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Abstract

Under the constraint of constant illumina-
tion, an information criterion is formulated
for the Fisher information that compressed
sensing measurements in optical and trans-
mission electron microscopy contain about
the underlying parameters. Since this ap-
proach requires prior knowledge of the sig-
nal’s support in the sparse basis, we develop
a heuristic quantity, the detective quantum
efficiency (DQE), that tracks this informa-
tion criterion well without this knowledge.
It is shown that for the investigated choice
of sensing matrices, and in the absence of
read-out noise, i.e. with only Poisson noise
present, compressed sensing does not raise
the amount of Fisher information in the
recordings above that of Shannon sampling.
Furthermore, enabled by the DQE’s analyti-
cal tractability, the experimental designs are
optimized by finding out the optimal frac-
tion of on-pixels as a function of dose and
read-out noise. Finally, we introduce a reg-
ularization and demonstrate, through simu-
lations and experiment, that it yields recon-
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structions attaining minimum mean squared
error at experimental settings predicted by
the DQE as optimal.

Keywords. Fisher information, Statistical ex-
perimental design, Poisson noise, read-out noise,
Dose limitation, Detective quantum efficiency,
Single-pixel camera, Transmission electron mi-
croscopy, ADF-STEM.

1 Introduction

Beam damage to the specimen is one of the most
fundamental limits to the data quality in electron
microscopy. In biological applications the accept-
able dose is often below ten electrons per square
ångström, no matter if one images biological macro-
molecules [1, 2, 3] or records diffraction patterns
of protein crystals [4]. Although not as severe,
beam sensitivity is an issue in materials science as
well and researchers go to great lengths to limit it
[5, 6, 7, 8]. Furthermore, with the increased occur-
rence of soft and hard matter being interfaced into
so-called hybrid materials [9] biology’s low upper
bound for the electron dose now encroaches on the
realm of materials physics too. A current trend in
scanning transmission electron microscopy (STEM)
seeks to limit electron exposure of the specimen
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by invoking compressed sensing [10] (CS) in the
recording process [11, 12, 13, 14].

For applications with photon radiation, dose lim-
itation is often a driving factor as well, for example
when using potentially hazardous X-rays for com-
puted tomography [15]. Furthermore, limiting the
recording time can be a valid goal in itself.

In CS, the signal x is retrieved from the record-
ings y that have been produced by the sensing ma-
trix A operating on x, i.e. y = Ax. Recovery of
x from a surprisingly low number of measurements
y is possible if these measurements are incoherent
[16] to the signal and a sparsity constraint can be
imposed. In general that involves expressing x in a
mathematical basis where it is sparse, for instance
many photographs are sparse in a wavelet basis.
For piecewise linear signals such an explicit decom-
position can be omitted and x can be retrieved in-
stead by expressing that its total generalized vari-
ation (TGV) must be minimal; this approach is
known as TV minimization [17].

In order to make the measurements incoherent
to the signal, sensing matrices conventionally have
zero-mean independent and identically distributed
(iid) random variables for entries. In the analysis
of the respective error bounds, noise is often not
considered, or assumed additive and/or bounded.

1.1 Contribution of this paper

In this paper it is acknowledged that in many ex-
periments the total dose on the specimen is of
greater importance than the number of measure-
ments, and hence the performance of various CS
set-ups is assessed under the constraint of constant
total illumination. In other words, we investigate
how to optimally make use of a given electron or
photon budget.

Two fundamentally different and common set-
ups are analyzed: the single-pixel set-up and an-
nular dark field STEM (ADF-STEM). These two
instances respectively represent experiments where
the illumination is caused by external sources out-
side of the scientist’s control and those where they
are in full command of the irradiation, between
them covering most practical situations.

The Fisher information that the measurements
contain about the underlying parameters is eval-
uated through the A-optimality information crite-
rion (AOC) [18, 19, 20, 21, 22]. Furthermore, a

heuristic quantity, the detective quantum efficiency
(DQE), is developed. With the aid of simulations it
is shown that the DQE tracks the AOC well. Fur-
thermore, a novel regularization is introduced and
through simulations and experiment it is empiri-
cally demonstrated that the associated reconstruc-
tions attain minimum mean squared error (MSE)
at experimental settings predicted by the DQE as
optimal.

Having established the DQE’s validity, its ana-
lytical tractability is used to show that for the in-
vestigated sensing matrices and in the absence of
read-out noise, i.e. with only Poisson noise present,
compressed sensing does not raise the amount of
Fisher information in the recordings above that of
a Shannon sampled signal. This is reflected in the
reconstruction results that yield a comparable MSE
when both data sets are treated with the same algo-
rithm to isolate the influence of the recording pro-
tocol.

Furthermore, the experimental designs are opti-
mized, i.e. the fraction of on-pixels for best recon-
struction quality is given as a function of particle
dose, read-out noise and other experimental param-
eters.

1.2 Relation to previous work

The conventional zero-mean sensing matrices in,
for instance, [17, 16] are not physically realizable
for the particle-counting experiments investigated
in this paper: the single-pixel camera and ADF-
STEM. In a pivotal paper, Raginsky [23] et al. have
shown that in that context the use of a sensing
matrix that preserves non-negativity and flux com-
bined with the non-additive and dose dependent
unbounded Poisson noise, has such a large and ad-
verse effect on the derived error bounds that they
do not even approach the conventional bounds in
the limit of high dose and the associated relatively
low noise.

CS has been analyzed from the perspective of
Fisher information and the AOC before [24, 25, 26,
27, 28, 29]. These works, however, did not consider
sensing matrices that preserve non-negativity and
flux or the non-additive and dose dependent un-
bounded Poisson noise. That doing so yields qual-
itatively different results is illustrated by the fact
that the finding in [27] that “the estimation accu-
racy [degrades] by at least the down-sample factor”
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is reproduced in this work when just read-out noise
is considered, but not when only Poisson noise is
taken into account.

