
Abstract—Recently, deep learning becomes the main focus 

of machine learning research and has greatly impacted 

many important fields. However, deep learning is criticized 

for lack of interpretability. As a successful unsupervised 

model in deep learning, the autoencoder embraces a wide 

spectrum of applications, yet it suffers from the model 

opaqueness as well. In this paper, we propose a new type of 

convolutional autoencoders, termed as Soft Autoencoder 

(Soft-AE), in which the activation functions of encoding 

layers are implemented with adaptable soft-thresholding 

units while decoding layers are realized with linear units. 

Consequently, Soft-AE can be naturally interpreted as a 

learned cascaded wavelet shrinkage system. Our denoising 

experiments demonstrate that Soft-AE not only is 

interpretable but also offers a competitive performance 

relative to its counterparts. Furthermore, we propose a 

generalized linear unit (GenLU) to make an autoencoder 

more adaptive in nonlinearly filtering images and data, such 

as denoising and deblurring.  
Index Terms—Deep learning, Interpretability, Convolutional 

Autoencoder, Activation functions.  

I. INTRODUCTION 

EEP learning has over recent years made huge strides in 

many important fields [1-4]. As a successful unsupervised 

learning model, autoencoders such as denoising 

autoencoder [5], contractive autoencoder [6], k-sparse 

autoencoder [7], variational autoencoder (VAE) [8], and 

convolutional autoencoder [9] play significant roles in feature 

extraction, denoising, dimension reduction, generative tasks, 

and so on.  However, akin to other deep learning models, an 

autoencoder suffers from lack of interpretability. Currently, it 

is still difficult to understand the mechanism of the autoencoder, 

let alone to have any governing guideline for the optimal design 

of an autoencoder in a task-specific fashion.  As a result, only 

empirical exploration serves as the basis for auto-encoder 

prototyping.  

Due to the importance of interpretability, considerable efforts 

have been made in explaining the mechanism of deep learning 

such that more trust can be placed on the autoencoder to push 

the boundary of its applications. The existing methods that 

explain neural networks can be categorized into four classes 

[10]: hidden neuron analysis [11], model mimicking methods 

[12-13], localized interpretation methods [14-15], and 

physics/engineering methods [16]. The hidden neuron analysis 

methods interpret a neural network by visualizing or dissecting 

the features extracted by hidden neurons. The model mimicking 

methods build explainable models that deliver the performance 

as closely as possible to that of the “black-box” models. Given 

trained neural networks, the local interpretation methods 

investigate the importance of inputs by perturbing the input and 

analyzing changes in the resultant output. Lastly, the 

physics/engineering methods find significant connections 

between deep networks and advanced physical or engineering 

systems to reveal the mechanisms of neural networks. Note that 

such a classification is qualitative and imprecise, some methods 

can be put into multiple classes from different perspectives. For 

example, our fuzzy logic interpretation method [17] analyzes 

the spectrum of every quadratic neuron and can be viewed as 

either hidden neuron analysis or engineering modeling. 

In this manuscript, as shown in Figure 1, we propose an 

interpretable convolutional autoencoder, termed as the soft 

autoencoder (Soft-AE), in which the activation functions in the 

encoding layers are implemented with adaptable soft-

thresholding units [18] 𝜂𝑏<0(𝑥) = 𝑠𝑔𝑛(𝑥)max⁡{|𝑥| + 𝑏, 0} , 

where 𝑏  is a threshold, 𝑠𝑔𝑛(⋅)  is the sign function, and the 

decoding layers are equipped with linear units.  With such a 

configuration, Soft-AE performs a network-based wavelet 

transform embedded with soft thresholding shrinkage 

operations. Hence, a deep Soft-AE system can be naturally 

interpreted as a learned deep and cascaded wavelet shrinkage 

system. The convolutional autoencoder is a special type of 

autoencoders, which is intrinsically more appropriate for image 

denoising and some other tasks compared to the counterparts in 

the form of multi-layer perceptrons (MLP).  When dealing with 

image formation and analysis, a fully connected autoencoder is 

unrealistic due to the memory requirement and unnecessary 

redundancy in the space of parameters. In contrast, the 

convolutional autoencoder incorporates 

convolution/deconvolution operations in its encoding and 

decoding processes, thereby reducing network redundancy and 

computational overhead, permitting multi-resolution analysis in 

a nonlinear fashion. Furthermore, we theoretically investigate 

the resolution enhancing property of  𝜂𝑏>0(𝑥) =
𝑠𝑔𝑛(𝑥)max⁡{|𝑥| + 𝑏, 0} , in contrast to the soft thresholding 

unit 𝜂𝑏<0(𝑥) . Then, we present a generalized lineal unit 

(GenLU) as novel activation functions to enhance the 

autoencoder for more image processing tasks from denoising to 

deblurring.  

The contributions of our work are three folds: First, in the 

context of convolutional auto-encoding, we make an effort to 

link deep learning to contemporary signal processing [19]. In 

this aspect, we bridge classical wavelet analysis and deep 

convolutional auto-encoding by modifying activations in a 

convolutional autoencoder such that the wavelet shrinkage 

scheme is absorbed inside the autoencoder. Second, we employ 
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soft thresholding units, which is a new way to look at an 

activation function. In the framework of Soft-AE, wavelets and 

thresholds for soft-thresholding are learned in the training stage 

from big data. Such a character enables Soft-AE to embrace 

big-data-empowered capability and robustness in contrast to 

traditional wavelet analysis since most comprehensive 

knowledge is contained in the big data. Our experiments 

demonstrate that Soft-AE performs competitively on various 

benchmarks. Third, we further propose a novel activation 

function called “generalized linear unit (GenLU)” for diverse 

tasks.  

To put our contributions in perspective, let us review the 

relevant studies as follows. (1) The activation unit ReLU is the 

most popular nonlinear activation function in deep learning 

because it is able to prevent gradients from vanishing or 

exploding. However, ReLU also arguably tends to block the 

circulation of information. The concatenated ReLU [20], Max-

Min Networks [21], ON/OFF ReLU [22], Concatenated-ReLU 

[23], and Leaky-ReLU [24] dedicated to taking more 

information. (2) Efforts were recently made to interpret 

autoencoders. Zhao et al. [25] proposed the stacked what-where 

autoencoder (SWWAE) to reduce information loss. In 

SWWAE, the location information is incorporated for signal 

recovery/reconstruction. Yang et al. [26] utilized invertible 

functions to build an autoencoder which facilitates 

interpretability. Adel et al. [27] used the generative model such 

as the normalized flow method to transform the hidden 

representations of an autoencoder to the disentangled 

representations, where the degree of disentanglement was 

computed based on testing digit samples containing prior 

information (thickness, skewness, etc.). Yu and Principe (2019) 

[28] applied information bottleneck theory to describe the 

information flow pertaining to the mutual information states of 

symmetric layers in a stacked autoencoder as 

𝐼(𝑋; 𝑋′) ≥ 𝐼(𝑇1; 𝑇1
′) ≥ ⋯ ≥ 𝐼(𝑇𝐾; 𝑇𝐾

′ ), 

where 𝑋 and 𝑋′ are the input and the yield of the autoencoder 

respectively, 𝑇𝑖  and 𝑇𝑖
′  are the outputs of the 𝑖𝑡ℎ  symmetric 

layers in the encoder and decoder respectively. Higgins et al. 

