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Towards Reducing Severe Defocus Spread Effects
for Multi-Focus Image Fusion via an Optimization

Based Strategy
Shuang Xu, Lizhen Ji, Zhe Wang, Pengfei Li, Kai Sun, Chunxia Zhang, and Jiangshe Zhang

Abstract—Multi-focus image fusion (MFF) is a popular tech-
nique to generate an all-in-focus image, where all objects in the
scene are sharp. However, existing methods pay little attention
to defocus spread effects of the real-world multi-focus images.
Consequently, most of the methods perform badly in the areas
near focus map boundaries. According to the idea that each local
region in the fused image should be similar to the sharpest one
among source images, this paper presents an optimization-based
approach to reduce defocus spread effects. Firstly, a new MFF
assessment metric is presented by combining the principle of
structure similarity and detected focus maps. Then, MFF problem
is cast into maximizing this metric. The optimization is solved by
gradient ascent. Experiments conducted on the real-world dataset
verify superiority of the proposed model.

Keywords—multi-focus image fusion, defocus spread effect,
structure similarity

I. INTRODUCTION

DUE to the limitation of imaging devices and their depth-
of-field operation, it is hard to acquire all-in-focus images

[1]. In general, only one plane scene stays in focus and others
not in focus are blurred. Multi-focus image fusion (MFF) is a
useful and promising digital image post-processing technique
to cope with this problem. It generates an all-in-focus image
by integrating complementary information from source images
of the same scene taken at different focus distances.

The existing methods can be classified into two groups. The
first one is the transform domain based methods. Its basic
idea is to utilize a transformer (e.g., discrete Fourier transform
[2], discrete wavelet transform [3], non-subsampled contourlet
transform [4], etc.) to convert source images into the feature
domain, in which salient features can be easily detected.
The fused image is reconstructed from feature domain to
spatial domain after merging salient features according to a
certain fusion strategy. However, it is reported that transform
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Fig. 1. The differences between MMFNet and our framework. Better view
in electronic version.

domain based methods tend to result in the brightness or color
distortion because they do not take spatial consistency into
account [5]. With the development of dictionary learning [6],
[7], sparse representation based image fusion has emerged as
a special transform domain method [8]. Sparse representation
outperforms classic transforms for its stability and robustness
to noise and misregistration [9], [10]. Nonetheless, some
details may be lost. Recently, Liu et al. present a general image
fusion framework by means of integrating multiscale transform
and sparse representation [11], which is able to simultaneously
overcome their inherent shortcomings.

Spatial domain based methods belong to the second group.
They detect the focus map and fuse images in the spatial
domain. Generally speaking, how to define a focus measure-
ment and how to accurately detect focus map play significant
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Fig. 2. Seven image pairs suffering from defocus spread effects.

roles [12]. To obtain satisfactory results, various sophisticated
methods that incorporate certain prior knowledge have been
proposed. For example, with the aim at preserving salient
edges and local shapes, Li et al. apply a guided filter [13]
to decompose source images into base and detail layers [5].
Then, the base and detail layers are fused separately by means
of weighted average strategy, where weights are represented
by the detected focus map. Finally, the sharp image is recon-
structed by combining fused base and detail layers. Li et al.
employ the morphological filter to generate initial boundary
between focus and defocus regions, and refine it by the matting
technique [14]. However, these methods may lose efficiency
when the detected focus map is inaccurate.

Recently, deep neural networks have emerged as effective
tools for the MFF task. Liu et al. make the first attempt
to apply a convolutional neural network (CNN) to detecting
the focus map [15]. Then, they propose a framework for the
general image fusion problem [16]. To deal with complicated
focus maps, Li et al. design a novel network in the deep
regression pair learning (DRPL) fashion [17]. Amin-Naji et al.
ensemble the deep features of three neural networks (ECNN)
to obtain more accuracy results [18]. Nian and Jung develop
a novel CNN to combine the light field data with multi-
focus images [19]. The comprehensive comparison of these
methods is reported in the recent surveys [20], [21]. Although
deep learning based methods are powerful to learn a specific
pattern, it is worth pointing out that most of the methods omit
defocus spread effects of the real-world multi-focus images
[21]–[24]. Generally speaking, the out-of-focus objects tend
to expand. Hence, when the background object is in focus, the
expanded foreground object will overlay the boundary between
background and foreground. As a result, many methods are
very likely to make mistakes around focus map boundaries
and generate unrealistic images, if source images suffer from
severe defocus spread effects [22]–[24]. Although several deep
learning based methods have been proposed, most of them are
devoted to improving the accuracy of focus maps instead of
solving the defocus spread effect.

