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Abstract

Perfusion computed tomography (PCT) is critical in detecting cerebral ischemic lesions. PCT 

examination with low-dose scans can effectively reduce radiation exposure to patients at the cost 

of degraded images with severe noise and artifacts. Tensor total variation (TTV) models are 

powerful tools that can encode the regional continuous structures underlying a PCT object. In a 

TTV model, the sparsity structures of the contrast-medium concentration (CMC) across PCT 

frames are assumed to be isotropic with identical and independent distribution. However, this 

assumption is inconsistent with practical PCT tasks wherein the sparsity has evident variations and 

correlations. Such modeling deviation hampers the performance of TTV-based PCT 

reconstructions. To address this issue, we developed a novel contrast-medium anisotropy-aware 

tensor total variation (CMAA-TTV) model to describe the intrinsic anisotropy sparsity of the 

CMC in PCT imaging tasks. Instead of directly on the difference matrices, the CMAA-TTV model 

characterizes sparsity on a low-rank subspace of the difference matrices which are calculated from 

the input data adaptively, thus naturally encoding the intrinsic variant and correlated anisotropy 

sparsity structures of the CMC. We further proposed a robust and efficient PCT reconstruction 

algorithm to improve low-dose PCT reconstruction performance using the CMAA-TTV model. 

Experimental studies using a digital brain perfusion phantom, patient data with low-dose 

simulation and clinical patient data were performed to validate the effectiveness of the presented 

algorithm. The results demonstrate that the CMAA-TTV algorithm can achieve noticeable 

improvements over state-of-the-art methods in low-dose PCT reconstruction tasks.
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I. INTRODUCTION

CEREBRAL perfusion computed tomography (PCT) extends the role of conventional 

unenhanced CT and CT angiography in the evaluation of acute stroke, vasospasm, and other 

neurovascular disorders by providing information on capillary-level hemodynamics and the 

brain parenchyma [1]. PCT is critical in detecting ischemic lesions and distinguishing an 

infarct “core” from the hypoperfused “penumbra” [2]. However, the high level of 

accumulated radiation exposure from a PCT examination has been a major concern, 

especially when repeated scans are performed in the same patient over a long acquisition 

time [3]. With the ongoing introduction of full-brain PCT in many centers, the radiation 

exposure associated with PCT will increase even further [4]. Therefore, minimizing the 

radiation exposure (low radiation dose/low dose) while maintaining the quantitative 

accuracy of contrast-medium concentration (CMC) information in a PCT object is urgently 

needed in clinic [5].

There are many approaches that can reduce the radiation dose in PCT imaging, including 

reduction of the tube current-time product (i.e., the tube current multiplied by the exposure 
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time per gantry rotation, mAs), reduction of the tube voltage (kVp), and increase in the 

intervals between PCT scans [6]. As the tube current-time product is linearly related to the 

radiation dose, a reduction of the tube current-time product is perhaps the simplest and most 

effective way to reduce radiation exposure. However, the associated PCT images are 

typically degraded by unavoidable noise-induced artifacts, which may hamper detection 

accuracy. Recent studies have shown that when using the vendor-provided filtered back-

projection (FBP) or model-based image reconstruction (MBIR) methods [7], [8], a reduction 

of the tube current-time product to levels lower than 50 mAs substantially deteriorates the 

quality of perfusion information [9], [10].

One major strategy to improve the accuracy of the CMC information in low-dose PCT tasks 

is to estimate the high-quality hemodynamic perfusion maps from the PCT images using a 

stable deconvolution procedure [11], [12]. Another major strategy is to suppress the 

excessive noise artifacts in PCT images, for example by using image domain denoising 

methods and MBIR methods [13]–[18]. Image domain denoising methods mitigate noise 

and artifacts directly from FBP-reconstructed PCT images [13], [14]. Such postprocessing 

methods might suffer from diminishing clinically relevant lesions due to lack of knowledge 

of the data statistics, especially for ultra-low-dose cases [9]. MBIR methods model the data 

statistics and then optimize a prior-regularized cost function for image reconstruction by 

using iterative algorithms [15]–[18]. By incorporating raw data statistics into the 

optimization process, MBIR methods generally can achieve higher image quality compared 

to conventional analytical reconstruction methods [19]. Thus, MBIR reconstruction with the 

ability to accurately model the CMC information in a PCT object is the task in this paper.

In a PCT object, the tissue structures and lesion changes are generally regionally constant or 

have a low level of variation along the spatial dimension, and the variations of the blood 

flow signal induced by the contrast-medium concentration is generally continuous along its 

temporal dimension [11], [14]. Such prior structures can be readily modeled as a tensor total 

variation (TTV) prior [20], [21], as shown in Figs. 1(a)-(b). Multiple PCT reconstruction 

algorithms using such a model have been proposed, and they have shown promising 

performance [11], [14], [22]. In the existing TTV model, the sparsity structures of the CMC 

across PCT frames are formulated on the difference matrices, which are calculated along the 

spatial and temporal dimension (i.e., D1, D2, and D3 in Fig. 1. Their definitions are 

introduced in detail in Sec. II). They are implicitly assumed to be isotropic with identical 

and independent distribution. This assumption, however, is inconsistent with practical PCT 

tasks. First, accounting for the tissue-heterogeneous nature of the CMC in PCT, the sparsity 

of the CMC in the temporal direction of the difference matrices is not identically distributed 

but rather exhibits evident variations, which can be clearly observed in Fig. 1(b). Second, 

many previous studies have confirmed that PCT frames have highly temporal correlations 

[17], [18], and according to the linear property of the differential operation, the sparsity of 

the CMC across different frames are not independent but correlated. In other words, the 

sparsity of the CMC across PCT frames is anisotropic with variant and correlated 

distribution. Such modelling deviations usually hamper the performance of TTV-based PCT 

reconstructions. Alleviating this problem would lead to a great improvement in PCT 

reconstructions.
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In the past few years, considerable efforts have been invested to address the anisotropy 

sparsity issue in TV/TTV models. However, to the best of our knowledge, almost all of the 

existing methods focus on imposing some penalty weight on the TV/TTV norm to describe 

the different gradient magnitudes of pixel pairs. For example, Tian et al. [23] and Liu et al. 
[24] both proposed edge-preserving TV models that assigned a penalty weight in defining 

the TV term based on the negative exponential function of gradient values of adjacent pixels. 

Chen et al. [25] proposed an anisotropic TV (ATV) model by introducing a penalty weight 

for the TV norm based on the radial constraint strength distribution of neighboring pixels. 

