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Abstract

We present a novel algorithm for high resolution coherent imaging of sound sources
in random scattering media using time resolved measurements of the acoustic pressure
at an array of receivers. The sound waves travel a long distance between the sources and
receivers so that they are significantly affected by scattering in the random medium.
We model the scattering effects by large random wavefront distortions, but the results
extend to stronger effects, as long as the waves retain some coherence i.e., before the
onset of wave diffusion. It is known that scattering in random media can be mitigated
in imaging using coherent interferometry (CINT). This method introduces a statistical
stabilization in the image formation, at the cost of image blur. We show how to modify
the CINT method in order to image wave sources that are too close to each other to
be distinguished by CINT alone. We introduce the algorithm from first principles and
demonstrate its performance with numerical simulations.

Keywords— Wave scattering in random media, coherent interferometric imaging, array
imaging.

1 Introduction

Coherent array imaging is an important technology in radar [10], sonar [15], seismic imaging
[2], photoacoustic imaging [16], medical imaging with ultrasound [I§], and so on. We focus
attention on passive array imaging, where a collection of N, receivers record waves generated
by N, unknown sources. The receivers are located at points @, € A, forr = 1,..., N,, where
A is the array aperture, assumed for convenience to be planar and square, of side a, as shown
in Figure [l The unknown sources are located at points ¥, € D, where D is the imaging
region, a bounded set with center at distance L from the array, in the direction orthogonal
to the aperture, called the range direction. The coordinates in the plane orthogonal to this
direction are called cross-range coordinates. We let D be a rectangular prism with square
cross-section of side D in the cross-range plane, satisfying L > a > D, and side D3 in the
range direction, satisfying L > Dj3. These scaling relations are typical in most imaging
applications.
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Array of Receivers

Figure 1: Imaging setup with an array of receivers that is planar square of side a. The
range direction is orthogonal to the array aperture. The unknown sources are in the imaging
region, a rectangular prism with size D3 in range and D in cross-range.

The waves are modeled by the pressure p(t, &), the solution of the equation
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for £ € R? and t € R, with zero initial conditions on p(t, %) and d;p(t, ) at time ¢ prior to
the source excitation. The variable wave speed
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models the heterogeneous medium consisting of a homogeneous background with constant
wave speed ¢, and numerous weak inhomogeneities of size O(¢), commonly referred to as
clutter. Because these inhomogeneities are unknown in imaging, they introduce uncertainty
in the wave propagation, modeled in equation by the dimensionless random process p of
dimensionless argument. We assume that p is stationary, and bounded almost surely. It has
zero mean, and autocorrelation

(3)

& — |
2 Y

7%@—£3=MM®Mfﬂ=wp}

where E[-] denotes expectation with respect to the distribution of . The Gaussian expression
of R, is chosen for convenience, but the results extend to any integrable autocorrelation
function. The scale £ is called the correlation length and o < 1 quantifies the small amplitude
of the fluctuations of ¢(&).

The imaging problem is to determine the source locations {ys}1<s<n, from the measure-
ments {p(t, Z,)}r=1._n,



1.1 Related work

Each inhomogeneity in clutter is a weak scatterer by itself since ¢ < 1, but cumulative
scattering builds up over long ranges. Mathematically, this manifests in the exponential
decay of the coherent wave E[p(¢, )] and the increase of the fluctuations p(¢, €) — E[p(t, Z)].
The range scale S of decay of the coherent wave is the scattering mean free path [19].
When L < &, the cumulative scattering effects are negligible. Much of the imaging
literature considers this case, and coherent methods known as reverse time migration [2],
matched filtering or backprojection [10} I3] work well. They are based on the data model

p(t, &) = polt, @) + W(t, &), r=1,....N,, (4)

where p,(t, &,) is the solution of equation (/1)) with constant wave speed ¢,, and W (¢, &,) is
additive noise with some statistics, assumed uncorrelated over the receivers. In the simplest
form, the imaging function is
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where
(&, Y) = |&, — y|/co (6)

is the travel time from the imaging point ¥y to the receiver at @,. The image is robust to
additive noise, and it peaks in the vicinity of the source locations, with cross-range resolution
O(A,L/a) and range resolution O(c,/B), where A\, = 2mc¢,/w, is the central wavelength of the
waves, calculated in terms of the central frequency w,, and B is the bandwidth of the source
signals. Better resolution can be achieved using convex, sparsity promoting optimization, if
the noise is not too strong, and the sources are separated by more than \,L/a in cross-range
and ¢,/B in range, see e.g., [12, 8, [6].