[29] developed the β-VAE to enforce the disentanglement 

regularization, which relies on the KL distance between the 

distribution of latent factors and their posterior distribution. 

Later, Hsu et al. [30] established an interpretable VAE for 

sequential data by imposing sequence-dependent and sequence-

independent priors to different groups of latent variables. (3) 

The applications of wavelets in neural networks were 

investigated already [31-35].  Particularly, the scattered wavelet 

network was developed to iteratively collect coefficients of a 

scattered wavelet transform at different scales. Note that there 

are distinctions between a scattered wavelet network and a deep 

convolutional network. Most noticeably, the wavelet 

representation is derived from the output of all layers instead of 

just the final layers, and the filters are not learned from the data 

but from the predefined wavelet filters. Also note that the 

downstream applications are based on the coefficients of those 

wavelet transforms. In contrast, our soft autoencoder is 

designed for the denoising task, and the filters are learned from 

data. 

The study in Ye et al. [35] is most relevant to our work, in which 

the convolutional framelet theory with a low-rank Hankel 

matrix was leveraged to represent signals by their local and non-

local bases, suggesting an encoding-decoding structure that 

promises a perfect signal reconstruction. Albeit providing a 

linearized interpretation, there are several aspects that can be 

enhanced. As mentioned in Remark 3 in [35], the non-local 

basis is a general pooling/un-pooling operator, however, the 

pooling reduces the dimension of data, un-natural to the 

representation framework. In addition, to tackle with the 

nonlinearity from ReLU, the authors combined two “opposite” 

ReLUs to transform the nonlinearity into the linearity so that a 

perfect recovery conditions can be argued. Although this trick 

 
Figure 1. Soft-autoencoder interpreted as a wavelet shrinkage system after activation functions are appropriately made for image denoising.  

 



is sound, it potentially hurts the power of deep learning because 

it counteracts the nonlinearity that is commonly accepted as a 

key ingredient of deep learning. In contrast, our model is 

analogous to a wavelet shrinkage system, where pooling and 

un-pooling operations are not needed to keep structural 

consistency. Therefore, our interpretation has no need to 

explain pooling and un-pooling. Furthermore, our model 

favorably accommodates the nonlinearity as the critical 

characteristic of the framework in the form of soft thresholding 

units. 

II. SOFT-AE AND GENERALIZED LINEAR UNIT 

For completeness, let us first introduce relevant preliminaries 

as well as the wavelet shrinkage algorithm. Then we present the 

design of Soft-AE and shed the light on the conditions that 

traverse the gulf between a Soft-AE and a wavelet shrinkage 

system.  Next, we propose a generalized linear unit (GenLU). 

A. Wavelet Shrinkage System and Soft-AE 

A. 1. Wavelet shrinkage system  

Soft-thresholding: Soft-thresholding [18] is an important tool 

in signal processing due to the effectiveness of wavelet 

shrinkage methods. Usually the soft-thresholding is superior to 

the hard-thresholding for two reasons. First, the theoretical 

analysis suggests that the soft-thresholding operation has a 

good property in terms of smoothness [18]; see the Theorem in 

Section II. B. 1. Second, the soft-thresholding gives continuous 

results, while the hard-thresholding is discontinuous and 

produces abrupt artifacts in the denoised images. Given an input, 

the soft thresholding unit will produce an output:  

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝜂𝑏<0(𝑥) = 𝑠𝑔𝑛(𝑥)max⁡{|𝑥| + 𝑏, 0},⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(1)  

where the threshold 𝑏  is empirically pre-determined in 

traditional domain, and⁡𝑠𝑔𝑛(⋅) is the sign function. In Soft-AE, 

𝑏 will be advantageously learned in the training process from a 

training dataset.   

Wavelet transform: The wavelet transform of 𝑓(𝑥) in terms 

of a wavelet  Ψ(𝑥)  is defined as follows:  

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡[𝑊Ψ(𝑓)](𝑎, 𝑐) = ∫ Ψ(
𝑥 − 𝑎

𝑐
) 𝑓(𝑥)

+∞

−∞

𝑑𝑥, (2)  

where Ψ is a pre-determined wavelet. Common wavelets are 

Morlets, Daubechies wavelets, and so on.  [𝑊Ψ(𝑓)](𝑎, 𝑐)  is 

called wavelet coefficients. For a specific resolution, the 

wavelet transform is equivalent to a convolution with a 

corresponding wavelet kernel at a specific scale. Therefore, in 

the following, we use wavelet transformation and convolution 

interchangeably.   

Wavelet Shrinkage Denoising: Donoho [18] proposed the 

VisuShrink algorithm that uses the soft thresholding operation 

and enjoys optimal denoising properties. However, the 

VisuShrink algorithm tends to over-smoothen results. The 

SureShrink [36] combines a universal constant and a SURE 

threshold, derived for minimizing Stein’s unbiased risk 

estimator. BayesShrink includes adaptive data-driven 

thresholds [37], which are set differently in sub-bands through 

Bayes estimation assuming that the wavelet coefficients in each 

sub-band are with the generalized Gaussian distribution. 

SmoothShrink reduces speckle noise by applying a directional 

smoothing function based convolutional kernel on the wavelet 

coefficients [38]. 

Basically, the VisuShrink algorithm consists of the following 

three steps in the pseudo-code below: (a) perform the wavelet 

transform to derive wavelet coefficients; (b) apply an element-

wise soft-thresholding operation to the wavelet coefficients; (c) 

perform the inverse wavelet transform. Mathematically, 

suppose that we have the following additive noise model: 

𝑌(𝑡) = 𝑆(𝑡) + 𝑁(𝑡),  where 𝑌(𝑡)  and 𝑆(𝑡)  are measurement 

and the authentic signal respectively. Then, the above three 

steps will correspond to the following three formulas: 𝑌̂ =

W(𝑌) ; Z = 𝜂−σ𝑁√2𝑙𝑜𝑔𝑛(𝑌̂), where 𝜎𝑁
2 is the noise variance and 

𝑛 is the number of pixels; 𝑆̂ = 𝑊−1(𝑍).  

VisuShrink Algorithm  

Input: 𝑌(𝑡) = 𝑆(𝑡) + 𝑁(𝑡), wavelet 𝜓 

1: Wavelet transform by 𝜓:  𝑌̂ = 𝑊𝜓(𝑌) 

2: Soft thresholding:⁡Z = 𝜂−σ𝑁√2𝑙𝑜𝑔𝑛(𝑌̂).  

3: Inverse wavelet transform by 𝜓−1: 𝑆̂ = 𝑊𝜓
−1(𝑍) 

Output: 𝑆̂(𝑡) 

Here we heuristically illustrate why a soft thresholding unit 

works so well. As shown in Figure 2, the wavelet coefficients 

of a corrupted signal are full of glitches with small amplitudes 

over the whole spectrum. Evidently, linear estimators are not 

adequate to remove noise from wavelet coefficients, because 

noise is uneven and everywhere. When soft thresholding is 

applied in the wavelet domain, we have |Z| ≤ |𝑊𝜓(S(t))| . 