Wang et al. [26] extended the ATV model by introducing an additional weight for the TV 

term defined as the reciprocal of the gradient magnitudes of adjacent pixels. Considering 

that each individual scale is sensitive to artifacts over a specific spatial range, Huang et al. 
[27] employed a reweighted TV norm at each scale space for CT reconstruction, wherein the 

weights were designed to be inversely proportional to the gradient magnitudes of adjacent 

pixels. Wu et al. [28] introduced the structure tensor total variation (STV) model [29] into 

CT reconstruction framework that defined the weighted first-order difference of a local 

neighborhood (called structure tensor) and imposed the nuclear norm for the structure tensor 

to describe the local correlation of neighborhood variations. Besides, some non-local 

TV/TTV models were also imposed to leverage the non-local variational information in the 

CT image(s). Mahmood et al. [30] employed a graph weight as the penalty for the TV norm, 

using Gaussian kernel weighting w.r.t the two patch pairs in the image. Fang et al. [31] 

proposed a non-local TTV model for the PCT deconvolution by minimizing the weighted 

differences between the target voxel and all voxels in a local search window where the 

penalty weights were defined in the same way as [30]. Although they are effective in 

reflecting the sparsity variations in CT image(s), these methods may be sensitive to the 

estimation accuracy of the penalty weight assigned to the TV term. Moreover, as they only 

utilize gradient information from local (or nonlocal as in [30], [31]) pixel pairs, these 

methods generally neglect useful global information from the difference maps, and thus 

cannot reflect the global sparsity correlations of the CMC across the PCT frames.

Recently, Li et al. [32] introduced a low-rank tensor decomposition method to describe the 

global correlations among PCT frames. However, the low-rank tensor decomposition model 

implicitly assumes that the PCT frames are free of noise for decomposition [33], which is 

not the case in practice. To address this problem, the authors further employed an isotropic 

TTV model to characterize the regional smooth structures in both the spatial and temporal 

domains. Although this method can address the noise problem to some extent with the TTV 

regularization, it may suffer from the loss of detailed CMC information due to the modeling 

deviation induced by the isotropic TTV. Moreover, in [32] the sinogram data were assumed 

to have an independent and identical Gaussian distribution, which is far from realistic in 

practice; as a result, the reconstructed results suffer from inhomogeneous defects, especially 

for ultra-low-dose cases, as demonstrated in Sec. IV. Similar to [32], Sagheer et al. [34] 

introduced a low-rank approximation method to describe the global correlations in 3D CT 

images by imposing the tensor nuclear norm (TNN) on similar 3D patches. Though 

approximation using TNN can smoothen the images, excessive and spurious noise could still 

remain in the resulted image [34]. To address this problem, the authors also employed the 

isotropic TTV model to exploits local gradient information from neighborhood pixels. As in 
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[32], the modeling deviation problem induced by the isotropic TTV still exists in their 

method. Besides, the method proposed in [34] is an image domain denoising method, which 

is incapable of utilizing the valuable statistics information of raw data and thus could not 

treat images with severe noise and artifacts.

One major goal of this research is to exploit a more advanced model to faithfully describe 

the intrinsic anisotropic sparsity of the CMC across PCT frames, and the other major goal is 

to develop an efficient algorithm for low-dose PCT reconstruction via the new model. Our 

contributions can be summarized as threefold:

1. We present a novel model that naturally encodes the anisotropic sparsity of the 

contrast-medium concentration information among the PCT frames. For ease of 

description, we call this model Contrast-Medium Anisotropy-Aware TTV model 

(CMAA-TTV). Instead of characterizing the sparsity on the difference matrices 

themselves as was done by the TTV model, the CMAA-TTV model formulates 

the sparsity on the low-rank subspace of the difference matrices, which are 

adaptively calculated from the input data. With the CMAA-TTV model, the 

sparsity correlations of the CMC are delivered by the calculated subspace bases, 

while the sparsity variations of the CMC are represented by their different 

coefficients.

2. We propose an algorithm to improve the performance of low-dose PCT 

reconstructions using the CMAA-TTV model. Using the alternating direction 

method of multipliers (ADM [35] framework, an efficient optimization method 

for the proposed CMAA-TTV algorithm was developed that alternates between 

the image update and the subspace calculation with closed-form equations.

3. We demonstrate that the proposed algorithm outperforms state-of-the-art 

methods in terms of noise artifact suppression and structure preservation, and 

that it can better represent CMC information in real clinical PCT tasks with a 

tube current-time product level of 20 mAs. Simulation studies demonstrate that 

the proposed algorithm provides more stable reconstructions at four radiation 

levels and yields a more accurate CMC information estimate when the tube 

current-time product is reduced from 50 mAs to 5 mAs, compared with other 

methods.

This paper is an extension of our preliminary work [36] with significant improvements: 1) 

we provided a more thorough analysis of the proposed model and presented the detailed 

algorithm for the PCT reconstruction with the model, and 2) we provided more detailed 

experimental results using the proposed algorithm, with extensive evaluations over both 

simulated data and clinical patient data.

The rest of this paper is organized as follows. In Sec. II, a brief introduction to PCT 

tomography modeling and the reconstruction framework is given. In Sec. III, the proposed 

CMAA-TTV algorithm scheme and its optimization method are presented in detail. Sec. IV 

evaluates the proposed method with numerical simulations and clinical patient data. Finally, 

the discussion and conclusion are presented in Sec. V.
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II. PROBLEM FORMULATION FOR THE GENERALIZED PCT RECONSTRUCTION FRAMEWORK

A. Mathematical Notation and PCT Modeling

During acquisition, PCT is performed in cine mode a few seconds after the iodinated 

contrast bolus injection. The PCT object with Nt frames can be represented as a 3-order 

tensor X = xt, t = 1, 2, …, Nt ∈ ℝNℎ × Nw × Nt, where xt ∈ ℝNℎ × Nw represents the t-th 2D 

image frame, and Nh, Nw, and Nt denote the spatial height, width, and number of time 

frames respectively, as shown in Fig. 1. We denote the 2D spatial-temporal form of X as 

X = xt, t = 1, 2, …, Nt ∈ ℝ NℎNw × Nt, where each column vector xt ∈ ℝ NℎNw × 1

corresponds to the vectorized form of its corresponding image frame xt.

For PCT modeling, we denote yt ∈ ℝNd × 1 as the vector of the line integral measurements 

that is acquired during the t-th time frame interval, and we denote At ∈ ℝNd × NℎNw) as the 

corresponding system matrix, with each element aijt  representing the contribution of voxel j 

to the projection ray i. Here, Nd denotes the number of measurements during a time frame 

interval.

Using these denotations, the PCT projection model can be defined as the following large 

system of linear equations

y = Ax, (1)

where A represents the block diagonal matrix consisting of blocks A1, A2, …, ANt, and y and 

x represent the vertical concatenation of y1, y2, …, yNt and x1, x2, …, xNt, respectively.

B. Statistical Reconstruction Framework for PCT

The goal of PCT image reconstruction is to estimate the desired x from the line integral 

measurements y. Due to the presence of noise in the measurements, it is difficult to obtain a 

satisfactory solution by directly solving (1). Therefore, a regularization term is posed to 

stabilize the solution. The desired x can be reconstructed from the noisy measurements y by 

solving the following optimization problem:

x = arg min
x

1
2(y − Ax)TW(y − Ax) + βR(x), (2)

where R(x) denotes the regularization term and the parameter β is used to control the 

tradeoff between the data fidelity term and the regularization term. 

W = diag Wi ∈ ℝ NdNt × NdNt i = 1, 2, …, Nt  is the weighting matrix, where 

Wi ∈ ℝNd × Nd is a diagonal matrix with each element being the inverse variance of its 

corresponding measurement in yi, which can be determined based on our previous work 

[37].

A rational model with the ability to represent comprehensive prior structural knowledge of 

CMC in a PCT object would have great potential to boost the performance of the above 
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reconstruction framework. This motivated us to develop a more advanced model for low-

dose PCT reconstruction tasks.

