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Abstract—Conventional ultrasound (US) imaging relies on
delay-and-sum (DAS) beamforming which retrieves a radio-
frequency (RF) image, a blurred estimate of the tissue reflectivity
function (TRF). Despite the non-stationarity of the blur induced
by propagation effects, most state-of-the-art US restoration
approaches exploit shift-invariant models and are inaccurate
in realistic situations. Recent techniques approximate the shift-
variant blur using sectional methods resulting in improved
accuracy. But such methods assume shift-invariance of the blur
in the lateral dimension which is not valid in many US imaging
configurations. In this work, we propose a physical model of the
non-stationary blur, which accounts for the diffraction effects
related to the propagation. We show that its evaluation results
in the sequential application of a forward and an adjoint
propagation operators under some specific assumptions that we
define. Taking into account this sequential structure, we exploit
efficient formulations of the operators in the discrete domain and
provide an evaluation strategy which exhibits linear complexity
with respect to the grid size. We also show that the proposed
model can be interpreted in terms of common simplification
strategies used to model non-stationary blur. Through simulations
and in vivo experimental data, we demonstrate that using the
proposed model in the context of maximum-a-posteriori image
restoration results in higher image quality than using state-of-
the-art shift-invariant models. The supporting code is available
on github: https://github.com/LTS5/us-non-stationary-deconv.
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I. INTRODUCTION

ULTRASOUND (US) imaging is a widely used medical
imaging modality due to its non-invasiveness, relative
low-cost and real time capability. By appropriately placing
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a US probe, usually an array of piezoelectric transducer
elements, a medical doctor is able to visualize cross-section
images of regions of interest in the body resulting from local
variations in density and sound velocity.

The US imaging process exploits the transducer elements
for both transmitting acoustic pulses and recording the re-
sponse of the medium to these pulses as echo signals. The set
of these signals is related to the spatial distribution of varia-
tions in acoustic impedance, i.e. in medium density and sound
velocity, denoted as the tissue reflectivity function (TRF), by
a US propagation operator. Due to finite aperture of the probe
and bandlimited properties of each transducer element, retriev-
ing the TRF from the echo signals is an ill-posed problem.
In standard US imaging, the delay-and-sum (DAS) operator
is used as an approximate inverse of the propagation operator.
Such an approximation leads to a radio-frequency (RF) image,
a blurred estimate of the TRFE. The point-spread-function (PSF)
is introduced to relate these quantities.

Because of the wave propagation and diffraction effects in
the medium, the blur is spatially varying, as can be seen
in Figure 1. Convolutional models, conventionally used in
the context of spatially-invariant blur, fail in this context.
Assuming a linear model of the non-stationary blur, evaluating
it hence requires storing large 2D matrices (around 10'°
coefficients for 2D US images) as well as performing matrix-
vector products when used in the context of an iterative
recovery algorithm. This is practically unfeasible with standard
numerical tools.

To address this problem, many simplification strategies have
been developed in the literature. Most of them are based on the
assumption that the non-stationary blur can be approximated
by a relatively low number of basis filters. The evaluation of
the blur is then performed as a weighted sum of convolutions
with the basis filters [1] (See [2] for an exhaustive description
of such methods).

In this group of techniques, sectional methods are prob-
ably the most popular ones [3], [4], [5], [6], [7]. In such
approaches, the image is divided into sub-regions where the
blur is considered stationary. Then, by appropriately masking
the image, shift-invariant convolutions are applied in each sub-
region independently forming different sub-images that are
interpolated to form the blurred image. In this case, the basis
filters correspond to blur kernels. Other techniques rely on
global [8], [9] or local [2] low-rank approximations of the non-
stationary blur where the basis filters are the corresponding
eigenvectors.
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Alternatively, several recent works propose to approximate
the blur with an operator that has desirable properties, e.g.
diagonalizability [10] or sparsity [11], [12] in given frames.

In the context of US imaging, most of state-of-the-art
restoration methods exploit shift-invariant models of the blur.
In several studies, the PSF is estimated in a preliminary step ei-
ther through in vitro measurements or by simulation [13], [14],
[15], [16]. Other approaches estimate directly the PSF on the
RF image using homomorphic filtering of the cepstrum [17],
[18], [19], inverse filtering based on parametric [20], [21], [22]
or non-parametric models [23], [24], [25] and power spectrum
equalization [26].

Only few recent studies propose to model a spatially varying
blur [27], [28]. In [27], Michailovich suggests a non-stationary
model to approximate the frequency-dependent attenuation but
does not take into account any diffraction effect. Roquette et
al. [28] suggest a linear model of the non-stationary blur in the
context of ultrafast US imaging but do not provide a feasible
evaluation strategy.

Rather than modelling the non-stationary blur, several stud-
ies achieve shift-variant restoration using sectional meth-
ods [29], [30], [7] which assume lateral stationarity of the
blur. These approaches are evidently not valid in situations
where the diffraction effect is pronounced, such as the one
displayed in Figure 1.

In this work, we propose the following contributions:

« We extend the shift-variant blur model introduced by
Roquette er al. [28] in the context of plane-wave (PW)
and diverging-wave (DW) imaging. We derive a sequen-
tial split of the PSF operator into a US propagation
operator [31], [32] and a DAS operator, in the continuous
domain;

« We propose an evaluation strategy of the non-stationary
blur (and its adjoint) based on efficient computations of
the DAS and US propagation operators in the discrete
domain [33], [34]. We show that the proposed evaluation
strategy can be interpreted in the context of sectional
methods with fundamental differences that we describe.
We demonstrate theoretically that the evaluation of the
blur using the proposed strategy scales linearly with
the size of the grid similarly to the evaluation of shift-
invariant blur;

« We show an example application of the non-stationary
blur for US image restoration. More precisely, we use
the proposed model in a maximum-a-posteriori (MAP)
estimation algorithm, with a generalized Gaussian distri-
bution (GGD) prior for the TRF [16], [35]. We test the
method on an extensive number of experiments, namely
a numerical phantom of point reflectors, a numerical
calibration phantom and two in vivo carotids, for both
DW and PW imaging. We demonstrate that the proposed
restoration method leads to an improvement of the lateral
and axial resolution, compared to methods based on
state-of-the-art models of the blur, on both the point-
reflector and the calibration phantoms and provides a
higher contrast and visual quality on in vivo carotid
images. All the experiments presented in the paper are

reproducible and supporting code is available at https:
//github.com/LTS5/us-non-stationary-deconv.

