
Abstract—Recently, deep learning becomes the main focus

of machine learning research and has greatly impacted

many important fields. However, deep learning is criticized

for lack of interpretability. As a successful unsupervised

model in deep learning, the autoencoder embraces a wide

spectrum of applications, yet it suffers from the model

opaqueness as well. In this paper, we propose a new type of

convolutional autoencoders, termed as Soft Autoencoder

(Soft-AE), in which the activation functions of encoding

layers are implemented with adaptable soft-thresholding

units while decoding layers are realized with linear units.

Consequently, Soft-AE can be naturally interpreted as a

learned cascaded wavelet shrinkage system. Our denoising

experiments demonstrate that Soft-AE not only is

interpretable but also offers a competitive performance

relative to its counterparts. Furthermore, we propose a

generalized linear unit (GenLU) to make an autoencoder

more adaptive in nonlinearly filtering images and data, such

as denoising and deblurring.
Index Terms—Deep learning, Interpretability, Convolutional

Autoencoder, Activation functions.

I. INTRODUCTION

EEP learning has over recent years made huge strides in

many important fields [1-4]. As a successful unsupervised

learning model, autoencoders such as denoising

autoencoder [5], contractive autoencoder [6], k-sparse

autoencoder [7], variational autoencoder (VAE) [8], and

convolutional autoencoder [9] play significant roles in feature

extraction, denoising, dimension reduction, generative tasks,

and so on. However, akin to other deep learning models, an

autoencoder suffers from lack of interpretability. Currently, it

is still difficult to understand the mechanism of the autoencoder,

let alone to have any governing guideline for the optimal design

of an autoencoder in a task-specific fashion. As a result, only

empirical exploration serves as the basis for auto-encoder

prototyping.

Due to the importance of interpretability, considerable efforts

have been made in explaining the mechanism of deep learning

such that more trust can be placed on the autoencoder to push

the boundary of its applications. The existing methods that

explain neural networks can be categorized into four classes

[10]: hidden neuron analysis [11], model mimicking methods

[12-13], localized interpretation methods [14-15], and

physics/engineering methods [16]. The hidden neuron analysis

methods interpret a neural network by visualizing or dissecting

the features extracted by hidden neurons. The model mimicking

methods build explainable models that deliver the performance

as closely as possible to that of the “black-box” models. Given

trained neural networks, the local interpretation methods

investigate the importance of inputs by perturbing the input and

analyzing changes in the resultant output. Lastly, the

physics/engineering methods find significant connections

between deep networks and advanced physical or engineering

systems to reveal the mechanisms of neural networks. Note that

such a classification is qualitative and imprecise, some methods

can be put into multiple classes from different perspectives. For

example, our fuzzy logic interpretation method [17] analyzes

the spectrum of every quadratic neuron and can be viewed as

either hidden neuron analysis or engineering modeling.

In this manuscript, as shown in Figure 1, we propose an

interpretable convolutional autoencoder, termed as the soft

autoencoder (Soft-AE), in which the activation functions in the

encoding layers are implemented with adaptable soft-

thresholding units [18] 𝜂𝑏<0(𝑥) = 𝑠𝑔𝑛(𝑥)max⁡{|𝑥| + 𝑏, 0} ,

where 𝑏 is a threshold, 𝑠𝑔𝑛(⋅) is the sign function, and the

decoding layers are equipped with linear units. With such a

configuration, Soft-AE performs a network-based wavelet

transform embedded with soft thresholding shrinkage

operations. Hence, a deep Soft-AE system can be naturally

interpreted as a learned deep and cascaded wavelet shrinkage

system. The convolutional autoencoder is a special type of

autoencoders, which is intrinsically more appropriate for image

denoising and some other tasks compared to the counterparts in

the form of multi-layer perceptrons (MLP). When dealing with

image formation and analysis, a fully connected autoencoder is

unrealistic due to the memory requirement and unnecessary

redundancy in the space of parameters. In contrast, the

convolutional autoencoder incorporates

convolution/deconvolution operations in its encoding and

decoding processes, thereby reducing network redundancy and

computational overhead, permitting multi-resolution analysis in

a nonlinear fashion. Furthermore, we theoretically investigate

the resolution enhancing property of 𝜂𝑏>0(𝑥) =
𝑠𝑔𝑛(𝑥)max⁡{|𝑥| + 𝑏, 0} , in contrast to the soft thresholding

unit 𝜂𝑏<0(𝑥) . Then, we present a generalized lineal unit

(GenLU) as novel activation functions to enhance the

autoencoder for more image processing tasks from denoising to

deblurring.

The contributions of our work are three folds: First, in the

context of convolutional auto-encoding, we make an effort to

link deep learning to contemporary signal processing [19]. In

this aspect, we bridge classical wavelet analysis and deep

convolutional auto-encoding by modifying activations in a

convolutional autoencoder such that the wavelet shrinkage

scheme is absorbed inside the autoencoder. Second, we employ

Fenglei Fan, Student Member, IEEE, Mengzhou Li, Yueyang Teng, Ge Wang*, Fellow, IEEE

Soft Autoencoder and

Its Wavelet Adaptation Interpretation

D

This work was partially support by IBM AI Horizon Scholarship, NIH/NCI

under award numbers R01CA233888 and R01CA237267, and NIH/NIBIB
under award number R01EB026646.

Fenglei Fan (fanf2@rpi.edu), Mengzhou Li (lim23@rpi.edu) and Ge

Wang* (E-mail: wangg6@rpi.edu) are with the Department of Biomedical
Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA, 12180.

Yueyang Teng is with Sino-Dutch Biomedical and Information Engineering

School, Northeastern University, Shenyang, China, 110169. Asterisk indicates
the corresponding author.

mailto:fanf2@rpi.edu

soft thresholding units, which is a new way to look at an

activation function. In the framework of Soft-AE, wavelets and

thresholds for soft-thresholding are learned in the training stage

from big data. Such a character enables Soft-AE to embrace

big-data-empowered capability and robustness in contrast to

traditional wavelet analysis since most comprehensive

knowledge is contained in the big data. Our experiments

demonstrate that Soft-AE performs competitively on various

benchmarks. Third, we further propose a novel activation

function called “generalized linear unit (GenLU)” for diverse

tasks.

To put our contributions in perspective, let us review the

relevant studies as follows. (1) The activation unit ReLU is the

most popular nonlinear activation function in deep learning

because it is able to prevent gradients from vanishing or

exploding. However, ReLU also arguably tends to block the

circulation of information. The concatenated ReLU [20], Max-

Min Networks [21], ON/OFF ReLU [22], Concatenated-ReLU

[23], and Leaky-ReLU [24] dedicated to taking more

information. (2) Efforts were recently made to interpret

autoencoders. Zhao et al. [25] proposed the stacked what-where

autoencoder (SWWAE) to reduce information loss. In

SWWAE, the location information is incorporated for signal

recovery/reconstruction. Yang et al. [26] utilized invertible

functions to build an autoencoder which facilitates

interpretability. Adel et al. [27] used the generative model such

as the normalized flow method to transform the hidden

representations of an autoencoder to the disentangled

representations, where the degree of disentanglement was

computed based on testing digit samples containing prior

information (thickness, skewness, etc.). Yu and Principe (2019)

[28] applied information bottleneck theory to describe the

information flow pertaining to the mutual information states of

symmetric layers in a stacked autoencoder as

𝐼(𝑋; 𝑋′) ≥ 𝐼(𝑇1; 𝑇1
′) ≥ ⋯ ≥ 𝐼(𝑇𝐾; 𝑇𝐾

′),

where 𝑋 and 𝑋′ are the input and the yield of the autoencoder

respectively, 𝑇𝑖 and 𝑇𝑖
′ are the outputs of the 𝑖𝑡ℎ symmetric

layers in the encoder and decoder respectively. Higgins et al.

[29] developed the β-VAE to enforce the disentanglement

regularization, which relies on the KL distance between the

distribution of latent factors and their posterior distribution.

Later, Hsu et al. [30] established an interpretable VAE for

sequential data by imposing sequence-dependent and sequence-

independent priors to different groups of latent variables. (3)

The applications of wavelets in neural networks were

investigated already [31-35]. Particularly, the scattered wavelet

network was developed to iteratively collect coefficients of a

scattered wavelet transform at different scales. Note that there

are distinctions between a scattered wavelet network and a deep

convolutional network. Most noticeably, the wavelet

representation is derived from the output of all layers instead of

just the final layers, and the filters are not learned from the data

but from the predefined wavelet filters. Also note that the

downstream applications are based on the coefficients of those

wavelet transforms. In contrast, our soft autoencoder is

designed for the denoising task, and the filters are learned from

data.