Then, in the signal domain after the inverse wavelet 

transform, ⁡‖𝑆̂‖
𝐵𝑝,𝑞
𝑠 ≤ 𝐶‖𝑆‖𝐵𝑝,𝑞𝑠 , where C is a constant and 

‖⋅‖𝐵𝑝,𝑞𝑠  represents the Besov norm. Suppose that 𝑆(𝑡) is a zero 

function, 𝑆̂(𝑡) will also be a zero function, which means that the 

VisuShrink can obtain a smooth recovery at least in such an 

extreme case. On the contrary, some other estimators such as 

the hard-thresholding estimator exhibit annoying bumps even 

when reconstructing very smooth functions. 

 

Figure 2. Soft thresholding in the wavelet domain. 



A. 2. Soft-AE 

Inspired by the success of the wavelet shrinkage system, we 

propose a novel type of convolutional autoencoder that deploys 

soft thresholding units as activation functions in the encoding 

layers and liner functions as activation functions in the 

decoding layers. In this regard, we facilitate interpretability and 

model adaptivity simultaneously for convolutional neural 

networks, turning a black-box convolutional autoencoder into 

an interpretable soft autoencoder (Soft-AE). In other words, the 

conventional three-step wavelet shrinkage system is a special 

case of Soft-AE, and a Soft-AE is nothing but a learned 

cascade wavelet shrinkage system. In Soft-AE, the discrete 

wavelet transformation and soft-thresholding operations are 

sequentially conducted in the encoding layers, and then 

decoding layers recover a desirable signal accordingly.  

To put our scheme in perspective, let us do a general analysis 

and explain the relationship between Soft-AE and the wavelet 

shrinkage system. Let us start from a two-convolutional-layer 

Soft-AE and suppose that there are 𝑁 convolutional filters in 

each layer, denoted as 𝜓𝑖  (encoding layer) and 𝜙𝑖  (decoding 

layer). We use ∗ to represent convolution and superscript + to 

represent soft-thresholding operation. Given the input 𝑥  of a 

finite length, the expression for the yield of a two-

convolutional-layer Soft-AE can be expressed as 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∑ 𝜙𝑖 ∗ (𝜓𝑖 ∗ 𝑥)
+𝑁

𝑖 ,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(5)   

where (⋅)+ represents the soft thresholding operation. When the 

functions 𝜓𝑖 , 𝜙𝑖 fulfill that 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝜙𝑖 =
𝜓𝑖
−1

𝑁
⁡⁡𝑜𝑟⁡⁡⁡𝜓𝑖 =

𝜙𝑖
−1

𝑁
⁡,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(6) 

where (⋅)−1 represents the inverse transform, Soft-AE with two 

convolutional layers makes a perfect match with the wavelet 

shrinkage system when 𝜓𝑖  is the inverse of 𝜙𝑖. Please note that 

Eq. (6) holds for common wavelets such as Morlets and 

Daubechies wavelets.  

More generally, let us consider a four-convolutional-layer Soft-

AE. Without loss of generality, we assume that there are 𝑁 

filters in the first encoding layer and 𝑀 ∗ 𝑁 filters in the second 

encoding layer. The convolutional filters in the encoding layers 

are denoted as 𝜓𝑖 , 𝑖 = 1,2, … , 𝑁  and 𝜓𝑖𝑗 , 𝑖 = 1,2, … ,𝑀; 𝑗 =

1,2, …𝑁  respectively. In symmetry, the two decoding layers 

have 𝑁 ∗𝑀  and 𝑁  filters respectively. We denote the 

deconvolutional filters in the decoding layers as 𝜙𝑖𝑗 , 𝑖 =

1,2, … , 𝑁; 𝑗 = 1,2, …𝑀  and 𝜙𝑖, 𝑖 = 1,2, … , 𝑁 . Figure 3 

illustrates the computational process of Soft-AE with four 

convolutional layers. The final output is 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∑ 𝜙𝑘 ∗ [∑ 𝜙𝑘𝑗 ∗ [∑ 𝜓𝑗𝑖 ∗ (𝜓𝑖 ∗ 𝑥)
+]+]⁡𝑁

𝑖
𝑀
𝑗 ,𝑁

𝑘 ⁡⁡⁡⁡⁡⁡⁡(7)  

where we can apply the property of the soft thresholding: 

 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(ℎ + 𝑔)+ = ℎ+ + 𝑔+,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(8)⁡   

which holds approximately when the magnitude of the 

threshold is small, and Eq. (7) reduces into 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∑ 𝜙𝑘 ∗ [∑ 𝜙𝑘𝑗 ∗ ∑ [𝜓𝑗𝑖 ∗ (𝜓𝑖 ∗ 𝑥)
+]+]⁡𝑁

𝑖
𝑀
𝑗

𝑁
𝑘 .⁡⁡⁡⁡⁡⁡⁡⁡(9)  

Suppose 𝚿  is the 𝑀 ×𝑁  matrix with 𝜓𝑗𝑖  at its row j and 

column i, while 𝚽 is the 𝑁 ×𝑀  matrix with 𝜙𝑘𝑗 at its row k 

and column j. Using the associative laws of convolution 

operation, we can further simplify Eq. (9) into the matrix form: 

⁡⁡⁡⁡⁡⁡[𝜙1, . . , 𝜙𝑁] ⊗𝚽⊗𝚿⊗ [(𝜓1 ∗ 𝑥)
+, . . , (𝜓𝑁 ∗ 𝑥)+]𝑇 , (10) 

where (𝐴 ⊗ 𝐵)𝑖𝑗 = ∑ 𝐴𝑖𝑘 ∗ 𝐵𝑘𝑗𝑘 , which is analogous to the 

matrix product but the involved elements here are functions, 

and the convolutional operation is performed between the 

elements. Therefore, for Soft-AE to realize wavelet shrinkage, 

the following conditions should be met:  

⁡⁡⁡⁡⁡⁡⁡{

𝚽⊗𝚿 = diag(𝜆1, 𝜆2, … , 𝜆𝑁)𝛿⁡

𝜙𝑘 =
𝜓𝑘
−1

|∑ 𝜆𝑘
𝑁
𝑘 |

⁡⁡𝑜𝑟⁡𝜓𝑘 =
𝜙𝑘
−1

|∑ 𝜆𝑘
𝑁
𝑘 |

, 𝑘 = 1,2, … , 𝑁
⁡,⁡⁡⁡⁡⁡⁡(11) 

where 𝛿 is the Dirac function, and ∑ 𝜆𝑘
𝑁
𝑘  is supposed to be non-

zero that can be made by the selection of 𝚽⊗𝚿.   The 

existence of 𝚽 and 𝚿 that fulfills Eq. (11) is natural, one trivial 

 
Figure 3. Overall computational process of Soft-AE through encoding and decoding operations. (⋅)+ represents the soft thresholding operation. 



situation is that diagonal elements of 𝚽  and 𝚿 are mutually 

inverse to each other, and the rest elements are zero. 

Remark 1: Our derivation is in the framework of Soft-AE, we 

offer the mapping between Soft-AE and a wavelet shrinkage 

system under the conditions that enable the Soft-AE to realize 

a wavelet shrinkage system. Please note that these conditions 

can be extended to deeper versions of Soft-AE through similar 

steps. The approximation in Eq. (8) we made on the soft 

thresholding is reasonable, as instantiated in Figure 2. When the 

noise intensity is small, the threshold value to be applied is 

small as well, which renders the soft thresholding unit close to 

a linear unit. Thus, the soft-thresholding operation to the 

addition of two signals can be decomposed into the addition of 

the soft-thresholding operations to each signal. Moreover, such 

approximation will not change the smoothness property of the 

restored signal because here the restored signal is still zero if 

the input signal is zero. The condition Eq. (11) implies that the 

redundant filters are not necessary for the signal recovery, 

which is more general than the explanation from Ye et al., 

wherein the number of filters increases in the decoding phase. 