The imaging problem is much more difficult when L > S, because the array measure-
ments are significantly affected by scattering in clutter and are no longer approximated by
the model . If the range L is so large that it exceeds the transport mean free path 7", which
is the scale that marks the onset of wave diffusion [19], coherent imaging cannot succeed.
We assume an intermediate regime 7 > L > S, where coherent imaging is still possible.
Such imaging must involve statistical stabilization with respect to the uncertainty of clutter,
so that the estimates of the source locations are insensitive to the particular realization of
the random medium (clutter) in which the imaging takes place.

Statistical stability can be obtained with the coherent interferometric (CINT) approach
[, 3], which forms images using the cross-correlations
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where the star denotes complex conjugate. These are calculated around the time ¢, in a
time window modeled by the function ® of dimensionless argument and O(1) support. The
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parameter €2 is adjustable and it should be similar to €24, the frequency offset over which the
waves decorrelate in the random medium [19, 4]. Because the waves also decorrelate over
directions of arrival, only cross-correlations at nearby receivers are useful. Thus, CINT uses
a spatial windowing function ¥ of dimensionless argument and O(1) support to ensure that
the receivers in (7)) are at distance |&, — &,/| < X, with adjustable parameter that optimally
equals the decorrelation length [4]. This scale is proportional to the wavelength, but typically
B < w,, so the decorrelation length X, is approximately constant in the bandwidth. The
CINT imaging function is

7= Y v(ELE)

ror/=1
C(f(jraa_':r’ay_))a?(fryerg))frajr’)v (8)
where
— = — — 1 — — — —
T(wv‘a mT’) y) - 5 [T(w’f'ﬂ y) + T(w7/7 y)] Y

?(fTu ﬁ?"’) :'j) - T(:ﬁra g) - T<£7",7 g)

It is statistically stable with respect to the realizations of the random medium if 2 < Q; < B
and X < X; < a, meaning that its expectation near the peaks is much larger than the
standard deviation [3]. Moreover, these peaks are in the vicinity of the source locations
with resolution O(\,L/X) in cross-range and O(c,/€?) in range. These resolution limits are
similar to those in homogeneous media, except that the aperture size a and bandwidth B
are replaced by the windowing parameters X and ). These are necessarily smaller than a
and B to have statistical stability, so the images are blurrier.

It is shown in [7] that the resolution of CINT images may be improved using convex
optimization. However, this requires detailed knowledge of the blurring kernel i.e., prior
calibration. The deblurring also works best when the sources are separated by distances
larger than \,L/X in cross-range and ¢,/) in range, in the sense that if this is not so, there
is no guarantee of unique recovery of the source locations.

1.2 Contributions

In this paper we show how, by slightly modifying the CINT imaging function (), it is
possible to recover the unknown sources almost as well as in homogeneous media. Explicitly,
we show that a collection of sources that are within a blurred peak of the CINT image and are
separated by distances O(\,L/a) in cross-range and O(c,/B) in range, can be estimated up to
a translation in the support of the CINT peak. We introduce an algorithm that achieves this
result, motivate it from first principles and assess its performance with numerical simulations.

Note that although we restrict our study to passive array imaging, the results generalize
easily to active arrays that probe the medium with waves and record the echoes, in order
to determine point-like scatterers with much larger reflectivity than o, the reflectivity of the
clutter inhomogeneities. These scatterers are secondary sources of waves, which emit signals
proportional to the incident wave, so they can be viewed as the unknown sources considered



here. This is obvious in the single scattering (Born) approximation, but it extends to multiple
scattering as well, as explained in [9]. Point-like scatterers play an important role in sonar and
radar imaging because corners of targets create stronger echoes than other features. Thus,
the images are often a constellation of peaks from which target features are to be extracted
[T4]. Our algorithm can be used for this purpose in random media, because it recovers the
relative location of the corner reflectors with the same resolution as in homogeneous media.

The paper is organized as follows: In section [2] we introduce and analyze the CINT-like
imaging function. In section |3| we use this function in the source reconstruction algorithm.
We illustrate the performance of this algorithm with numerical simulations in section [4, and
conclude with a summary in section [}

2 The CINT-like imaging function

We propose a simple modification of , where instead of searching for a single point ¢ € D,
we have two search points ¥,y € D. The CINT-like imaging function
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superposes the cross-correlations @ evaluated at the ¥y, ¥’ dependent travel times

[T(£r7 g) + 7_(3_3:7"’7 37)] ) (10)
(&, 9) — 7(Lr. ). (11)

To explain why this is beneficial, we derive below the expression of Z(y, ¢’) using a random
travel time model [I7] that accounts for large, random wavefront distortions in random
media, as assumed in adaptive optics [I]. This model is convenient for the calculations and
has been used in the analysis of CINT imaging in random media in [3], [7].