The study in Ye et al. [35] is most relevant to our work, in which

the convolutional framelet theory with a low-rank Hankel

matrix was leveraged to represent signals by their local and non-

local bases, suggesting an encoding-decoding structure that

promises a perfect signal reconstruction. Albeit providing a

linearized interpretation, there are several aspects that can be

enhanced. As mentioned in Remark 3 in [35], the non-local

basis is a general pooling/un-pooling operator, however, the

pooling reduces the dimension of data, un-natural to the

representation framework. In addition, to tackle with the

nonlinearity from ReLU, the authors combined two “opposite”

ReLUs to transform the nonlinearity into the linearity so that a

perfect recovery conditions can be argued. Although this trick

Figure 1. Soft-autoencoder interpreted as a wavelet shrinkage system after activation functions are appropriately made for image denoising.

is sound, it potentially hurts the power of deep learning because

it counteracts the nonlinearity that is commonly accepted as a

key ingredient of deep learning. In contrast, our model is

analogous to a wavelet shrinkage system, where pooling and

un-pooling operations are not needed to keep structural

consistency. Therefore, our interpretation has no need to

explain pooling and un-pooling. Furthermore, our model

favorably accommodates the nonlinearity as the critical

characteristic of the framework in the form of soft thresholding

units.

II. SOFT-AE AND GENERALIZED LINEAR UNIT

For completeness, let us first introduce relevant preliminaries

as well as the wavelet shrinkage algorithm. Then we present the

design of Soft-AE and shed the light on the conditions that

traverse the gulf between a Soft-AE and a wavelet shrinkage

system. Next, we propose a generalized linear unit (GenLU).

A. Wavelet Shrinkage System and Soft-AE

A. 1. Wavelet shrinkage system

Soft-thresholding: Soft-thresholding [18] is an important tool

in signal processing due to the effectiveness of wavelet

shrinkage methods. Usually the soft-thresholding is superior to

the hard-thresholding for two reasons. First, the theoretical

analysis suggests that the soft-thresholding operation has a

good property in terms of smoothness [18]; see the Theorem in

Section II. B. 1. Second, the soft-thresholding gives continuous

results, while the hard-thresholding is discontinuous and

produces abrupt artifacts in the denoised images. Given an input,

the soft thresholding unit will produce an output:

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝜂𝑏<0(𝑥) = 𝑠𝑔𝑛(𝑥)max⁡{|𝑥| + 𝑏, 0},⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(1)

where the threshold 𝑏 is empirically pre-determined in

traditional domain, and⁡𝑠𝑔𝑛(⋅) is the sign function. In Soft-AE,

𝑏 will be advantageously learned in the training process from a

training dataset.

Wavelet transform: The wavelet transform of 𝑓(𝑥) in terms

of a wavelet Ψ(𝑥) is defined as follows:

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡[𝑊Ψ(𝑓)](𝑎, 𝑐) = ∫ Ψ(
𝑥 − 𝑎

𝑐
) 𝑓(𝑥)

+∞

−∞

𝑑𝑥, (2)

where Ψ is a pre-determined wavelet. Common wavelets are

Morlets, Daubechies wavelets, and so on. [𝑊Ψ(𝑓)](𝑎, 𝑐) is

called wavelet coefficients. For a specific resolution, the

wavelet transform is equivalent to a convolution with a

corresponding wavelet kernel at a specific scale. Therefore, in

the following, we use wavelet transformation and convolution

interchangeably.

Wavelet Shrinkage Denoising: Donoho [18] proposed the

VisuShrink algorithm that uses the soft thresholding operation

and enjoys optimal denoising properties. However, the

VisuShrink algorithm tends to over-smoothen results. The

SureShrink [36] combines a universal constant and a SURE

threshold, derived for minimizing Stein’s unbiased risk

estimator. BayesShrink includes adaptive data-driven

thresholds [37], which are set differently in sub-bands through

Bayes estimation assuming that the wavelet coefficients in each

sub-band are with the generalized Gaussian distribution.

SmoothShrink reduces speckle noise by applying a directional

smoothing function based convolutional kernel on the wavelet

coefficients [38].

Basically, the VisuShrink algorithm consists of the following

three steps in the pseudo-code below: (a) perform the wavelet

transform to derive wavelet coefficients; (b) apply an element-

wise soft-thresholding operation to the wavelet coefficients; (c)

perform the inverse wavelet transform. Mathematically,

suppose that we have the following additive noise model:

𝑌(𝑡) = 𝑆(𝑡) + 𝑁(𝑡), where 𝑌(𝑡) and 𝑆(𝑡) are measurement

and the authentic signal respectively. Then, the above three

steps will correspond to the following three formulas: 𝑌̂ =

W(𝑌) ; Z = 𝜂−σ𝑁√2𝑙𝑜𝑔𝑛(𝑌̂), where 𝜎𝑁
2 is the noise variance and

𝑛 is the number of pixels; 𝑆̂ = 𝑊−1(𝑍).

VisuShrink Algorithm

Input: 𝑌(𝑡) = 𝑆(𝑡) + 𝑁(𝑡), wavelet 𝜓

1: Wavelet transform by 𝜓: 𝑌̂ = 𝑊𝜓(𝑌)

2: Soft thresholding:⁡Z = 𝜂−σ𝑁√2𝑙𝑜𝑔𝑛(𝑌̂).

3: Inverse wavelet transform by 𝜓−1: 𝑆̂ = 𝑊𝜓
−1(𝑍)

Output: 𝑆̂(𝑡)

Here we heuristically illustrate why a soft thresholding unit

works so well. As shown in Figure 2, the wavelet coefficients

of a corrupted signal are full of glitches with small amplitudes

over the whole spectrum. Evidently, linear estimators are not

adequate to remove noise from wavelet coefficients, because

noise is uneven and everywhere. When soft thresholding is

applied in the wavelet domain, we have |Z| ≤ |𝑊𝜓(S(t))| .

Then, in the signal domain after the inverse wavelet

transform, ⁡‖𝑆̂‖
𝐵𝑝,𝑞
𝑠 ≤ 𝐶‖𝑆‖𝐵𝑝,𝑞𝑠 , where C is a constant and

‖⋅‖𝐵𝑝,𝑞𝑠 represents the Besov norm. Suppose that 𝑆(𝑡) is a zero

function, 𝑆̂(𝑡) will also be a zero function, which means that the

VisuShrink can obtain a smooth recovery at least in such an

extreme case. On the contrary, some other estimators such as

the hard-thresholding estimator exhibit annoying bumps even

when reconstructing very smooth functions.

Figure 2. Soft thresholding in the wavelet domain.

A. 2. Soft-AE

Inspired by the success of the wavelet shrinkage system, we

propose a novel type of convolutional autoencoder that deploys

soft thresholding units as activation functions in the encoding

layers and liner functions as activation functions in the

decoding layers. In this regard, we facilitate interpretability and

model adaptivity simultaneously for convolutional neural

networks, turning a black-box convolutional autoencoder into

an interpretable soft autoencoder (Soft-AE). In other words, the

conventional three-step wavelet shrinkage system is a special

case of Soft-AE, and a Soft-AE is nothing but a learned

cascade wavelet shrinkage system. In Soft-AE, the discrete

wavelet transformation and soft-thresholding operations are

sequentially conducted in the encoding layers, and then

decoding layers recover a desirable signal accordingly.

To put our scheme in perspective, let us do a general analysis

and explain the relationship between Soft-AE and the wavelet

shrinkage system. Let us start from a two-convolutional-layer

Soft-AE and suppose that there are 𝑁 convolutional filters in

each layer, denoted as 𝜓𝑖 (encoding layer) and 𝜙𝑖 (decoding

layer). We use ∗ to represent convolution and superscript + to

represent soft-thresholding operation. Given the input 𝑥 of a

finite length, the expression for the yield of a two-

convolutional-layer Soft-AE can be expressed as

⁡⁡∑ 𝜙𝑖 ∗ (𝜓𝑖 ∗ 𝑥)
+𝑁

𝑖 ,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(5)

where (⋅)+ represents the soft thresholding operation. When the

functions 𝜓𝑖 , 𝜙𝑖 fulfill that

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝜙𝑖 =
𝜓𝑖
−1

𝑁
⁡⁡𝑜𝑟⁡⁡⁡𝜓𝑖 =

𝜙𝑖
−1

𝑁
⁡,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(6)

where (⋅)−1 represents the inverse transform, Soft-AE with two

convolutional layers makes a perfect match with the wavelet

shrinkage system when 𝜓𝑖 is the inverse of 𝜙𝑖. Please note that

Eq. (6) holds for common wavelets such as Morlets and

Daubechies wavelets.