In addition, unlike the work by Ye et al., our analysis considers 

the nonlinearity, which is the key ingredient of deep learning.  

Remark 2: It can be seen that Soft-AE matches VisuShrink and 

BayesShrink more closely than the other aforementioned 

variants of wavelet shrinkage algorithms. In Soft-AE, the 

thresholds are assigned to each sub-band differently, without 

estimating a universal threshold from the noise variance and the 

number of pixels like in VisuShrink. In contrast to BayesShrink, 

Soft-AE demands no statistical estimation, and all the 

thresholds are learned from data. 

Remark 3: The interpretability of Soft-AE will not be 

undermined by the addition of residual connections, if residual 

connections are symmetrically incorporated. In a residual 

version of Soft-AE, the features to be learned turn into the 

residual features, which are still modifiable via wavelet 

shrinkage. Thus, Eq. (9) still holds for the residual features. In 

addition, Soft-AE will embrace the merits of residual shortcuts. 

For example, the employment of residual connections will 

accommodate the training difficulties in deep models. It was 

mentioned that feed forward neural networks do not excel in 

learning the identity mapping [39], and residual connections are 

able to circumvent the gradient explosion/vanishing problems, 

thereby facilitating the training of deep networks.  

Although interpretability is our major motivation, we also 

would like to argue that Soft-AE has another important merit: 

adaptivity. In the era of big data, it is hypothesized that the most 

comprehensive information is contained in big data, and the 

best tool to dig them out is deep learning. Given 𝑥 ∈ 𝐑,⁡ the soft 

thresholding unit is conveniently expressed as  

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝜂𝑏<0(𝑥) = ReLU(𝑥 + 𝑏) − ReLU(−𝑥 + 𝑏),⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(12)
where 𝑏 < 0  is a trainable parameter. The Soft-AE can 

adaptively learn optimal wavelet kernels and thresholds through 

the training process with big data, which empowers Soft-AE 

with adaptivity and robustness in contrast to traditional wavelet 

analysis.  

B. Generalized Linear Unit (GenLU) 

In last subsection, we demonstrate the interpretability of 

autoencoders using soft thresholding units 𝜂𝑏<0(𝑥) . As 

aforementioned, the utility of 𝜂𝑏<0(𝑥) in denoising tasks were 

theoretically justified in Donoho (1995). By symmetry, our 

curiosity moves to the other side of the coin, that is, we would 

like to investigate the resolution enhancing property of the 

activation function: 𝜂𝑏>0(𝑥) = 𝑠𝑔𝑛(𝑥)max⁡{|𝑥| + 𝑏, 0}  in a 

super-resolution model. As a result, we further propose a 

generalized linear unit (GenLU) and its truncated variant 

(GeLU) in the autoencoder to make it more general.  

B. 1. ⁡𝜂𝑏>0(𝑥) 

Let us first recall two preliminary results regarding the wavelet 

expansion and a theorem from [18]. 

Wavelet Expansion: Any function 𝑔 ∈ 𝐶[0,1]  has an 

expansion:  

 𝑔 = ∑ 𝛽𝑗0,𝑘𝜙̃𝑗0,𝑘
2𝑗0−1
𝑘 + ∑ ∑ 𝛼𝑗,𝑘𝜓̃𝑗,𝑘

2𝑗−1

𝑘 ⁡𝑗≥𝑗0
,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(13)      

where  𝜙̃𝑗0,𝑘  and 𝜓̃𝑗,𝑘  are from an orthonormal wavelet basis 

system, such as the Daubechies system. Let 𝑊  denote the 

operator such that 𝑊 ∘ 𝑔 is a vector of coefficients of countable 

cardinality.  

𝑦 = 𝑊 ∘ 𝑔 = [𝛽𝑗0,., 𝛼𝑗0,., 𝛼(𝑗0+1),., … , 𝛼𝑗1,., … ]⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(14) 

Let 𝑇𝑛 denote the truncation operator, (𝑇𝑛 ∘ 𝑊) ∘ 𝑔 generates 

a vector with the first 𝑛  entries of 𝑊 ∘ 𝑔.  To put it simply, 

𝑊𝑛 = 𝑇𝑛 ∘ 𝑊 is an empirical wavelet transform that derives the 

first 𝑛  coefficients of the transformation of 𝑔 . We define 

𝑦(𝑛) = (𝑇𝑛 ∘ 𝑊) ∘ 𝑔 = 𝑊𝑛 ∘ 𝑔.  Conversely, the empirical 

inverse transform is implemented by padding zeros with 

countable entries before the inverse transform: 𝑔′ = (𝑊−1 ∘

𝑃𝑛) ∘ 𝑦(𝑛) = 𝑊𝑛
−1 ∘ 𝑦(𝑛), where 𝑊𝑛

−1 = 𝑊−1 ∘ 𝑃𝑛 . 

Theorem [18]: Suppose y1
(n)

 and y2
(n)

 are two vectors 

subsuming truncated empirical wavelet coefficients by 𝑊 , 

satisfying that  y1
(n)

 is elementwise smaller than y2
(n)

 in absolute 

value, i. e., |y1
(n)| ≤ |y2

(n)| , if 𝑔1
′ = 𝑊𝑛

−1 ∘ y1
(𝑛)

 and 𝑔2
′ =

𝑊𝑛
−1 ∘ y2

(𝑛)
, then ‖𝑔1

′‖𝐵𝑝,𝑞𝑠 ≤ 𝐶(𝑠, 𝑝, 𝑞)‖𝑔2
′‖𝐵𝑝,𝑞𝑠 ,⁡  where 

𝐶(𝑠, 𝑝, 𝑞) is a constant and ‖⋅‖𝐵𝑝,𝑞𝑠  is the Besov norm that is the 

smoothness measure family controlled by (s, p, q). For example, 

the Besov norm of 𝑓  incorporates a term: ∫ |
𝑤𝑝
2(𝑓(𝑙),𝑡)

𝑡𝛼
|
𝑞
𝑑𝑡

𝑡
⁡⁡

∞

0
, 

where 𝑤𝑝
2(𝑓(𝑙), 𝑡) = sup

|ℎ|≤𝑡
||Δℎ

2𝑓(𝑛)||𝑝, 𝑠 = 𝑙 + 𝛼, and Δℎ
2𝑓(𝑙) =

𝑓(𝑙)(𝑥 − ℎ) − 𝑓(𝑙)(𝑥). 𝑓(𝑙) is the 𝑙𝑡ℎ derivative of 𝑓. The utility 

of Δℎ
2𝑓(𝑙) is to measure the extent of oscillation of 𝑓(𝑙).⁡When 

𝑙 = 0, the smoothness of 𝑓 is directly revealed by second-order 

differences.  