As shown in the appendix [A] the calculations are based on the expression of the second
statistical moments of the pressure waves, which are qualitatively similar to those in stronger
scattering regimes [I7, [5]. Thus, the results extend verbatim to such regimes.

2.1 Setup and the random travel time model

We introduce here a few assumptions that simplify the calculations and lead to an explicit
expression of ([9).
The first assumption is that the sources emit the same pulse

1/4
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modulated at central frequency w,, with Gaussian envelope normalized so that || f|l2 = 1.
The Fourier transform of this pulse

1/2 )
Flw) = (%) exp | - ], (13)

is also a Gaussian, centered at the frequency w, and with standard deviation proportional to
B, called in an abuse of terminology the bandwidth. We assume that B < w,. In general,
the sources will not emit the same signal and moreover, the signal may not be a pulse. The
imaging algorithm in this paper applies to arbitrary f,(¢), that may even be noise-like, as
long as for nearby sources these signals are statistically correlated. This holds for example
in active array imaging, where unknown scatterers act as secondary sources of waves and
fs(t) are given by the convolution of the probing signal emitted by the array and the Green’s
function that propagate the waves in the random medium to the scatterer locations.

The second assumption is that at any given frequency w in the support of , the wave
propagation can be modeled by the Green’s function

_exp {iw[r(2,y) + o7(Z, 9)]}

G(w, %, 9) - (14)
of Helmholtz’s equation, where
07(&, y) = M/ du,u(< u)y—i—u:c)' (15)
2¢, 0 14

This is the random travel time model and we refer to [3| 7] for a detailed discussion of
its range of validity. Here it suffices to say that it holds when A\, < / < a < L and o
is sufficiently small. We also recall from [3, Lemma 3.1] that the random process is
approximately Gaussian, with mean zero and standard deviation O(ov/¢L/),).

The third assumption is that the size of the imaging region satisfies the scaling relations

Ao L
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The lower bounds in these relations are the CINT resolution limits, so this assumption en-
sures that the search domain is large enough to observe the focusing of the CINT imaging
function . We also suppose that the aperture size a and the the size of the imaging region
are sufficiently small so that the rays connecting the sources and receivers are contained
within a narrow cone of small opening angle and axis along the range direction. This as-
sumption is described in more detail in the appendix [A] and in technical terms it means that
the waves are in a paraxial propagation regime.
Finally, to carry out explicit calculations, we take the Gaussian window functions

) @th) = exp [— (?;)2}; 2 (17)
(B [ 55 o



in definitions and @D We also suppose that the receivers are spaced at O(),) distances,
so that N, = O(a?/A2?) > 1. This allows us to approximate the sums over the receivers by
integrals over the aperture A. To avoid specifying the aperture size in these integrals, we
use the Gaussian apodization

exp [ — |Z]"/(2(a/6))], €A,

which is negligible outside the disk of radius a/2.

2.2 The imaging kernel

For simplicity, we neglect additive noise in the calculations in this section, although noise is
considered in the numerical simulations in section [ As shown in the appendix [A] in the
setup described in section the imaging function @ can be written as

N
I(.9) = Y K@, ¥ ¥y, (19)
1
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with kernel K that depends on the search points 4,4’ and the locations y, and ¥y of pairs
of the unknown sources. To describe this kernel, consider the system of coordinates with
origin at the center of the array and write ¥ = (y, y3), with two dimensional vector y in the
cross-range plane and range coordinate y3. Define also the center and difference cross-range
vectors

_ y+y
y="75 y=y—-v, (20)

and the center and difference range coordinates

_ ys+ s -
3= "> 2 Us=ys — Uk (21)
Similarly, we let ¥s = (ys, ys3) and define
— Ys + Ys ~
Yssr = Ta Yss = Ys — Ys/, (22>
— Ys,3 + Ys' 3 ~
Yss' 3 = Ta Yss' 3 = Ys,3 — Ys' 3 (23)

for all s,s'=1,..., N,.
The kernel satisfies
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where ~ means of the order of, up to a multiplicative constant. We refer to the appendix
for the detailed expression of K, not just its absolute value. In we introduced the
wavenumber

ko = wo/co =21/ A,

and the positive coefficients v,v; > O(1). We also denote by €2, and X, the frequency and
length scales defined by
L + = + ! (25)
Q2 Q2 Q2 4B
1 1 1 1