More generally, let us consider a four-convolutional-layer Soft-

AE. Without loss of generality, we assume that there are 𝑁

filters in the first encoding layer and 𝑀 ∗ 𝑁 filters in the second

encoding layer. The convolutional filters in the encoding layers

are denoted as 𝜓𝑖 , 𝑖 = 1,2, … , 𝑁 and 𝜓𝑖𝑗 , 𝑖 = 1,2, … ,𝑀; 𝑗 =

1,2, …𝑁 respectively. In symmetry, the two decoding layers

have 𝑁 ∗𝑀 and 𝑁 filters respectively. We denote the

deconvolutional filters in the decoding layers as 𝜙𝑖𝑗 , 𝑖 =

1,2, … , 𝑁; 𝑗 = 1,2, …𝑀 and 𝜙𝑖, 𝑖 = 1,2, … , 𝑁 . Figure 3

illustrates the computational process of Soft-AE with four

convolutional layers. The final output is

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∑ 𝜙𝑘 ∗ [∑ 𝜙𝑘𝑗 ∗ [∑ 𝜓𝑗𝑖 ∗ (𝜓𝑖 ∗ 𝑥)
+]+]⁡𝑁

𝑖
𝑀
𝑗 ,𝑁

𝑘 ⁡⁡⁡⁡⁡⁡⁡(7)

where we can apply the property of the soft thresholding:

 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(ℎ + 𝑔)+ = ℎ+ + 𝑔+,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(8)⁡

which holds approximately when the magnitude of the

threshold is small, and Eq. (7) reduces into

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∑ 𝜙𝑘 ∗ [∑ 𝜙𝑘𝑗 ∗ ∑ [𝜓𝑗𝑖 ∗ (𝜓𝑖 ∗ 𝑥)
+]+]⁡𝑁

𝑖
𝑀
𝑗

𝑁
𝑘 .⁡⁡⁡⁡⁡⁡⁡⁡(9)

Suppose 𝚿 is the 𝑀 ×𝑁 matrix with 𝜓𝑗𝑖 at its row j and

column i, while 𝚽 is the 𝑁 ×𝑀 matrix with 𝜙𝑘𝑗 at its row k

and column j. Using the associative laws of convolution

operation, we can further simplify Eq. (9) into the matrix form:

⁡⁡⁡⁡⁡⁡[𝜙1, . . , 𝜙𝑁] ⊗𝚽⊗𝚿⊗ [(𝜓1 ∗ 𝑥)
+, . . , (𝜓𝑁 ∗ 𝑥)+]𝑇 , (10)

where (𝐴 ⊗ 𝐵)𝑖𝑗 = ∑ 𝐴𝑖𝑘 ∗ 𝐵𝑘𝑗𝑘 , which is analogous to the

matrix product but the involved elements here are functions,

and the convolutional operation is performed between the

elements. Therefore, for Soft-AE to realize wavelet shrinkage,

the following conditions should be met:

⁡⁡⁡⁡⁡⁡⁡{

𝚽⊗𝚿 = diag(𝜆1, 𝜆2, … , 𝜆𝑁)𝛿⁡

𝜙𝑘 =
𝜓𝑘
−1

|∑ 𝜆𝑘
𝑁
𝑘 |

⁡⁡𝑜𝑟⁡𝜓𝑘 =
𝜙𝑘
−1

|∑ 𝜆𝑘
𝑁
𝑘 |

, 𝑘 = 1,2, … , 𝑁
⁡,⁡⁡⁡⁡⁡⁡(11)

where 𝛿 is the Dirac function, and ∑ 𝜆𝑘
𝑁
𝑘 is supposed to be non-

zero that can be made by the selection of 𝚽⊗𝚿. The

existence of 𝚽 and 𝚿 that fulfills Eq. (11) is natural, one trivial

Figure 3. Overall computational process of Soft-AE through encoding and decoding operations. (⋅)+ represents the soft thresholding operation.

situation is that diagonal elements of 𝚽 and 𝚿 are mutually

inverse to each other, and the rest elements are zero.

Remark 1: Our derivation is in the framework of Soft-AE, we

offer the mapping between Soft-AE and a wavelet shrinkage

system under the conditions that enable the Soft-AE to realize

a wavelet shrinkage system. Please note that these conditions

can be extended to deeper versions of Soft-AE through similar

steps. The approximation in Eq. (8) we made on the soft

thresholding is reasonable, as instantiated in Figure 2. When the

noise intensity is small, the threshold value to be applied is

small as well, which renders the soft thresholding unit close to

a linear unit. Thus, the soft-thresholding operation to the

addition of two signals can be decomposed into the addition of

the soft-thresholding operations to each signal. Moreover, such

approximation will not change the smoothness property of the

restored signal because here the restored signal is still zero if

the input signal is zero. The condition Eq. (11) implies that the

redundant filters are not necessary for the signal recovery,

which is more general than the explanation from Ye et al.,

wherein the number of filters increases in the decoding phase.

In addition, unlike the work by Ye et al., our analysis considers

the nonlinearity, which is the key ingredient of deep learning.

Remark 2: It can be seen that Soft-AE matches VisuShrink and

BayesShrink more closely than the other aforementioned

variants of wavelet shrinkage algorithms. In Soft-AE, the

thresholds are assigned to each sub-band differently, without

estimating a universal threshold from the noise variance and the

number of pixels like in VisuShrink. In contrast to BayesShrink,

Soft-AE demands no statistical estimation, and all the

thresholds are learned from data.

Remark 3: The interpretability of Soft-AE will not be

undermined by the addition of residual connections, if residual

connections are symmetrically incorporated. In a residual

version of Soft-AE, the features to be learned turn into the

residual features, which are still modifiable via wavelet

shrinkage. Thus, Eq. (9) still holds for the residual features. In

addition, Soft-AE will embrace the merits of residual shortcuts.

For example, the employment of residual connections will

accommodate the training difficulties in deep models. It was

mentioned that feed forward neural networks do not excel in

learning the identity mapping [39], and residual connections are

able to circumvent the gradient explosion/vanishing problems,

thereby facilitating the training of deep networks.

Although interpretability is our major motivation, we also

would like to argue that Soft-AE has another important merit:

adaptivity. In the era of big data, it is hypothesized that the most

comprehensive information is contained in big data, and the

best tool to dig them out is deep learning. Given 𝑥 ∈ 𝐑,⁡ the soft

thresholding unit is conveniently expressed as

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝜂𝑏<0(𝑥) = ReLU(𝑥 + 𝑏) − ReLU(−𝑥 + 𝑏),⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(12)
where 𝑏 < 0 is a trainable parameter. The Soft-AE can

adaptively learn optimal wavelet kernels and thresholds through

the training process with big data, which empowers Soft-AE

with adaptivity and robustness in contrast to traditional wavelet

analysis.

B. Generalized Linear Unit (GenLU)

In last subsection, we demonstrate the interpretability of

autoencoders using soft thresholding units 𝜂𝑏<0(𝑥) . As

aforementioned, the utility of 𝜂𝑏<0(𝑥) in denoising tasks were

theoretically justified in Donoho (1995). By symmetry, our

curiosity moves to the other side of the coin, that is, we would

like to investigate the resolution enhancing property of the

activation function: 𝜂𝑏>0(𝑥) = 𝑠𝑔𝑛(𝑥)max⁡{|𝑥| + 𝑏, 0} in a

super-resolution model. As a result, we further propose a

generalized linear unit (GenLU) and its truncated variant

(GeLU) in the autoencoder to make it more general.

B. 1. ⁡𝜂𝑏>0(𝑥)

Let us first recall two preliminary results regarding the wavelet

expansion and a theorem from [18].