Without loss of generality, we ignore the down-sampling effect 

in the observation and assume that the deblurring by 𝜂𝑏>0(𝑥) is 

abstracted as 

                  ⁡⁡⁡𝑓HR = 𝑊𝑛
−1 ⁡ ∘ 𝜂𝑏>0 ∘ 𝑊𝑛 ∘ [𝑓𝐿𝑅 + 𝜖 ⋅ 𝑧],⁡⁡⁡⁡⁡⁡⁡⁡⁡(15)      

where 𝑓𝐿𝑅 is a blurred low resolution (LR) signal of the same 

size as that of the expected high resolution (HR) recovered 



signal 𝑓HR , 𝜖 ⋅ 𝑧  is the noise with 𝑧~𝑁(0,1) , and 𝜖  is noise 

intensity. Then, we have the following Proposition: 

Proposition: Let 𝑓HR and 𝑓𝐿𝑅 be two functions produced by Eq. 

(15). There is a universal constant 𝜋𝑛  with 𝜋𝑛 → 1  as 𝑛 →
∞,⁡and constant 𝐶(𝑠, 𝑝, 𝑞) depending on the Besov norm and 

the wavelet basis 𝛹 such that 

Prob {‖𝑓𝐿𝑅‖𝐵𝑝,𝑞𝑠 ≤ 𝐶(𝑠, 𝑝, 𝑞)‖𝑓HR‖𝐵𝑝,𝑞𝑠
} ≥ 𝜋𝑛 .⁡⁡⁡⁡⁡⁡⁡⁡(16) 

Remark 4: Eq. (16) reveals an important relationship between 

the degraded low-resolution signal and the high-resolution 

reconstruction. With the overwhelming likelihood and in a 

broad family of smoothness measure in terms of the Besov 

norm, the recovered signal 𝑓HR is at least as smooth as that of 

𝑓𝐿𝑅 , which is to say that the reconstruction is a resolution-

elevating process, because usually the high-resolution signal is 

less blurred and tend to have higher score in terms of some 

smoothness metric. What’s more, if the authentic signal is zero, 

then the sampled observed signal should be zero as well. Eq. 

(16) conforms to such an expectation.  

Now, let us analyze the correctness of our proposition. We 

define 

 𝑦𝐿𝑅 + 𝛿 ⋅ 𝑢𝐼 ≡ 𝑊n ∘ [𝑓𝐿𝑅 + 𝜖 ⋅ 𝑧],⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(17)  

where 𝑦𝐿𝑅  corresponds to 𝑊n ∘ 𝑓𝐿𝑅 , and 𝛿 ⋅ 𝑢𝐼  corresponds to 

𝑊n ∘ (𝜖 ⋅ 𝑧).⁡For now, we presume that 𝑢𝐼 is deterministic and 

ignore its probabilistic character.  Then, we define 

                 ⁡⁡⁡⁡⁡𝑦̂HR ≡ 𝜂𝑏>0 ∘ [𝑦𝐿𝑅 + 𝛿 ⋅ 𝑢𝐼],⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(18)      

where 𝑢𝐼  satisfies |𝑢𝐼| ≤ 1, δ > 0 denotes intensity,  𝐼𝑛  is the 

index set of cardinality 𝑛, and 𝑓HR = 𝑊n
−1 ∘ 𝑦̂HR . By setting 

𝑏 = 𝛿,  we obtain 𝑦̂𝐻𝑅
𝛿 = 𝜂𝑏=𝛿(𝑦𝐿𝑅 + 𝛿 ⋅ 𝑢𝐼) , then 𝑦̂𝐻𝑅

𝛿  is 

elementwise greater than 𝑦𝐿𝑅  in the absolute sense. 

Mathematically, 

  |(𝑦̂𝐻𝑅
𝛿 )

𝐼
| ≥ ⁡ |(yLR)𝐼|, ∀𝐼 ∈ 𝐼𝑛⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(19)     

The reason is that in each coordinate 𝐼, (𝑦̂𝐻𝑅
𝛿 )

𝐼
 satisfies  

|(𝑦̂𝐻𝑅
𝛿 )

𝐼
| = ||(yLR)𝐼 + 𝛿 ⋅ 𝑢𝐼| + 𝛿|⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 

≥ ||(yLR)𝐼 + 𝛿 ⋅ 𝑢𝐼| + 𝛿|𝑢𝐼|| ≥ |(yLR)𝐼|⁡⁡⁡⁡⁡⁡(20)                              

Then, we move back that 𝑢𝐼  are actually independently and 

identically distributed noise. We utilize the following fact 

regarding a random vector that if 𝑢𝐼  is independently and 

identically distributed with 𝑁(0,1), then 

Prob {sup
𝐼∈𝐼𝑛

|𝑢𝐼| ≤ √2𝑙𝑜𝑔𝑛⁡} → 1, 𝑛 → ∞⁡.⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(21) 

If we set 𝑏 = 𝛿 = √2𝑙𝑜𝑔𝑛⁡𝜖, we will arrive at  

Prob {|(𝑦̂𝐻𝑅
𝛿 )

𝐼
| ≥ ⁡ |(yLR)𝐼|, ∀𝐼 ∈ 𝐼𝑛⁡⁡} → 1, 𝑛 → ∞⁡.⁡⁡⁡⁡(22) 

Eq. (22) implies that wavelet coefficients |(𝑦̂𝐻𝑅
𝛿 )

𝐼
|  are very 

likely to be greater than |(yLR)𝐼| for ∀𝐼 ∈ 𝐼𝑛.  Then, utilizing 

the aforementioned theorem and noting 𝑓HR = 𝑊n
−1 ∘ 𝑦̂𝐻𝑅

𝛿 ⁡and 

𝑓𝐿𝑅 = 𝑊𝑛
−1 ∘ yLR, we arrive at 

Prob {‖𝑓𝐿𝑅‖𝐵𝑝,𝑞𝑠 ≤ 𝐶(𝑠, 𝑝, 𝑞)‖𝑓HR‖𝐵𝑝,𝑞𝑠
} ≥ 𝜋𝑛 .⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(23)  

B. 2. GenLU and GeLU 

Inspired by the effectiveness of the soft thresholding unit 

𝜂𝑏<0(𝑥) for denoising and the potential resolution enhancement 

property of 𝜂𝑏>0(𝑥)  implied by the preceding analysis, we are 

motivated to unify them into a generalized linear unit (GenLU) 

to empower the autoencoder, and demonstrate its utilities for 

both denoising and deblurring. The rationale is that each neuron 

is able to adapt its bias towards either inhibiting noise 

appearance or enhancing subtle features during the training. 

The capability unlocked by GenLU can be straightforwardly 

formulated as  

     GenLU(𝑥) = 𝑠𝑔𝑛(𝑥)max⁡{|𝑥| + 𝑏, 0},⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(24)      

where 𝑏 is an arbitrary real number to be learned. Naturally, we 

can have GeLU by suppressing the negative part of the input to 

promote the sparsity. Mathematically, GeLU is expressed as 

⁡⁡⁡⁡⁡⁡⁡GeLU(𝑥) = max{GenLU(𝑥), 0}.⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(25) 

Note that ReLU is now embedded in GeLU. The activation 

patterns of GenLU and GeLU are shown in Figure 4. 

Coincidently, Hendrycks and Gimpel [50] proposed the 

Gaussian Error Linear Unit (GELU), a statistically random 

activation function that is clearly different from our proposed 

GeLU. 