III. PCT RECONSTRUCTION WITH THE PROPOSED CMAA-TTV ALGORITHM

In this section, the conventional TTV model is first reviewed in Sec. III-A. Then, the new 

CMAA-TTV model beyond the conventional one is described in Sec. III-B. The proposed 

CMAA-TTV algorithm scheme and its optimization method are introduced in Sec. III-C. 

The algorithm convergence behaviour and the parameter selection are described in Sec. III-

D and Sec. III-E, respectively.

A. TTV Model

Let Dn(n = 1, 2, 3) denote the difference tensor of X corresponding to the spatial height, 

weight and temporal dimensions, respectively. As shown in Fig. 1, the three finite 

differential operations at voxel (h, w, t) are defined as:

D1(ℎ, w, t) = X(ℎ + 1, w, t) − X(ℎ, w, t),
D2(ℎ, w, t) = X(ℎ, w + 1, t) − X(ℎ, w, t),
D3(ℎ, w, t) = X(ℎ, w, t + 1) − X(ℎ, w, t),

(3)

where X(h, w, t) denotes the intensity at voxel (h, w, t). Just as in Sec. II-A, we denote the 

2D spatial-temporal form of Dn as Dn ∈ ℝ NℎNw × Nt. By adopting the most commonly 

used l1 norm sparse measure, the TTV model for PCT can be constructed as:

RTTV(x) = ∑
n = 1

3
κn Dn 1 (4)

where the parameters κn control the regularization strength for the spatial height, width and 

temporal dimensions, respectively.

B. CMAA-TTV Model

As the differential operations on X along the spatial height, width or temporal dimensions 

correspond to performing subtractions between rows in x, there exists a linear relationship 

between x and Dn. Thus, we introduce three difference operators, Θn, to formulate the 

relationship between x and

Θnx = Dn, n = 1, 2, 3. (5)

This facilitates the construction of the model that is imposed on the difference matrices.

For a given PCT object x, we seek to model the correlated and variant sparse structures 

among the difference matrices, i.e., our goal is to construct a rational anisotropy sparsity 

measurement for Dn. As studied in [17], [18], the intrinsic dimensionality of a PCT object is 

much lower than the number of acquired time frames in data acquisition (or, equivalently, 

there is a low-rank nature in PCT frames). Hence, according to the linear relationship 

between the PCT frames and the difference matrices, we can derive that Dn also has a low-
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rank property. Given this property, Dn can be decorrelated through the following low-rank 

matrix factorization form:

Dn = ΩnZn
T , (6)

where Ωn ∈ ℝ NℎNw × r, Zn ∈ ℝNt × r, and r is the rank of Dn. Here, columns in Ωn are in 

fact a set of bases spanning the subspace of the data matrix Dn, and Zn contains its 

corresponding coefficients. We also introduce the constraints Zn
TZn = I to ensure that the 

calculated subspace maintain compensation with the non-redundant information, where I is 

the identity matrix. With these constraints, we can rewrite (6) as follows:

Ωn = DnZn, (7)

where Ωn can be assumed to be the linear combination of the columns of Dn by the 

coefficients in Zn.

Fig. 2 illustrates the basis matrix Ωn calculated from the normal-dose and the simulated low-

dose PCT frames. The simulated low-dose PCT data approximately correspond to projection 

data acquired at 75 mAs. We can observe from Figs. 2(b) and (c) that a slight reduction of 

the radiation dose can seriously damage the sparsity structure of the difference images, 

which indicates that it is difficult to improve low-dose PCT reconstruction when using the 

sparsity regularization directly on the difference matrices. However, it can be observed 

clearly from Figs. 2(d) and (e) that the sparsity structures in Ωn are evidently less corrupted 

and are more stable than in the original representation Dn. It is thus expected to be easier to 

recover the target PCT object x from the low-dose data via a proper regularization on Ωn 

than on the original Dn as in the TTV model.

To investigate the structural properties of Ωn, we show in Fig. 3 the distribution (log scale) of 

absolute values in Ωn. It can be seen that Ωn is sparse, with a large fraction of zero or near-

zero values. Hence, we can impose Ωn to be sparse under the lp-norm (0 ≤ p < 1) [38]. An lp-

norm-based sparseness regularization yields a distribution with a convex shape on the 

logarithmic scale. From Fig. 3, we can observe that the distribution of Ωn follows this 

pattern. Considering that the lp-norm problem is NP-hard [38], just similar to the general 

TV/TTV model, we relax the lp-norm with the convex l1-norm [39].

On the basis of the aforementioned analysis, the new CMAA-TTV model can be constructed 

with the following formulation:

RCMAA−TTV(x) = ∑
n = 1

3
κn Ωn 1,

s. t., Θnx = ΩnZn
T , Zn

TZn = I,
Ωn ∈ ℝ NℎNw × r, Zn ∈ ℝNt × r .

(8)

The proposed model can be easily understood from Fig. 1(c). In the CMAA-TTV model, the 

subspace bases Ωn and their coefficients Zn are calculated from the input data adaptively. 
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Compared to the traditional TTV model shown in (4), the proposed model takes into account 

the correlation prior among the difference matrices when formulating sparsity measures. It 

benefits from the fact that there is a low-dimensional subspace for Dn, which is sparse but 

can represent almost all information in Dn with a coefficient matrix Zn, and that the features 

in the subspace are more stable than those in the difference matrices themselves, especially 

when the PCT frames are corrupted by radiation reduction induced noise.

C. CMAA-TTV Algorithm

With the CMAA-TTV model, the cost function in (2) can be written as follows:

arg min
x, Ωn, Zn

1
2(y − Ax)TW(y − Ax) + β ∑

n = 1

3
κn Ωn 1,

s. t., Θnx = ΩnZn
T , Zn

TZn = I,
Ωn ∈ ℝ NℎNw × r, Zn ∈ ℝNt × r, n = 1, 2, 3.

(9)

In this study, we adopt the ADMM scheme [35] to solve the optimization problem in (9). In 

particular, the objective function in (9) can be rewritten as the following scaled augmented 

Lagrangian dual form:

arg min
x, Ωn, ZnTZn = I, Γn

1
2(y − Ax)TW(y − Ax) + β ∑

n = 1

3
κn Ωn 1

+ μ
2 ∑

n = 1

3
Θnx − ΩnZn

T + Γn F
2 ,

(10)

where Γn is the Lagrangian multiplier and μ is a positive penalty scalar. (10) can be further 

translated into four subproblems with respect to each variable, as shown below.

1) Subproblem for x: Given Ωn, Zn, Γn , the subproblem with respect to x becomes

x(t + 1) = arg min
x

1
2(y − Ax)TW(y − Ax)

+ μ
2 ∑

n = 1

3
Θnx − Ωn

(t)Zn
(t)T + Γn

(t)
F
2

= arg min
x

1
2(y − Ax)TW(y − Ax) + R1(x)

(11)

where R1(x) represents the second term of the above equation.