1.3 Organization of the paper

This paper is organized as follows. The image for-
mation of ADF-STEM and the single-pixel cam-
era is treated in Sec. 2; the basics of compressed
sensing pertaining to our problem are dealt with in
Sec. 3; in Sec. 4 Fisher information and the A-
optimality information criterion are explained and
the application of statistical experimental design to
the compressed sensing set-ups is developed; the re-
sults are reported and discussed in Secs. 5 and 6;
and in Sec. 7 the conclusions are drawn.

2 Image formation

In this section the image formation for the single-
pixel camera and ADF-STEM is established.

2.1 Single-pixel camera

A way of realizing a single-pixel camera [30] is by
projecting an image onto an array of switchable
mirrors located in the image plane of an objective
lens whose conjugate plane contains a photon de-
tector on the optical axis; see Fig. 1 for a sketch of
the setup. Each of the mirrors in the array can be
switched on or off, and fractional on-values can be
obtained by tuning the pixels’ on-time.

The linear image formation model is given as

E(y) = IAx, (1)

where the measurement vector y has M elements,
the two-dimensional object is written in long-vector
format as x and has N elements, the sensing matrix
A has dimensions M × N and Iµ is the average
number of photons reflecting off each of the object’s
pixels, with µ the average of x and E denoting the
expectation value. Although not treated explicitly
in this work, it is worthwhile noting that I depends
on N through I ∝ 1/N , thus expressing that a
finite number of photons must be budgeted over
the N pixels.

Two distinct choices for A are investigated in this
paper:

Figure 1: (a): In the single-pixel camera the scene
is projected onto an array of switchable mirrors,
and the reflected light is focused onto the single-
pixel detector. (Sketch after [31]) (b): In ADF-
STEM an electron probe is scanned over the ob-
ject, and electrons scattered to higher angles are
integrated in an annular detector in the far-field.

PIXDi: each mirror in the array has a chance
p to provide the discrete value v of 1 (“on”)
and a chance 1− p to provide 0 (“off”);

PIXFr: each mirror has a chance p to provide
a fractional value v drawn from a uniform dis-
tribution on [0, 1], and a chance 1−p to provide
0.

This approach allows the value for p to be opti-
mized. Since the single-pixel camera is to be eval-
uated for a constant recording time, the elements
of A corresponding to on-pixels are set to v/M and
those corresponding to off-pixels to 0, expressing
that a constant expected total number of photons
NIµ is reflecting off the object. Note that although
the number of photons impinging on the sample is
constant, the recorded number of photons scales
with p.

The pixel-by-pixel raster scan, or Shannon sam-
pling, is obtained with sensing matrix PIXDi when
p is set to 1/N and the matrix A is diagonal with
M = N . The subsequent reconstruction of the im-
age under the application of a sparsity constraint
then comes down to denoising.

The case of Gaussian distributed values in the
sensing matrix is not considered in this paper. It
is trivial to adapt the conventional zero-mean bi-
nary and uniformly distributed values to the non-
negative distributions considered here: shifting the
distributions’ mean accomplishes this without in-
troducing distortions to the distributions. A mere
translation is not sufficient for the Gaussian dis-
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tribution however, its non-boundedness implies ad-
ditional clipping of remaining negative values and
too-high positive values. The latter is necessary be-
cause a finite recording time sets an upper limit on
the value of an on-pixel. The analysis needed to
separate the influence of such a distortion from the
influence of the mere non-negativity falls outside of
the scope of this work.

2.2 ADF-STEM

For ADF-STEM the electron beam is condensed
onto the specimen and scanned across it. For each
beam position an annular detector in the far-field
integrates the electrons scattered to its surface; see
Fig. 1. Although analyzing the resulting gray val-
ues in terms of the specimen’s chemical composition
[32] is important, it is not the subject of this work
and is hence not treated or attempted. Instead the
signal x is taken as the expected detector output
for a certain beam position.

The image formation model is again given by (1),
and these choices of A are investigated:

ADFCS: A’s elements are switched on with
a probability p and given a value of 1/(pN),
off-pixels are set to 0;

ADFSh: A is N × N with only the diagonal
elements non-zero and equal to M/N .

These two matrices allow comparison under equal
dose in the recordings since they yield an expected
total dose in y of MIµ, corresponding to an average
of Iµ and IMµ/N per individual measurement for
sensing matrices ADFCS and ADFSh, respectively.

Note that in ADF-STEM the operator has direct
control over the delivered dose through the beam
intensity, dwell time and beam-blanking at will so
that all electrons that scatter from the object and
that could in principle be detected, actually are de-
tected and contribute to the signal y; this recording
mode is fundamentally different from the single-
pixel case.

Sensing matrix ADFCS is analogous to the single-
pixel set-up and can be experimentally realized
through fast beam deflection as detailed in [12, 13];
matrix ADFSh represents a classic raster scan, or
Shannon scan, with a total intensity matched to the
CS case. A special case of ADFCS is obtained by
equating p to 1/N and corresponds to sampling the

specimen in M randomly selected points. This is
known as inpainting [33] and its treatment here is
motivated by the interest it currently receives from
various research groups [11, 12].

2.3 Noise models

Since both imaging techniques are essentially par-
ticle counting experiments (photons or electrons)
the measurements yi follow a Poisson probability
density distribution

(IAix)
yi

yi!
exp (−IAix) (2)

with Ai the ith row of A. This Poisson distribution
has mean and variance IAix.