Wavelet Expansion: Any function 𝑔 ∈ 𝐶[0,1] has an

expansion:

 𝑔 = ∑ 𝛽𝑗0,𝑘𝜙̃𝑗0,𝑘
2𝑗0−1
𝑘 + ∑ ∑ 𝛼𝑗,𝑘𝜓̃𝑗,𝑘

2𝑗−1

𝑘 ⁡𝑗≥𝑗0
,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(13)

where 𝜙̃𝑗0,𝑘 and 𝜓̃𝑗,𝑘 are from an orthonormal wavelet basis

system, such as the Daubechies system. Let 𝑊 denote the

operator such that 𝑊 ∘ 𝑔 is a vector of coefficients of countable

cardinality.

𝑦 = 𝑊 ∘ 𝑔 = [𝛽𝑗0,., 𝛼𝑗0,., 𝛼(𝑗0+1),., … , 𝛼𝑗1,., …]⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(14)

Let 𝑇𝑛 denote the truncation operator, (𝑇𝑛 ∘ 𝑊) ∘ 𝑔 generates

a vector with the first 𝑛 entries of 𝑊 ∘ 𝑔. To put it simply,

𝑊𝑛 = 𝑇𝑛 ∘ 𝑊 is an empirical wavelet transform that derives the

first 𝑛 coefficients of the transformation of 𝑔 . We define

𝑦(𝑛) = (𝑇𝑛 ∘ 𝑊) ∘ 𝑔 = 𝑊𝑛 ∘ 𝑔. Conversely, the empirical

inverse transform is implemented by padding zeros with

countable entries before the inverse transform: 𝑔′ = (𝑊−1 ∘

𝑃𝑛) ∘ 𝑦(𝑛) = 𝑊𝑛
−1 ∘ 𝑦(𝑛), where 𝑊𝑛

−1 = 𝑊−1 ∘ 𝑃𝑛 .

Theorem [18]: Suppose y1
(n)

 and y2
(n)

 are two vectors

subsuming truncated empirical wavelet coefficients by 𝑊 ,

satisfying that y1
(n)

 is elementwise smaller than y2
(n)

 in absolute

value, i. e., |y1
(n)| ≤ |y2

(n)| , if 𝑔1
′ = 𝑊𝑛

−1 ∘ y1
(𝑛)

 and 𝑔2
′ =

𝑊𝑛
−1 ∘ y2

(𝑛)
, then ‖𝑔1

′‖𝐵𝑝,𝑞𝑠 ≤ 𝐶(𝑠, 𝑝, 𝑞)‖𝑔2
′‖𝐵𝑝,𝑞𝑠 ,⁡ where

𝐶(𝑠, 𝑝, 𝑞) is a constant and ‖⋅‖𝐵𝑝,𝑞𝑠 is the Besov norm that is the

smoothness measure family controlled by (s, p, q). For example,

the Besov norm of 𝑓 incorporates a term: ∫ |
𝑤𝑝
2(𝑓(𝑙),𝑡)

𝑡𝛼
|
𝑞
𝑑𝑡

𝑡
⁡⁡

∞

0
,

where 𝑤𝑝
2(𝑓(𝑙), 𝑡) = sup

|ℎ|≤𝑡
||Δℎ

2𝑓(𝑛)||𝑝, 𝑠 = 𝑙 + 𝛼, and Δℎ
2𝑓(𝑙) =

𝑓(𝑙)(𝑥 − ℎ) − 𝑓(𝑙)(𝑥). 𝑓(𝑙) is the 𝑙𝑡ℎ derivative of 𝑓. The utility

of Δℎ
2𝑓(𝑙) is to measure the extent of oscillation of 𝑓(𝑙).⁡When

𝑙 = 0, the smoothness of 𝑓 is directly revealed by second-order

differences.

Without loss of generality, we ignore the down-sampling effect

in the observation and assume that the deblurring by 𝜂𝑏>0(𝑥) is

abstracted as

 ⁡⁡⁡𝑓HR = 𝑊𝑛
−1 ⁡ ∘ 𝜂𝑏>0 ∘ 𝑊𝑛 ∘ [𝑓𝐿𝑅 + 𝜖 ⋅ 𝑧],⁡⁡⁡⁡⁡⁡⁡⁡⁡(15)

where 𝑓𝐿𝑅 is a blurred low resolution (LR) signal of the same

size as that of the expected high resolution (HR) recovered

signal 𝑓HR , 𝜖 ⋅ 𝑧 is the noise with 𝑧~𝑁(0,1) , and 𝜖 is noise

intensity. Then, we have the following Proposition:

Proposition: Let 𝑓HR and 𝑓𝐿𝑅 be two functions produced by Eq.

(15). There is a universal constant 𝜋𝑛 with 𝜋𝑛 → 1 as 𝑛 →
∞,⁡and constant 𝐶(𝑠, 𝑝, 𝑞) depending on the Besov norm and

the wavelet basis 𝛹 such that

Prob {‖𝑓𝐿𝑅‖𝐵𝑝,𝑞𝑠 ≤ 𝐶(𝑠, 𝑝, 𝑞)‖𝑓HR‖𝐵𝑝,𝑞𝑠
} ≥ 𝜋𝑛 .⁡⁡⁡⁡⁡⁡⁡⁡(16)

Remark 4: Eq. (16) reveals an important relationship between

the degraded low-resolution signal and the high-resolution

reconstruction. With the overwhelming likelihood and in a

broad family of smoothness measure in terms of the Besov

norm, the recovered signal 𝑓HR is at least as smooth as that of

𝑓𝐿𝑅 , which is to say that the reconstruction is a resolution-

elevating process, because usually the high-resolution signal is

less blurred and tend to have higher score in terms of some

smoothness metric. What’s more, if the authentic signal is zero,

then the sampled observed signal should be zero as well. Eq.

(16) conforms to such an expectation.

Now, let us analyze the correctness of our proposition. We

define

 𝑦𝐿𝑅 + 𝛿 ⋅ 𝑢𝐼 ≡ 𝑊n ∘ [𝑓𝐿𝑅 + 𝜖 ⋅ 𝑧],⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(17)

where 𝑦𝐿𝑅 corresponds to 𝑊n ∘ 𝑓𝐿𝑅 , and 𝛿 ⋅ 𝑢𝐼 corresponds to

𝑊n ∘ (𝜖 ⋅ 𝑧).⁡For now, we presume that 𝑢𝐼 is deterministic and

ignore its probabilistic character. Then, we define

 ⁡⁡⁡⁡⁡𝑦̂HR ≡ 𝜂𝑏>0 ∘ [𝑦𝐿𝑅 + 𝛿 ⋅ 𝑢𝐼],⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(18)

where 𝑢𝐼 satisfies |𝑢𝐼| ≤ 1, δ > 0 denotes intensity, 𝐼𝑛 is the

index set of cardinality 𝑛, and 𝑓HR = 𝑊n
−1 ∘ 𝑦̂HR . By setting

𝑏 = 𝛿, we obtain 𝑦̂𝐻𝑅
𝛿 = 𝜂𝑏=𝛿(𝑦𝐿𝑅 + 𝛿 ⋅ 𝑢𝐼) , then 𝑦̂𝐻𝑅

𝛿 is

elementwise greater than 𝑦𝐿𝑅 in the absolute sense.

Mathematically,

 |(𝑦̂𝐻𝑅
𝛿)

𝐼
| ≥ ⁡ |(yLR)𝐼|, ∀𝐼 ∈ 𝐼𝑛⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(19)

The reason is that in each coordinate 𝐼, (𝑦̂𝐻𝑅
𝛿)

𝐼
 satisfies

|(𝑦̂𝐻𝑅
𝛿)

𝐼
| = ||(yLR)𝐼 + 𝛿 ⋅ 𝑢𝐼| + 𝛿|⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

≥ ||(yLR)𝐼 + 𝛿 ⋅ 𝑢𝐼| + 𝛿|𝑢𝐼|| ≥ |(yLR)𝐼|⁡⁡⁡⁡⁡⁡(20)

Then, we move back that 𝑢𝐼 are actually independently and

identically distributed noise. We utilize the following fact

regarding a random vector that if 𝑢𝐼 is independently and

identically distributed with 𝑁(0,1), then

Prob {sup
𝐼∈𝐼𝑛

|𝑢𝐼| ≤ √2𝑙𝑜𝑔𝑛⁡} → 1, 𝑛 → ∞⁡.⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(21)

If we set 𝑏 = 𝛿 = √2𝑙𝑜𝑔𝑛⁡𝜖, we will arrive at

Prob {|(𝑦̂𝐻𝑅
𝛿)