The large scale of the system matrix A makes it impractical to directly solve the problem 

(11). In this study, we employ the recently developed relaxed linearized augmented 

Lagrangian method with ordered-subsets acceleration (OS-LALM) [41] to solve such a 

problem given its advantage of fast convergence, as shown in Algorithm 1. For the proposed 

CMAA-TTV regularization model, the relaxed OS-LALM is well suited because that the 

diagonal majorizing matrix of the Hessian of R1(x) is a constant term that can be cheaply 

precomputed before the iteration. Specifically, the gradient of R1(x) in (11) is
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∇R1(x) = μ ∑
n = 1

3
Θn

∗ Θnx − Ωn
(t)Zn

(t)T + Γn
(t) , (12)

where Θn
∗ is the adjoint operator of Θn (mathematically, Θn

∗x corresponds to the 2D spatial-

temporal form of Dn
∗, where Dn

∗ = − Dn . ΨR is a diagonal majorizing matrix of the 

Hessian of R1(x), specifically:

ΨR ≜ μ ∑
n = 1

3
diag Θn

∗ ∥ Θn 1 ⪰ μ ∑
n = 1

3
Θn

∗Θn = ∇2R1(x) (13)

where | · | is the elementwise absolute operation. For the case of the 1-order difference 

operation in this study, each row in Θn or Θn
∗ constrains two nonzero items (i.e., 1 and −1). 

Thus, we can easily obtain Θn
∗ Θn 1 = 4 · 1. As a result, 

ΨR ≜ μ∑n = 1
3 diag Θn

∗ ∥ Θn 1 = 12μI is a constant term. In Algorithm 1, the matrix ΨA is a 

diagonal majorizing matrix of ATWA. As in [41], we use

ΨA ≜ diag ATWA1 (14)

where 1 is an all-ones vector with proper dimensionality. The definitions of the other 

symbols in Algorithm 1 are the same as those used in [41]: K is the iteration number; M is 

the ordered subset number; α ∈ [1, 2) is the relaxation parameter; Am, Wm, and ym are the 

subvectors corresponding to the m-th subset of A, W, and y, respectively; and the parameter 

ρ decreases gradually with the iteration:

ρt(α) = π/α(t + 1) 1 − (π/2α(t + 1))2, t ≥ 1. (15)

2) Subproblem for Ωn: Given {x, Zn, Γn}, the subproblem with respect to Ωn becomes

Ωn
(t + 1) = argmin

Ωn
βκn Ωn 1

+ μ
2 Θnx(t + 1) − ΩnZn

(t)T + Γn
(t)

F
2 .

(16)

On the basis of the orthogonal property of Zn, (16) can be transformed as

Ωn
(t + 1) = argmin

Ωn
βκn Ωn 1

+ μ
2 Ωn − Θnx(t + 1) + Γn

(t) Zn
(t)

F
2 .

(17)

This problem can be cheaply solved by the soft thresholding
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Algorithm 1

CMAA-TTV

Input: y, W, A, x(0) = FBP(y), Ωn = 0, Zn = 0, Γn = 0, r, τn =Δ βκn , μ, α = 1.999, M = 12.

Output: the reconstructed PCT image x.

1: for t = 0 to T − 1 do

2:  Update x by the relaxed OS-LALM:

 1): initialization 

ρ = 1, x(0) = x(t), g(0) = ζ(0) = MAm
T Wm Amx(0) − ym , h(0) = ΨA

(0)x(0) − ζ(0) .

 2):  for k = 0 to K − 1 do

 3):   for m = 0 to M − 1 do

 4):  r = kM + m,

 5):  s(r + 1) = ρ ΨAx(r) − h(r) + (1 − ρ)g(r),

 6):
 x(r + 1) = x(r) − ρΨA + ΨR

−1 s(r + 1) + ∇R1 x(r)
+,

 7):  ζ(r + 1) = MAm
T Wm Amx(r + 1) − ym ,

 8):
 g(r + 1) = ρ

ρ + 1 αζ(r + 1) + (1 − α)g(r) + 1
ρ + 1g(r),

 9):  h(r + 1) = α ΨAx(r + 1) − ζ(r + 1) + (1 − α)h(r),

 10):  decrease ρ using (15).

 11):   end for

 12): end for

 13): x(t + 1) = x(KM) .
3:  Update Ωn by (18).

4:  Update Zn by (21).

5:  Update Γn by (22).

6: end for

method [35]:

Ωn
(t + 1) = Sβκn/μ Θnx(t + 1) + Γn

(t) Zn
(t)

(18)

where

SΔ(a) =
a − Δ, if a > Δ,
a + Δ, if a < − Δ,
0, otℎerwise.

(19)

3) Subproblem for Zn: Given {x, Ωn, Γn}, the subproblem with respect to Zn becomes
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Zn
(t + 1) = arg min

ZnTZn = I

μ
2 Θnx(t + 1) − Ωn

(t + 1)Zn
T + Γn

(t)
F
2 . (20)

The closed-form solution of (20) can be obtained by the following formula:

Zn
(t + 1) = BnCn

T , (21)

where Θnx(t + 1) + Γn
(t) TΩn

(t + 1) = BnΣnCn
T  is the SVD decomposition of 

Θnx(t + 1) + Γn
(t) TΩn

(t + 1). The proof is presented in APPENDIX A.

4) Subproblem for Γn: Under the ADMM framework, the Lagrangian multipliers can 

be updated as follows:

Γn
(t + 1) = Γn

(t) + Θnx(t + 1) − Ωn
(t + 1)Zn

(t + 1)T . (22)

The overall flowchart for the proposed CMAA-TTV algorithm is presented in Algorithm 1. 

The algorithm alternates between estimating the subspace bases Ωn and their coefficients 

Zn, and using these estimations to obtain an improved PCT object x (that also complies with 

the original measurements y).

D. Algorithm Convergence Behaviour

The algorithm stops after a maximum number of iterations is reached. Otherwise, the 

algorithm terminates when the following criteria are satisfied: if x(t + 1) − x(t) F / x(t) F ≤ ϵ, 

and Θnx(t + 1) − Ωn
(t + 1)Zn

(t + 1)T
F ≤ ϵ hold, the corresponding optimization ends. Here, ϵ is 

a prefixed threshold and was set as 10−3 in our experiments. We empirically find that the 

combination of the two stop strategies can consistently lead to satisfactory results. Whether 

the iterates in the CMAA-TTV algorithm converge to the critical points remains to be 

investigated further. Although theoretical convergence is not guaranteed, the decreasing 

tendency of the objective value at a global scale in iteration could be observed in all our 

experiments. For example, we conducted multiple repetitions of the digital brain perfusion 

phantom as described in Sec. IV-A to empirically validate the convergence behaviour of the 

proposed CMAA-TTV algorithm. In specific, the noisy projection data of this phantom were 

generated 200 times using the technique described in Sec. IV-A with I0 = 5 × 103 and 

σe2 = 16, then the data were reconstructed using the proposed algorithm, and the mean values 

of the root mean square error (RMSE) were calculated. Besides, we also generated and 

reconstructed the phantom data using the same way as above with the incident flux gradually 

reduced down from 5 × 103 to 1 × 103 to further explore the performance limit of the 

proposed algorithm (σe2 was fixed at 16). The results were depicted by the curve in Fig. 4. It 

can be observed that 1) All the RMSE curves are monotonically decreasing for the five 

dosage levels. Even though the incident flux is down to 1 × 103, such monotonous descent 

tendency still holds. 2) For all dose levels, approximately 40 iterations can produce relatively 

stable solution without the noticeable performance improvement after further iterations. 3) 
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When the incident flux was reduced from 5 × 103 to 2 × 10 3, the final resulted RMSE 

increased by less than 1.3. But when the incident flux was reduced down to 1 × 103, the final 

resulted RMSE dramatically increased to as high as 6.14. This demonstrates that the 

proposed algorithm could work well for the data with the incident flux level above 2 × 103, 

while would degrade noticeable for the data with the incident flux level below 2 × 103.