In the case the recording device is not perfect it
could add read-out noise. To keep the problem an-
alytically tractable the Poisson distribution is ap-
proximated with a normal distribution with mean
and variance IAix, and the read-out noise is mod-
eled as normal additive noise with zero mean and
variance c. Since both contributions are indepen-
dent their variances add, yielding

1√
2π (IAix+ c)

exp

(
− (yi − IAix)

2

2 (IAix+ c)

)
(3)

as distribution for yi.
The approximation of a Poisson distribution as

a Gaussian is of great practical value in the the-
oretical analysis but needs some justification. In
practice, the actual noise properties are rarely truly
Poisson; the Poisson distribution is itself an approx-
imation to the real system, and this provides some
latitude to choose a more mathematically conve-
nient approximate model.

For example, in ADF-STEM, the detection is in-
direct such that the signal produced by each elec-
tron is a random variable, and the aggregated sig-
nal yields a probability distribution that scales as
Poisson but is not actually Poisson for several rea-
sons. First, the distribution is continuous, not dis-
crete. Second, the constant of proportionality be-
tween the signal and the variance is in general not
unity. The effect of this calibration factor on the
results in this article is nothing more than a trivial
rescaling factor. Third, the readout noise also con-
tributes, especially at low signal levels where it can
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be dominant. Thus, in the very regime where the
Poisson distribution is most poorly approximated
by a Gaussian, the dominant noise contribution is
in fact Gaussian.

Since much of CS literature considers read-out
noise only it is investigated in this paper too. The
noise is assumed normal and additive with zero
mean and variance c, so that yi is drawn from the
distribution

1√
2πc

exp

(
− (yi − IAix)

2

2c

)
. (4)

3 Compressed sensing

In compressed sensing (CS) under-determined or
ill-posed problems are alleviated by regularization
of the solution. In general a basis is defined in
which the solution is expected to be sparse, and
regularizing then means finding that solution with
minimal `1-norm in said basis.

An explicit decomposition can be avoided in the
special case of piecewise linear objects x with the
aid of Hessian regularization [34, 33]. To this end
the total generalized variation (TGV) is defined as,

TGV(x) =
∑
k

|sk| , with s = Hx, (5)

where sk is the Laplacian in xk, calculated approxi-
mately by the operator H which implements a con-
volution with the kernel0 1 0

1 −4 1
0 1 0

 . (6)

This approach is often used in inpainting [33].
The signal x can then be retrieved by solving the

constraint optimization problem

min
x

TGV(x) s.t. IAx = y. (7)

However, solving this system with exact compliance
to the constraint leads to overfitting and a solution
that cannot be considered very sparse anymore. In-
stead, a constraint is stated that can be obeyed
exactly without overfitting and can be complied
with by minimizing an augmented Lagrangian [35]
through an alternating direction scheme [36, 37, 38]

min
x

TGV(x) s.t. lnL(y|x) = E (lnL(y|x)) . (8)

lnL is the log-likelihood of the measurements y con-
ditional on the model parameters x. More details
and the equivalence to a convex optimization prob-
lem are shown in App. A. The encouraging results
and close correspondence of this choice of regular-
ization to the behavior predicted by the DQE are
presented in this paper as empirical results.1

Although not needed for solving (8), an explicit
transformation

x = Gs, (9)

is necessary for our analysis, changing the image
formation model from (1) into

E(y) = IAGs. (10)

Since s is computed through a convolution with
kernel (6), the inverse operator G can be obtained
by transforming to Fourier space, inverting, zeroing
the dc-component and transforming back to real
space. As this resets the mean value to 0, s is
extended by one element containing the mean, and
the appropriate column is appended to G; similarly,
a corresponding row is appended to H as well.

4 Statistical experimental de-
sign

In this section the Fisher information matrix, the
A-optimality criterion (AOC) and the detective
quantum efficiency (DQE) of the various measure-
ment schemes are discussed.

4.1 Fisher information matrix

The Fisher information [39, 20] I quantifies how
much information the measurements y contain
about the unknown parameters s that model it. In
this section and in Sec. 4.2 the signal support is
assumed known, i.e. only the non-zero elements of
s are retained. The Fisher information is defined as
the negative expectation value of the curvature of
the measurements’ log-likelihood function lnL(y|s)

Ik,`(s) = −E

[
∂2lnL(y|s)
∂sk∂s`

]
. (11)

1The MATLAB implementation of this algorithm,
sparseElnL, is made freely available (https://github.com/
woutervandenbroek/sparseElnL).
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If the measurements yi are drawn from the inde-
pendent distributions pi(yi|s), then

L(y|s) =
∏
i

pi(yi|s). (12)

For the problems at hand, the distributions pi
are given by the noise distributions in (2), (3) and
(4). Working out (11) while taking (9) into account
yields

Ik,`(s) = I
∑
i

[AG]i,k[AG]i,`
[AG]is

(13)

for the Poisson distribution in (2),

Ik,`(s) = I
∑
i

[AG]i,k[AG]i,`
[AG]is+ c/I

(
1+

1

2I ([AG]is+ c/I)

) (14)

for the case in (3) with Poisson and read-out noise,
and

Ik,`(s) =
I2

c

∑
i

[AG]i,k[AG]i,` (15)

for read-out noise only, as described in (4).
In order to calculate I(s), all zero entries of s

are removed, as are the corresponding columns of
G and rows of H. It can be seen immediately from
(9) that this does not affect the image formation.

4.2 Information criterion

In statistical experimental design experiments are
set up so as to maximize a measure of the informa-
tion the recordings contain about the unknown pa-
rameters that model them. This requires compres-
sion of the information matrix into a single number,
a so-called information criterion, that then is opti-
mized with respect to the experimental settings (p
in this paper).