To the best of our knowledge, there are only two deep net-
works taking it into account. In references [22] and [23], they

separately proposed two kinds of defocus models to generate
synthetic images with defocus spread effects. In addition, they
built and trained end-to-end deep neural networks on these
synthetic models. The MMFNet proposed in reference [22] is
the state-of-the-art (SOTA) method. As shown in Fig. 1 (a), it
consists of two sub-networks. The first sub-network serves as
a focus map detector who segments the scene into three parts,
including a focus region, a defocus region and a focus/defocus
boundary. The second sub-network serves as a post-processing
network who aims at enhancing the focus/defocus boundary.
Nonetheless, the prerequisite of MMFNet performing well is
that the focus map detector is accurate enough. Fig. 1 (c)
exhibits an example, where MMFNet mistakenly detects the
focus map and fails to generate clear background. The weak
generalization ability and non-robustness limit the application
of MMFNet to real-world images.

To develop a robust fusion strategy, we present a novel
optimization-based framework to solve defocus spread effects.
The basic idea is to abandon pixel-wise fusion, and to make
each local patch of the fused image similar to the correspond-
ing region of the sharpest source image. One of the most
suitable image quality metrics is structural similarity (SSIM)
[25], [26], which evaluates the similarity between two images
according to the luminance, structure and contrast. However,
SSIM cannot be applied to MFF task, because we aim to
evaluate the similarity between a fused image and a set of
source images rather than a single reference image. To elimi-
nate this obstacle, by combining detected focus maps and the
principle of SSIM, we propose the multi-focus image fusion
structural similarity (MFF-SSIM) index. Then, MFF-SSIM is
taken as an objective function to search for a satisfactory result
in the image space. Because MFF-SSIM index is a highly non-
linear and non-convex function, it is hard to obtain an analytic
solution. As an alternative, the gradient ascent algorithm is
employed. Our contributions can be summarized as follows:

1) This paper proposes a novel metric called MFF-SSIM
index, and the MFF task is turned into maximizing it.
An iterative solution of this optimization problem is
provided.

2) A series of experiments are conducted to demonstrate
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the superiority of MFF-SSIM model. It is revealed that
compared with the SOTA techniques, our method is
effective to tackle the defocus spread effects which
occurs at depth edges in the image in the presence of
severe defocus.

The rest of this paper is organized as follows. In section II,
we present MFF-SSIM index and introduce how to solve our
model. Extensive experiments are conducted in section III. At
last, section IV concludes the paper.

II. MODEL FORMULATION

To begin with, we introduce the notations in this paper. We
use the calligraphy letter X ∈ RM×N×C and the uppercase
letter X ∈ RMNC to denote the tensor and vector version
of an image, respectively. Here, M,N and C denote the
height, width and the number of channels, respectively. The
lowercase letter xi ∈ RCW

2

(i = 1, · · · , P ) denotes the local
patch with window size W . The K preregistered multi-focus
images and the fused image are denoted by {X [k]}Kk=1 and
Y , respectively. Typically, x[k]

i stands for the ith patch of the
kth source image.

A. Defocus spread effects

As shown in Fig. 2, the defocus spread effect is a common
phenomenon that the objects not in focus tend to expand. It
brings two challenges for multi-focus image fusion algorithms:

1) Some objects not in focus will significantly expand, and
they can confuse the focus map detector. As a result, the
detection results are inaccurate, and the fused images
contain artifacts or inconsistent contents.