The remainder of the paper is organized as follows. Sec-
tion II introduces the non-stationary PSF operator and Sec-
tion III describes the evaluation strategy in the discrete domain.
Experimental settings are described in Section IV and results
are reported and discussed in Section V. Concluding remarks
are given in Section VI.
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Fig. 1. An example of a TRF (a) and the corresponding demodulated RF
image (b) obtained with the DAS operator. We clearly see the spatially varying
blur induced by classical beamforming.

II. MATHEMATICAL MODELLING OF ULTRASOUND
IMAGING AND CONTINUOUS LEVEL OPERATORS

In this section, we describe a mathematical formalism of US
imaging and propose formulations of the associated operators
at the continuous level. Such a formalism is used to introduce a
PSF operator that we sequentially split into a propagation and
a DAS operators, which can benefit from fast formulations [33]
detailed in Section III.

A. Notation

In the paper, we denote by L, (Q2) the Hilbert space of the
square integrable functions which take values in a space Q.
In addition, for f,g € L, (Q), we denote their inner product
as (f,8)r,( and their convolution as f * g. The adjoint of
a linear operator H : Ly (Q;) — L, () is given by H :
Ly (Qp) — L (Qp) (See Chapter 2 of [36] for a review on
linear operators).

The Hermitian transpose of a matrix X € R™" is denoted
by X' and the transpose by X™. X, is the sub-matrix formed
by the restriction of X to the columns indexed by the set
J c {1,...,n}. The Hadamard product between X and Y is
denoted by X o Y.

Given a vector @ € RY and a positive real p € R, we

define its p-norm as |lal|, = { l.lil la;|P.

B. Mathematical Modelling of Ultrasound Imaging

In a standard 2D pulse-echo US imaging configuration,
described in Figure 2, an array of transducer elements is used
to propagate an acoustic wave in a medium Q c R? which
contains inhomogeneities as local fluctuations in acoustic
impedance, defining the TRF y € L, (Q) [37], [29], [33].
Depending on the desired transmit wavefront, e.g. PW, DW,
focused-wave or synthetic-aperture approaches, each trans-
ducer element starts to transmit after a given delay defined
by an inter-element delay profile.
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Fig. 2. Standard 2D US imaging configuration (adapted from [33]).

In a receive phase, a set of transducer elements, located at
(pi)f\i‘fl’, pi € R?, detect echo signals m; (t), t € [0, T], defining
the following measurements

m(t) = [my (t),...,mn,, (t)] € Ly ([0, TN, (1)

where Ly ([0, T])Ne! := L, ([0, T]) x - - - X Ly ([0, T]).

The measurements m(¢) are related to the TRF y by the
propagation of the US wave during the time interval [0, T].
It can be demonstrated using the Born approximation that a
linear operator H : y + m, called the propagation operator,
relates the TRF to the measurements [31], [33], [34].

A standard US image reconstruction process reconstructs
the RF image ¥, an estimate of the TRF y, which should be
ideally close to y. This process involves a second operator
D : m — 7 known as the DAS operator and described in
Section II-D.

Using the operators introduced above, we define the US
imaging procedure as a mapping between the TRF and the
RF image

K:L(Q) — L (Q)
Y7 =DH{y}. @)

The operator K is denoted as the PSF operator since it
characterizes the blur introduced by the imaging process when
approximating y by 9. A further description of the PSF is
given in Section II-E.

C. Ultrasound Propagation Operator

The proposed physical modelling of wave propagation is
based on the pulse-echo spatio-temporal impulse response
model introduced by Stepanishen [38]. Furthermore, the effect
of the transducer element surface is approximated by a direc-
tivity function using a far-field assumption [39]. Under this
approximation, we can express the element-raw data received
on the i-th channel as

mi(t)z/O(Ph")Vpe(t_T(",Pi)))’(")dr’ (3)

reQ

where o (p;, r) accounts for the spatial directivity and decay of
the reflected wave and v, (¢) is the pulse-echo waveform [40]
which depends on the transducer impulse response and the
excitation signal. The round trip time-of-flight 7 (r, p;) is
defined as

T(",Pi)=fo(")+le("’Pi), 4

where tgy (r, p;) = ||r — pill, /c denotes the propagation delay
in receive and fry (r) is the propagation delay in transmit,
supposed to be independent from the location of the emitters
assuming a planar wavefront in PW imaging [41] or a spherical
wavefront in DW imaging [42].

Equation (3) can be compactly expressed in terms of a linear
integral operator acting on the TRF y € L,(Q) and outputting
the measurements

m(t) = H {y} (1), (&)

where H : Ly (Q) — L, ([0,T])Ne! is an operator whose i-th
component is given by

(H ) (1) = / 0(BisF) vpe (=7 (rup) y () dr.  (6)

reQ

D. Delay-and-sum Operator

Starting from the measurements m (¢), standard US image
reconstruction exploits the well-known delay-and-sum (DAS)
algorithm for computing the following RF image:

Nei

7r) = a(pirymi (z(r.py) (7)
i=1
where a (p;, r) accounts for the aperture-apodization weights,
commonly applied to reduce the sidelobe levels. The intuition
behind DAS is rather simple. In order to estimate the TRF at
location r, we sum echo signals originating from this point
and reaching the transducer elements at each given time-of-
flight. Reformulating DAS in terms of a linear integral operator

acting on m(t) € Ly([0, T])Ne! is also straightforward,

Nei

T
9= [ air st pm @
0 i=1

= D {m}(r), 3)
where D : Ly([0,T])Ne! — L, (Q).