E. Parameter Selection

The parameters in the proposed CMAA-TTV algorithm include the regularization 

coefficients τn =Δ βκn , the penalty scalar μ, and the rank r.

The parameters τn control the trade-off between the data fidelity term and the CMAA-TTV 

regularization term. Large values of τn would achieve very low sparsities of the low-rank 

subspace and reduce the noise but potentially oversmooth the images and obscure fine 

structures. In this study, the values of τn were set as τ1 = τ2 = 0.9τ3 = C NℎNw, where C 

needs to be tuned depending on the empirical data. In implementation, the C value in the 

digital brain perfusion phantom experiments was set as 2500, and that in both the simulated 

and real patient data experiments was set as 30000. μ is a Lagrangian penalty parameter 

introduced by the ADMM algorithm which also should be tuned to achieve satisfactory 

performance.

The rank r corresponds to the dimensionality of the calculated low-rank subspace for the 

difference matrix Dn. A proper rank is essential for the proposed algorithm to function well. 

To investigate the influence of the rank on the algorithm, we illustrate in Fig. 5 the RMSE 

and the structural similarity index (SSIM) [42] values of the PCT images reconstructed by 

the proposed CMAA-TTV algorithm for the digital brain perfusion phantom with different 

rank versus different simulated radiation levels when fixing other parameters. For all dose 

levels, the quantitative results followed similar trends with respect to the varying rank 

parameters. The quantitative accuracies of the reconstructed images degrade obviously when 

the rank is less than 8. We think the reason is that the calculated subspace with such small 

dimensionality would lose significant information contained in the original data space. The 

algorithm performs well when the rank ranges from 8 to15. When using a rank within the 

range of 8 to 15, the SSIM and RMSE vary by less than 0.001 and 0.026. When the rank 

increases from 15, the gradual decline of the algorithm performance could be observed. We 

think this is because that although the calculated subspace with a large dimensionality could 

represent more information contained in the original data space, it would contain more 

undesired information and the features in such subspace thus would be more susceptible to 

the artifacts noise.

IV. EXPERIMENTAL RESULTS

In this section, we evaluated the proposed CMAA-TTV algorithm by using one digital brain 

perfusion phantom, 22 low-dose simulation datasets and data from seven patients who 

underwent low-dose PCT. For comparison, the performance of analytical reconstruction with 

the FBP algorithm, and the recently developed state-of-the-art MBIR algorithms, including 

TTV [11] and LRTD-STTV [32], were also evaluated. The performance of other MBIR 
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algorithms, such as tensor-based dictionary learning (TDL) regularization [43], low-rank and 

total variation (LRTV) regularization [14], total variation with feature refinement (TV-FR) 

regularization [44], and normal-dose scan-induced structure tensor total variation (ndiSTV) 

regularization [45] are inferior to LRTD-STTV as demonstrated in [32] and thus omitted 

here. We also compared the performance of the proposed algorithm with the DP-ResNet 

algorithm [46], a state-of-the-art deep learning algorithm which is a progressive 3D residual 

convolution network whose structure contains sinogram domain network, filtered back 

projection and image domain network. We trained the network with normal-dose patient data 

and simulated low-dose patient data pairs using the mini-batch version of Adam [47]. Since 

the digital brain phantom does not contain the skull and the voxel values of this digital 

phantom fall far different numeric range from the actual voxel values of the clinical CT 

images, we only evaluted the DP-ResNet algorithm with the simulated low-dose patient data 

and the real low-dose patient data as described in Sec. IV-B and Sec. IV-C. Detailed 

parameters used for the TTV, LRTD-STTV and DP-ResNet algorithms could be found in the 

supplemental material. The proposed CMAA-TTV algorithm will be available at https://

github.com/Frank-ZhangYK/CMAA-TTV.

A. Digital Brain Perfusion Phantom Study

1) Data Acquisition: A digital brain perfusion phantom consisting of user-defined 

regions of penumbra and stroke core [15] was used as a numerical reference, as shown in 

Fig. 6(a). The phantom contains 40 temporal frames of size 256 × 256. In all simulations, a 

fan-beam CT geometry was used with imaging parameters that were the same as those of the 

GE CT scanner, i.e., 984 fan-beam projections for a 360° rotation, 888 bins for each 

projection view, detector cell spacing of 1.0239 mm, distance of 949.075 mm from the X-ray 

source to the detector arrays, and distance of 541 mm from the X-ray source to the center of 

rotation. To simulate the noisy measurements, we added noise to the noise-free 

measurements by using the simulation method described in Ref. [37]:

IN ∼ Poisson I0exp −[Ax]i + Gaussian 0, σe2 , (23)

where σe2 denotes the electronic background noise variance and is set to 16, and I0 denotes 

the incident flux and is deliberately selected to be 5 × 104, 2 × 104, 1 × 104 and 5 × 103 for 

approximately four matching tube current-time products levels, which correspond to 50, 20, 

10 and 5 mAs, respectively. The detailed description about the low-dose simulation method 

is presented in the supplementary materials.

2) Visual Evaluation: Fig. 6(b) shows the reconstructed results of one representative 

PCT frame (#17) of the digital phantom versus the radiation level. Severe noise and artifact 

are evident in the FBP reconstructions, and they increase substantially as the radiation level 

is reduced. At 50 mAs, all of the MBIR algorithms can suppress the noise and preserve the 

fine structures effectively. However, as the radiation level was further reduced, especially in 

ultra-low-dose scenarios (with a tube current-time product below 20 mAs), the TTV and 

LRTD-STTV algorithms tend to blur some meaningful structures around both the penumbra 

and stroke core regions. By formulating a more insightful sparsity structure of the CMC, the 

proposed algorithm provides more stable performance at various dose levels; moreover, it 
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provides much better reconstruction results in terms of both noise artifact suppression and 

fine structure preservation, as shown in Fig. 6(b), especially for the ROIs of both the 

penumbra and the stroke core (as shown in Fig. 6(c)).

3) Quantitative Evaluation: The performance of the proposed algorithm was 

quantitatively evaluated in terms of the RMSE and the SSIM measurements of a region 

containing both the penumbra and stroke core (ROI I, as marked by the red dotted rectangle 

in Fig. 6(a)). The corresponding results are shown in Fig. 7. The CMAA-TTV exhibited the 

best quantitative results, with the lowest RMSE and the highest SSIM. For all algorithms, 

the RMSE rises and the SSIM drops as the radiation level decreases, but this effect was less 

pronounced in the CMAA-TTV results (RMSE of 0.45, 0.73, 1.12, 1.66 and SSIM of 

0.9982, 0.9959, 0.9927, and 0.9869 at 50, 20, 10 and 5 mAs, respectively).