𝐼
| ≥ ⁡ |(yLR)𝐼|, ∀𝐼 ∈ 𝐼𝑛⁡⁡} → 1, 𝑛 → ∞⁡.⁡⁡⁡⁡(22)

Eq. (22) implies that wavelet coefficients |(𝑦̂𝐻𝑅
𝛿)

𝐼
| are very

likely to be greater than |(yLR)𝐼| for ∀𝐼 ∈ 𝐼𝑛. Then, utilizing

the aforementioned theorem and noting 𝑓HR = 𝑊n
−1 ∘ 𝑦̂𝐻𝑅

𝛿 ⁡and

𝑓𝐿𝑅 = 𝑊𝑛
−1 ∘ yLR, we arrive at

Prob {‖𝑓𝐿𝑅‖𝐵𝑝,𝑞𝑠 ≤ 𝐶(𝑠, 𝑝, 𝑞)‖𝑓HR‖𝐵𝑝,𝑞𝑠
} ≥ 𝜋𝑛 .⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(23)

B. 2. GenLU and GeLU

Inspired by the effectiveness of the soft thresholding unit

𝜂𝑏<0(𝑥) for denoising and the potential resolution enhancement

property of 𝜂𝑏>0(𝑥) implied by the preceding analysis, we are

motivated to unify them into a generalized linear unit (GenLU)

to empower the autoencoder, and demonstrate its utilities for

both denoising and deblurring. The rationale is that each neuron

is able to adapt its bias towards either inhibiting noise

appearance or enhancing subtle features during the training.

The capability unlocked by GenLU can be straightforwardly

formulated as

 GenLU(𝑥) = 𝑠𝑔𝑛(𝑥)max⁡{|𝑥| + 𝑏, 0},⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(24)

where 𝑏 is an arbitrary real number to be learned. Naturally, we

can have GeLU by suppressing the negative part of the input to

promote the sparsity. Mathematically, GeLU is expressed as

⁡⁡⁡⁡⁡⁡⁡GeLU(𝑥) = max{GenLU(𝑥), 0}.⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(25)

Note that ReLU is now embedded in GeLU. The activation

patterns of GenLU and GeLU are shown in Figure 4.

Coincidently, Hendrycks and Gimpel [50] proposed the

Gaussian Error Linear Unit (GELU), a statistically random

activation function that is clearly different from our proposed

GeLU.

Figure 4. Various filtration functions, where the arrow directions indicate how

the activation pattern may change. (a) the soft-thresholding unit for denoising;

(b) when 𝑏 > 0, the filtering unit enhances the resolution; (c) the activation

pattern of a generalized linear unit (GenLU) embraces denoising and deblurring

capabilities by turning 𝑏 as an adaptive parameter; (d) the activation pattern of

the truncated GenLU (GeLU). Note that GeLU=ReLU only when 𝑏 < 0.

Figure 5. A one-hidden-layer GeLU network is trained to fit the univariate

function 𝑓(𝑥) = 𝑥3 − 0.25𝑥 + 0.2 with the synthesized data which are

sampled from [0,1] with the interval of 0.01.

Figure 5 shows a toy example where a one-hidden-layer GeLU

network is trained to fit the univariate function 𝑓(𝑥) = 𝑥3 −
0.25𝑥 + 0.2 with the synthesized data which are sampled from
[0,1] with the interval of 0.01. It is seen that the GeLU network

well fits the 𝑓(𝑥), particularly in the region of [0.4,1], despite

that there are slightly oscillations in the region of [0, 0.4].

III. EXPERIMENTS

A. Denoising Experiments with Soft-AE

In this section, we compare the performance of our Soft-AE to

the state of-the-art networks to justify that Soft-AE not only is

interpretable but also performs comparably or favorably in

solving real-world problems. Specifically, we selected the

convolutional autoencoder with ReLU, Leaky-ReLU, and

Concatenated ReLU as the benchmark models. For

convenience, we denote them as ReLU-AE, Leaky-AE, and

Conc-AE respectively. We can enable a soft thresholding unit

with two ReLU units as shown in Eq. (12). Mathematically,

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡LeakyReLU(𝑥) = {
𝑥⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑖𝑓⁡𝑥 > 0
𝛼𝑥⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑖𝑓⁡𝑥 < 0

⁡⁡⁡⁡⁡⁡⁡⁡⁡(26)

In our TensorFlow environment, 𝛼 was set to 0.2 by default.

Concatenated-ReLU concatenates two ReLU outputs in

opposite phases. Mathematically,

 ⁡⁡Concatenate⁡{ReLU(𝑥), ReLU(−𝑥)}⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(27)

The dimensionality of inputs is doubled after being processed

by Concatenated ReLU. Thus, the output of Conc-AE will have

an even dimensionality in contrast to those of Soft-AE, Leaky-

AE, and ReLU-AE. Because the images in our experiments are

of odd channels (either greyscale or RGB images), we use

ReLU in the output layer of Conc-AE.

In our experiments, we evaluated the utility of Soft-AE in either

the generic or residual structure. For structural fidelity, neither

pooling nor un-pooling operations were used. Overall, the loss

function for all the models was defined as 𝐿(Θ) =
1

𝑁
∑ ||𝐹(𝑋𝑖

𝑛𝑜𝑖𝑠𝑒𝑑; Θ) − 𝑋𝑖
𝑙𝑎𝑏𝑒𝑙||𝑁

𝑖

2
,⁡ where Θ denotes hyper-

parameters, 𝑋𝑖
𝑛𝑜𝑖𝑠𝑒𝑑 , 𝑋𝑖

𝑙𝑎𝑏𝑒𝑙 are the input and label vectors

respectively. Despite the fact that a soft thresholding unit is

discontinuous at zero, the empirical results show that this is not

an issue in our studies because a unit is still optimizable via

gradient-based search using the one-sided derivative which

always exists and can be used as needed.

We first tested the denoising performance of different models

on natural image benchmarks CIFAR-10 and BSD-300

respectively. CIFAR-10 [40] is a classic benchmark dataset of

50,000 training images and 10,000 test images. Each image is

of 32*32 in the RGB format. BSD-300 contains 300 high-

quality images of different sizes, where 200 images are for

training and 100 images for testing. Because CIFAR-10 is a

relatively simple benchmark and BSD-300 is more

complicated, we applied the autoencoders of generic structures

on CIFAR-10 and autoencoders with residual links on BSD-

300, respectively. For further evaluation, we also conducted

denoising experiments on the Mayo Clinical Dataset to show

that Soft-AE performs well for both natural and medical image

denoising tasks. To quantify the denoising performance, we

used structural similarity (SSIM) and peak-to-noise ratio

(PSNR) as the metrics.

Denoising on CIFAR-10: To understand the performance of

different models, three typical network structures were

evaluated. As shown in TABLE I, they are of (1) four

convolutional layers with eight channels in every hidden layer,

(2) four convolutional layers with sixteen channels in each

hidden layer, and (3) six convolutional layers with sixteen

channels per hidden layer. The convolutional kernel size in

every layer was set to 3*3. The zero padding was used for

convolution to keep the image size intact. In the case of Conc-

AE, the activation function for the output layers was configured

as ReLU. For symmetry, we used ReLU in the first layer as

well. Concatenated ReLU activations were employed for the

rest layers. All the activations in ReLU-AE and Leaky-AE were

done by ReLU and Leaky-ReLU respectively. In Soft-AE, the

encoding part takes soft thresholding units while the decoding

part uses linear functions.

TABLE I: THREE CONVOLUTIONAL AUTOENCODER

ARCHITECTURES TESTED ON CIFAR-10.

Architecture Convolutional

Layer

Channel

Number
Shortcut

Structure -1 4 8 No

Structure -2 4 16 No

Structure -3 6 16 No

All the images were normalized by division with 255. Noisy

images were synthesized by adding additive Gaussian noise

with zero mean and standard deviation 𝜎 = 0.1, 0.15, 0.2

respectively. Negative pixel values were truncated to 0. In the

training process, noisy images were fed into the network, and

denoised images were compared with the clean counterparts.

With random initializations, each network was trained five

times to produce mean SSIM and PSNR values. For all the

models, we used the Adam for training. A batch of 50 training

samples were processed in every iteration, the number of

epochs was set to 20, and the learning rate was 10−3 . The

results are summarized in TABLE II. Superscripts 1-3

correspond to the three architectures in TABLE I respectively.