E. From the Point-spread-sunction Operator to the Point-
spread-function

We are now equipped with the two operators D and H
that can be injected in (2) to compute the PSF operator as
follows [28]:

Nei
7@ 2> apirymi(x(r.py)
i=1
3 Nei
e / > apir) 0 (P ) vpe (¢ (r.po) = 7 (5. p1) ¥ (5) ds
seq =1
= K {7} (), ©)



where K is defined as,
XK . L, (Q) ) (Q)
Yy e / y(s)k (- s)ds,

seQ

(10)

where k : Q x Q — Q, the bivariate kernel of K, defines the
PSF and can be expressed as follows

Nei

k(r,8)= ) a(pir)o(piss)vpe (T (r,pi) =7 (s, p1)) . (1)

i=1

Equipped with the above defined PSF operator, the restora-
tion problem can be stated as:

Recover y from y = K {y}. (12)

F. Adjoint of the Point-spread-function Operator

In most restoration methods, the adjoint operator K’ is
required to solve Problem (12). For instance, restoration ap-
proaches that require to solve a convex optimization problem
need to compute the gradient of a data fidelity term, usually
expressed using the squared {-norm. Such a gradient is
defined as K" (K'y — m). At the continuous operator level, the
adjoint PSF operator can also be decomposed in terms of the
adjoint DAS and adjoint propagation operator,

K =H D, K : [, (Q) — L, (Q), (13)

with,
H Ly ([0, TN — Ly (Q), DT : Ly (Q) — Ly ([0, TN .

In addition, the adjoint operators DT and H' are directly
obtained from their definitions,

(14)
5)

<% 'HTm>L2(Q) = <7’(% m>L2([0,T])Ne1 >
<7, Dm)Lz(Q) = <DT7’ m)Lz([O,T])Nel >

by simply flipping the order of integration over Q and
[0,T] [33]. These changes are legitimate thanks to the square
integrability of the involved functions.

Consequently, the adjoint operator of the propagation model
is given by

Nei

T
H ) 0)= Y, [ orrym@vpe =1 C.p)ar, (16)
i=1 0

and the adjoint DAS operator by

(2" 0), 0= [ apiriot = pimiar, i =1.... N

reQ
17

Interestingly, the adjoint PSF operator can be expressed
immediately using the PSF kernel defined in (11), by flipping
the two arguments, i.e. using a symmetrised kernel k(r,s) =
k(s,r).

III. EVALUATION STRATEGY OF THE NON-STATIONARY
BLUR IN THE DISCRETE DOMAIN AND RESULTING

COMPLEXITY
In this section, we express the non-stationary
blur over a regular grid. More precisely, the
TRFE I' € RN*N: s defined on a regular grid
Q, = {(xu,zv)gQ,Au: IL,...,Ny,v=1,...,N;} and the

RF image I" € RVN=*N= is defined on a second regular grid
Q ={(rza)eQk=1...,N.l=1...,N}.

A. Common Simplification Strategies

We first proceed with several comments on the PSF kernel
defined in (11):

o If we assume that y (r) = § (r — rg), with ry € Q, then

¥ (r) =k(r,ro),

leading to a natural interpretation of k as the PSF, i.e.
the response of the US system to a TRF composed of a
single point reflector located at rg;

« In a spatially invariant case, the bivariate kernel k (r, s)
is simplified to a univariate one leading to k(r,s) =
k (r —s). Under this approximation, Equation (10) be-
comes the standard bi-dimensional analytical convolution;

« Considering that Q is discretized with N, grid points, the

(18)

evaluation of (10) requires O (N!?Nel) operations, which
is not practically computable on current 2D US imaging
configurations where N, is of the order of 10* to 10°.

Thus, we are facing the typical case of a non-stationary
linear blur that can be neither evaluated nor stored in realistic
imaging scenarios. At this point, common simplifications
strategies detailed in Section I are available:

« Shift-invariant blur: We consider a single blur kernel
ko(r) = k(r,s0), so € Q and obtaining the blur matrix
K € RNe*Ne requires O (NgN,;) computations. Simple
shift-invariant convolution applies and we are in the case
of many state-of-the-art approaches except that we use
the proposed blur kernel to generate the PSF;

« Sectional methods [2], [3], [4], [5], [6], [7]: We consider a
bank of P kernels k; (r) = k(r,s;), s; €Q, i=1,...,P
and obtaining the blur matrices K; € RNe*Ne | =
1,..., P, requires O (PNgN,;) computations. Weighted
convolutions apply and we are in the case of several
state-of-the-art approaches [7], [29] except that we use
the proposed blur kernel to generate the PSF in each sub-
region.

o Low-rank approximation [2], [8], [9]: They may be
difficult to use due to the impossibility to compute
the singular value decomposition of the matrix of non-
stationary blur.

In US imaging, the blur is continuously varying in both lateral
and axial dimensions and it varies differently depending on
the transmission schemes. Thus, while sectional methods may
be used in specific configurations, e.g. focused wave imaging
where the blur can be considered invariant in the lateral
dimension [7], [29], they would require an extensive amount of



blur kernels in order to provide accurate results in the general
case.

In addition, the blur kernels k; (r) are not very sparse result-
ing in high memory footprint of the corresponding matrices.
Thus, above mentioned common simplification strategies are
not well suited to US imaging and alternatives may be studied.

B. Proposed Evalutation Strategy

We tackle the problem in a completely different manner. We
propose to derive a computationally efficient way to evaluate
the physically-based non-stationary kernel with no further
simplifying assumption.

In Section II, we have established a decomposition of the
PSF operator, ‘K : Ly(Q) — Ly(Q) and its adjoint, in terms
of the propagation operator HH and DAS operator . This
is a key property when deriving a computationally efficient
formulation of the PSF operator relating the TRF to the RF
image, each expressed over a specific grid,

K : RN»N: _ gNoxN: g (19)

In particular, we have the discrete equivalent of the decompo-
sition,

K = DH — K = DH, (20)

where,

D . RNIXNM N RNXXNZ, H : RNXXNZ N RNrXNe[. (21)

The above defined operators allow us to define the discrete
counterpart of the continuous deconvolution problem as:

Recover I' from I' = KT'. 22)

The remaining of this section defines fast formulations of
the discrete operators D and H from their continuous counter-
part. For the sake of simplicity, the grids supporting both the
RF and TRF images are assumed to be the same. The pseudo
raw data generated when computing M = HI" € RN*Net are

expressed with a uniform time spacing
My =mi(tx), i =1,...,Net, k=1,..., Ny, (23)

associated to a given sampling frequency f.