2) Obviously, the blurred foreground will cover a part of
clear background, when the background is in focus.
On the other hand, the blurred background does not
affect the clear foreground, when the foreground is
in focus. Thus, there is a region between foreground
and background being blurred whenever background or
foreground is in focus (e.g., the 6th and the 7th image
pairs in Fig. 2).

B. Motivation

Recently, segmentation-based methods have emerged as
popular tools for MFF task. The basic idea is to detect a
focus mapM and then use addition strategy to generate fusion
images by the following equation

Y =M�X [1] + (1−M)�X [2], (1)

where � is the element-wise product and M is binary (its
elements equal to 1 if it is in focus and 0 otherwise). This
strategy does not consider defocus spread effects into account.
To deal with this effect, MMFNet not only generates a focus
map M but also estimate a focus/defocus boundary map B
whose entries indicate whether the pixels are located at the
focus/defocus boundary. In other words, MMFNet segments

Defocus region Window of the center pixel

Focus region Window of the neighbor pixel

Pixel-wise 

fusion
Patch-wise fusion Artifacts-free

Artifacts

Fig. 3. The difference between pixel-wise and patch-wise fusion.

the scene into three parts, i.e., a focus region, a defocus region
and the boundary. The fused image is computed by

Y = (1− B)�
[
M�X [1] + (1−M)�X [2]

]
+ B � f(X [1],X [2]),

(2)

where f(·, ·) is a boundary post-processing function. However,
we found that these two strategies would generate unsatisfac-
tory results if focus maps are inaccuracy or source images
suffer from severe defocus spread effects.

In order to reduce the sensitivity to detected focus maps
and deal with the defocus spread effect, we present a new
framework for the MFF task. It aims at fusing images patch-
wise rather than pixel-wise. In intuition, patch-wise fusion may
lead to more robust results. Taking the second pair of images
in Fig. 2 as an example, all the pixels in the top patch are
in focus. If the detector generates an inaccurate focus map as
shown in Fig. 3, the pixel-wise methods would lead to artifacts.
Even though these inaccurate maps can be refined by some
morphology filters [15], the experiments reported in subsection
III-B demonstrate that it still cannot meet the demand (see Fig.
6(b)). The patch-wise method fuses the source images in the
patch level. Therefore, when a pixel is mistakenly detected and
most of the neighbors in its local patch are correctly detected,
this pixel can be corrected by the overlapped windows of its
neighbors. According to this idea and inspired by [26], [27],
we propose a novel patch-wise metric to assess the similarity
between a fused image and a set of source images in subsection
II-C. Then, we regard it as the objective function and directly
search for the optimal fusion image in the image space. At last,
an efficient algorithm is presented to solve this optimization
problem in subsection II-D.

C. MFF-SSIM index
SSIM is a widely used image quality metric. Given two

image patches xi and yi, SSIM [25] is defined by

SSIM(xi,yi) =
a1
b1

a2
b2
, (3)

where
a1 = 2µxi

µyi
+ C1, b1 = µ2

xi
+ µ2

yi
+ C1,

a2 = 2σxiyi + C2, b2 = σ2
xi

+ σ2
yi

+ C2.
(4)
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Note that µxi
, σ2

xi
and σxiyi

denote the mean, variance
and covariance, respectively. C1 and C2 are small constants
for numerical stability. Then, the final SSIM score for the
two images X and Y is averaged over all the patches,
Q(X,Y ) = 1

P

∑P
i=1 SSIM(xi,yi), where P denotes the

number of patches. SSIM evaluates the similarity between two
images, but it unfortunately cannot be directly applied to the
MFF task, where we need to assess how much the information
is transferred from a set of source images {X [k]}Kk=1 to the
fused image Y .