M S 2
X2 X2 X2 4(a)6) (26)

Since B > Q4 and a > X, the optimal windowing choice Q = O(£4) and X = O(X,) gives
Q. = O(Qd) < B, X, = O(Xd) < a. (27)

The expression says that the imaging function peaks when the center %(g’ + 9) of
the imaging points is in the vicinity of $(¥; + ¥y), for some pair s, s’ of source indexes.
The radius of this vicinity is O(A,L/X,) in the cross-range plane and O(c,/€.) in the range
direction. This is the same as the focusing of the CINT image . The new observation is
that we can get much better estimates of the source offsets 4, — 9, with the same resolution
as in the homogeneous medium i.e., O(A\,L/a) in cross-range and O(c,/B) in range.

3 The imaging algorithm
The imaging algorithms consists of the following steps:

Step 1: Calculate the CINT image , which is the same as Z(y, y), and identify its
peaks in the search domain D. The unknown sources lie in the support of these peaks, but
they cannot be identified due to the poor resolution: O(\,L/X.) in cross-range and O(c,/$2.)
in range. To reduce the computations, it suffices to form the CINT image on a coarse mesh
with pixel size similar to these resolution limits.

Step 2: Let Z, be the location of the center of a CINT peak. Suppose that there are
ns < N, sources within this peak and denote by ) the set of their locations. We can only
expect to determine these locations up to an overall translation, so we set Z, as one point
in the constellation of ng sources. To estimate the other locations, relative to Z,, calculate
Z(Zy,y) for ¢ in the support of the CINT peak, on a refined imaging mesh with pixel size
O(XA,L/a) in cross-range and O(c¢,/B) in range. These are the resolution limits for the source
offsets in equation ([24)).

Step 3: Identify the peaks of Z(Zp, ), which are the points 2 satisfying
Z—2Z,e&), (28)

where
g(y):{gs_gs’: gsags’eya gs#y_)s/}~ (29)
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The set £()) has cardinality ns(ns — 1) in most cases, where the offset vectors ys — yy are
distinct for different pairs (s, s’), with s,8' = 1,...,ns and s # s’. Thus, Z(2p, ¥) is expected
to have N, = ng(ns — 1) peaks. This count reflects that if € € £(Y), then —€ € £()), as
well. However, there are special, unlikely cases, where different source pairs give the same
offset vectors. Thus, in general,

N, <ng(ns—1).

Step 4: From the N, peaks of Z(Z, y) estimate the set by
Et={z;-2, j=1,...,N.}. (30)

Use this set to determine the constellation of sources. For our purpose, it suffices to use the
exhaustive search algorithm given below, which is not optimal in terms of computational
est

cost. The output of this algorithm is a set Y of points ¢, so that
g(yest) — gest. (31>

Here £(Y™) is defined as in (29), with Y replaced by Y**. The vectors in Y are the
estimates of the source locations, up to the translation defined by fixing one source at Z,
and the reflection about Z,,.

Algorithm(E,Y)
Input: The sets E, and Y.
Output: Empty set or a non-empty set Vet

1. If £(Y)=E&" then

2. return Yt =Y

3. End-If

4. While £ # 0 do

5. Select the first vector € and set E = E\ {€}
6. Let ’g = 2'_:0 + €

7. If{x(Y —9)} Cc& then

8. Y’ = Algorithm(E,Y U {y})
9. If Y/ # () then

10. return Yt =Y’

11. End-If

12, End-If

13. End-While

14. return ()

3.1 Discussion

The first call of this recursive algorithm is made with the inputs £ = €% and Y = {Z,}.
When the algorithm outputs the empty set (), the search has failed. We show in the appendix
that, when noise is not an issue i.e., the offset vectors in the set £%' are the same as those
in £()), the output of the algorithm is necessarily a non empty set Y satisfying . In
practice, the testing of the equalities and the inclusion at lines 1 and 7 can be done up to
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Figure 2: Display of the realization of the fluctuations p used in the numerical results. The
abscissa is range in units of ¢ and the ordinate is cross-range in units of £.

some tolerance. In our numerical simulations we consider two vectors to be same if their
difference has cross-range and range components that are smaller than the pixel size, in
absolute value.