 

Figure 4. Various filtration functions, where the arrow directions indicate how 

the activation pattern may change. (a) the soft-thresholding unit for denoising; 

(b) when 𝑏 > 0, the filtering unit enhances the resolution; (c) the activation 

pattern of a generalized linear unit (GenLU) embraces denoising and deblurring 

capabilities by turning 𝑏 as an adaptive parameter; (d) the activation pattern of 

the truncated GenLU (GeLU). Note that GeLU=ReLU only when 𝑏 < 0. 

 



Figure 5. A one-hidden-layer GeLU network is trained to fit the univariate 

function 𝑓(𝑥) = 𝑥3 − 0.25𝑥 + 0.2  with the synthesized data which are 

sampled from [0,1] with the interval of 0.01. 

Figure 5 shows a toy example where a one-hidden-layer GeLU 

network is trained to fit the univariate function 𝑓(𝑥) = 𝑥3 −
0.25𝑥 + 0.2 with the synthesized data which are sampled from 
[0,1] with the interval of 0.01. It is seen that the GeLU network 

well fits the 𝑓(𝑥), particularly in the region of [0.4,1], despite 

that there are slightly oscillations in the region of [0, 0.4]. 

III. EXPERIMENTS 

A. Denoising Experiments with Soft-AE 

In this section, we compare the performance of our Soft-AE to 

the state of-the-art networks to justify that Soft-AE not only is 

interpretable but also performs comparably or favorably in 

solving real-world problems. Specifically, we selected the 

convolutional autoencoder with ReLU, Leaky-ReLU, and 

Concatenated ReLU as the benchmark models. For 

convenience, we denote them as ReLU-AE, Leaky-AE, and 

Conc-AE respectively. We can enable a soft thresholding unit 

with two ReLU units as shown in Eq. (12). Mathematically,  

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡LeakyReLU(𝑥) = {
𝑥⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑖𝑓⁡𝑥 > 0
𝛼𝑥⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑖𝑓⁡𝑥 < 0

⁡⁡⁡⁡⁡⁡⁡⁡⁡(26) 

In our TensorFlow environment, 𝛼 was set to 0.2 by default. 

Concatenated-ReLU concatenates two ReLU outputs in 

opposite phases. Mathematically, 

      ⁡⁡Concatenate⁡{ReLU(𝑥), ReLU(−𝑥)}⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(27)                         

The dimensionality of inputs is doubled after being processed 

by Concatenated ReLU. Thus, the output of Conc-AE will have 

an even dimensionality in contrast to those of Soft-AE, Leaky-

AE, and ReLU-AE. Because the images in our experiments are 

of odd channels (either greyscale or RGB images), we use 

ReLU in the output layer of Conc-AE.  

In our experiments, we evaluated the utility of Soft-AE in either 

the generic or residual structure. For structural fidelity, neither 

pooling nor un-pooling operations were used. Overall, the loss 

function for all the models was defined as 𝐿(Θ) =
1

𝑁
∑ ||𝐹(𝑋𝑖

𝑛𝑜𝑖𝑠𝑒𝑑; Θ) − 𝑋𝑖
𝑙𝑎𝑏𝑒𝑙||𝑁

𝑖

2
,⁡  where Θ  denotes hyper-

parameters, 𝑋𝑖
𝑛𝑜𝑖𝑠𝑒𝑑 , 𝑋𝑖

𝑙𝑎𝑏𝑒𝑙  are the input and label vectors 

respectively. Despite the fact that a soft thresholding unit is 

discontinuous at zero, the empirical results show that this is not 

an issue in our studies because a unit is still optimizable via 

gradient-based search using the one-sided derivative which 

always exists and can be used as needed. 

We first tested the denoising performance of different models 

on natural image benchmarks CIFAR-10 and BSD-300 

respectively. CIFAR-10 [40] is a classic benchmark dataset of 

50,000 training images and 10,000 test images. Each image is 

of 32*32 in the RGB format. BSD-300 contains 300 high-

quality images of different sizes, where 200 images are for 

training and 100 images for testing. Because CIFAR-10 is a 

relatively simple benchmark and BSD-300 is more 

complicated, we applied the autoencoders of generic structures 

on CIFAR-10 and autoencoders with residual links on BSD-

300, respectively. For further evaluation, we also conducted 

denoising experiments on the Mayo Clinical Dataset to show 

that Soft-AE performs well for both natural and medical image 

denoising tasks. To quantify the denoising performance, we 

used structural similarity (SSIM) and peak-to-noise ratio 

(PSNR) as the metrics.  

Denoising on CIFAR-10: To understand the performance of 

different models, three typical network structures were 

evaluated. As shown in TABLE I, they are of (1) four 

convolutional layers with eight channels in every hidden layer, 

(2) four convolutional layers with sixteen channels in each 

hidden layer, and (3) six convolutional layers with sixteen 

channels per hidden layer. The convolutional kernel size in 

every layer was set to 3*3. The zero padding was used for 

convolution to keep the image size intact. In the case of Conc-

AE, the activation function for the output layers was configured 

as ReLU. For symmetry, we used ReLU in the first layer as 

well. Concatenated ReLU activations were employed for the 

rest layers. All the activations in ReLU-AE and Leaky-AE were 

done by ReLU and Leaky-ReLU respectively. In Soft-AE, the 

encoding part takes soft thresholding units while the decoding 

part uses linear functions. 

TABLE I: THREE CONVOLUTIONAL AUTOENCODER 

ARCHITECTURES TESTED ON CIFAR-10.  

Architecture Convolutional 

Layer 

Channel 

Number 
Shortcut 

Structure -1 4 8 No 

Structure -2 4 16 No 

Structure -3 6 16 No 

All the images were normalized by division with 255. Noisy 

images were synthesized by adding additive Gaussian noise 

with zero mean and standard deviation 𝜎 = 0.1, 0.15, 0.2 

respectively. Negative pixel values were truncated to 0. In the 

training process, noisy images were fed into the network, and 

denoised images were compared with the clean counterparts. 

With random initializations, each network was trained five 

times to produce mean SSIM and PSNR values. For all the 

models, we used the Adam for training. A batch of 50 training 

samples were processed in every iteration, the number of 

epochs was set to 20, and the learning rate was 10−3 . The 

results are summarized in TABLE II. Superscripts 1-3 

correspond to the three architectures in TABLE I respectively. 

The best performance among the four models with respect to 

the specific noise level is bold-faced. Generally speaking, the 

four autoencoders share the same trend that the performance 

goes down as the noise level goes up; all the models of 

structure-2 and structure-3 yield higher PSNR and SSIM scores 

than their counterparts of structure-1. It is underlined that Soft-

AE keeps the clearly superior performance in a majority of 

cases, particularly for structure-1. In those cases when Soft-AE 

does not give the best metrics, it follows the best performer 

closely. Overall, it is concluded that Soft-AE indeed produces 

comparable or favorable denoising performance relative to the 

state-of-the-arts.  

Denoising on BSD-300: We randomly selected 30,000 patches 

of 50*50 from the BSD images to single out 20,000 batches for 



training, and the remaining for testing. Similarly, we utilized 

the networks of three symmetric structures to perform 

comparisons, as shown in TABLE III. Specifically, these 

networks are in the following structures: (1) eight convolutional 

layers with 8 channels in each layer, (2) eight convolutional 

layers with 12 channels in each layer, and (3) ten convolutional 

layers with 8 channels in each layer. As far as the topologies of 

skip-connections are concerned, not all paired encoder/decoder 

layers were bridged by shortcuts for a reasonable computational 

overhead.  