To cope with this problem, we introduce the MFF-SSIM
index. Generally speaking, a desired fusion image should
incorporate the sharper regions of all source images. Hence,
MFF-SSIM for the ith patch is defined by

S({x[k]
i }

K
k=1,yi) = SSIM(x

[j]
i ,yi), (5)

if the ith patch of the jth source image is sharpest,

where x[k]
i denotes the ith patch of the kth source image. In

this fashion, MFF-SSIM is able to compare the fusion image
with the sharpest one patch-to-patch. Given the detected focus
map, Eq. (5) becomes

S({x[k]
i }

K
k=1,yi) =

K∑
k=1

mikSSIM(x
[k]
i ,yi), (6)

where mik ∈ {0, 1} indicates whether the kth source image is
sharpest with regard to the ith local patch, i.e., the focus map.
Then, the final MFF-SSIM is obtained by averaging the local
scores, i.e.,

Q({X [k]}Kk=1,Y ) =
1

P

P∑
i=1

S({RiX
[k]}Kk=1,RiY ). (7)

Note that the binary matrix Ri ∈ {0, 1}CW
2×MNC is the

patch extractor such that RiX = xi.

D. MFF-SSIM framework

Our motivation is to make each local patch of the fused
image similar to the corresponding region of the sharpest
source image. To this end, the MFF-SSIM index has been
proposed to evaluate quality of the fused image in this sense.
Therefore, the MFF task can be formulated as the following
optimization problem, that is,

max
Y

Q({X [k]}Kk=1,Y ). (8)

Owing to the high non-linearity and non-convexity of MFF-
SSIM index, obtaining an analytic solution is a challenge.
Consequently, we exploit the gradient ascent algorithm to solve
this problem. Briefly speaking, given a current estimation of
the fused image Y (t) and a proper learning rate β > 0, the
update

Y (t+1) = Y (t) + βG(t) (9)

will make objective function (MFF-SSIM index) increase. Note
that G(t) denotes the gradient with regard to (w.r.t.) Y (t),
∇Y Q({X [k]}Kk=1,Y )|Y (t) . It is easy to see that

G(t) =
1

P

P∑
i=1

RT
i ∇Y S({RiX

[k]}Kk=1,RiY ), (10)

where RT
i denotes the inverse patch extractor to place the

gradient patch back into the corresponding entries of the
original image. Therefore, the original problem is cast into
the computation of gradient for a local patch. We have

∇yiSSIM(xi,yi) =
a2∇yi

a1 + a1∇yi
a2

b1b2

− a1a2(b2∇yib1 + b1∇yib2)

(b1b2)2
,

(11)

where
∇yia1 = 2µxi∇yiµyi ,∇yia2 = 2∇yiσxiyi ,

∇yi
b1 = 2∇yi

µyi
,∇yi

b2 = ∇yi
σ2
yi
.

(12)

The gradient of mean, variance and covariance w.r.t. patch yi
are as follows,

∇yiµyi =
1

CW 2
,

∇yi
σ2
yi

=
2(yi − µyi

)

CW 2
,

∇yiσxiyi =
(xi − µxi)

CW 2
.

(13)

Here, 1 represents the vector whose all entries are one.
According to the above equations, it is easy to write the
gradient of a local patch as shown in Eq. (14).

∇yiS({x
[k]
i }

K
k=1,yi)

=
2

CW 2

K∑
k=1

mik

µx
[k]
i
a21+ a1(x

[k]
i − µx

[k]
i
)

b1b2

−a1a2[µyi
b21+ b1(yi − µyi

)]

b21b
2
2

}
.

(14)

Recall that mik ∈ {0, 1} indicates whether the ith pixel in kth
source image is in focus or not.

E. Implementation details
Based on the above analysis, we summarize the main steps

of MFF-SSIM model as shown in Algorithm 1. In our ex-
periments, the hyper-parameter configuration is set as follows.
When computing the MFF-SSIM index, we set C1 = 0.012

and C2 = 0.032. Furthermore, the overlapped patches are
extracted with a stride of 1 to prevent from artifacts around
patch boundaries. As for the window size, in section III-B it
is empirically set as W = 5× 10−5MN . We also investigate
how window size affects our algorithm in section III-D. When
we optimize MFF-SSIM, the learning rate β is set to 10−3.
Our optimization algorithm stops if the number of iterations
exceeds 1000. The initial value is set by the average image,
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Algorithm 1 Gradient ascent for MFF-SSIM model

Input: Initial fused image Y (0), learning rate β, window size
W , the maximum number of iterations T , small constants
C1, C2, the detected focus map M .