4) Hemodynamic Parameter Map Evaluation: In PCT, the hemodynamic parametric 

maps have the ability to exhibit perfusion deficits in a smaller brain territory. The commonly 

used hemodynamic parametric maps include the cerebral blood flow (CBF), cerebral blood 

volume (CBV), and mean transit time (MTT). In this study, we estimated the maps from the 

reconstructed PCT images using the bSVD deconvolution algorithm [48]. The perfusion 

maps obtained with the tube current-time product of 5 mAs are shown in Fig. 8 (the 

perfusion maps obtained at 50, 20, and 10 mAs are shown in the supplementary materials). 

The quantitative accuracy of the maps was measured by the RMSE and the SSIM metric,, as 

shown in Table I.

At every dose level, all of the MBIR algorithms provided more accurate estimates of the 

CMC information than the FBP algorithm. From 50 mAs to 20 mAs, the TTV, LRTD-STTV 

and CMAA-TTV algorithms all performed well in estimating the maps. However, when the 

tube current-time product was reduced below 20 mAs, the CMAA-TTV algorithm estimated 

the maps with higher accuracy than the other algorithms.

5) Time Density Curve (TDC) Measures: The TDC describes the progression of local 

CMC over time, which is a crucial quantitative measurement for accurate perfusion therapy. 

Fig. 9 shows the averaged TDCs in two representative ROIs (the penumbra ROI indicated by 

the small green box, and the stroke core ROI indicated by the small yellow box, as shown in 

Fig. 6(a)) from reference images and low-dose PCT images reconstructed using different 

algorithms at 5 mAs (the TDCs at 20 mAs and 10 mAs are shown in the supplementary 

materials). The reconstruction obtained with the proposed CMAAReference TTV algorithm 

matches the ground truth for both selected ROIs much better than other methods, especially 

in ultra-lowdose scenarios (10 mAs and 5 mAs). The results indicate that the proposed 

algorithm performs better in preserving perfusion information for both the penumbra and the 

stroke core.

B. Clinical Patient Data with Low-dose Simulation

1) Data Acquisition: In this study, twenty-two patients with brain deficits were recruited 

under informed consents after approval from the institutional clinical trials review board. 

The patients were first injected with a 50 mL bolus of nonionic iodinated contrast via a 
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power injector at a rate of 5 mL/s. Then, normal-dose PCT images consisting of 30 

volumetric scans were acquired 5 seconds after injection, using a Siemens multi-slice CT 

scanner at an X-ray tube voltage of 80 kVp and a tube current-time product of 200 mAs. 

Other parameters of the scanning protocol for each volumetric scan were as follows: slice 

thickness of 8 mm, 1 s per rotation, helical pitch of 1, and frame size of 512 × 512 mm. To 

reduce the radiation dose, instead of scanning the patients twice, we simulated the low-dose 

PCT data from the FBP reconstructed PCT images. The simulation technique is similar to 

that described in section IV-A. I0 and σe2 were selected to be 1 × 104 and 25 respectively.

For the DP-ResNet algorithm, cross-validation was utilized in the testing phase for fairness. 

While testing on 3D PCT frames from each patient, the 3D PCT frames from other 21 

patients were involved in the training phase. The original DP-ResNet was applied on the 3D 

volume scans (in practice on the decomposed 3D rectangular patches with size hp×wp×dp for 

memory saving, where hp, wp, dp are the height, width and slice depth of the data). Because 

the proposed CMAA-TTV model is applied on the 3D PCT objects, for a fair comparison 

we modified the DP-ResNet by feeding the 3D PCT objects (in practice the decomposed 3D 

PCT patches) into the network during the training. With such modification, the DP-ResNet 

can also exploit the correlated information across temporal frames.

2) Visual Evaluation: Fig. 10 illustrates the reconstructed results obtained by different 

algorithms for one representative PCT frame (frame 12) from a patient (referred to as patient 

#S1). The reconstructed results for another frame (frame 8) from the same patient are shown 

in the supplementary materials. The reconstructed results from another patient (referred to as 

patient #S2) are also shown in the supplementary materials. All of the algorithms were able 

to suppress the noise artifacts effectively. However, the deviation of the model from the 

empirical CMC data caused both the TTV and the LRTD-STTV algorithms to blur some 

meaningful structures. Moreover, the LRTD-STTV algorithm tended to generate results with 

obviously inhomogeneous effects. We think that this may be due to deviations between the 

model and the sinogram data: the model assumes that the sinogram data have an independent 

and identical Gaussian distribution, rather than a non-stationary Gaussian distribution as we 

used in (2). The DP-ResNet algorithm can remove the noise and artifacts, but it tends to 

generate results with blurred CMC structures. We think that this may be due to the following 

two reasons: 1) Although the DP-ResNet contains both the sinogram domain network and 

the image domain network which can improve the complete imaging pipeline from low-dose 

projection into CT images, the two sub-networks are in fact separated by the FBP operation 

and are thus completely independent. Such hybrid domain network is generally empirical 

with no rigorous mathematical derivation, which might limit its performance. 2) Although 

the DP-ResNet can learn the correlated information across temporal frames by the 3D 

convolution, its leaning ability would be restricted by the limited receptive field along the 

temporal dimensionality. As a result, the DP-ResNet would be hard to exploit global 

correlations among PCT frames, and thus is deficient to represent the global anisotropic 

correlated structures of the CMC. The proposed CMAA-TTV performs much better in terms 

of both noise artifact suppression and preservation of fine structures compared with other 

methods, and it produces a visual effect that is similar to the normal-dose reference, 

especially for the ROI of the suspected ischemic lesion (as marked by the arrows in Fig. 10).
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3) Hemodynamic Parameter Map Evaluation: The hemodynamic parametric maps 

from the normal-dose and low-dose PCT images reconstructed by different algorithms were 

estimated. To save space, we show only the CBF maps for patient #S1 in Fig. 11 and show 

the CBF, CBV and MTT maps for patients #S1 and #S2 in the supplementary materials. The 

quantitative accuracy of the maps are measured by the RMSE and the SSIM metrics. In 

specific, we calculated the RMSE and SSIM of the maps from each patient, and then 

calculated the mean value and the SDs of the SSIM values of all the patients. The average 

RMSE and SSIM accuracies (mean±SDs) of the perfusion maps are listed in Table I. All of 

the algorithms provided more quantitative accurate estimates of the CMC information than 

the FBP algorithm. In particular, the CMAA-TTV method estimated the CMC information 

with significantly higher accuracy than other algorithms.

4) TDC Measures: Fig. 12 shows the averaged TDCs in two representative ROIs (the 

ROI with relatively low levels of CMC that is indicated by the small green box, and the ROI 

with relatively high levels of CMC that is indicated by the small yellow box, as shown in 

Fig. 10) from the reference and low-dose PCT frames of patient #S1, as reconstructed using 

different algorithms. The reconstruction obtained with the proposed CMAA-TTV algorithm 

matches the ground truth for both selected ROIs much better than other methods. The results 

indicate that the proposed algorithm performs better in preserving perfusion information for 

regions with both low and high contrast-medium concentrations.