For this work, the oft-used A-optimality is cho-
sen. It is the trace of the inverse of the information
matrix, divided by the number of unknowns, K,

AOC = tr
(
I(s)−1

)
/K. (16)

Although various choices are possible, in [40] it is
noted that “[A] design that is optimal for a given

model using one [...] criteri[on] is usually near-
optimal for the same model with respect to [...]
other criteria.”

A-optimality has the added advantage that in
case of unbiased estimators it serves as the lower
bound on the mean squared error. It is possible
to attain this instance of the so-called Cramér Rao
lower bound [18, 19, 20] in practice; most notably
by a maximum likelihood estimation from a suffi-
cient number of measurements [20]. Nevertheless,
one must keep in mind that foremost AOC is a
statement about the information contained in the
measurements, independent of any estimation algo-
rithm. In view of the fact that the regularized esti-
mates produced in CS are generally biased, the in-
terpretation as a lower bound on the mean squared
error is only of secondary importance in this con-
text.2

4.3 Detective quantum efficiency

Rigorous as the AOC is, it lacks generality in this
context as it must be calculated for a particular
sparsifying basis, example object x and realization
of A. The latter problem can be countered by av-
eraging over multiple realizations of A, although
this exacerbates an already demanding computa-
tion. Furthermore, it requires knowledge of the sig-
nal support and no analytical relation between the
imaging system’s settings and the reconstruction
quality AOC is provided.

In order to gain insight, the detective quantum
efficiencies (DQE) of the various CS setups are in-
troduced. While conventionally the DQE charac-
terizes noise properties of imaging devices [41, 42],
it is slightly generalized here in order to character-
ize the recording set-up as a whole,

DQE = α
SNR2

out

SNR2
in

. (17)

SNRout and SNRin are the signal-to-noise ratios of
the recorded signal and the incoming signal, respec-
tively. The prefactor α reflects the different num-
ber of measurements in both cases, hence α = M/N
for sensing matrices PIXDi, PIXFr and ADFCS, and
α = 1 for sensing matrix ADFSh. More details are
provided in App. B.

2The MATLAB implementation of these calculations,
sparseAOC, is made freely available (https://github.com/
woutervandenbroek/sparseAOC).
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Table 1: DQEs for Various Sensing Matrices and
Noise Models.

Sensing Noise model

matrix Poisson Poisson + read-out read-out

PIXDi
1−p
N

p(1−p)
pN+rγ

p(1−p)
rγ

PIXFr
2/3−p/2

N
p(1/3−p/4)
pN/2+rγ

p(1/3−p/4)
rγ

ADFCS
1−p
pN

1−p
pN

1
1+γ′

1−p
pN

1
γ′

ADFSh 1 1
1+γ′/r

r
γ′

The SNR is defined as the ratio of the stan-
dard deviation of the signal to the standard de-
viation of the noise. For SNRout this is calculated
as the recorded signal y, while for SNRin we use
the best possible hypothetical reference signal al-
lowed by Poisson noise given the number of avail-
able particles. In case of the single-pixel camera
this constitutes the signal that would be obtained
with an ideal detector in lieu of each of the mirrors
in the image plane, while for ADF-STEM it means
spreading out the available dose over all pixels in
the image; the respective expressions are (44) and
(45).

Since the DQE is calculated from y instead of s
knowledge of the support does not come into play.
Although more heuristic than the AOC, the DQE
is more general as s enters its expression through
the average µ of x only, and is independent of the
particular realization of A and only depends on the
variance of A’s elements.

The results are summarized in Table 1, where the
new variables

r =
M

N
, γ =

cN

Iµ
and γ′ =

c

Iµ
, (18)

have been used. r is the reduction, and γ and γ′

the normalized variances of the read-out noise.

Note how the last column of the first two rows
of Table 1 reproduces the N/M dependency of the
AOC presented in Eq. 21 in [27] for read-out noise
without Poisson statistics.

5 Results

With the aid of simulations a good agreement be-
tween AOC and DQE is demonstrated. Further-
more, reconstructions from a variety of simulated
single-pixel set-ups and from an ADF-STEM ex-
periment show close correspondence between MSE
and DQE. This justifies the use of the DQE to
derive optimal experimental settings and to deter-
mine when a CS set-up is preferable over a denoised
Shannon scan.

5.1 Agreement between DQE and
AOC

The agreement between DQE and AOC for single-
pixel camera and ADF-STEM is evaluated under
the assumption of three different noise models:
Poisson noise only, Poisson noise and read-out noise
and read-out noise only.

5.1.1 Single-pixel

Two distinct single-pixel set-ups are investigated:
PIXDi where the mirrors in the array take on dis-
crete values of either 0 or 1, and PIXFr where they
take a fractional value between 0 and 1.

The test sample x is the 100 × 100 Ramp-Discs
phantom, displayed in Fig. 2, yielding N = 10000.
The intensities lie in the interval [0.1, 1] to better
mimic realistic experimental conditions; µ = 0.53
and σ = 0.18. The sparse vector s has approx-
imately N/10 non-zero elements and M is set to
double that value, i.e. 2000, to arrive at a reduc-
tion r of 20%. The relative read-out noise γ is set
to 625 and I = 7.5× 105, ensuring that popt = 0.10
and that a CS-measurement with sensing matrix
PIXDi, p = 0.01 and combined Poisson and read-
out noise has a SNR2

out of 10 as calculated with
(46).

The results for Poisson noise only are depicted
in Fig. 3. Predictions by DQE−1 agree well with
the AOC, except for very low p for sensing matrix
PIXFr.