C. Fast Propagation Operator and its Adjoint

Based on our previous work [33], the i-th component of
the integral operator defined in (6) can be reformulated as the
following convolution,

(H{yDi (1) = vpe 1 Gi{y}@),

where *, denotes the analytical convolution over the time
dimension and G; : L(Q) — Ly([0,T1]) is defined by

(24)

Qdﬂ@ﬁa/OWuHVUMO—ﬂanW. 25)
reQ
Alternatively, G;{y}(t) can be expressed as
Gy }(0) = / o(per)y(r)3(g: () dr,  (26)

reQ

where g;(t,r) =t —7(r, p;).
Using the co-area formula, Equation (26) can be re-written
as the following line integral [33],

o= [ opir)y(r)

O-(r)’
| Vl‘gl'(t’r) |
reS,j(t)

27

where S; (¢) is the O-level set of the function g; (f,r) given by
Si(t) ={reQ:giftr)=0}. (28)

By an appropriate reparameterization of S; (¢) described in
our previous work [33], [34], Equation (27) can be expressed
as

Ginw= [

a€eR

o(pi.r (@ pi, 1)y (r (@ pi. 1))

|Jr|de,
| Vrgi(t9r(a,1’i, t)) | "

(29)

where r (@, pi,t) = (@, z(a, p;, 1)) and |J,| : R — R denotes
the Jacobian associated with the change of variable.
The discretization of the integral over a leads to

Nx
(H D (0 = [vpe 0 | D i Bi )y (r (2 p0,)) || @),
Jj=1

(30)
where w; (p;,t) accounts for the spatial directivity, the decay
of the reflected wave, the Jacobian, the gradient of g; and the
weights related to the numerical approximation of the integral.

Discretizing (30) with respect to ¢ leads to

(HI);; =~ (Vpelhi)l, I=1,..., N, (31)

where V), € RNxNt i the Toeplitz matrix associated with the
discrete convolution with v, € RNt and m; € RN is defined
element-wise as

Nx
m; () = Z wji (pi, 1)y (r (@), pi 1)) -
j=1

(32)

It can be noticed that (31) approximates the continuous con-
volution in (30) by its discrete counterpart which is crucial
in the acceleration of the forward operator. Without loss of
generality, we consider a “half-padded” convolution [43] with
zero-padding at the boundary which explains why V. is a
square matrix. “Fully-padded” and “non-padded” convolutions
as well as alternative boundary methods may also be con-
sidered. Since we work on a discrete grid €,, we have to
introduce N, interpolation operators I; : RN= — RNtvxNet
such that

’y(l‘ (aj,p,-,tl))z(ljl’.j)li, j= L,...,Ny. (33)
We can now approximate (32) as
Nx
s (1) ~ ) wi (piot1) (Ta7) ;- (34)
j=1

Consequently, the application of the discretized forward oper-
ator H over the TRF image can be formulated as

Nx
HT = Ve | Y Wy IiT.;| € RNONet, (35)

J=1



where W; € RNo*Net is defined element-wise as (W)
w;i (pi> 1)

More practically, the action of the discretized forward
operator defined inside the sum of (35) can be described as a
sequential application of

li

1) a masking operation which selects the sub-region of

I'.j, j = 1,...,Ny, that interpolates the points
Ny, Neg
{y (r (0o pit)) by 20"
2) a point-wise multiplication with the weighting matrix
W .

J?
3) a convolution with the pulse-echo waveform.
Thus, one can see the analogy with sectional methods in
the context of spatially-varying blur modelling. The main
difference is that the mask does not aim at isolating regions
where different stationary blurs are applied. It rather selects
sub-regions where the convolutions with the pulse-shape have
to be applied depending on US propagation and acquisition
settings (which define the parametric curves). Then, the same
convolution with the pulse shape applies on every sub-regions.
The adjoint operator H' defined in Equation (16) can be
seen as the following operation,

Neiy

H {m} (r) = > 0(pi,7) (upe ¢ mi) (v (r, pi)),

i=1

(36)

where up (t) = vpe (=) is the matched filter of the pulse-echo
waveform.

We introduce the convolved raw data 7i1; = upe *; m;, for
i=1,...,N,. such that

Nei
H {m} (rsg) = Y0 (Picrsq) i (7 (req. pi)).
i=1
for ryg = (x5.24) €y, s=1,...,Nx, g=1,...,N;.
The discretization of (37) with respect to ¢ is achieved into
two steps. The first one approximates the convolved raw data
m; with its discrete counterpart as

M.,:V M.,;

(37

(38)

To complete the discretization, we introduce N,; interpolation
operators I/ : RNt — RN<*Nz i =1, . /N, such that

i (7 (rsq.pi)) = ([{Mai) gy i=1....Ne  (39)
and (37) is approximated as
Nel
(HjM)sq - Z 0 (Pi>Tsq) (Ii’MOi)Sq eR. (40)

i=1

The adjoint propagation operator H' expressed over the grid
is therefore given by,

Nei
H'M =) 0o (ViMy) e RMN- a1
i=1

where 0; € RN<*Nz s defined element-wise as (0;),, =
0 (PirTsq)-

Similarly to the forward operator, the action of the dis-
cretized adjoint operator defined inside the sum of (41) can
be seen as the application of:

1) aconvolution of M,; with the matched filter of the pulse-
echo waveform,;
2) a masking operation which selects the sub-region of the
M,; that interpolates the points {7; (7 (rsq, pl))}i\];:l]z
3) a point-wise multiplication with O;.
The same remarks as for the discretized forward operator hold.

D. Fast Delay-and-sum Operator and its Adjoint

The DAS operator, defined in (7), can be seen as an
approximation of the adjoint operator ' under the following
assumptions:

o The pulse-echo wavelet is a Dirac delta, i.e. vy () = 6 (1);

« The apodization weights replace the spatial directivity and

the decay 1/r of the reflected wave.
Thus, the application of the discretized DAS operator on
the grid is directly defined by the interpolation operation
introduced in (41) as

DM = ZA,- o ;M,; € RN<*N:,
i=1

(42)

where A; € RM-*Nz ig defined element-wise as (Ai)gg =
a(pirsq).
the application of the discretized adjoint DAS operator DY
expressed over the grid can be deduced from (35) as
Nx
DI =% Wjo I, e RN>Ner, (43)
j=1
where the apodization weights are used in the computation of
W;.

E. Computation Complexity of the Point-spread-function Op-
erator

The application of the discretized PSF operator over the
grid K : RN-*Nz 5 RNxXNz requires a priori O((NyN,)*N,;)
operations using (11). Such a complexity prevents its use in
realistic imaging cases, where NN, ranges between 10* and
10° and N,; is few hundreds.