TABLE III: THREE CONVOLUTIONAL AUTOENCODERS USING SKIP 

CONNECTIONS TESTED ON BSD-300. 

Architecture Convolutional 

Layer 

Channel 

Number 

Shortcut Topology 

Structure -1 8 8 
 

Structure -2 8 12 
 

Structure -3 10 8 
 

All the images were normalized by division with 255. 

According to the protocols used for CIFAR-10, we synthesized 

noisy images by adding additive Gaussian noise with zero 

mean. The standard deviations were set to 𝜎 = 0.1, 0.15, 0.2 

respectively. Negative pixel values were lower bounded to 0. 

Because the initialization was random, each network was 

trained five times to compute mean SSIM and PSNR values. 

For all the models ReLU-AE, Leaky-AE, Conc-AE and Soft-

AE, we used the Adam for optimization. A batch of 50 training 

samples were processed per iteration, the number of epochs was 

20, and the learning rate was 10−3. 

The denoising results are in TABLE IV.  The best performance 

among the four models for each noise level is bold-faced. With 

residual connections, Soft-AE performs even better. In the 

networks of structure-1 and structure-3, Soft-AE performs the 

best in terms of both SSIM and PSNR for all the noise levels. 

Particularly, the SSIM and PSNR improvements by Soft-AE are 

significantly over Conc-AE and ReLU-AE. However, the 

counterexamples exist for Soft-AE2, since the best 

performances in some cases are from Leaky-AE2, but the PSNR 

and SSIM values achieved by Soft-AE2 are very close to those 

of Leaky-AE2. To check if the superiority is really significant 

or not, we further conducted statistical hypothesis testing and 

the results were put into the supplementary material for more 

information.  

Denoising on Low-dose CT: Low-dose CT imaging has gained 

a considerable traction over the past decade due to its potential 

to reduce the risk induced by X-ray radiation to a patient. One 

effective way to reduce the X-ray dose is to use a lower X-ray 

flux. However, a reduced X-ray flux will elevate image noise 

and compromise image quality. Currently, the algorithms 

dedicated to low-dose CT image denoising can be roughly put 

into three categories: (a) sinogram domain filtering, (b) iterative 

reconstruction, and (c) image post-processing. The sinogram 

filtering methods [41-43] can be used when the data format and 

noise characteristics are known. Nevertheless, sinogram 

filtering tends to reduce spatial resolution. On the other hand, 

the image-domain iterative methods were extensively 

investigated, especially model-based and compressed sensing 

methods [44-46]. Although modern iterative algorithms 

produce encouraging results, their computational cost is rather 

high. Finally, the image post-processing methods, such as block 

matching [47-48], are directly applied to low-dose CT images 

without any direct access to raw data. The main barrier for the 

post-processing methods is that the noise distribution cannot be 

perfectly pre-determined, leading to structural blurring or 

distortion.  

Recently, deep learning methods were successfully applied to 

low-dose CT denoising, such as RED-CNN [49], which 

delivered a competitive denoising performance. Here we tested 

TABLE II: DENOISING PERFORMANCE COMPARISON AMONG LEAKY-AE, CONC-AE, RELU-AE AND SOFT-AE ON CIFAR-10. 

Metric 𝜎 Leaky-

AE1 

Conc-

AE1 

ReLU-

AE1 

Soft-

AE1 

Leaky-

AE2 

Conc-

AE2 

ReLU-

AE2 

Soft-

AE2 

Leaky-

AE3 

Conc-

AE3 

ReLU-

AE3 

Soft-

AE3 

 

PSNR 

0.1 27.043 26.961 27.150 27.469 27.936 27.640 27.919 27.944 27.898 27.815 27.974 28.039 

0.15 25.058 24.957 25.186 25.370 25.752 25.676 25.783 25.786 25.914 25.837 26.036 25.774 

0.2 23.845 23.606 23.913 23.952 24.393 24.320 24.403 24.355 24.572 24.385 24.537 25.535 

 

SSIM(%) 

0.1 91.662 91.533 91.974 92.368 93.298 93.023 93.107 93.251 93.325 93.160 93.505 93.459 

0.15 87.757 87.396 88.124 88.513 89.502 89.300 89.090 89.570 89.924 89.681 90.185 89.897 

0.2 84.605 83.796 84.816 84.744 86.079 85.922 86.146 86.089 86.730 86.326 86.695 86.526 

Note: superscripts 1-3 correspond to three architectures shown in TABLE I. 

TABLE IV: DENOISING PERFORMANCE COMPARISON AMONG LEAKY-AE, CONC-AE, RELU-AE AND SOFT-AE ON BSD-300 

Metric 𝜎 Leaky-

AE1 

Conc-

AE1 

ReLU-

AE1 

Soft-

AE1 

Leaky-

AE2 

Conc-

AE2 

ReLU-

AE2 

Soft-

AE2 

Leaky-

AE3 

Conc-

AE3 

ReLU-

AE3 

Soft-

AE3 

 

PSNR 

0.1 29.252 28.507 28.789 29.543 29.437 29.367 29.336 29.363 29.545 29.037 29.425 29.700 

0.15 26.999 26.470 26.786 27.486 27.424 27.121 27.287 27.432 27.349 26.875 27.275 28.109 

0.2 25.589 24.462 25.406 26.153 26.064 25.829 25.955 26.094 25.797 25.237 25.739 26.267 

 
SSIM(%) 

0.1 89.803 88.892 88.803 90.227 90.160 90.181 89.699 89.916 90.511 89.932 90.212 90.584 

0.15 84.372 83.081 83.566 85.315 85.381 84.727 85.089 85.186 85.298 84.196 85.124 85.949 

0.2 79.504 78.485 78.718 80.997 81.129 80.596 80.823 80.876 80.208 79.042 80.139 81.450 

Note that superscripts 1-3 correspond to the three architectures in TABLE III respectively. 



the performance of our Soft-AE for low-dose CT denoising 

with a real clinical dataset prepared by Mayo Clinics for “the 

2016 NIH-AAPM-Mayo Clinic Low Dose CT Grand Challenge” 

[51]. This dataset has 2,378 full dose and corresponding quarter 

dose 512*512 CT images from 10 patients. In our study, we 

randomly extracted 64,000 64*64 patches from these images 

Figure 6. The comparison of denoising results from different models for an 

abdominal region. Display window is [-240,160]. 

 
Figure 7. Zoomed regions from Figure 6. The red circle highlights the region 

in high-contrast as best revealed by Soft-AE. Display window is [-240,160]. 

 
Figure 8. The comparison of denoising results from different models for 

an abdominal region. Display window is [-240,160]. 

 
Figure 9. Zoomed regions from Figure 8. The red circle highlights the 

region in high-contrast as best revealed by Soft-AE. Display window is [-

240,160]. 

 



for training.  After the training, we tested the models based on 

independent full-size images. For CT denoising, we employed 

ReLU-AE, Leaky-AE and Conc-AE of residual connections. 