For these simulation settings the optimal value
popt for the case of simultaneous Poisson and read-
out noise is 0.10 for PIXDi and 0.16 for PIXFr as
given by (21) and (23) respectively. In Fig. 4 it is
shown how AOC and DQE−1 coincide for a wide
range of p.
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Figure 2: (a): The 100×100 Ramp-Discs phantom
with gray values in the interval [0.1, 1.0]. (b): The
absolute values of the Laplacian.

Figure 3: DQE−1 and AOC vs. the fraction of on-
pixels for the single-pixel set-up for Poisson noise
only.

Figure 4: DQE−1 and AOC vs. the fraction of on-
pixels for the single-pixel set-up for simultaneous
Poisson and read-out noise. The values for p are
logarithmically spaced to better sample the region
for low p.

The results for read-out noise only are depicted
in Fig. 5. For both sensing matrices, PIXDi and
PIXFr, DQE−1 and AOC agree well; yielding an
optimum at 0.50 and 0.67, respectively.

5.1.2 ADF-STEM

The CS implementation of ADF-STEM, sensing
matrix ADFCS, is tested for all three noise mod-
els.

Simulations are carried out on the 100 × 100
Ramp-Discs phantom displayed in Fig. 2. The
simulation parameters are identical to those in
Sec. 5.3.1, except that γ′ has been set to 0.5 and
I = 2.5×104 so that the ADFCS-measurement with
p = 0.01 and combined Poisson and read-out noise
has a SNR2

out of 10.

The values for DQE−1 are compared to AOC in
Fig. 6. A least absolute differences fit is used to
scale both curves to each other, and an excellent
agreement can be observed.

5.2 Agreement between DQE and
MSE

In this section Monte Carlo simulations and exper-
iments are presented to illustrate that the settings
predicted by the DQE as optimal do yield recon-
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Figure 5: DQE−1 and AOC vs. the fraction of on-
pixels for the single-pixel set-up for just read-out
noise.

Figure 6: DQE−1 and AOC vs. the fraction of on-
pixels for sensing matrix ADFCS. All noise models:
Pss stands for Poisson noise, rd-t for read-out noise.

structions with minimal mean squared error (MSE)
when regularized with the lnL = E(lnL) constraint
in Sec. 3.

5.2.1 Monte Carlo simulations

Single-pixel and ADF-STEM CS-measurements of
the Ramp-Discs phantom were simulated with the
same settings as in Sec. 5.1.1. Poisson noise and
additive normal noise were added to the recordings
as needed. For each value of p ten measurements
were simulated with different realizations of sensing
matrix and noise. As starting guess

AT y

I〈A〉2NM
(19)

with a slight perturbation was used, where 〈A〉 de-
notes the average of all elements of A.

The MSEs were calculated with respect to the
original phantoms and their averages plotted as a
function of p along with the sample standard de-
viation. A first order least squares fit was used to
match DQE−1 to MSE. That, contrary to Sec. 5.1,
a mere scaling does not suffice for a good agree-
ment is an indication of the general biasedness of
regularized estimators.

The results for the single-pixel camera with dis-
crete mirror values (PIXDi) in the presence of Pois-
son noise and read-out noise are presented in Fig.
7. The optimization ran for 50 iterations, with 10
subiterations for step 1; see App. A. The MSEs
show the same characteristic optimum for p = 0.10
as above. The DQE−1 matches the MSE well and
predicts the minimum.

The results for the single-pixel set-up with frac-
tional mirror values (PIXFr) in the presence of just
read-out noise are presented in Fig. 8. The opti-
mization ran for 100 iterations, with 10 subitera-
tions for step 1. The MSEs show the same char-
acteristic optimum at about 0.67 as above. The
DQE−1 matches the MSE well and can hence be
used to predict the optimal experimental settings.

In Fig. 9 results for the single-pixel camera with
discrete on-values (PIXDi) in the presence of just
Poisson noise are presented. The optimization ran
for 50 iterations, with 10 subiterations for step 1.
Despite systematic deviations, the DQE−1 shows
the same characteristic monotonic increase as the
MSE and hence predicts the optimal settings well.
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Figure 7: DQE−1 and MSE vs. the fraction of
on-pixels for the single-pixel camera with discrete
on-values (PIXDi) with Poisson noise and read-out
noise. The values of p are spaced logarithmically
to sample the region around the optimum better.
Compare to the results in Fig. 4.

Figure 8: DQE−1 and MSE vs. the fraction of
on-pixels for the single-pixel camera with fractional
on-values (PIXFr) for read-out noise only. Compare
to the results in Fig. 5.

Figure 9: DQE−1 and MSE vs. the fraction of
on-pixels for the single-pixel set-up with discrete
on-values (PIXDi) for Poisson noise only. Compare
to the results in Fig. 3.

Ten values for p were chosen, equidistantly
spaced from 0.01 to 0.90. To avoid purely numerical
difficulties, the variable γ was set to 0.05 so that ac-
cording to (21) the optimal value for p equals 0.001,
i.e. ten times smaller than the lowest value encoun-
tered. This makes the ratio between the terms c
and IAx in constraint (33) of the order of 10−4 for
p = 0.01; for higher p the ratio is even smaller.

5.2.2 Experimental ADF-STEM

A gold nanorod was imaged in a FEI Titan3 mi-
croscope operating in STEM mode at 300 kV. An
image x0 with 256× 256 pixels was raster scanned
with an intensity I0 = 3.9× 103. After application
of a 3 × 3 median filter, it served as ground truth
to compute the MSE of the reconstructions; see
Fig. 10.a. Then, a 256 × 256 image x1 was raster
scanned with an intensity of I1 = 1.1 × 102; see
Fig. 10.b. At a standard deviation

√
c of 0.32 e−

and 0.43 e− for x0 and x1, respectively, the read-
out noise was small, and this experiment exhibits
almost pure Poisson noise.