C. Clinical Data Study

1) Data Acquisition: Seven patients with brain deficits were recruited after obtaining 

informed consent and approval from the institutional clinical trials review board. A 45 mL 

bolus of nonionic iodinated contrast was administered via a power injector at a rate of 4 

mL/s. Twenty-seven low-dose PCT volumetric scans were acquired 5 seconds after injection 

using a CT scanner at an X-ray tube voltage of 80 kVp and a tube current-time product of 20 

mAs. Other parameters of the scanning protocol for each volumetric scan were as follows: 

slice thickness of 5 mm, 0.4 s per rotation, and frame size of 512×512 mm. FBP 

reconstruction with a commercial kernel “Std” was used as a vendor-based reconstruction 

result for comparison.

For these clinical low-dose patient data, we also reconstructed the PCT images using the 

DP-ResNet algorithm which was trained using paired training data (as described in section 

IV-B) which were simulated at dose level of 20 mAs, and compared the performance of DP-

ResNet with the proposed CMAA-TTV.

2) Visual Evaluation: Fig. 13 shows the reconstructed results obtained with different 

methods for one representative frame (frame 15) from a patient (referred to as patient #C1). 

The reconstructed results for another representative frame (frame 20) from the same patient 

are shown in the supplementary materials. The reconstructed results from another patient 

(referred to as patient #C2) are shown in the supplementary materials. When using real 

clinical data, the proposed CMAA-TTV algorithm performs much better than the TTV, 

LRTD-STTV and DP-ResNet algorithms with respect to both noise artifact suppression and 

structural preservation.
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3) Evaluation by Radiologists: The hemodynamic parametric maps from the 

reconstructed PCT images of the 7 patients were estimated. Due to space constraints, we 

show the CBF maps for patient #C1 in Fig. 14 (the CBF, CBV and MTT maps for patients 

#C1 to #C2 are shown in the supplementary materials). Again, all of the MBIR algorithms 

provided more accurate map estimates than the FBP algorithm.

Furthermore, we reconstructed three randomly selected slices from each patient’s volumetric 

scans using the different reconstruction methods (i.e., we had three PCT objects for each 

patient), and calculated their CBF, CBV and MTT maps. Then three experienced 

radiologists were employed to evaluate these perfusion maps. In specific, the CBF, CBV and 

MTT maps from the same PCT object were first stored as a map group. Then all the map 

groups were scored independently by the three radiologists based on their overall impression 

of the three maps, in terms of noise artifact reduction, structural preservation and estimation 

of the ischemic lesion. For a fair comparison, we mixed all of the map groups and displayed 

them on the screen randomly for each radiologist, and they were scored one by one. The 

scores ranged from 0 (worst) to 5 (best). The resulting scores (mean±SDs) are reported in 

Table II. The proposed CMAA-TTV algorithm has significant advantages over other 

methods in terms of subjective assessment scores. In conclusion, the proposed algorithm can 

achieve better results than other state-of-the-art methods for the reconstruction of real 

clinical low-dose PCT data.

V. DISCUSSION AND CONCLUSION

Rather than being independent and identical distributed, the intrinsic sparsity structures of 

the CMC across all PCT frames are variant and correlated. To characterize such anisotropic 

sparsity configurations, a novel contrast-medium anisotropy-aware TTV (CMAA-TTV) 

model was developed in this study. In the CMAA-TTV model, we took advantage of the 

low-rank nature of the difference maps to establish the sparsity correlation among PCT 

frames, and we imposed the sparsity measure on a low-rank subspace, which were obtained 

by the linear combination of the original gradient vectors along PCT frames with a 

coefficient matrix. This new measure rationally characterizes the correlations and variations 

among the sparsity structures of the CMC. Specifically, the CMC sparsity correlations across 

the PCT frames can be formulated as the calculated low-rank subspace bases, and the 

coefficients represent the CMC sparsity variations. The additional advantage of structural 

stability of the subspace makes the sparsity measures less susceptible to noise induced by 

radiation reduction.

We also proposed a novel algorithm based on the CMAA-TTV model, which we named 

CMAA-TTV, to improve the performance of low-dose PCT reconstructions. In the proposed 

CMAA-TTV algorithm, an alternating minimization method is developed to solve the joint 

optimization problem. The algorithm alternates between the image update step and the 

subspace calculation step. We have implemented the proposed algorithm using MATLAB on 

a Linux OS with a PC workstation configured with an Intel CPU (8 cores, 3.4 GHz) and 64G 

of RAM. Without using any parallel technique, the algorithm took approximately 280 

seconds to process real clinical perfusion data with a size of 512 × 512 × 27 at each iteration 

step. As a comparison, the TTV algorithm [22] took approximately 260 seconds for one 
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iteration for the same PCT object, while the LRTD-STTV algorithm [32] took 

approximately 1100 seconds. As an iterative reconstruction method, the proposed CMAA-

TTV algorithm took more time than the deep learning based algorithm. In the future, GPU-

assisted implementation will be developed, and is expected to dramatically accelerate the 

implementation of the algorithm for possible clinical use.

Both numerical simulations and clinical patient data were used to evaluate the proposed 

algorithm. The results indicate that the proposed algorithm led to noticeable improvements 

over state-of-the-art algorithms in terms of noise artifact suppression, structure preservation 

and representation of CMC information. Simulation studies also demonstrate that even when 

the tube current-time product level was reduced to ultra-low-dose level (such as the incident 

flux was reduced to lower than 1 × 104), the CMAA-TTV algorithm still yielded quite 

accurate estimations of CMC information.

It is worth noting that the number of time points (i.e., frame numbers in a PCT object) can 

affect the performance of the proposed algorithm. In clinical PCT exams, the number of 

frames is usually greater than 15 (with temporal sampling intervals of 0.5 to 3 seconds over 

the whole scan durations to capture the complete venous first pass [50], [51]), and the 

proposed algorithm works well in such cases. However, as the intervals between scans 

continue to increase, the performance of the CMAA-TTV algorithm gradually declines. One 

possible reason is that as the sampling intervals increase, the correlation between PCT 

frames becomes weaker and the structure differences between adjacent frames become 

greater. Thus, the low-rank property of PCT frames is no longer satisfied. As a result, the 

proposed algorithm may be invalid if it still imposes sparsity regularization on the basis 

matrix derived from the low-rank factorization of the difference maps of PCT frames.

In this study, the CMAA-TTV model is developed for the 3D PCT object which represents 

the perfusion information in a particular slice location. With proper tensor unfolding 

operation, the presented CMAA-TTV model can also be imposed on a 4D PCT object to 

characterize the overall perfusion information in all slice locations. Further performance 

improvements with such 4D model could be expected. However, a major concern of the 4D 

model is the high computational load compared with the 3D model. How to reduce the 

computational complexity of the 4D model is an important issue and is worthy of being 

investigated further.

The proposed CMAA-TTV model and CMAA-TTV algorithm can be used in other medical 

imaging tasks such as dynamic myocardial perfusion CT imaging [52], spectral CT imaging 

[53], dynamic positron emission tomography (PET) imaging [54], and dynamic magnetic 

resonance (MR) imaging [55]. This will be another research focus in our future work.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX A: Proof of the Updating Formula for Zn in Eq. (21)

Proof:

On the basis of the orthogonal property of Zn and the property of the Frobenius norm, Eq. 

(20) can be transformed as

Zn
(t + 1) = arg min

ZnTZn = I
Θnx(t + 1) + Γn

(t) TΩn
(t + 1), Zn , (a1)

where ⋅ , ⋅  is the inner product. The closed-form solution of Eq. (a1) can be obtained by 

the following theorem [33]:

Theorem 1.