Output: Final fused image Y (t)

1: Compute MFF-SSIM value Q(0) and gradient G(0) w.r.t.
Y (0);

2: for t = 1, 2, · · · , T do
3: Update fused image Y (t) by eqs. (9) and (14);
4: Compute MFF-SSIM value Q(t) and gradient G(t) w.r.t.

Y (t);
5: end for
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that is, Y (0) =
∑K
k=1X

[k]/K. We rescale images into [0,1].
At last, it should be emphasized that this algorithm needs a
pre-detected focus map M . In the next subsection, we propose
two focus map detectors.

The computational complexity of our algorithm is O(W 2P ),
where P is the number of local patches in an image. Large
window size makes our algorithm slow. For a pair of 624×432
color images, it takes around 3.23s per iteration with an Intel
Core i7-8750H CPU at 2.20GHz.

F. Focus map detectors

By now, we have proposed the MFF-SSIM framework, but
it still lacks a focus map detector. In this paper, we provide two
detectors, that is, the Laplacian energy and a residual network.

According to the fact that a sharp/blurred image has
greater/smaller gradients, the focus map can be determined by
the gradient intensity. Let L denote the Laplacian filter, and
the gradient intensity of a local patch xi can be quantified by

(a) Source 1 (b) Source 2 (c) Reference

Fig. 5. (a-b) No. 6 image set of the MFFW dataset. (c) The manually fused
image.

the Laplacian energy, which is defined by

exi
=
∑
m,n

(L(xi))2mn. (15)

In this way, for the focus map M , we have mik = 1 if e
x

[k]
i

is largest among {x[k]
i }Kk=1 and 0 otherwise.

The second detector employs a deep convolutional network
to estimate the focus map M . The network structure is
displayed in Fig. 4. At first, the network starts with the CBR
(that is, a convolutional unit, a batch normalization (BN) layer
and a rectified linear unit (ReLU)) and 8 residual blocks to
separately extract initial feature maps for images A and B. Two
feature maps are concatenated along channels and then are put
in a convolutional unit and a sigmoid function to generate the
focus map. For simplicity, the input images are transformed
into gray scale ones. Note that the two sequences of CBR
and 8 residual blocks share weights for images A and B. As
for the network configuration, there are 128 filters for each
convolutional unit except the last one whose number of input
and output channels are 256 and 1, respectively.

We train the network on an image segmentation dataset,
PASCAL VOC 2012. The segmentation map is regarded as
the ground truth focus map, and the α-matte method [22] is
utilized to generate the multi-focus images. Firstly, the clear
foreground (FGC) and background (BGC) regions are blurred
by Gaussian filters and their blurred versions are denoted by
FGB and BGB. When the foreground is focused, the source
image is simulated by the original focus map αC. Otherwise,
the source image is simulated by the blurred focus map αB.
In formula, there are

X [1] = FGC + (1− αC)BGB,

X [2] = FGB + (1− αB)BGC.
(16)

There are 2913 pairs of images in total, so we utilize the image
rotation to augment the data. Our network is optimized by
Adam over 50 epochs with a batch size of 6 and a learning
rate of 10−4. The loss function is the binary cross-entropy
between outputs and ground truth focus maps.
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TABLE I. THE RESULTS ON MFFW DATASET. THE BEST AND THE SECOND BEST VALUES ARE HIGHLIGHTED BY BOLD TYPEFACE AND UNDERLINE,
RESPECTIVELY.

Methods
Objective Metric Reference Based Metrics No Reference Based Metrics

MOS PSNR SSIM FSIM NMI Xydeas Chen-Blum

BF 7.3846 34.0595 0.9833 0.9809 1.1104 0.5941 0.7456
BRW 7.3846 35.4858 0.9865 0.9839 1.0415 0.6165 0.7268
CBF 6.6923 32.7452 0.9741 0.9694 0.8648 0.5244 0.6554
GFF 8.4615 35.1882 0.9848 0.9851 0.9371 0.6022 0.7186
CNN 8.5385 35.1722 0.9829 0.9831 1.0638 0.6615 0.7362
ECNN 7.9015 35.0610 0.9845 0.9829 1.1353 0.6135 0.7321
DPRL 7.3723 32.8121 0.9796 0.9751 1.1214 0.6159 0.7124
MMF-Net 7.3077 31.8415 0.9764 0.9709 0.9174 0.4243 0.6644