Ten sensing matrices of type ADFCS were con-
structed with p = 1/N and M ranging from N/10
to N in steps of N/10. This corresponds to an
inpainting set-up with a fraction r of M/N pix-
els available. From x1 and these ten matrices, ten
measurements y1 were synthesized.

10



Figure 10: Experimental ADF-STEM data. (a)
Ground truth image x0. (b) Image x1. (c) Re-
construction from M = N/10 measurements, with
p = 1/N . (d) Reconstruction from M = N mea-
surements with p = 1/N , i.e. a denoising.

The DQE for this set-up is calculated as laid
out in App. B. However, since in this case the
measurements are not taken at equal dose, (44)
must be used for SNR2

in instead of (45); resulting
in DQE = M/N .

Again constraint (33) was used for the recon-
structions. The starting guesses were set according
to (19). The reconstructions ran for 200 iterations,
with 10 subiterations for step 1. In Figs. 10.c and
10.d results are shown for M = N/10 and M = N .
Profiles over the central vertical line of the recon-
structions are contrasted with the measurements
in Fig. 11 to allow visual assessment of the recon-
struction quality .

For calculation of the MSEs, the reconstruc-
tions were registered to x0 and the intensities were
matched by a linear least squares fit to x0. The
resulting MSEs are depicted in Fig. 12 where they
are shown to match well with DQE−1 after a linear
transformation has been applied to the latter.

Figure 11: Profiles and measurements for the cen-
tral vertical line of the reconstructions in Fig. 10,
for M/N = 0.1 and M/N = 1.

Figure 12: After a linear transformation, the
DQE−1s match well to the MSEs of the reconstruc-
tions from the experimental ADF-STEM data.
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Table 2: Optimal Values for p for Various Sensing
Matrices and Noise Models. See also (20) and (22).

Sensing Noise model

matrix Poisson Poisson + read-out read-out

PIXDi 1/N
√
rγ/N 1/2

PIXFr 1/N 4√
6

√
rγ/N 2/3

ADFCS 1/N 1/N 1/N

ADFSh n.a. n.a. n.a.

5.3 Main results: DQE analysis

In this section optimal values popt for p are derived
from the DQE; the results are summarized in Table
2. Furthermore, the DQE’s analytical tractability
is deployed to investigate if the denoising of a Shan-
non scan is preferable over a full CS set-up, and
under what circumstances this might be the case.

5.3.1 Single-pixel camera

In the presence of just Poisson noise the DQE de-
creases monotonically with p, thus suggesting that
the optimal value is the minimum 1/N , which de-
fines an inpainting set-up. In the case of Poisson
noise and read-out noise, the optimal value is ob-
tained by equating the derivative of DQE with re-
spect to p to zero, yielding

popt =
rγ

N

(√
1 +

N

rγ
− 1

)
, (20)

'
√
rγ

N
, for

√
rγ

N
� 1, (21)

for sensing matrix PIXDi. For sensing matrix PIXFr

it holds that,

popt = 2
rγ

N

(√
1 +

2

3

N

rγ
− 1

)
, (22)

' 4√
6

√
rγ

N
, for

√
rγ

N
� 1. (23)

For just read-out noise an optimal value of 1/2 is
reached for PIXDi, and 2/3 for PIXFr. See Table 2

The DQE for the Shannon case is derived by set-
ting p = 1/N and r = 1 in the expression for PIXDi

with simultaneous Poisson and read-out noise (Ta-
ble 1, first row, second column), yielding

DQESh =
1

N(1 + γ)
. (24)

The CS set-up is treated for low read-out noise
by evaluating the DQE in the respective optimal
values for p (21):

DQECS '
1

N
, for

√
rγ

N
� 1. (25)

It is thus shown that in the absence of read-out
noise (γ = 0), with only Poisson noise present, a
CS recording contains the same amount of Fisher
information as a Shannon scan.

In the limit of strong read-out noise (large γ)
popt in (20) approaches 1/2, and a lower bound is
obtained by filling out p = 1/2 in the expression
for the DQE:

DQElb
CS =

1

2N + 4rγ
. (26)

From this it follows that if γ exceeds (1−4r/N)−1 '
1, a CS reconstruction is preferred since then
DQElb

CS > DQESh. In the limit of strong read-out
noise the condition γ > 1 is met by construction.

Reconstructions from simulations following the
settings in Sec. 5.1.1 were carried out to test the
dependence of the MSE on the relative read-out
noise γ on CS recordings and Shannon scans. The
optimization ran for 50 iterations, with 10 subitera-
tions for step 1. For CS, γ was varied from 10−1 to
105, and following (20) p was set to popt with values
varying from 0.0014 to 0.45, respectively. For the
Shannon scans γ was varied from 10−1 to 101.

The results are depicted in Fig. 13. After a linear
transformation has been applied to DQE−1, it fits
well to MSE. For low noise both approaches yield
comparable MSEs, but the much stronger rise for
the Shannon scan shows CS is preferable in case of
read-out noise. Also, as predicted in (25), MSE for
CS is approximately constant for the lower noise
levels.

5.3.2 ADF-STEM

The expressions for the DQEs are given in Table
1 for ADF-STEM measurements. Contrary to the
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Figure 13: MSE and DQE−1 for reconstructions
from Shannon (Sh) scans and from CS measure-
ments for the single-pixel set-up.

single-pixel set-up the optimal value for p is inde-
pendent of the noise model as for all models it holds
that,

∂

∂p
DQE ∝ − 1

p2
, (27)

indicating that DQE is a monotonically decreasing
function of p. This suggests the optimal value for
p is the minimum 1/N (see Table 2) and that an
inpainting approach is preferred.