∀Q ∈ Rm × n, the following problem:

min
ZTZ = I

Q, Z
(a2)

has the closed-form solution Z = BCT , where Q = BΣCT  is the SVD decomposition of Q.

Therefore, we can update Zn by the following formula:

Zn
(t + 1) = BnCn

T , (21)

where Θnx(t + 1) + Γn
(t) TΩn

(t + 1) = BnΣnCn
T  is the SVD decomposition of 

Θnx(t + 1) + Γn
(t) TΩn

(t + 1). ■
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Fig. 1. 
Illustration of the TTV and proposed CMAA-TTV model. (a) Illustration of the 3D tensor 

representation X ∈ ℝNℎ × Nw × Nt (upper) and the 2D spatial-temporal matrix representation 

X ∈ ℝ NℎNw × Nt (lower) of a real PCT object. (b) Illustration of the TTV model. The upper 

figures represent the difference tensors of X in the spatial height, weight and temporal 

domains, respectively, and the lower figures represent the corresponding 2D spatial-temporal 

forms. (c) Illustration of the proposed CMAA-TTV model. The lower figures represent the 

subspace basis matrices Ωn ∈ ℝ NℎNw × r calculated implicitly on the Dn.
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Fig. 2. 
Illustration of the difference between the directly calculated difference matrix Dn and the 

implicitly calculated basis matrix Ωn (the rank r was set as 13). (a) One frame (#13) of the 

normal-dose reference PCT (upper) and the low-dose simulations (lower). (b)-(c) 

Corresponding difference matrices of frames in (a), where D1 and D3 are obtained by 

directly calculating along the spatial height and temporal dimensions, respectively. (d) 

Illustration of two typical column vectors (reshaped to be the size of Nh × Nw for visual 

observation) in the basis matrix Ω1 calculated upon D1. (e) Illustration of the two typical 

column vectors in the basis matrix Ω3 calculated upon D3.
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Fig. 3. 
Distribution of absolute values in the basis matrix.
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Fig. 4. 
Convergence behaviour of the proposed CMAA-TTV algorithm.
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Fig. 5. 
RMSE and SSIM values of the results reconstructed by the CMAA-TTV algorithm for the 

digital brain perfusion phantom with different rank versus different simulated radiation 

levels.
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Fig. 6. 
Illustration of (a) one frame (#17) of the digital brain perfusion phantom, (b) the 

corresponding reconstructed results at various simulated tube current-time product levels, 

and (c) the zoomed images of ROI 1. From top to bottom of (b) and (c) show low-dose 

simulations at 50, 20, 10 and 5 mAs, respectively, and from left to right of (b) and (c) show 

reconstructed results using the FBP, TTV, LRTD-STTV and CMAA-TTV algorithms, 

respectively. The display window is [20, 60].
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Fig. 7. 
Performance comparison of different algorithms based on (a) RMSE and (b) SSIM metrics.
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Fig. 8. 
CBF, CBV and MTT maps from the reference phantom and reconstructed results obtained 

by different algorithms at a tube current-time product level of 5 mAs. The units for the CBF, 

CBV and MTT are ml/100g/min, ml/100g and s (second), respectively.
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Fig. 9. 
Comparison of TDC curves obtained with different methods for two ROIs of the digital 

brain phantom at a tube current-time product level of 5 mAs. Panel (a) shows the results for 

the right penumbra and panel (b) shows the results for the stroke core.
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Fig. 10. 
Reconstructed results from simulated patient data (patient #S1) at frame 12. From left to 

right: the reference image and the reconstructed results from simulated low-dose data by the 

FBP, TTV, LRTD-STTV, DP-ResNet and CMAA-TTV algorithms, respectively. The lower 

row shows zoomed images of a selected region (as marked by the blue rectangle). The 

display window is [−20, 120] HU. Please zoom in the figure for more details.
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Fig. 11. 
CBF maps from the reconstructed results of patient #S1. From left to right: CBF maps 

calculated from the reference data and reconstructed results from simulated data by the FBP, 

TTV, LRTD-STTV, DP-ResNet and CMAA-TTV algorithms, respectively. The lower row 

shows zoomed images of a selected region (as marked by the blue rectangle). The unit is ml/

100g/min. Please zoom in the figure for more details.
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Fig. 12. 
Comparison of TDC curves obtained with different methods for two ROIs in the simulated 

patient data: (a) an ROI with relatively low CMC; and (b) an ROI with relatively high CMC.
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Fig. 13. 
Reconstructed results from frame 15 of real clinical PCT data obtained at 80 kVp/20 mAs 

(patient #C1). From left to right: reconstructed results obtained using FBP with the ramp 

filter, FBP with the commercial kernel “Std”, TTV, LRTD-STTV, DP-ResNet and the 

proposed CMAA-TTV algorithm, respectively. The lower row shows zoomed images of a 

selected region (as marked by the blue rectangle). The display window is [−20, 120] HU. 

Please zoom in the figure for more details.
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Fig. 14. 
CBF maps from the reconstructed results from patient #C1. From left to right: CBF maps 

calculated from the reconstructed results obtained using FBP with the ramp filter, FBP with 

the commercial kernel “Std”, TTV, LRTD-STTV, DP-ResNet and the proposed CMAA-TTV 

algorithm, respectively. The lower row shows zoomed images of a selected region (as 

marked by the blue rectangle). The unit is ml/100g/min. Please zoom in the figure for more 

details.
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TABLE II:

RMSE and SSIM accuracies (mean ±SDs) of the hemodynamic parameter maps from the simulated low-dose 

patient data.

RMSE

FBP TTV LRTD-STTV DP-ResNet CMAA-TTV

CBF 67.284±5.362 18.768±3.538 14.908±2.921 13.128±3.284 8.790±1.672*

CBV 12.064±2.073 3.339±0.969 2.676±0.862 2.731±0.790 1.891±0.466*

MTT 3.490±0.933 0.674±0.124 0.484±0.085 0.519±0.069 0.276±0.043*

SSIM

FBP TTV LRTD-STTV DP-ResNet CMAA-TTV

CBF 0.4169±0.093 0.8463±0.028 0.8672±0.021 0.9017±0.019 0.9326±0.009*

CBV 0.4263±0.091 0.8528±0.046 0.8719±0.032 0.8836±0.039 0.9341±0.011*

MTT 0.3829±0.122 0.8075±0.063 0.8734±0.055 0.8593±0.041 0.9287±0.024*

*
Significantly different from the SSIM scores for other algorithms (P<0.05).
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TABLE III:

Radiologists’ scoring (mean ±SDs) of the hemodynamic parameter maps for different algorithms from the 

patient data.

Radiologists FBP TTV LRTD-STTV DP-ResNet CMAA-TTV

Radiologist #1 1.96±0.21 2.99±0.50 3.48±0.38 3.45±0.44 4.12±0.24
*

Radiologist #2 1.53±0.28 2.73±0.57 3.20±0.45 3.22±0.53 4.04±0.31
*

Radiologist #3 2.07±0.24 3.11±0.46 3.54±0.41 3.51±0.39 4.16±0.22
*

*
Significantly different from the scores for other algorithms (P<0.05).
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