MS-ResNet 8.6154 36.4105 0.9882 0.9888 0.9848 0.5858 0.7233
MS-Lap 8.9231 35.6802 0.9860 0.9880 1.0151 0.6082 0.7335

(a) BF (0.9875) (b) CNN (0.9240) (c) DPRL (0.9404) (d) MMFNet(0.9365) (e) MS-Lap (0.9935) (f) MS-ResNet (0.9863)

(g) BF Map (h) CNN Map (i) DPRL Map (j) MMFNet Map (k) MS-Lap Map (l) MS-ResNet Map

Fig. 6. (a-f): Fusion images. SSIM values are shown in the parentheses. (g-l): Detected focus maps. The reference and source images are displayed in Fig. 5.
The manually annotated focus map is shown in Fig. 7(b).

III. EXPERIMENTS

We conduct extensive experiments on the real-world dataset
to study behaviors and properties of the MFF-SSIM based
fusion strategy. In what follows, our methods are abbreviated
as MS-Lap and MS-ResNet.

A. Datasets and Metrics

Our experiments’ goal is to verify whether our framework
does a better job than other methods if images suffer from
severe defocus spread effects. In the following experiments,
we employ the MFFW dataset [24] to evaluate the algorithms’
perfromance. This dataset is presented recently and it contains

13 pairs of real-world multi-focus images collected on the
Internet. This dataset provides annotated focus maps for each
pair. In addition, to facilitate assessment, this dataset also
releases the manually fused images. The scenes in MFFW are
far more complicated and there is a significant defocus spread
effect. It is a challenge to obtain satisfactory fusion images on
this dataset.

Normalized mutual information (NMI), Xydeas’s metric
[28] and Chen-Blum’s metric [29] are employed as the no-
reference based metrics. Since MFFW [24] provides the manu-
ally fused images, we use three reference image quality metrics
to assess the algorithm performance, that is, peak signal-to-
noise ratio (PSNR), SSIM [25] and feature similarity index
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(FSIM) [30]. Furthermore, except for these metrics we also
report the mean opinion score (MOS). In detail, 10 volunteers
were invited to evaluate the quality of fused images. All
volunteers had no bias about this task. Their opinion score
ranged from 1 to 10, and larger values corresponded to better
images.

B. Comparison with SOTA methods

Our technique is compared with eight SOTA methods,
including boundary founding (BF) [31], BRW [32], CBF [33],
GFF [5], CNN [15], DPRL [17], ECNN [18] and MMFNet
[22]. The metrics are reported in Table I. The best and the
second best values are highlighted by bold face and underline,
respectively. It is shown that MS-ResNet achieves the highest
PSNR, SSIM and FSIM values, and the second highest MOS
value. MS-Lap has the best MOS value, and the second best
PSNR, FSIM and Chen-Blum values. The no-reference based
metrics show that our methods are comparable with popular
counterparts as well. In the contrast, MMFNet almost performs
worst, although the experiment in reference [22] has proofed
that MFF-Net outperforms others if the image suffers from
mild defocus spread effects.

Besides the quantitative comparison, representative fusion
images are visualized to further exhibit the effectiveness of
MFF-SSIM based methods. The No. 6 image pair is displayed
in Fig. 5. Two cups and two coffee bags are in near and distant
focuses, respectively. Owing to the defocus spread effect, the
characters on bags and the edges of two cups expand in source
1 and source 2 images, respectively. The fusion images and
detected focus maps are displayed in Fig. 6. It is shown that
DPRL and MMFNet break down because they fragment the
scene into many pieces and result in the obvious artifacts
and ghosts. It indicates that their performances highly depend
on the detector’s accuracy. The fusion images generated by
BF and CNN look more pleasant. However, for CNN, only
the coffee beans and bags are clear, and most of the regions
in two cups are still blurred; for BF, on account of defocus
spread effects there are conspicuous haloes around the cups,
so it cannot match up our expectations either. Obviously, MS-
Lap and MS-ResNet generate the most satisfactory images,
because all objects are clear and without artifacts or ghosts.
At the same time, we can see that the focus maps detected
by DPRL, MS-Lap and MS-ResNet are not accuracy enough,
while DPRL fails in this case. The fact demonstrates that our
proposed MFF-SSIM framework contributes more rather than
the map detectors (i.e., the Laplacian energy and the ResNet).