The quality of a CS reconstruction is compared
to that of a denoised Shannon scan recorded with
the same electron dose. It can be shown that,

if p ≥ 1 + γ′/r

N
, then DQESh ≥ DQECS, (28)

where DQECS and DQESh denote the DQEs for the
CS and the Shannon case, defined respectively by
sensing matrices ADFCS and ADFSh for simultane-
ous Poisson and read-out noise (Table 1, third and
fourth row, second column).

In the absence of read-out noise, γ′ equals 0 and
condition (28) is always met. DQESh ≥ DQECS

then implies that a Shannon scan contains at least
as much Fisher information as a CS measurement.
That the respective reconstructions yield approxi-
mately the same MSE under equal dose conditions
can be inferred from the results in Sec. 5.2.2 for ex-
perimental ADF-STEM where read-out noise was
negligible. Since these CS measurements were ob-
tained by selecting M pixels at random from a

Shannon scan, the total dose for these CS mea-
surements scales directly with M . The results in
Fig. 12 show that the MSE is a linear function of
DQE−1 = N/M and hence of the inverse of the to-
tal dose. This implies that for constant dose MSE
is constant as well, and hence equal to that of the
denoised Shannon scan at M/N = 1.

6 Discussion

Rigorous as the AOC is, it lacks some generality
as it yields results for just the test object and the
particular realization of the sensing matrix A, and
requires knowledge of the support in the sparse ba-
sis. In contrast, the DQE, although more heuristic
in nature, is an analytical function of the experi-
mental conditions and alleviates some of the AOC’s
drawbacks: the test object enters through just its
mean value, only the variance of the sensing matrix
entries is needed and knowledge of the support is
not necessary.

A caveat is that for too few on-pixels the Fisher
information matrix becomes singular, which means
no unbiased estimators are possible [43] and the
AOC cannot be computed. This is information
that the DQE cannot deliver, and its predictions
therefore only hold on the condition of the Fisher
information matrix being non-singular.

That regularized estimators are in general biased
is reflected in the fact that a linear fit is needed
to match DQE−1 to the MSE of the reconstruc-
tions, instead of the mere scaling that sufficed for
matching to the AOC. Nevertheless, the DQE still
predicted the optimal experimental settings accu-
rately, thus suggesting that also biased estimators
perform best with measurements with maximum
Fisher information.

7 Conclusions

In this paper the performance of various CS set-
ups was assessed under the constraint of constant
total illumination and compared to that of a de-
noised Shannon scan with the same dose. The A-
optimality information criterion AOC was chosen
as a measure of the amount of Fisher information
in the measurements. With the aid of simulations,
the heuristic quantity detective quantum efficiency
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DQE was shown to track the AOC accurately. Also
the mean squared error (MSE) of CS reconstruc-
tions from experimental and simulated recordings
was well tracked by the DQE.

The DQE’s analytical tractability was then used
to show that for the investigated sensing matri-
ces and in the absence of read-out noise, i.e. with
only Poisson noise present, compressed sensing does
not raise the amount of Fisher information in the
recordings above that of a Shannon sampled sig-
nal. As a consequence, reconstruction results yield
a comparable MSE when both data sets are treated
with the same algorithm. This result holds for both
investigated systems, but is particularly surprising
for the single-pixel camera, as the Shannon scan
makes use of only 1/N of the total dose. This
is considered of fundamental importance here as
read-out noise can be viewed as a mere engineering
problem for particles with sufficiently high energies.
This might temper the high expectations for beam
damage reduction that were laid out in the TEM
community.

The DQE was also used to optimize the experi-
mental designs, i.e. the fraction p of on-pixels for
best reconstruction quality as a function of particle
dose, read-out noise and other experimental param-
eters. In the presence of Poisson noise these results,
summarized in Table 2, differ markedly from the
optimal p = 1/2 often tacitly assumed in literature.
When there is only Poisson noise an inpainting set-
up (p = 1/N) is optimal in all investigated systems.
No matter the noise model, p = 1/N is optimal
for ADF-STEM. When there is only read-out noise
p = 1/2 and p = 2/3 are optimal if the on-values in
the single-pixel camera are discrete or fractional,
respectively. A combination of Poisson noise and
read-out noise yields an optimum between these ex-
tremes.

A Expected log-likelihood
regularization

The simulation and experimental results have been
obtained by solving the following problem by mini-
mizing the associated augmented Lagrangian [35]
through an alternating direction scheme [36, 37,
38],

min
x

TGV(x) s.t. lnL(y|x) = E (lnL(y|x)) . (29)

lnL is the log-likelihood of the measurements y con-
ditional on the model parameters x, and E denotes
the expectation value.

A.1 Expected log-likelihood

The likelihood L is defined as

L =

M∏
j=1

p(yj |IAjx), (30)

with p the probability distribution function of the
measurements y as given in (2), (3) or (4). Filling
out expression (3), yields

lnL =
∑
j

−ln (IAjx+ c)− (IAjx− yj)2

IAjx+ c
, (31)

omitting constant terms and a factor of 1/2. Taking
the expectation value over y gives

E (lnL) =
∑
j

−ln (IAjx+ c)−
σ2
y

IAjx+ c
. (32)

The symbol σ2
y denotes the variance of the mea-

surements, and equals IAjx + c for Poisson and
read-out noise and c for just read-out noise.

Equating lnL and E(lnL) is then equivalent to
setting to zero the constraint,

clnL =

M∑
j=1

(
(IAjx− yj)2

IAjx+ c
− 1

)
. (33)

The constraint associated with (4) is then

M∑
j=1

(
(IAjx− yj)2

c
− 1

)
. (34)

A.2 Augmented Lagrangian, alter-
nating directions

The augmented Lagrangian [35] then becomes,

LA =

2N∑
i

|si| −
2N∑
i

λi (Hix− si)

+
µ

2

2N∑
i

(Hix− si)2 − νclnL (x) +
β

2
c2lnL(x).