The best performance among the four models with respect to

the specific noise level is bold-faced. Generally speaking, the

four autoencoders share the same trend that the performance

goes down as the noise level goes up; all the models of

structure-2 and structure-3 yield higher PSNR and SSIM scores

than their counterparts of structure-1. It is underlined that Soft-

AE keeps the clearly superior performance in a majority of

cases, particularly for structure-1. In those cases when Soft-AE

does not give the best metrics, it follows the best performer

closely. Overall, it is concluded that Soft-AE indeed produces

comparable or favorable denoising performance relative to the

state-of-the-arts.

Denoising on BSD-300: We randomly selected 30,000 patches

of 50*50 from the BSD images to single out 20,000 batches for

training, and the remaining for testing. Similarly, we utilized

the networks of three symmetric structures to perform

comparisons, as shown in TABLE III. Specifically, these

networks are in the following structures: (1) eight convolutional

layers with 8 channels in each layer, (2) eight convolutional

layers with 12 channels in each layer, and (3) ten convolutional

layers with 8 channels in each layer. As far as the topologies of

skip-connections are concerned, not all paired encoder/decoder

layers were bridged by shortcuts for a reasonable computational

overhead.

TABLE III: THREE CONVOLUTIONAL AUTOENCODERS USING SKIP

CONNECTIONS TESTED ON BSD-300.

Architecture Convolutional

Layer

Channel

Number

Shortcut Topology

Structure -1 8 8

Structure -2 8 12

Structure -3 10 8

All the images were normalized by division with 255.

According to the protocols used for CIFAR-10, we synthesized

noisy images by adding additive Gaussian noise with zero

mean. The standard deviations were set to 𝜎 = 0.1, 0.15, 0.2

respectively. Negative pixel values were lower bounded to 0.

Because the initialization was random, each network was

trained five times to compute mean SSIM and PSNR values.

For all the models ReLU-AE, Leaky-AE, Conc-AE and Soft-

AE, we used the Adam for optimization. A batch of 50 training

samples were processed per iteration, the number of epochs was

20, and the learning rate was 10−3.

The denoising results are in TABLE IV. The best performance

among the four models for each noise level is bold-faced. With

residual connections, Soft-AE performs even better. In the

networks of structure-1 and structure-3, Soft-AE performs the

best in terms of both SSIM and PSNR for all the noise levels.

Particularly, the SSIM and PSNR improvements by Soft-AE are

significantly over Conc-AE and ReLU-AE. However, the

counterexamples exist for Soft-AE2, since the best

performances in some cases are from Leaky-AE2, but the PSNR

and SSIM values achieved by Soft-AE2 are very close to those

of Leaky-AE2. To check if the superiority is really significant

or not, we further conducted statistical hypothesis testing and

the results were put into the supplementary material for more

information.

Denoising on Low-dose CT: Low-dose CT imaging has gained

a considerable traction over the past decade due to its potential

to reduce the risk induced by X-ray radiation to a patient. One

effective way to reduce the X-ray dose is to use a lower X-ray

flux. However, a reduced X-ray flux will elevate image noise

and compromise image quality. Currently, the algorithms

dedicated to low-dose CT image denoising can be roughly put

into three categories: (a) sinogram domain filtering, (b) iterative

reconstruction, and (c) image post-processing. The sinogram

filtering methods [41-43] can be used when the data format and

noise characteristics are known. Nevertheless, sinogram

filtering tends to reduce spatial resolution. On the other hand,

the image-domain iterative methods were extensively

investigated, especially model-based and compressed sensing

methods [44-46]. Although modern iterative algorithms

produce encouraging results, their computational cost is rather

high. Finally, the image post-processing methods, such as block

matching [47-48], are directly applied to low-dose CT images

without any direct access to raw data. The main barrier for the

post-processing methods is that the noise distribution cannot be

perfectly pre-determined, leading to structural blurring or

distortion.

Recently, deep learning methods were successfully applied to

low-dose CT denoising, such as RED-CNN [49], which

delivered a competitive denoising performance. Here we tested

TABLE II: DENOISING PERFORMANCE COMPARISON AMONG LEAKY-AE, CONC-AE, RELU-AE AND SOFT-AE ON CIFAR-10.

Metric 𝜎 Leaky-

AE1

Conc-

AE1

ReLU-

AE1

Soft-

AE1

Leaky-

AE2

Conc-

AE2

ReLU-

AE2

Soft-

AE2

Leaky-

AE3

Conc-

AE3

ReLU-

AE3

Soft-

AE3

PSNR

0.1 27.043 26.961 27.150 27.469 27.936 27.640 27.919 27.944 27.898 27.815 27.974 28.039

0.15 25.058 24.957 25.186 25.370 25.752 25.676 25.783 25.786 25.914 25.837 26.036 25.774

0.2 23.845 23.606 23.913 23.952 24.393 24.320 24.403 24.355 24.572 24.385 24.537 25.535

SSIM(%)

0.1 91.662 91.533 91.974 92.368 93.298 93.023 93.107 93.251 93.325 93.160 93.505 93.459

0.15 87.757 87.396 88.124 88.513 89.502 89.300 89.090 89.570 89.924 89.681 90.185 89.897

0.2 84.605 83.796 84.816 84.744 86.079 85.922 86.146 86.089 86.730 86.326 86.695 86.526

Note: superscripts 1-3 correspond to three architectures shown in TABLE I.

TABLE IV: DENOISING PERFORMANCE COMPARISON AMONG LEAKY-AE, CONC-AE, RELU-AE AND SOFT-AE ON BSD-300

Metric 𝜎 Leaky-

AE1

Conc-

AE1

ReLU-

AE1

Soft-

AE1

Leaky-

AE2

Conc-

AE2

ReLU-

AE2

Soft-

AE2

Leaky-

AE3

Conc-

AE3

ReLU-

AE3

Soft-

AE3

PSNR

0.1 29.252 28.507 28.789 29.543 29.437 29.367 29.336 29.363 29.545 29.037 29.425 29.700

0.15 26.999 26.470 26.786 27.486 27.424 27.121 27.287 27.432 27.349 26.875 27.275 28.109

0.2 25.589 24.462 25.406 26.153 26.064 25.829 25.955 26.094 25.797 25.237 25.739 26.267

SSIM(%)

0.1 89.803 88.892 88.803 90.227 90.160 90.181 89.699 89.916 90.511 89.932 90.212 90.584

0.15 84.372 83.081 83.566 85.315 85.381 84.727 85.089 85.186 85.298 84.196 85.124 85.949

0.2 79.504 78.485 78.718 80.997 81.129 80.596 80.823 80.876 80.208 79.042 80.139 81.450

Note that superscripts 1-3 correspond to the three architectures in TABLE III respectively.

the performance of our Soft-AE for low-dose CT denoising

with a real clinical dataset prepared by Mayo Clinics for “the

2016 NIH-AAPM-Mayo Clinic Low Dose CT Grand Challenge”

[51]. This dataset has 2,378 full dose and corresponding quarter

dose 512*512 CT images from 10 patients. In our study, we

randomly extracted 64,000 64*64 patches from these images

Figure 6. The comparison of denoising results from different models for an

abdominal region. Display window is [-240,160].

Figure 7. Zoomed regions from Figure 6. The red circle highlights the region

in high-contrast as best revealed by Soft-AE. Display window is [-240,160].

Figure 8. The comparison of denoising results from different models for

an abdominal region. Display window is [-240,160].

Figure 9. Zoomed regions from Figure 8. The red circle highlights the

region in high-contrast as best revealed by Soft-AE. Display window is [-

240,160].

for training. After the training, we tested the models based on

independent full-size images. For CT denoising, we employed

ReLU-AE, Leaky-AE and Conc-AE of residual connections.

The networks of structure-2 were utilized. In Soft-AE, we used

34 layers with 8 convolutional kernels in each layer. The hyper-

parameters for training include 50 batches in each iteration, the

learning rate for Adam optimization 1.5 × 10−3 in the first 20

epochs, and 1.0 × 10−3 in the final 10 epochs.

Two representative abdominal CT slices (the 100th and 130th

slices from patient L506) were selected to evaluate the

performance of Soft-AE and the other models, as shown in

Figure 6-9. For better visualization, we zoomed the regions of

interest (ROIs) marked by the red rectangles. It is noted that all

the models demonstrate denoising effects with different image

quality impressions. Figure 7 highlights high structural fidelity

by Soft-AE. The structures processed by Leaky-AE, ReLU-AE,

and Conc-AE are disappearing. Figure 8 showcases that the

results of Leaky-AE, Conc-AE, and ReLU-AE blur some

structural details.