To solve the above limitation, we propose to decompose the
computation of KI" as follows:

KIr =D (HT), (44)

where HI is first performed, generating a pseudo raw data
M, followed by the application of the DAS DM.
The computation of HX requires to perform the following
operations:
1) Ny interpolations I;I,; where each interpolation has
a computational complexity of O (LN;N;) with L the
support of the interpolation kernel (L << N;);
2) N, point-wise multiplications with W;, each of which
having a cost of O (Ng;N,);
3) Ny convolutions with v, each of which with a com-
plexity of O (N; log Ny).
The overall computation complexity of HI is therefore:

Cost(HI') = O (LN <N N; + NyN¢;N; + NyN; log N;) (45)
= O(NxNeth)a



since log Ny < N, and L < N; in US imaging.
The computation of DM necessitates rather similar opera-
tions as the one described above, apart from the convolution:

1) N, interpolations I;M,; where each interpolation has
a computational complexity of O (L'N,N,) with L’ the
support of the interpolation kernel (L’ < N,);

2) N point-wise multiplications with A;, each of which
having a cost of O (NyN;).

The computational complexity of DM is:

Cost(DM) =0 (L/NeleNZ + NNy N;)
=0 (NeleNz) .

(46)
(47)

The overall complexity of the operation KI' can be easily
deduced from (46) and (47) as:

Cost(KI') = O (NeyNx (N; + Ny))
=~ 0 (NeleNz)»

(48)
(49)

since Ny = N; in standard US imaging configurations. Thus
we have the following:

Cost(KX) < O((NxN;)*N,p). (50)

An equivalent reasoning for the computation of the adjoint
operation K 'I" leads to the same computational complexity as
the forward operation. Indeed, the only difference between
the two computations resides in the convolution which is
negligible in the computational cost.

Thus, the proposed sequential split assumption results in
a significant decrease of the computational complexity from
quadratic to linear with respect to NyN,.

Compared to the common strategies described in Sec-
tion III-A we can draw the following conclusions. If we
assume that shift-variant blurs have been stored as matrices of
size N2 x NP, where N? < N, and N? < N (as it is often the
case), their evaluations would require O (N, N, log N;N;) com-
putations using a Fourier-domain approach or O (Nf Nf NyN;)
otherwise.

Using the Fourier-domain approach, the complexity is
usually slightly lower than the proposed approach since
log NyN,; < N,; but the method does not scale as well as the
proposed approach with respect to the grid size. Otherwise,
the complexity highly depends on the size of the blur matrix
while the complexity remains linear with respect to the grid
size.

IV. EXPERIMENTS

This section describes the imaging configurations, for both
DW and PW, used to evaluate the proposed non-stationary PSF
estimation against state-of-the-art methods. It also describes
the £,-based convex optimization method used to solve (22).

A. Diverging Wave Imaging Configuration

A simulated experiment is performed with a standard
phased-array probe (P4-2v) whose characteristics are given in
Table I. A single diverging wave (2.5 MHz, 1-cycle sinusoidal
wave) is transmitted with a corresponding virtual point source

TABLE I
PROBE CHARACTERISTICS

Diverging wave Plane wave Plane wave
P4-2v L11-4v L12-5 50mm

Element number 64 128 128
Center frequency 2.7MHz 5.133 MHz 7.8 MHz
Sampling frequency 10.8 MHz 20.832 MHz 31.2MHz
Element width 255 um 270 um Unknown
Pitch 280 um 300 um 195 um
Elevation focus 60 mm 20 mm Unknown

located at z, equal to —2.9mm and laterally centered. No
apodization is used on transmit.

The data are acquired on a numerical point-reflector phan-
tom with eight reflectors with unit amplitude and located at
positions described on Figure 3(a). The simulation software
used in this experiment is Field II [40].
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Fig. 3. Numerical point-reflector phantoms used for (a) diverging wave and
(b) plane wave imaging configurations.

B. Plane Wave Imaging Configurations

Two standard linear-array probes are used, namely the L11-
4v and the L12-5 50mm, whose characteristics are given in
Table I.

The L11-4v is used in two simulated configurations (using
Field II) for which a single plane wave (5.208 MHz, 2.5-
cycle-excitation) with normal incidence is transmitted without
apodization:

o A point-reflector phantom with reflectors described in

Figure 3(b);
« the PICMUS numerical phantom', whose example B-
mode image is displayed on Figure 4.

The L12-5 50mm is used to acquire in vivo measurements
of two carotids on a Verasonics US scanner (Redmond, WA,
USA). A single plane wave (5 MHz, 1-cycle excitation) with
normal incidence is transmitted without apodization.

C. Proposed {,-based Restoration Method

We use a {,-norm minimization, one of the most recent
methods introduced in US image restoration [16], [44], [35],
[45], [24], [28]. Since the discretized PSF operator has been
described as a tensor in Section III-C, we have to introduce the
reshaping operator P : RNx*Nz — RNxNz guch thaty = PI' €

Uhttps://www.creatis.insa- lyon.fr/EvaluationPlatform/picmus/index.html
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Fig. 4. Log-compressed B-mode image of the PICMUS numerical phantom.

RNxNz We are therefore interested in solving the following

optimization problem,

min 4|77 + Iy - K7 (51)
AN pt5IY 7>

where K = PKPT € RN<N=XNxNz accounts for the discretized
PSF operator and 7 = PI" € RVxNz where I is the RF image
acquired by the US imaging system. In the objective function
minimized in (51), the first term is the prior, the second term
is the data-fidelity, 4 € Ry is a regularization parameter and
p is a real so that 1 < p < 2 [46].

The values of p are set to 1, 4/3 or 3/2, depending on
the experiment, similar to the values used in [16] since their
corresponding proximity operator are analytically defined (Ap-
pendix A). The optimization algorithm used to solve the
restoration problem is the fast iterative shrinkage thresholding
algorithm (FISTA) described in Appendix A [47].

Three different PSF estimation techniques are compared:

o The proposed non-stationary PSF;

« astationary PSF estimated from the data using the method
described in [29], denoted as stationary PSF 1;

« a stationary PSF previously simulated on Field II using
a phantom made of a single scatterer located at 25 mm
for PW imaging and 45 mm for DW imaging, denoted as
stationary PSF 2.