The networks of structure-2 were utilized. In Soft-AE, we used 

34 layers with 8 convolutional kernels in each layer. The hyper-

parameters for training include 50 batches in each iteration, the 

learning rate for Adam optimization 1.5 × 10−3 in the first 20 

epochs, and  1.0 × 10−3 in the final 10 epochs.  

 

Two representative abdominal CT slices (the 100th and 130th 

slices from patient L506) were selected to evaluate the 

performance of Soft-AE and the other models, as shown in 

Figure 6-9. For better visualization, we zoomed the regions of 

interest (ROIs) marked by the red rectangles. It is noted that all 

the models demonstrate denoising effects with different image 

quality impressions.  Figure 7 highlights high structural fidelity 

by Soft-AE. The structures processed by Leaky-AE, ReLU-AE, 

and Conc-AE are disappearing. Figure 8 showcases that the 

results of Leaky-AE, Conc-AE, and ReLU-AE blur some 

structural details.  

TABLE V lists the quantitative comparative results for these 

images. In both Figures 6 and 8, the highest PSNR and SSIM 

values and lowest root mean square errors (RMSEs) are from 

Soft-AE. It is concluded that Soft-AE can deliver a competitive 

performance compared with its counterparts in this real-world 

benchmark. 

To test the utility and robustness of Soft-AE, we also compared 

Soft-AE with the VisuShrink and BayesShrink algorithms and 

discussed the important parameters in Soft-AE. The results are 

in the supplementary materials. 

B. Deblurring and Denoising Experiments with GenLU 

We tested the effectiveness of GenLU for image denoising and 

deblurring in comparison with Leaky-ReLU and ReLU based 

on SRCNN [52] that is a forerunner in deep learning for super-

resolution. For convenience, we denote SRCNN with ReLU, 

Leaky-ReLU, and GenLU as ReLU-SRCNN, Leaky-SRCNN, 

and GenLU-SRCNN respectively. Note that GenLU-SRCNN is 

more interpretable, since we already have a theoretical basis 

with 𝜂𝑏>0(𝑥) for signal recovery. Practically, the employment 

of GenLU strengthens the flexibility of the network and 

facilitates its representation. From the perspective of network 

modularity and functional decomposition, it makes sense that 

neurons with 𝜂𝑏>0(𝑥) enhance resolution, while neurons with 

𝜂𝑏<0(𝑥)  suppress noise. Thus, the utility of each neuron is 

indicated by the sign of 𝑏 that can be learned. 

The key features of the SRCNN model are summarized in 

TABLE VI.  We used the same training images as that in [52-

53], where the training set consists of 91 images. The Set14 

dataset of 14 images was used to evaluate the performance at a 

magnification factor 3. The preparation of training images 

TABLE V: QUANTITATIVE COMPARISON 

BETWEEN AE USING QUADRATIC ACTIVATION 

AND QUADRATIC AUTOENCODER. 

   Fig. 6   Fig. 8  

 SSIM PSNR RMSE SSIM PSNR RMSE 

Noised 0.8131 23.502 0.06681 0.8491 25.239 0.05471 

Leaky-AE 0.8639 28.685 0.03679 0.9180 30.183 0.03096 

ReLU-AE 0.8945 28.729 0.03660 0.9185 30.231 0.03079 

Conc-AE 0.8943 28.717 0.03665 0.9183 30.199 0.03091 
Soft-AE 0.8951 28.731 0.03657 0.9189 30.244 0.03074 

 

TABLE VII: THE PSNR AND RMSE VALUES ON THE SET 14 DATASET. 

Set14 

Image 

ReLU-SRCNN  Leaky-SRCNN GenLU-SRCNN 

PSNR RMSE PSNR RMSE PSNR RMSE 

Baboon 19.006 0.01257 19.011 0.01252 18.863 0.01299 

Barbara 22.991 0.00502 22.986 0.00506 23.159 0.00483 

Bridge 21.639 0.00686 21.613 0.00690 22.132 0.00612 

Coastguard 24.045 0.00393 24.038 0.00395 24.276 0.00373 

Comic 19.602 0.01096 19.575 0.01102 19.477 0.01127 

Face 28.697 0.00135 28.686 0.00135 28.788 0.00132 

Flowers 24.222 0.00378 24.204 0.00380 24.400 0.00363 

Foreman 26.789 0.00209 26.766 0.00211 26.815 0.00208 

Lenna 24.335 0.00368 24.276 0.00374 24.828 0.00329 

Mam 23.623 0.00434 23.631 0.00433 22.767 0.00529 

Monarch 24.147 0.00385 24.188 0.00381 25.109 0.00308 

Pepper 28.572 0.00139 28.517 0.00141 29.091 0.00123 

PPT3 15.253 0.00298 15.241 0.02992 16.745 0.00212 

Zebra 22.422 0.00572 22.416 0.00573 22.091 0.00618 

 

TABLE VI: BASIC PARAMETERS OF SRCNN 

 Layer 1 Layer 2 Layer 3 

SRCNN 64 9 × 9 

filters 

32 1× 1 

filters 

32 5× 5 

filters 

  



followed the same protocol as that in [52]. The low-resolution 

noisy images were obtained by blurring the original images 

(sub-sampling by a factor 3 and upscaling it with the same 

factor) and adding the Gaussian noise with mean 0 and 

deviation 0.005. Roughly, 24,800 pairs of high-resolution and 

low-resolution images of 32 × 32 were used for training. In our 

experience, such a training set was sufficiently large to train all 

the three networks. 

For all the three networks, the loss function was MSE. We 

performed training with a batch size of 128. To facilitate 

convergence, we initialized networks with a pre-trained model 

publicly available in GitHub [54], which is an independent 

implementation of SRCNN on TensorFlow. The learning rate 

was set to 10−4. The total number of iterations was 15000.  

PSNR and MSE for different models were computed, as 

summarized in TABLE VII. For each image, the best scores are 

bold-faced. Overall, the results of ReLU-SRCNN and Leaky-

SRCNN on different images are quite close to each other. The 

highlight is that the proposed GenLU-SRCNN produces the 

highest PSNR and the lowest MSE values in 10 images among 

all the 14 images in Set14. Importantly, on the images “Lenna”, 

“Monarch”, and “PPT3”, GenLU-SRCNN outperforms its 

counterparts by a large margin (≥ 0.5dB).  Figures 10 and 11 

show the recovered results, ROIs, and profiles for the compared 

models on the four images. It can be observed in Figure 11 that 

all the three networks resolve meaningful details from the 

degraded images. Furthermore, GenLU-SRCNN produces the 

most desirable outcomes over the other models. As indicated by 

the green arrows, the GenLU-SRCNN images preserve sharp 

edges which are faithful to the labels. 

IV. CONCLUSION 

In conclusion, we have investigated to replace the ReLU 

activation in the setting of convolutional autoencoders and 

introduced a pair of ReLU units emulating soft thresholding, 

thereby offering the network interpretability while enhancing 

the network performance through adaptivity as well. As a result, 

we have interpreted our Soft-AE as a deeply learned nonlinear 

wavelet shrinkage system. Furthermore, we have proposed 

GenLU for more image processing tasks. Interestingly, the 

function decomposability between different neurons are 

realized by the tuning of thresholds. In the future, other low-

level computer vision tasks such as image impainting can be 

revisited in our framework.  
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