TABLE V lists the quantitative comparative results for these

images. In both Figures 6 and 8, the highest PSNR and SSIM

values and lowest root mean square errors (RMSEs) are from

Soft-AE. It is concluded that Soft-AE can deliver a competitive

performance compared with its counterparts in this real-world

benchmark.

To test the utility and robustness of Soft-AE, we also compared

Soft-AE with the VisuShrink and BayesShrink algorithms and

discussed the important parameters in Soft-AE. The results are

in the supplementary materials.

B. Deblurring and Denoising Experiments with GenLU

We tested the effectiveness of GenLU for image denoising and

deblurring in comparison with Leaky-ReLU and ReLU based

on SRCNN [52] that is a forerunner in deep learning for super-

resolution. For convenience, we denote SRCNN with ReLU,

Leaky-ReLU, and GenLU as ReLU-SRCNN, Leaky-SRCNN,

and GenLU-SRCNN respectively. Note that GenLU-SRCNN is

more interpretable, since we already have a theoretical basis

with 𝜂𝑏>0(𝑥) for signal recovery. Practically, the employment

of GenLU strengthens the flexibility of the network and

facilitates its representation. From the perspective of network

modularity and functional decomposition, it makes sense that

neurons with 𝜂𝑏>0(𝑥) enhance resolution, while neurons with

𝜂𝑏<0(𝑥) suppress noise. Thus, the utility of each neuron is

indicated by the sign of 𝑏 that can be learned.

The key features of the SRCNN model are summarized in

TABLE VI. We used the same training images as that in [52-

53], where the training set consists of 91 images. The Set14

dataset of 14 images was used to evaluate the performance at a

magnification factor 3. The preparation of training images

TABLE V: QUANTITATIVE COMPARISON

BETWEEN AE USING QUADRATIC ACTIVATION

AND QUADRATIC AUTOENCODER.

 Fig. 6 Fig. 8

 SSIM PSNR RMSE SSIM PSNR RMSE

Noised 0.8131 23.502 0.06681 0.8491 25.239 0.05471

Leaky-AE 0.8639 28.685 0.03679 0.9180 30.183 0.03096

ReLU-AE 0.8945 28.729 0.03660 0.9185 30.231 0.03079

Conc-AE 0.8943 28.717 0.03665 0.9183 30.199 0.03091
Soft-AE 0.8951 28.731 0.03657 0.9189 30.244 0.03074

TABLE VII: THE PSNR AND RMSE VALUES ON THE SET 14 DATASET.

Set14

Image

ReLU-SRCNN Leaky-SRCNN GenLU-SRCNN

PSNR RMSE PSNR RMSE PSNR RMSE

Baboon 19.006 0.01257 19.011 0.01252 18.863 0.01299

Barbara 22.991 0.00502 22.986 0.00506 23.159 0.00483

Bridge 21.639 0.00686 21.613 0.00690 22.132 0.00612

Coastguard 24.045 0.00393 24.038 0.00395 24.276 0.00373

Comic 19.602 0.01096 19.575 0.01102 19.477 0.01127

Face 28.697 0.00135 28.686 0.00135 28.788 0.00132

Flowers 24.222 0.00378 24.204 0.00380 24.400 0.00363

Foreman 26.789 0.00209 26.766 0.00211 26.815 0.00208

Lenna 24.335 0.00368 24.276 0.00374 24.828 0.00329

Mam 23.623 0.00434 23.631 0.00433 22.767 0.00529

Monarch 24.147 0.00385 24.188 0.00381 25.109 0.00308

Pepper 28.572 0.00139 28.517 0.00141 29.091 0.00123

PPT3 15.253 0.00298 15.241 0.02992 16.745 0.00212

Zebra 22.422 0.00572 22.416 0.00573 22.091 0.00618

TABLE VI: BASIC PARAMETERS OF SRCNN

 Layer 1 Layer 2 Layer 3

SRCNN 64 9 × 9

filters

32 1× 1

filters

32 5× 5

filters

followed the same protocol as that in [52]. The low-resolution

noisy images were obtained by blurring the original images

(sub-sampling by a factor 3 and upscaling it with the same

factor) and adding the Gaussian noise with mean 0 and

deviation 0.005. Roughly, 24,800 pairs of high-resolution and

low-resolution images of 32 × 32 were used for training. In our

experience, such a training set was sufficiently large to train all

the three networks.

For all the three networks, the loss function was MSE. We

performed training with a batch size of 128. To facilitate

convergence, we initialized networks with a pre-trained model

publicly available in GitHub [54], which is an independent

implementation of SRCNN on TensorFlow. The learning rate

was set to 10−4. The total number of iterations was 15000.

PSNR and MSE for different models were computed, as

summarized in TABLE VII. For each image, the best scores are

bold-faced. Overall, the results of ReLU-SRCNN and Leaky-

SRCNN on different images are quite close to each other. The

highlight is that the proposed GenLU-SRCNN produces the

highest PSNR and the lowest MSE values in 10 images among

all the 14 images in Set14. Importantly, on the images “Lenna”,

“Monarch”, and “PPT3”, GenLU-SRCNN outperforms its

counterparts by a large margin (≥ 0.5dB). Figures 10 and 11

show the recovered results, ROIs, and profiles for the compared

models on the four images. It can be observed in Figure 11 that

all the three networks resolve meaningful details from the

degraded images. Furthermore, GenLU-SRCNN produces the

most desirable outcomes over the other models. As indicated by

the green arrows, the GenLU-SRCNN images preserve sharp

edges which are faithful to the labels.

IV. CONCLUSION

In conclusion, we have investigated to replace the ReLU

activation in the setting of convolutional autoencoders and

introduced a pair of ReLU units emulating soft thresholding,

thereby offering the network interpretability while enhancing

the network performance through adaptivity as well. As a result,

we have interpreted our Soft-AE as a deeply learned nonlinear

wavelet shrinkage system. Furthermore, we have proposed

GenLU for more image processing tasks. Interestingly, the

function decomposability between different neurons are

realized by the tuning of thresholds. In the future, other low-

level computer vision tasks such as image impainting can be

revisited in our framework.

REFERENCES

[1] Y. LeCun, Y. Bengio, G. Hinton, “Deep learning,” Nature, vol. 521, no.

7553, pp. 436. 2015.

[2] F. Fan, W. Cong, & G. Wang, “A new type of neurons for machine
learning,” IJNMBE, vol. 34, no. 2, e2920, 2018.

[3] F. Fan, W. Cong, & G. Wang, “Generalized backpropagation algorithm

for training second‐order neural networks,” IJNMBE, vol. 34, no. 5,
e2956, 2018.

[4] H. Shan, et al., “3-D Convolutional Encoder-Decoder Network for Low-

Dose CT via Transfer Learning From a 2-D Trained Network,” IEEE
transactions on medical imaging, vol. 37, no. 6, pp. 1522-1534. 2018.

[5] P. Vincent, et al. “Extracting and composing robust features with

denoising autoencoders,” In ICML, 2018.
[6] S. Rifai, et al., “Higher order contractive auto-encoder,” In Joint European

Conference on Machine Learning and Knowledge Discovery in

Databases(pp. 645-660). Springer, Berlin, Heidelberg, 2011.

[7] A. Makhzani and B. Frey, “K-sparse autoencoders,” arXiv preprint
arXiv:1312.5663, 2013.

[8] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv

preprint arXiv:1312.6114, 2013.
[9] J. Masci, U. Meier, D. Cireşan & J. Schmidhuber, “Stacked convolutional

auto-encoders for hierarchical feature extraction. In ICANN, 2011.

[10] L. Chu, X. Hu, J. Hu, L. Wang, & J. Pei, “Exact and Consistent
Interpretation for Piecewise Linear Neural Networks: A Closed Form

Solution, ” in KDD, 2018.

[11] A. Mahendran and A. Vedaldi, “Understanding deep image
representations by inverting them,” In CVPR, 2015.

[12] M. Wu, M. C. Hughes, S. Parbhoo, et al. “Beyond Sparsity: Tree

Regularization of Deep Models for Interpretability,” arXiv preprint
arXiv:1711.06178, 2017.

[13] L. Fan, “Revisit Fuzzy Neural Network: Demystifying Batch

Normalization and ReLU with Generalized Hamming Network,” In NIPS,
2017.