Note that the expression of the imaging kernel indicates that only sources at cross-
range offsets |y, —y;| < O(,/7Xg) contribute to the image Z(Zp, ¥) calculated at step 2. This
distance is at least O(\,L/X,) in our case, so all the sources supported in the CINT peak
should contribute to Z(Zy, ). In other scattering regimes it may be that X; < A\,L/X., so
the support of the CINT peak may be divided in smaller sets at step 2. The remainder of
the algorithm above can be used separately for each such set.

We already stated that we can only hope to determine the set ) of source locations up
to an overall translation, fixed by the starting point Z, and up to a reflection. This is due to
the fact that the set Y™ defined as the reflection of ) with respect to a fixed point, satisfies

EQY) = EQ).

3.2 Relation to localization

The estimation of the source locations from the set £ of offset vectors is somewhat related to
the network localization problem [20], [2I]: Let N = {ny,ns,...,n,,} denote the unknown
set of nodes of a network. Determine N from knowledge of a non-empty subset B C N of
so-called beacon nodes and the distance map 0 : N'x N — R, defined by 4(i, j) = ||n;—n;]|,
fore,7=1,...,m.

Our problem is different as follows: (1) The data are the offset vectors y; — y;» and not
just their norm. (2) We do not have access to the distance map §, we only know its image.
That is to say, for any offset vector € € £, we do not know the pair (7, j) of sources that
give y; — y; = €. (3) As explained at Step 3 in section [3| in general, we do not know the
number of sources. Only under the additional assumption that there is a unique pair of
sources that gives an offset vector € € £%', we can determine the number of sources from
the cardinality of the set £

4 Numerical results

To minimize the computational cost, we present imaging results in two dimensions, in the
plane define by the range axis and one cross-range direction. The array cross-section in this
plane is the line segment [—a /2, a/2].
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4.1 Simulations setup

The data are obtained using the model

ot &) = /_ T i Plw.2,) + W (. 2,)] (32)

oo 2T
where /W denotes additive noise and

Plw &) = f(w) Y Gw, &, 4.) (33)

is the solution of Helmholtz’s equation in the cluttered medium. The noise W is complex
Gaussian, uncorrelated over the receivers and frequencies, with mean zero and standard
deviation 5% of the maximum absolute value of . The Green’s function G is calculated
using definitions —, in the realization of the random medium displayed in Figure .
This realization is generated using random Fourier series [11], for the autocorrelation (3)).
All the length scales are relative to the correlation length ¢. The central wavelength is
A, = 1.1-107°¢, the array aperture size is a = 16/ and the range scale is L = 800¢. The
frequencies are scaled with respect to w, and the bandwidth is B = w,/5. The strength of
the fluctuations is o = 2 - 1075 and the decorrelation frequency and length defined in (43)
are {2y = 0.039w, and X; = 0.068¢. The window parameters are X = X;/3 and Q = Q4/3,
so definitions f give X, = 0.0214¢ and €2, = 0.0124w, and the decay scales in the

expression of the kernel are

L &
=0.0654¢, —> =1.4-10""
ko, X, Q. ’

L c
=88-107%, =2 =88-107%.

koa " B

The coefficient v in (24)) is
4X?
= ——— =1.025
TTAxT - X2

and vy, > 6v/2.

The images displayed in the next section are calculated on an imaging mesh with pixel
size 3.92L/(k,a) in cross-range and 0.537¢,/B in range. The axes in the plots are in units
of the CINT resolution limits.

4.2 Source reconstructions

We present in Figure [3] the results for three nearby sources. As expected, the CINT image
Z(y,y) displayed in the top left plot has a blurry peak, and cannot distinguish the sources.
The conventional image displayed in the top right plot is calculated using definition . It
has many spurious peaks and our simulations show that these peaks change unpredictably
from one realization of the random process p to another. This statistical instability is
expected, because the data are incoherent in our regime.
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Figure 3: Top row: CINT image Z(y,¥y) of three sources shown in red (left plot) and the
conventional image () (right plot). Middle row: The image Z(Z2y, y) (left plot) and the offset
vectors that define the set (right plot). Bottom row: Reconstruction of the three sources
(left plot) and reconstruction by deblurring the CINT image using convex optimization (right
plot). The abscissa is range offset with respect to the center location Z, of the CINT peak,
in units of L/(k,a). The ordinate is cross-range offset with respect to 2, in units of ¢,/B.