(35)

This problem is then solved with an alternating
directions method [36, 37] where in iteration `+ 1:
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1. LA is minimized w.r.t. x through a numerical
optimization with a Polak-Ribière non-linear
conjugate gradient approach [44, 35], with s(`),
λ(`) and ν(`) kept constant;

2. LA is minimized analytically w.r.t. s through
soft thresholding/shrinkage [45, 37],

s(`+1) = max

(∣∣∣∣Hx(`+1) − λ(`)

µ

∣∣∣∣− 1

µ
, 0

)
× sgn

(
Hx(`+1) − λ(`)

µ

)
,

(36)

with x(`+1) and λ(`) kept constant;

3. the multipliers λ and ν are then updated
through [35]

λ(`+1) = λ(`) − µ
(
Hx(`+1) − s(`+1)

)
,(37)

ν(`+1) = ν(`) − βclnL
(
x(`+1)

)
, (38)

with x(`+1) and s(`+1) kept constant.

In the first iteration µ, ν and all λi are set to zero
and step 1 is iterated until convergence. In this way
an initial estimate for x is obtained that obeys the
constraint lnL = E(lnL) virtually perfectly. This
estimate is then used as the starting point for the
subsequent minimization.

During optimization IAjx can become temporar-
ily negative. To avoid the ensuing numerical diffi-
culties, the respective term in the denominator of
(33) is wrapped in the softplus function

εln (1 + exp (IAjx/ε)) , (39)

which maps positive variables onto themselves and
negative variables to zero, with ε = c/10 the width
of the transition between both regimes.

A.3 Convex optimization

CS reconstruction problems can often be cast into
two distinct forms. The first is the convex opti-
mization problem:

arg min
x

(
F (x) = |Rx− b|22 + λ|Wx|1

)
, (40)

for some positive constant λ and sparsifying matrix
W ; | |2 and | |1 are the `2- and `1-norm, respec-
tively. The second form is:

arg min
x

(|Wx|1) , s.t. |Rx− b|22 = C, (41)

for some positive target value C, chosen for exam-
ple so as to make the likelihood consistent with the
experimental error, such as in (33). We assume C
is feasible, i.e. there is a non-empty subset X of
potential solutions such that |Rx − b|22 = C for all
x ∈ X.

These two forms are equivalent. As shown in [46],
the residual |Rx − b|22 and the `1-norm of the so-
lution, |Wx|1, of (40) define a convex Pareto-curve
when plotted against each other. And since this
curve is parametrized by λ, λ can be used to tune
the solution to obtain |Rx− b|22 = C. The result so
found is also a solution to the second form (41), for
if there were an element of X with lower |Wx|1, the
first algorithm could have selected it and reduced
F (x).

The constraint (33) is well approximated by a
second order expansion in IAjx around yj of the
individual terms j:

clnL =

M∑
j=1

(
(IAjx− yj)2

yj + c
− 1

)
. (42)

This is correct up to second order in IAjx−yj , and
since the summation averages out the third order
error terms, the dominant error is only of fourth
order. The translation from the formulation in (41)
to the problem at hand is then

Rx =
IAx√
y + c

, b =
y√
y + c

, C = M , and W = H, (43)

where division of vectors is elementwise.

B Derivation of DQEs

In this appendix the detective quantum efficiencies,
DQE, as defined in (17) are derived. For SNRin:

SNR2
in =

(Iσ)
2

Iµ
= I

σ2

µ
, for single-pixel,(44)

SNR2
in = I

σ2

µ

M

N
, for ADF-STEM. (45)

where Iσ is the signal’s standard deviation, Iµ is
the average number of photons reflecting off each
of the object’s pixels, and µ and σ are the mean
and standard deviation of x, respectively.
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Table 3: Average Signals and Variances for Various
Sensing Matrices

sensing

matrix 〈y〉 σ2
a

PIXDi Iµp N
M

p
M2 (1− p)

PIXFr Iµp N
2M

p
M2 (1/3− p/4)

ADFCS Iµ 1
N2 (1/p− 1)

ADFSh IµM
N

M2

N3

The SNR of the signal y recorded according to
(1) follows,

SNR2
out =

σ2
y

〈y〉+ c
, (46)

where σ2
y is the variance of y, 〈y〉 is—as the average

of y—the variance of the Poisson noise, and c is the
read-out noise variance.

The CS measurement process can be regarded as
sampling without replacement from the N members
of population x, and the covariance matrix covx of
x hence has diagonal elements σ2 and off-diagonal
elements −σ2/(N − 1). Since the members of y are
measured independently but with the same rules for
on- and off-pixels, σ2

y can be taken as the variance
of an arbitrary element k in y,

σ2
y =

(
∂yk
∂x

)T
covx

∂yk
∂x

, (47)

= I2σ2
N∑
i=1

a2ki −
I2σ2

N − 1

N∑
i=1

aki

N∑
j 6=i

akj ,(48)

' I2Nσ2σ2
a. (49)

with aki the respective element of sensing matrix
A in (1), and σ2 and σ2

a the variances of x and of
the elements in A, respectively.

The expressions in Table 1 can be obtained by
finding 〈y〉 and σa for all sensing matrices (see Ta-
ble 3), and setting to zeros the terms c or 〈y〉 in the
denominator in (46) for the cases without read-out
noise or only read-out noise, respectively. Further-
more, the change of variables in (18) helps simpli-
fying the results.
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