[14] P. W. Koh, P. Liang, “Understanding black-box predictions via influence

functions,” in ICML, 2017.
[15] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba,

“Learning deep features for discriminative localization,” In CVPR, 2016.

[16] N. Lei, K. Su, L. Cui, S. T. Yau, & D. X. Gu, “A Geometric View of
Optimal Transportation and Generative Model,” arXiv preprint

arXiv:1710.05488, 2017.

[17] F. Fan and G. Wang, “Fuzzy logic interpretation of quadratic
networks,” Neurocomputing, vol. 374, pp. 10-21, 2020.

[18] D. L. Donoho, “De-noising by soft-thresholding,” IEEE transactions on
information theory. vol. 41, no. 3, pp. 613-27. 1995.

[19] W. Wu, F. Liu, Y. Zhang, Q. Wang and H. Yu, “Non-local low-rank cube-

based tensor factorization for spectral CT reconstruction,” IEEE
transactions on medical imaging, vol. 38, no. 4, pp.1079-1093, 2018.

[20] W. Shang, K. Sohn, D. Almeida and H. Lee, “Understanding and

improving convolutional neural networks via concatenated rectified linear
units,” In ICML, 2016.

[21] M. Blot, M. Cord, and N. Thome, “Max-min convolutional neural

networks for image classification,” In ICIP, 2016.
[22] J. Kim, S. Kim and M. Lee, “Convolutional neural network with

biologically inspired on/off relu,” In NIPS, 2015.

[23] W. Shang, K. Sohn, D. Almeida and H. Lee, “Understanding and
improving convolutional neural networks via concatenated rectified linear

units,” In ICML, 2016.

[24] A. L. Maas, A.Y. Hannun, and A.Y. Ng, “Rectifier nonlinearities improve
neural network acoustic models,” In ICML, 2013.

[25] J. Zhao, M. Mathieu, R. Goroshin and Y. Lecun, “Stacked what-where

auto-encoders,” arXiv preprint arXiv:1506.02351, 2015.
 [26] Y. Yang, Q. J. Wu, & Y. Wang, “Autoencoder with invertible functions

for dimension reduction and image reconstruction,” IEEE Transactions on

Systems, Man, and Cybernetics: Systems, 48(7), 1065-1079, 2016.
[27] T. Adel and Z. Ghahramani and A. Weller, “Discovering interpretable

representations for both deep generative and discriminative models. In

ICML, 2018.
[28] S. Yu and J. C. Principe, “Understanding autoencoders with information

theoretic concepts,” Neural Networks, vol. 117, pp. 104-23, 2019.

[29] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S.
Mohamed, A. Lerchner, “beta-VAE: Learning Basic Visual Concepts

with a Constrained Variational Framework,” In ICLR, 2017.

[30] W. N. Hsu, Y. Zhang, J. Glass, “Unsupervised learning of disentangled
and interpretable representations from sequential data,” In NeurIPS, 2017.

[31] Q. Zhang and A. Benveniste, “Wavelet networks,” IEEE transactions on

Neural Networks, vol. 3, no. 6, pp. 889-98., 1992.
[32] A. R. Sadri, M. E. Celebi, N. Rahnavard, S. E. Viswanath, “Sparse

Wavelet Networks, “IEEE Signal Processing Letters, 2019.

[33] P. Ong, Z. Zainuddin, “Optimizing wavelet neural networks using
modified cuckoo search for multi-step ahead chaotic time series

prediction,” Applied Soft Computing, vol. 80, pp. 374-86, 2019.

[34] J. Bruna and S. Mallat, “Invariant scattering convolution networks,” IEEE
transactions on pattern analysis and machine intelligence, vol. 35, no. 8,

pp. 1872-1886, 2013.

[35] J. C. Ye, Y. Han and E. Cha, “Deep convolutional framelets: A general
deep learning framework for inverse problems,” SIAM Journal on

Imaging Sciences, vol. 11, no.2, pp.991-1048, 2018.

https://arxiv.org/abs/1710.10328
https://arxiv.org/abs/1710.10328
https://arxiv.org/abs/1710.10328

[36] D. Donoho and I. M. Johnstone, “Adapting to unknown smoothness via
wavelet shrinkage,” Journal of the American Statistical Assoc., vol. 90,

no. 432, pp. 1200–1224, December 1995.

 [37] S. Chang, B. Yu, M. Vetterli, “Adaptive wavelet thresholding for image
denoising and compression”, IEEE Transactions on Image Processing,

vol. 9, no. 9, pp. 1532- 1546, 2000.

[38] M Mastriani and A.E. Giraldez, “Smoothing of coefficients in wavelet
domain for speckle reduction in synthetic aperture radar images”, Journal

of Graphics Vision and Image Processing, vol. 7, pp. 1-8, 2007.

 [39] K. He, X. Zhang, S. Ren and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,”

In ICCV, 2015.

Figure 10. Comparison of recovered images from different models.

Figure 11. Comparison of ROIs of recovered images and profiles from different models.

[40] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
Master’s thesis, Department of Computer Science, University of Toronto,

2009.

[41] M. Balda, J. Hornegger, and B. Heismann, “Ray contribution masks for
structure adaptive sinogram filtering,” IEEE Trans. Med. Imaging, vol.

30, no. 5, pp. 1116–1128, 2011.

[42] A. Manduca, L. Yu, J. D. Trzasko, N. Khaylova, J. M. Kofler, C. M.
McCollough, and J. G. Fletcher, “Projection space denoising with

bilateral filtering and CT noise modeling for dose reduction in CT,” Med.

Phys, vol. 36, no. 11, pp. 4911–4919, 2009.
[43] J. Wang, T. Li, H. Lu, and Z. Liang, “Penalized weighted least-squares

approach to sinogram noise reduction and image reconstruction for low

dose X-ray computed tomography,” IEEE Trans. Med. Imaging, vol. 25,
no. 10, pp. 1272–1283, 2006.

[44] E. Y. Sidky and X. Pan, “Image reconstruction in circular cone-beam

computed tomography by constrained, total-variation minimization,”
Phys. Med. Biol, vol. 53, no. 17, pp. 4777–4807, 2008.

[45] W. Wu, Y. Zhang, Q. Wang, F. Liu, P. Chen and H. Yu, “Low-dose

spectral CT reconstruction using image gradient ℓ0–norm and tensor
dictionary." Applied Mathematical Modelling vol. 63, pp. 538-557, 2018.

[46] M. Katsura, M. Matsuda, M. Akahane, et al., “Model-based iterative

reconstruction technique for radiation dose reduction in chest CT:
comparison with the adaptive statistical iterative reconstruction

techniques,” Eur. Radiol, vol. 22, no. 8, pp. 1613–1623, 2012.

[47] P. F. Feruglio, C. Vinegoni, J. Gros, A. Sbarbati, and R. Weissleder,
“Block matching 3D random noise filtering for absorption optical

projection tomography,” Phys. Med. Biol., vol. 55, no. 18, pp. 5401–5415,
2010.

[48] D. Kang, P. Slomka, R. Nakazato, J. Woo, D. S. Berman, C.-C. J. Kuo

and D. Dey, “Image denoising of low-radiation dose coronary CT
angiography by an adaptive block-matching 3D algorithm,” Proc. SPIE

8669, 86692G, 2013.

[49] H. Chen, et al., “Low-dose CT with a residual encoder-decoder
convolutional neural network,” IEEE transactions on medical

imaging, vol. 36, no. 12, pp. 2524-2535, 2017.

[50] D. Hendrycks and K. Gimpel, “Gaussian error linear units (gelus),” arXiv
preprint arXiv:1606.08415, 2016.

[51] C. H. McCollough, et al., “Low-dose CT for the detection and

classification of metastatic liver lesions: Results of the 2016 Low Dose
CT Grand Challenge. Medical physics, vol. 44, no. 10, e339-e352, 2017.

[52] C. Dong, C. C. Loy, K. He, X. Tang, “Learning a deep convolutional

network for image super-resolution,” In ECCV, 2014.
[53] J. Yang, J. Wright, T. S. Huang, Y. Ma, “Image super-resolution via

sparse representation,” IEEE transactions on image processing. Vol. 19,

no. 11, 2861-73, 2010.
[54] https://github.com/tegg89/SRCNN-Tensorflow

https://github.com/tegg89/SRCNN-Tensorflow

