 6. In Figure 6,
reconstructions using the 4 variants of our algorithm for 2
test images were shown. The reconstructions of 8 additional
images are shown in Figure 10.
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Image
Name Algorithm MR = 0.25 MR = 0.10 MR = 0.04 MR = 0.01

w/o BM3D w/ BM3D w/o BM3D w/ BM3D w/o BM3D w/ BM3D w/o BM3D w/ BM3D

Parrot

TVAL3 [44] 27.17 27.24 23.13 23.16 18.88 18.90 11.44 11.46
NLR-CS [18] 26.53 26.72 14.14 14.16 10.59 10.92 5.11 5.44
D-AMP [21] 26.86 26.99 21.64 21.64 15.78 15.78 5.09 5.09

SDA [32] 24.48 24.36 22.13 22.35 20.37 20.67 17.70 17.88
ReconNet
(Euc) [8] 25.59 26.22 22.63 23.23 20.27 21.06 17.63 18.30

ReconNet
(Euc + Adv) 27.14 27.63 23.52 23.94 20.67 21.11 17.69 17.97

Barbara

TVAL3 24.19 24.20 21.88 22.21 18.98 18.98 11.94 11.96
NLR-CS 28.01 28.00 14.80 14.84 11.08 11.56 5.50 5.86
D-AMP 25.89 25.96 21.23 21.23 16.37 16.37 5.48 5.48

SDA 23.19 23.20 22.07 22.39 20.49 20.86 18.59 18.76
ReconNet

(Euc) 23.25 23.52 21.89 22.50 20.38 21.02 18.61 19.08

ReconNet
(Euc + Adv) 23.78 23.46 20.91 21.00 19.00 19.50 16.91 17.23

Boats

TVAL3 28.81 28.81 23.86 23.86 19.20 19.20 11.86 11.88
NLR-CS 29.11 29.27 14.82 14.86 10.76 11.21 5.38 5.72
D-AMP 29.26 29.26 21.95 21.95 16.01 16.01 5.34 5.34

SDA 26.56 26.25 24.03 24.18 21.29 21.54 18.54 18.68
ReconNet

(Euc) 27.30 27.35 24.15 24.10 21.36 21.62 18.49 18.83

ReconNet
(Euc + Adv) 27.72 26.93 23.68 23.60 19.84 20.18 16.80 17.02

Cameraman

TVAL3 25.69 25.70 21.91 21.92 18.30 18.33 11.97 12.00
NLR-CS 24.88 24.96 14.18 14.22 11.04 11.43 5.98 6.31
D-AMP 24.41 24.54 20.35 20.35 15.11 15.11 5.64 5.64

SDA 22.77 22.64 21.15 21.30 19.32 19.55 17.06 17.19
ReconNet

(Euc) 23.15 23.59 21.28 21.66 19.26 19.72 17.11 17.49

ReconNet
(Euc + Adv) 25.11 25.20 21.94 22.18 19.58 19.95 17.09 17.37

Foreman

TVAL3 35.42 35.54 28.69 28.74 20.63 20.65 10.97 11.01
NLR-CS 35.73 35.90 13.54 13.56 9.06 9.44 3.91 4.25
D-AMP 35.45 34.04 25.51 25.58 16.27 16.78 3.84 3.83

SDA 28.39 28.89 26.43 27.16 23.62 24.09 20.07 20.23
ReconNet

(Euc) 29.47 30.78 27.09 28.59 23.72 24.60 20.04 20.33

ReconNet
(Euc + Adv) 31.26 32.17 27.42 28.31 23.09 23.76 18.74 19.08

Lena

TVAL3 28.67 28.71 24.16 24.18 19.46 19.47 11.87 11.89
NLR-CS 29.39 29.67 15.30 15.33 11.61 11.99 5.95 6.27
D-AMP 28.00 27.41 22.51 22.47 16.52 16.86 5.73 5.96

SDA 25.89 25.70 23.81 24.15 21.18 21.55 17.84 17.95
ReconNet

(Euc) 26.54 26.53 23.83 24.47 21.28 21.82 17.87 18.05

ReconNet
(Euc + Adv) 27.99 27.65 24.35 24.65 20.61 21.11 17.51 17.83

Peppers

TVAL3 29.62 29.65 22.64 22.65 18.21 18.22 11.35 11.36
NLR-CS 28.89 29.25 14.93 14.99 11.39 11.80 5.77 6.10
D-AMP 29.84 28.58 21.39 21.37 16.13 16.46 5.79 5.85

SDA 24.30 24.22 22.09 22.34 19.63 19.89 16.93 17.02
ReconNet

(Euc) 24.77 25.16 22.15 22.67 19.56 20.00 16.82 16.96

ReconNet
(Euc + Adv) 27.90 27.90 23.68 24.09 19.84 20.29 16.93 17.16

TABLE 6: PSNR values in dB for 7 test images using different algorithms at different measurement rates. At low
measurement rates of 0.1, 0.04 and 0.01, both variants of our algorithm yields superior quality reconstructions than the
traditional iterative CS reconstruction algorithms, TVAL3, NLR-CS, and D-AMP.
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Fig. 10: The figures show reconstruction results for the some test images at two measurement rates of 0.1 and 0.04 from
measurements obtained using different variants of ReconNet. We can clearly observe that learning the measurement matrix
as well as using adversarial loss while training produce superior quality reconstruction (both independently and together)
at both measurement rates when compared to the basic version of ReconNet. MM refers to the measurement matrix.
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