According to the quantitative comparison and visual inspec-
tion, the conclusion can be drawn that MFF-SSIM based meth-
ods outperform others when the images suffer from defocus
spread effects.

C. Robustness experiments

Here, more experiments are conducted to analysis our pro-
posed method. Firstly, we manually annotate the focus map,
which is deemed to be accurate. Then, each pixel in this map
is corrupted with a probability p. Note that corruption strategy
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Fig. 7. Analysis on the focus map. (a) The metrics with different corruption
probabilities. (b-d) The results of our method when p = 0.3. (e-g) The results
of MMF-Net when p = 0.3.

is that the focused (defocused) pixel is changed to defocused
(focused) one. Obivously the map is more inaccurate with
greater p. At last, the corrupted map is taken as the input
of MMF-SSIM fusion strategy. Similar steps are carried out
for MMFNet. Our goals in this experiment are two-fold. The
one is to observe how MFF-SSIM performs as the detected
focus map getting inaccurate. The other one is to investigate
whether MMF-SSIM fusion framework is more effective than
the boundary post-processor in MMFNet.

This experiment is conducted 100 times, and the average
PSNR/SSIM curves are displayed in Fig. 7, where corruption
probability p ranges from 0 to 0.5 with a step 0.1. There is no
doubt that the curves have downward tendencies as p going
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Fig. 8. Effects of the network depth (left) and width (right).

greater, but the PSNR and SSIM values of MFF-SSIM model
are always higher than those of MMFNet. In addition, we learn
that when p increases from 0 to 0.1, the PSNR value of MFF-
SSIM model decreases from 49.91dB to 43.53dB by 12.78%,
while that of MMFNet dramatically decreases from 37.87dB
to 25.72dB by 32.08%. The fusion images with p = 0.3 are
also visualized in Fig. 7. Our fusion image can match up our
expectations. Nonetheless, the artifacts can be easily found in
the image fused by MMFNet. Based on the above analysis,
we can draw the conclusion that MFF-SSIM model is more
robust than MMFNet.

D. Ablation experiments
In this subsection, a series of ablation experiments are

conducted, that is, changing some hyper-parameters of the
model and seeing how it affects performance.

1) Network depth and width: As shown in Fig. 4, MS-
ResNet employs 2 convolutional units and 8 residual blocks,
and there are 128 filters except for the last convolutional unit.
Here we analyze effects of network depth (that is, the number
of residual blocks) and width (that is, the number of filters).
The top panel of Fig. 8 displays the PSNR and SSIM curves
on the MFFW dataset with the number of residual blocks
increasing from 3 to 10. It is shown that both PSNR and SSIM
go larger and then tend to be flat with blocks’ number growing.
Eight blocks correspond to the best results. The bottom panel
of Fig. 8 shows the PSNR and SSIM curves with different
numbers of filters, including 8, 16, 32, 64, 128 and 256. A
similar conclusion can be drawn that both PSNR and SSIM
go greater with filters’ number growing. Nonetheless, it is
found that larger blocks’ or filters’ number does not necessarily
improve the performance of MS-ResNet. The reason may be
that the MS-ResNet suffers from the overfitting problem when
the network depth or width is too large.