In the left plot of the middle row we display the image Z(Z2,,, ), with Z, at the center of
the CINT peak. Because we have n, = 3 sources supported in this peak, we observe N, = 6
peaks Zj, for j = 1,...,6. These define the set £%' defined in , with offset vectors
displayed in the right plot of the middle row. Note that for each vector € in £%' we also have
the vector —€. The reconstruction of the sources using the algorithm described in section [3]is
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shown in the bottom left plot. The reconstruction is exact up to the translation by the vector
Z,, where by exact we mean with error that is smaller than the pixel size. For comparison, we
also show in the bottom right plot the reconstruction obtained with the debluring algorithm
introduced in [7]. This algorithm is guaranteed to give a good reconstruction of the sources
when they are further apart than the CINT resolution limits. In this simulation the sources
are much closer to each other so the results are worse than those in the bottom left plot. As
predicted by the theory in [7], the reconstruction in the bottom right plot is peaked near the
source locations, but it does not show three distinct sources.

In Figure [4] we show the reconstruction of 4 sources. As in the previous example, the
sources are located in the support of the CINT peak. The image Z(Z,,y) shown in the
top right plot has one spurious peak, due to the noise. However, this can be easily filtered
out because the offset vector € € £%' corresponding to it does not have the property that
—& € £%'. The set of remaining offset vectors is displayed in the left bottom plot and the
reconstruction of the four sources is shown in the bottom right plot. The reconstruction is
exact, up to the translation by Z,.

-11.3 -59 -05 5 104 158 -11.3 59 -05 5 104 158

17 17

-17 -17 @

-50 -50
-5.9 -0.5 5 -5.9 -0.5 5

Figure 4: Top row: Left: CINT image Z(y,y) of four sources shown in red. Right: The
image Z(Zp,y). Bottom row: Left: The offset vectors that define the set . Right:
Reconstruction of the four sources. The axes are as in Figure [3]
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5 Summary

We introduced a novel algorithm for array imaging in cluttered media modeled by a random
sound speed. The algorithm is designed to work in the presence of strong scattering effects
in clutter, where the sound waves recorded at the array are incoherent i.e., their statistical
expectation is close to zero. Physically, this means that the range offset between the unknown
sources and the array is larger than the scattering mean free path in clutter. The algorithm
uses an imaging approach that is similar to the coherent interferometric (CINT) method.
CINT is known to be robust to clutter scattering effects, as long as the waves are not in
a diffusion regime i.e., for ranges less than a transport mean free path. The robustness
comes at the cost of image blur. This impedes imaging of sources at nearby locations ¥,
for s = 1,...,N,. The algorithm introduced in this paper uses the observation that the
blur affects only the estimation of the center locations (ys + ys)/2 of pairs (s, s") of sources,
whereas the offset vectors y, — ¥y can be estimated with the same resolution as in the
absence of clutter. Thus, it is possible to determine constellations of nearby sources, up to
a translation within the support of a peak of the CINT image.

We motivated the algorithm from first principles, starting with the wave equation in
random media and assessed its performance with numerical simulations. To simplify the
presentation, we considered a high frequency scattering regime defined by large, random
wavefront distortions of the waves received at the array, although as explained in the paper,
the results extend verbatim to stronger scattering regimes.

Appendix A

In this appendix we derive the expression . We begin with the solution of the wave
equation (1)) evaluated at the receiver location &, = (x,,0),

p(t, &) = /_OO e fluw ZG W, &, Ys ), (34)

o0

where we used the assumption and G is the Green’s function modeled by . This
model holds under the assumptions

VAL
0>\ N L > A, 7 (35)

as explained in [I7, B, [7]. These ensure that the waves propagate along straight rays, as
in geometrical optics, and that the random fluctuations of the amplitude of the Green’s
function are negligible. The first bound on ¢ is to have consistent assumptions on o,

Ao <<)\§/3£1/6 NoOW (36)
VIL L5/6 L’

chosen large enough to give large random travel time fluctuations, as explained in section

21
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It is shown in [7, Proposition 3.1] that the expectation of the Green’s function is

E [@( 2 @ )] e (@r Ys) gl (37)
W, L, Ys)| = —= € .
Y 47r|mr - ys|
The decaying exponential is due to the random phase, which is approximately Gaussian, and
the scattering mean free path is defined by

2
S = (2%);0202[ (38)
The lower bound on ¢ in implies that
S < L= 0|2, — i), (39)
so the wave recorded at the array is incoherent i.e.,
Efp(t, £,)] ~ 0. (40)