The restoration is performed on RF images, obtained by
applying the DAS operator on the element-raw data. The
image grid spacing is set to one third of the wavelength in
the lateral direction and one eighth of the wavelength in the
axial direction. The apodization used in receive is the element-
directivity according to Selfridge et al. [39].

D. Implementation Details

The methods are implemented using MATLAB?.

For the stationary methods, we store the PSF in a matrix
form and we compute the shift-invariant convolutions using
the Fourier domain approach.

For the proposed non-stationary blur, we implement par-
allelized matrix-free evaluation of the different operators as
described in [33].

Zhttps://github.com/AdriBesson/epfl-ibm-code

Concerning FISTA, we consider a maximum number of 100
iterations and we set a stopping criterion if the relative evolu-
tion of the solution between two consecutive iterations is lower
than 1073, The regularization parameter A is empirically tuned
for each method and each experiment. Automatic optimization
of such a parameter is left for future work.

V. RESULTS AND DISCUSSION
A. Point-reflector Experiment

For these experiments, the £,-based restoration is tested
with a value of p equal to 1 since we are dealing with
sparse images. The comparison is based on the axial and
lateral resolution, calculated as the full-width-at-half maxi-
mum (FWHM) [48] computed on the log-compressed B-mode
image. The regularization parameter is empirically set to its
highest value so that all the point reflectors are visible, if
possible.

Table II reports the lateral and axial resolution values for
the DW configuration described in Figure 3(a). We can see
that the proposed method outperforms the models based on
a stationary PSF on the lateral resolution especially. This
makes sense since the diffraction effect is important in DW
imaging configurations resulting in significant variability in
the lateral dimension. Regarding the axial resolution, it is
relatively stationary along the imaging plane and the proposed
method does not significantly outperform the stationary mod-
els. Figure 5 shows the B-mode images of the point-reflectors
for standard DAS beamforming (top row), restoration with
the proposed method (middle row) and restoration with the
stationary PSF 1 (bottom row). It illustrates the benefit of the
proposed method compared to stationary models for image
restoration in case of imaging configurations with high lateral
variability.

TABLE II

COMPARISON OF THE METHODS ON THE POINT-REFLECTOR PHANTOM IN
THE DIVERGING WAVE EXPERIMENT

Method 1 2 3 4 5 6 7 8

Prop. PSF 0.32 0.19 0.21 0.50 0.21 0.21 0.60 0.60
Stat. PSF1 090 0.21 0.19 14 0.19 0.21 22 2.7
Stat. PSF2 69 95 95 29 95 95 16 32
Prop. PSF 043 0.21 0.42 0.24 0.07 0.07 0.21 0.21
Stat. PSF 1 0.28 0.07 0.08 0.08 0.41 0.08 0.08 0.08
Stat. PSF2 0.46 3.6 3.6 055 3.6 3.6 0.37 0.39

Lat. Res [mm]

Ax. Res [mm)]

When using the method with the stationary PSF 2, it can
be noted that the values for both the axial and the lateral
resolution are not satisfactory, except for point-reflectors 4,
7 and 8. This is due to the fact that the PSF used in
the restoration experiment has been simulated with a point-
reflector centered at 45 mm, close to point-reflector 4, and that
point-reflectors 7 and 8 are centered as well. The high values
of the resolution that one may observe in Table II are due to
the fact that several points are not reconstructed. Regarding
the method with the stationary PSF 1, the results are better.
This can be explained by the fact that the PSF estimation
method returns a sort of “averaged PSF” over the entire image,
resulting in a rather uniform value of the resolution. We can
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nevertheless observe a non-uniformity of the resolution with
respect to depth (point-reflectors 7 and 8), which emphasizes
the inability of the method to capture non-stationary blur.

In the PW experiment, it can be noticed on Table III that
the proposed approach is either close to or better than the
best of the methods based on a stationary PSF, which means
that it represents a best compromise between lateral and axial
resolution. However, the results on the lateral resolution are
less striking than for the DW experiment which is justified by
the reduced non-stationarity of the blur compared to the DW
experiment. Regarding the stationary PSF 2, while the lateral

TABLE 11T
COMPARISON OF THE METHODS ON THE POINT-REFLECTOR PHANTOM IN
THE PLANE WAVE EXPERIMENT

Method 1 2 3 4 5 6 7 8
0.11 0.11 0.11 0.11 0.11 0.11 0.10 0.11

Prop. PSF

Lat. Res [mm] Stat. PSF1 0.11 0.12 0.11 0.11 0.12 0.15 0.13 0.12
Stat. PSF2 0.11 0.11 0.10 0.11 0.11 0.11 0.11 0.11
Prop. PSF 0.04 0.11 0.04 0.04 0.04 0.04 0.04 0.04
Ax. Res [mm] Stat. PSF 1 0.21 0.04 0.04 0.04 0.04 0.04 0.04 0.04
Stat. PSF 2 0.04 0.22 0.04 0.22 0.22 0.22 0.04 0.04

resolution is relatively constant along the image, the values
of the axial resolution is varying significantly. This is due
to our choice of regularization parameter. Indeed, it is set so
that all the point-reflectors are visible. When the regularization
parameter is too high, the first point-reflectors that vanish are
point-reflectors 3 and 7 since they are the ones with the highest
mismatch with the centered PSF pattern used in the restoration.
With a close look on Tables II and III, one may highlight
some non-uniformity in the values of the resolution obtained
with the proposed method. This can be explained by several
approximations made in the physical model of the blur:

« no three-dimensional propagation: The proposed model
neglects the effects related to the three-dimensional prop-
agation in the Field II simulation, especially the element
height and the elevation focus;

« planar/spherical wavefront assumption: We assume that a
planar or spherical wavefront, for PW and DW respec-
tively, of constant amplitude propagates in the medium;

« grid mismatch induced by the discretization of the con-
tinuous propagation operator and the continuous medium.

B. PICMUS Phantom Experiment

In this experiment, we compare the methods based on
the dB-contrast-to-noise ratio (CNR) and lateral and axial
resolution, computed on the PICMUS phantom displayed in
Figure 4. The CNR [48] is a measure of the contrast, calculated
on the normalized envelope image, i.e. on the envelope image
divided by its maximum value, as follows,

|tr — bl

b
2 52
N
2

where (uy, up) and (0',2, 0'5) are the means and the variances
of the target inclusion (anechoic region of Figure 4) and the
background, respectively.