2) Window size: In above experiments, the window size is
empirically set as W = αMN , where the window size ratio
is set as α = 5× 10−5, and M and N denote the height and
width of the image, respectively. Generally speaking, the con-
figuration of window size is important to patch-wise methods.
In this experiment, it aims at investigating the performance
of MFF-SSIM-Strategy with different window size ratios. For
simplicity, the LAP is employed as the focus map detector, and

(a) Source 1 (b) Source 2 (c) Reference

(d) α = 1.5 × 10−5 (e) α = 3.5 × 10−5 (f) α = 9.5 × 10−5
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Fig. 9. The results with different window size ratios of No. 4 image set from
MFFW.
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Fig. 10. The results with different window size ratios of No. 11 image set
from MFFW.

two pairs of images from MFFW are taken as representative
examples.

The window size ratio is sampled from 1.5× 10−5 to 9.5×
10−5 with step 1 × 10−5. Figs. 9 and 10 display the PSNR
and SSIM curves, and the fusion images with the smallest,
largest and optimal window sizes. In the first example, the
defocus spread effect is relatively mild. It is found that as α
increasing both PSNR and SSIM get larger and then decrease.
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(a) Source 1 (b) Source 2

Window Size Ratio

(c) Local patches

Fig. 11. The results with different window size ratios of No. 5 image set
from Lytro. Since there is no ground truth, we only display the concerned
local patches instead of the PSNR and SSIM curves.

The best result corresponds to α = 3.5× 10−5. As for visual
inspection, Fig. 9 (d) reveals that small window size suffers
from artifacts. In addition, it is observed that the fusion image
with large window size (see Fig. 9 (f)) is visually similar to
optimal fusion image (see Fig. 9 (e)). In the second example,
the defocus spread effect is relatively severe. From Fig. 10, it
is learned that both PSNR and SSIM increase as window size
increasing, and the best result is reached at α = 9.5 × 10−5.
And the fusion image with larger window size is visually better
than that with smaller window size. In summary, larger the
window size is, better our method is. This conclusion matches
up our anticipation, to some degree, because larger window
size indicates that there are more neighbors help the center
point to determine its pixel value.

However, this conclusion will not stay true if the foreground
or background is disconnected. For example, as shown in Fig.
11 larger window size would do harm to the fusion image,
when there is a crossed fence. In addition, it is worthy pointing
out that larger window size significantly raises execution time.
It still remains a problem that how to automatically pick
optimal window size so as to strike the balance between
performance and running speed.

E. Multiple source images

The above experiments mainly focus on the case of two
source images. It is interesting to study the performance of
our method if there are multiple images (i.e., K > 2). Recall
the updating rule, viz. Eq. (14). We know that if the focus
map detector can generate the maps for K source images
simultaneously (e.g. the Laplace energy method), MFF-SSIM
model will be directly applied in this case. However, if the

(a) Source 1 (b) Source 2 (c) Source 3

(d) BF (e) CNN (f) DPRL

(g) MMFNet (h) MS-Lap (i) MS-ResNet

Fig. 12. Fusion results of a set of multiple source images.

focus map detector only deals with two source images (e.g.
ResNet), we have to fuse them one by one. A representative
image set is displayed in Fig. 12. There is a shell, whose
different parts are in the near, middle and distant focuses. It is
shown that our methods still provide satisfactory images.

F. Mild defocus spread effect experiments
Though the mild defocus spread effect is out of our scope, it

is also interesting to investigate the behavior of our methods in
this case. To this end, the algorithms are applied to the Lytro
and Grayscale datasets who suffer from mild defocus spread
effects. With the limitation of paper length, the results are
displayed in supplementary materials. Although our methods
are not the best performer on Lytro and Grayscale datasets,
our fusion images are artifact-free and are visually similar to
the best one (i.e., MMFNet).

IV. CONCLUSIONS

This paper presents an SSIM-based multi-focus image fu-
sion framework, the first attempts to deal with severe defocus
spread effects. The experimental results show that our frame-
work outperforms the SOTA methods. Our fusion images are
artifact-free, while others contains obvious artifacts. However,
our method is time-consuming. It is interesting to investigate
how to design a real-time algorithm to deal with defocus spread
effects in the future. And, light filed imaging provides the
richer visual information than the classic photography and
it has been applied to depth estimation and super-resolution
[34], [35]. Therefore, another interesting future work is how
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to effectively combine multi-focus images with the light field
data to overcome the defocus spread effects.
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