The kernel of the imaging function @ is obtained from equations , and ,

N, .
TR A [z, — @] dw
Ky, g.22) = le@(T>/_oo§X
/oo da@(%ﬂ *wﬁ*( &)@( &, )
o QO w 9 W=7 w T
oo 4T Q 2 2 ’
a*(w, Ty, Z)G_i(w+%)7(£r,ﬂ)+i (w—%)r(@,,g')’ (41)

where we replaced g by 2 and gy by 2, to avoid carrying over the source indexes. We use
the definitions of f, ¥ and ® given in section , and replace the sum over the receivers by
the integral over the aperture, with Gaussian apodization,

N,
s |:z:|2

N, _

E ~ = dr e 2/6)?
Cl2 2

r=1 R

A.1 Wave decorrelation and the paraxial approximation

Essentially the same calculation as in [3 Section 4] shows that the kernel is statistically
stable i.e., it is approximated by its expectation, when

X = O(Xd) < a.

The random travel time model accounts only for wavefront distortion and does not take into
consideration delay spread due to scattering. Thus, the bandwidth does not play a big role
in the statistical stability. However, in stronger scattering regimes the bandwidth is very
important [5] and statistical stability is achieved if

Q=0() < B,

15



as we assume here.
The second moment formula is derived in [7, Appendix B]

= W o N\A w o
E G(w + —,a:,z)G*(w - —,w’,Z’)
2 2
T (B E ) T (EE EE)
~ S oS ——c S
(4m)?|€ — 2|2 — 2|
1 ! 2 / / / 2 o2
— 5z (12 =22+ (' —2) (&' —z)+]z'—=|*)— 5
e 2X3 29(1’ (42)

1821 ~2||

with 7 and 7 defined in f. It decays with the frequency and cross-range offsets, due
to the decorrelation of the waves in the random medium. The decorrelation frequency and
length are

2% )\0 Qd
Qy = Xy = V30=2 4
1= oy (w@) L W, Xy ﬁz% </, (43)

where the inequalities are implied by .
As stated in section 2.1 we consider a paraxial wave propagation regime, where

2
woT (&, Z) = kol & — 2| ~ k, (z3 i %) (44)

with negligible residual
4 2

a a*Ds
— — 1. 4
O<A0L3>+O()\OL2> < (45)
Here we used the scaling relation ((16)). We also approximate the amplitude of the Green’s

functions by
1 1

inE — 2| 4L

Since the expression is large when the cross-range offsets are O(X,), we estimate

from , and that

(46)

|2 — 2| — |2 - 7

S

<1, (47)

so the decaying exponential in the second line of is approximately equal to 1.

A.2 Calculation of the imaging kernel

Because of the decorrelation of the waves over the scale Xy, it suffices to consider imaging
points at cross-range offsets |y —y’| < O(X,). Substituting the results in (41)), and using €,
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and X, defined in —, which are similar to {2; and X, we obtain that

N2 s
IC — = —* r
(0.9, % 2)~ 27T<47TL)2BCL46

|2 PO I = 1
Te (a/6)2 dwe 2X¢ 2Xd X
R2

/ do e <w2};ug> +Z*|:23*§3* w(E-g) &= y“r”Zw]X

— (z—y =12 _ 5|2
/ dwe 292—1-1 [z3_y3_w (zL y)+lz\ 2L\yl }7 (48)
—00

with center vectors (¥,7;) and difference vectors (g,ys3) defined in (20)-(21). The vectors
(Z,Z3) and (z, z3) are defined the same way, by replacing ¥ and ¥’ with 2’ and 2’ in f.
Note that in we neglect the phase terms

w (2P =19\ _ (X3
Co ( 4L =0 coL <1
g%-@—gyzo(mxd

2
— 1
Co L coL > <5

with the inequalities implied by , and .
Carrying out the Gaussian integrals in , we obtain

and

K (g g’zz')~Hexp{ i £
IR R ~ - 2 =12
29X5 2(1+ 55
2 4 2 + 2in?B/w, .
R 227;)2 Jw _H,wn}’ (49)
2(1+ Y ) B
where the amplitude factor is
B N2X2Q,
288(1,2L2<]_ + 24'9‘2)1/2(1 + 232)1/2?
and we used the positive constants # and v defined by
WX, I X2 - 3
Qc(a/6)’ ~ — 4X2 7 4
The inequality on v is implied by definition . We also introduced the notation
R
L/(k.X.)’ 6v2L/(koa)’
5 BT BT 1) - @5
Co/Qe co/Qe ’