CNR = 201log,, (52)

The results are reported in Table IV for the ¢,-based
restoration, with p = 1.3 and 1.5, and with the proposed non-
stationary PSF as well as the two stationary ones.

On Table IV, one can see that the proposed PSF outper-
forms the other methods on the lateral resolution. Indeed, the
variability of the PSF in the axial dimension is mainly due
to variations of the pulse-echo waveform induced either by
frequency-dependent attenuation or by near-field effects (due
to the finite element height). In the proposed simulation,
we are at sufficiently far-field and the frequency-dependent
attenuation is not taken into account. Thus, a shift-invariant
model is relatively accurate.

In order to illustrate the above remarks, Figure 6 displays the
x-axis and z-axis sections corresponding to the points located
at z = 14mm and x = Omm and 15 mm. While the effect of the
proposed method is not evident on the axial dimension (bottom
row), it is significant in the lateral dimension (top row).

Regarding the results of the restoration procedure, we
observe that p = 1.3 leads to better resolution (as can be
seen on Figure 6) but lower contrast than p = 1.5. This can
be explained by a close look at the definition of the CNR.
Indeed, it may be deduced from (52) that the CNR favors
piecewise-continuous regions where o and o tend to O.
On the contrary, high-resolution images exhibit more “spiky”
behaviour in speckle region than low-resolution images which
usually result in lower mean and higher variance, therefore in a
lower CNR. In £,,-based restoration, the value of p impacts the
shape of the GGD prior, resulting in variation of the resolution
of the recovered TRF. The lower p, the tighter the shape of
the prior, the better the resolution and the lower the CNR.

TABLE IV
COMPARISON OF THE METHODS ON THE NUMERICAL PICMUS
PHANTOM
Lat. Res. [mm] Ax. Res. [mm]
Value of p CNR [dB] Method 4mm 45mm  14mm  45mm
Prop. PSF 0.21 0.35 0.24 0.28
p=1.5 7.00 Stat. PSF 1 0.25 0.46 0.23 0.30
Stat. PSF 2  0.30 0.41 0.27 0.26
Prop. PSF 0.17 0.25 0.20 0.24
p=13 6.00 Stat. PSF 1 0.21 0.45 0.17 0.22
Stat. PSF 2 0.27 0.36 0.20 0.18

C. In vivo Carotid Experiments

Low resolution demodulated RF images of the two carotids,
obtained by DAS beamforming without restoration, are dis-
played on Figs. 7(a) and 7(e). The B-mode images of the
{p-based restoration technique for the first carotid, and for
p = L.5, are displayed on Figs. 7(b), 7(c) and 7(d). The B-
mode images of the £,-based restoration technique for the
second carotid, and for p = 1.3, are displayed on Fig. 7(f), 7(g)
and 7(h).

In order to quantify the benefits of the proposed model
of the blur, we rely on the tissue-to-clutter ratio (TCR) [49]
and the signal-to-noise ratio (SNR) [49] metrics. The TCR
is a widely used measure of the contrast defined as the ratio
between the average pixel intensity in a tissue region and in
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Close-up of log-compressed (40dB dynamic range) B-mode images of point-reflector 1 to point-reflector 8 (from left to right) of the DW

configuration (Fig. 3(a)) obtained with standard DAS beamforming (top row), restoration with the proposed method (middle row) and restoration with

the stationary PSF 1 (bottom row).
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Fig. 6. x-axis (top row) and z-axis (bottom row) sections corresponding to the points located at z = 14mm and x = Omm and 15mm, for p = 1.5 (2 left

plots) and p = 1.3 (2 right plots) and for the different blur models.

a background region at the same depth (to avoid bias due to
time-gain compensation). Formally, it is given by
Hi
TCR =201log,, (—) (53)
Hb
where y, and y; designate mean pixel intensities inside the
tissue and the background regions, respectively, calculated on

the normalized envelope.
The SNR is calculated as

_ e — pp |
2 2’
,/0’b+0',

where (uy, up) and (oy, 0p) are the mean and standard devi-
ation of the pixel intensities of a tissue and a blood regions,
respectively, calculated on a linearized image obtained from
the log-compressed B-mode image. We choose a background
region located inside the carotid artery and a tissue region
located at the same depth, as described on Figure 8.

TCR and SNR values, reported on Table V, demonstrate
that the proposed non-stationary model outperforms stationary
models for nearly all the experiments. Regarding the impact of
the value of p, the same trend as for the PICMUS experiment is
observed, i.e. a lower value of p leads to a lower SNR induced
by higher variance of the speckle pattern. In addition, visual
assessment of the B-mode images show that the restoration

SNR (54)

TABLE V
COMPARISON OF THE METHODS ON THE IN-VIVO CAROTIDS

Value of p Carotid number Method SNR [-] TCR [dB]
Prop. PSF 49.1 29.5

p=1.5 1 Stat. PSF 1 27.9 26.2
Stat. PSF 2 38.6 28.1
Prop. PSF 21.5 30.5

p=13 2 Stat. PSF 1 21.1 24.4
Stat. PSF 2 36.1 28.4

methods all lead to significantly higher resolution than the
unprocessed B-mode image. The deblurring effect is more
pronounced for the proposed method and the stationary PSF 1
than for the stationary PSF 2, as can be seen on the artery wall.
In addition, the proposed method allows a better reconstruction
of the textured area, such as the speckle region under the lower
artery wall, than both methods based on a stationary PSF.

D. On Computational Times of the Proposed Strategy

In Section III-E, we have derived the computational com-
plexity of the proposed evaluation strategy and demonstrated
that it scales linearly with respect to the grid size. In this
Section, we discuss the practical implications of this in terms
of computational times necessary to evaluate the forward blur
operator.
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Fig. 8. Tissue (1) and blood (2) regions used for the computation of the
tissue-to-clutter ratio and contras-to-noise ratio.

More precisely, we consider a PW experiment with the
L11-4v probe described in Table I. We compare various grid
sizes characterized by the corresponding values of N, and N,.
For each tuple (Ny, N,), we estimate the average evaluation
time of the forward blur operator over 10 runs on an Intel
Core i7-4930K CPU @ 3.40 GHz equipped with MATLAB
R 2017A. We compare the proposed evaluation strategy, the
one described by Roquette et al. [28] and the evaluation of a
stationary blur model using Fourier domain approach.

Table VI reports the computation times of the three methods
for the different grid sizes.

We can see that the proposed strategy is two orders of
magnitude faster than the one developed by Roquette et al.
even in the configuration with the smallest grid size. In
addition, we observe significant differences in scaling between
the two methods resulting from the difference in computational
complexity.

We notice that the proposed strategy is several orders of
magnitude slower than the stationary method. This is due
to the fact that the Fourier-domain approach relies on fast
Fourier transforms which have been highly optimized in
MATLAB (built-in function) while the proposed approach
entirely relies on a non-optimized MATLAB code. First
implementations of the propagation and DAS operators on
graphical processing units highlight the high potential for
parallelizability of the proposed method [34], [33].

TABLE VI
COMPUTATION TIMES OF DIFFERENT BLUR EVALUATION STRATEGIES

Evaluation times

(Nx, Nz) Roquette et al. Proposed Stationary
(64, 100) 35%x10's 8.8x1072s 37%x107%s
(128, 200) 34x10%s 1.1x107's 6.5%x107%s
(256, 200) 1.6x10%s 1.9x107!s 12x1073s

In addition, Figure 9 displays ratios of evaluation times
between the proposed method and the stationary model for
realistic values of the grid sizes. Indeed, we fix N, = 512
which corresponds to one fourth wavelength spacing and we
vary N, between 1000 and 8000.

We empirically observe that the proposed methods scales
better with the grid than the Fourier domain approach which
corroborates the theoretical study of the complexity of Sec-
tion III-E.

VI. CONCLUSION

This work presents a physically-based model of the non-
stationary blur in the context of 2D ultrasound imaging. The
model is based on the sequential application of a propagation
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Fig. 9. Ratio of computational times between the proposed evaluation strategy
and the Fourier domain evaluation of the stationary blur for varying grid sizes.

operator which relates the tissue-reflectivity function to the
measured echo signals, and a delay-and-sum operator which
forms the radio-frequency image from the echo signals.

Using this structure, we propose an evaluation strategy
which exploits computationally efficient formulations of the
involved operators, based on parametric formulations of time-
of-flight equations, interpolation on appropriate grids and
discrete convolutions. We demonstrate theoretically that such
formulations allow the blur operator to scale linearly with the
number of grid points and we show the benefits of this in
practical scenarios.

In addition, the proposed model is presented in the context
of common approximations of non-stationary blur operators.
We show that while it seems to be similar to sectional methods,
it is by essence different since sub-regions are selected by
physical effects due to ultrasound propagation rather than
arbitrarily as in sectional methods. We nevertheless state that
the proposed model can be used in the context of sectional
methods as well as for shift-invariant modelling of the blur.

As an example application, we use the model for ultrasound
image restoration using maximum-a-posteriori estimation. We
demonstrate through simulated and in vivo examples that the
restoration approach with the proposed model can outperform
most recent state-of-the-art restoration methods based on a
stationary model of the blur.

APPENDIX A
FAST ITERATIVE SHRINKAGE THRESHOLDING ALGORITHM
AND PROXIMITY OPERATORS

A. Fast Iterative Shrinkage Thresholding Algorithm

This section briefly presents the fast iterative shrinkage
thresholding algorithm (FISTA) used to solve Problem (51).
For an in-depth description of the method, please refer to [47].
FISTA is an accelerated version of the well-known iterative
soft thresholding algorithm (ISTA), that can be used to solve
the following problem:

min [ly - Ax|) + ¢ (x), (55)
xeRN

where y € RM, x ¢ RV, A e RMN ¢ : RN - Ris a
non-smooth convex regularizer.

In order to solve Problem (55), FISTA is composed of
an acceleration step and a proximal gradient steps described
in Algorithm 1. The proximal gradient step involves the
following proximity operator [50]:

. _ : 1 2
prox, (x;4) = arg min, A¢(z) + 3 lz—xl5.  (56)

Algorithm 1 FISTA used to solve Problem (55)
Require: A, ¢, y, L > Anax (ATA)
initialization: i = 1,70=1,x_1 =x0 =0
repeat
14414472
f e + 2+ 7

1
¢ —aixio+(1—a)x

> @ H—H
X; < prox, |¢; + LAT (y - Acy); %)
ie—i+1

until stopping criterion

return x;

In Algorithm 1, A,,,4x (AT A) denotes the highest eigenvalue
of ATA.

B. Proximity operators associated with the {,-norm

We consider the proximity operator defined in (56), where
¢ (x) = ||x||§ and p > 1. Thanks to the separability of the two
functions involved in the proximity operator, the problem can
be solved element-wise. According to Table 10.2 of [50], the
following equivalence holds:

1

i = argmin/1|zi|p + = (Zi —x,-)z, V(xl-,zi) eRXR 41>0
zi €ER 2

(57

&z =sign(x)q, ¢ 20, g+plg’" =|x]. (58)

Thus, in order to derive the proximity operator associated
with the £,,-norm, one has to solve (58), which, in the general
case, involves finding roots of a polynomial with arbitrarily
high degree and can be achieved using Newton’s method.

For specific values of p, the polynomial may have a degree
lower or equal to 3. In such cases, (58) has an analytical
solution. This is the case for the values of p considered in
the study:

a) Case p = 1:
deduced as:

The solution of (58) is immediately

z; = sign (x;) max (|x;| — 4,0), (59

which is the well-known soft-thresholding operator.
b) Case p = 3/2: The solution of (58) involves to find
the positive root of the following polynomial of order 2:

1/2

0=g+31g (60)

= x|

0= q2 - (2|x,~| - 2/12) q+ xl-z, |xi| = ¢q (61)

9 [16
S q= |xi|+§/l(/l— 3|x,~| +/12).

(62)



¢) Case p = 4/3: The solution of (58) involves to find

the positive root of the following polynomial of order 3:

4
0=gq+319"" - || (63)

64
©0=¢"-3lxlg* + (3|xi|2+ E/P)CI— x| (64)

Using Cardano’s method and after several calculations not
detailed here, one may obtain the following value of g:
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