&, RPEE - - Cp
15 e (1+5)

262

vt = ¢ +
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and

_B[. . zz-g-y Xz (2-7)
T]— ) zZ3 y3+ L +2X§ L
B¢

V2hO(1 + 2

The expression (49) simplifies, because it is large only when |v|, |S], |n] = O(1). Since

B <« w,, we can write
U2BQ

1+ ~ 1,

w3
and neglect the nv?B/w, phase, with absolute value much less than 1. We also have that |(]|
and |¢| are O(1), because v = O(1), and therefore

B B
Co

2[o(2457) o (-2
Zo(2) o)

Similarly, we obtain that

ZE-7§
L

345—@+§%E—@‘
L

B|X?z (z-79)
— € 1
o |2X3 L <5
and
B| B¢

Co

kO(1+ 52)
The definitions of 6, X, and €2, give

o-0(L) <1
a

We assume that this number is not too small, so that B/(w,f) < 1, and we can use the

results above to approximate

B _
N~ —(z3 — Us)-

(]

We can now rewrite the kernel as

12 ~  ~\2
K(g) g»l’g’ 2»/) ~ HeXp {inlrl . |Z| (Z3 ?JS)

B 29X7  2(co/B)
NiEz) - 1@l v_2}.
2co/ QP (1+55) 2
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Taking absolute value and using that

[S—
+

%|§\
[ %]

we obtain the result with v, = 64/2 <1 + %) > O(1).

Appendix B

Suppose that there exists a constellation )y of sources such that £ = £ ())). We show
here that
V' = Algorithm (£, {zb}) (51)

returns a set Y% such that

g (yest) — gest‘ (52)

Once we show that Yt £ (), it is straightforward to see from the definition of Algorithm
that must holds. It remains to show that Y is not an empty set.

For a proof by contradiction, suppose that returns Y = (). This means explicitly
that each call of Algorithm results in executing line 14. Since the set £()) of offsets is
translation invariant, let us replace the set Y = {4, ..., yn.} of source locations by the set
Yo = {20, 21,25,...,, 2,1} of translated source locations, with translation defined by Z,.
Define the vectors

€,=2,—2, k=1,...,m, m=ns—1, (53)

which belong to £¢'. Note that £ contains other offset vectors, as well. Without loss of
generality, we can assume that the vectors are enumerated in order in £°!, meaning
that €;, comes before €;,,, for k € {1,...,m —1}.

1*-Recursion: In the first call of Algorithm, the arguments are E = £ and Y = {Z,}.
Since we assume returned (), the line 14 was executed. Thus in the while loop,
each element of E is selected at line 5. In particular, at line 5, the vector € = €, is
removed from the set F, and at line 6 we have

’!j: 20+6:20+éj1 :21.
But then
{+ ({20} —9)} = {£€;,} C &
Therefore line 8 has to be executed. This will take us to the next recursion.

2"d_Recursion: At this recursion level, F contains the offset vectors €j,,...,€;,,and Y =
{20, Z1}. We note that Y C ) at every recursion level.

Once again, by assumption, line 14 was executed. Therefore, at some iteration of the
while loop, at line 5, the vector € = €}, is removed from the set £, and in line 6,

—

Yy=2p+e=2t+e,==2.
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We have
(£ -9} {0 —2)} &

since Y C ), so line 8 must be executed. This takes us to the next recursion, with E
containing the offset vectors €;,,...,€;, , and Y U{y} = {2, 21, 22}

m™—Recursion: At this recursion level, E contains the element €;, and Y = {2, Z1,..., Zn_1}.
Similar to above, we know that at some iteration of the while loop, at line 5, the vector
€ = ¢€;,, is removed from the £, and in line 6,

—

g:ZO+é: _’O—f—é'jm:gm.

Moreover
(V-9 {0 —2Zn)} &

since Y C ). Therefore line 8 has to be executed, and this take us to next recursion
with all the vectors (53] removed from E and Y U{g} = {20, 21, ..., Zm_1, Zm}-

(m + 1)th —Recursion: At this recursion level since
Y - {207217“-72171} :yo

and since £ = £ ()),), line 2 is executed and the recursion returns Y** =Y, which
is a non-empty set.

This contradicts our assumption V¢ = (). Thus, we conclude returns a non-empty Y.
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